4,133 Matching Annotations
  1. Oct 2023
    1. eLife assessment

      This study examines the expression of HDAC3 within DC compartment. Taking advantage of tamoxifen inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to occur during development around the CLP stage. Tamoxifen treated mice lack almost all pDC besides lymphoid progenitors. RNA seq studies identify multiple DC specific target genes within the remaining pDC - using Cut and Tag technology they validate some of the identified targets of HDAC3. Taken together, this study shows the requirement of HDAC3 on pDC but not cDC, congruent with the recent findings of a lymphoid origin of pDC.

    2. Reviewer #1 (Public Review):

      The work by Yijun Zhang and Zhimin He at al. analyzes the role of HDAC3 within DC subsets. Using an inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to be early during development around the CLP stage. Tamoxifen treated mice lack almost all pDCs besides lymphoid progenitors. Through bulk RNA seq experiment the authors identify multiple DC specific target gens within the remaining pDCs and further using Cut and Tag technology they validate some of the identified targets of HDAC3.<br /> Collectively the study is well executed and shows the requirement of HDAC3 on pDCs but not cDCs, in line with the recent findings of a lymphoid origin of pDC.

      While the authors provide extensive data on the requirement of HDAC3 within progenitors, the high expression of HDAC3 in mature pDCs may underly a functional requirement. Have you tested INF production in CD11c cre pDCs? Are there transcriptional differences between pDCs from HDAC CD11c cre and WT mice?

      A more detailed characterization of the progenitor compartment that is compromised following depletion would be important, as also suggested in the specific points.

    3. Reviewer #2 (Public Review):

      In this article Zhang et al. report that the Histone Deacetylase-3 (HDAC3) is highly expressed in mouse pDC and that pDC development is severely affected both in vivo and in vitro when using mice harbouring conditional deletion of HDAC3. However, pDC numbers are not affected in Hdac3fl/fl Itgax-Cre mice, indicating that HDCA3 is dispensable in CD11c+ late stages of pDC differentiation. Indeed, the authors provide wide experimental evidence for a role of HDAC3 in early precursors of pDC development, by combining adoptive transfer, gene expression profiling and in vitro differentiation experiments. Mechanistically, the authors have demonstrated that HDAC3 activity represses the expression of several transcription factors promoting cDC1 development, thus allowing the expression of genes involved in pDC development. In conclusion, these findings reveals HDAC3 as a key epigenetic regulator of the expression of the transcription factors required for pDC vs cDC1 developmental fate.

      These results are novel and very promising. However, supplementary information and eventual further investigations are required to improve the clarity and the robustness of this article.

      Major points<br /> 1) The gating strategy adopted to identify pDC in the BM and in the spleen should be entirely described and shown, at least as a Supplementary Figure. For the BM the authors indicate in the M & M section that they negatively selected cells for CD8a and B220, but both markers are actually expressed by differentiated pDC. However, in the Figures 1 and 2 pDC has been shown to be gated on CD19- CD11b- CD11c+. What is the precise protocol followed for pDC gating in the different organs and experiments?

      2) pDC identified in the BM as SiglecH+ B220+ can actually contain DC precursors, that can express these markers, too. This could explain why the impact of HDAC3 deletion appears stronger in the spleen than in the BM (Figures 1A and 2A). Along the same line, I think that it would important to show the phenotype of pDC in control vs HDAC3-deleted mice for the different pDC markers used (SiglecH, B220, Bst2) and I would suggest to include also Ly6D, taking also in account the results obtained in Figures 4 and 7. Finally, as HDCA3 deletion induces downregulation of CD8a in cDC1 and pDC express CD8a, it would important to analyse the expression of this marker on control vs HDAC3-deleted pDC.

      3) How do the authors explain that in the absence of HDAC3 cDC2 development increased in vivo in chimeric mice, but reduced in vitro (Figures 2B and 2E)? More generally, as reported also by authors (line 207), the reconstitution with HDAC3-deleted cells is poorly efficient. Although cDC seem not to be impacted, are other lymphoid or myeloid cells affected? This should be expected as HDAC3 regulates T and B development, as well as macrophage function. This should be important to know, although this does not call into question the results shown, as obtained in a competitive context.

      4) What are the precise gating strategies used to identify the different hematopoietic precursors in the Figure 4 ? In particular, is there any lineage exclusion performed? Moreover, what is the SiglecH+ CD11c- population appearing in the spleen of mice reconstituted with HDAC3-deleted CDP? Data shown in Figure 4F should be expressed as log2 and not10. Finally, how do the authors explain that Hdac3fl/fl express Il7r, while they are supposed to be sorted CD127- cells?

      5) What is known about the expression of HDAC3 in the different hematopoietic precursors analysed in this study? This information is available only for a few of them in Supplementary Figure 1. If not yet studied, they should be addressed.

      6) It would be highly informative to extend CUT and Tag studies to Irf8 and Tcf4, if this is technically feasible.

    1. Reviewer #2 (Public Review):

      In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl-4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf-2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.

      The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.

      Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissue-specific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: Sharma, et al. report the characterization of the polar tube (PT) from the microsporidian species, Vairimorpha necatrix, using a combination of optical microscopy, cryo-ET, and proteomics. The polar tube is a fascinating invasion apparatus which mediates the translocation of the parasite into the inside of a host cell to initiate infection. Similar to results obtained previously in other species, the authors show that PT firing in Vairimorpha necatrix is extremely fast, occurring on the order of 1 sec, and that the extruded PT is over 100 microns long in this species. Using cryo-ET to image the PT at a high resolution, they find that it exists in two major states: both an empty state and a state filled with cargo, and that the thickness of the tube wall changes when cargo is present. Strikingly, the authors observed that one of the cargo components, the ribosomes, are organized ordered array that may have helical symmetry. Finally, the authors took advantage of a naturally occurring "His tag" on PTP3 to affinity purify PTP3-containing protein complexes and analyze the composition using proteomics.

      Major comments

      ln 139-140: The absolute handedness of something can be very tricky to determine by cryo-ET (but certainly is possible). Variable hardware configurations between microscopes and differing conventions between software packages (e.g., for what direction is a positive tilt angle) can lead to inversion of the apparent handedness in the final tomogram. How certain are the authors that the absolute handedness is indeed right handed, as this seems to vary between the various display items in the manuscript? For example, in Fig 1c, my impression is that ribosome helices are left handed, as they are also in the supplemental movie. If this isn't known with certainty, perhaps it would be sufficient to describe the apparent helical symmetry but state that the handedness is ambiguous.

      Minor comments

      ln 39-40: Perhaps also cite the E. cuniculi genome paper?

      ln 97-98: It is interesting that the PT shortens in V. necatrix as well, and while I can pick this out in some of the individual traces in Sup Fig. 1b, it seems to get washed out in the trend line and isn't super obvious. If it isn't to laborious, it could be nice to add a panel showing the quantification of this (e.g., plotting the final length of each PT as a percentage of the maximum length achieved).

      ln 98-100: Strictly speaking, I don't think the referenced figure shows the sporoplasm being transformed into an extended conformation, only that it is spherical upon exit. Simply reword this to make clear that the deformations are inferred to occur but not directly observed.

      Because PT firing is so fast, the probability of trapping a PT in the process of transporting cargo would be pretty low. So then why does the PT still contain cellular cargo like ribosomes inside in the tomograms? Should these not have emerged in the sporoplasm which would enter the host cell? Are these "defective" spores that have failed to complete sporoplasm transport? Perhaps this is worth discussing.

      ln 118: The authors note an apparent correlation between the phase of germination and the thickness of the tube wall but don't specify what this correlation is. Is it thicker in the early phase and thinner in later phase, or vice versa? One could imagine "empty" tubes existing before or after sporoplasm transport, for example, so I'm not sure I follow how the phase is being inferred from the tomograms.

      ln 119-120: What is the evidence that the outer layer is made of PTPs, or that it is even protein (for example, as opposed to cell wall-like carbohydrate polymers)? I think this seems like a very reasonable hypothesis, but I would suggest explaining the logic and ensuring the degree of uncertainty is conveyed clearly. In light of this, I would also suggest changing figure labels, etc, that refer to the PTP layer (e.g., Fig. 3, PTPc and PTPe labels).

      ln 121, 123: "sheathed by a thin layer" and "enveloped by a thick outer layer": is this an additional layer being described? Or is this referring to the putative PTP layer, and that its thickness is variable?

      ln 125-126: While I understand how some features, like ribosomes, proteasomes, and generic membrane compartments could be identified, it is unclear to me how one would recognize the nucleus when inside the PT, nor are any examples shown. If the data is clear, perhaps the authors could show it in a figure? Otherwise, I suggest removing the claim regarding the nucleus.

      The arrangement of the ribosomes in a subset of tubes is really fascinating! While the number of observations is relatively small (n=5), it seems like it should be possible to comment preliminarily on whether there is much variability in their helical arrangement. Do the helical parameters vary much between observations? Does the til, pitch, etc vary much, are the 5 occurrences very similar? Is there any sign that they are associated with a membrane? Also, since the ribosomes form a lattice-like arrangement, it seems like it would be possible to trace ribosome helices in both the left and right handed directions. How did the authors decide between the two possibilities? This doesn't seem to be discussed.

      Fig. 2e: Are the two different colors/orientations meant to represent the two protamers of the ribosome dimer? When refined subvolumes are mapped back onto the original tomogram do the authors observe a similar crystalline arrangement of particles as in their segmentation? Are the orientations of the ribosomes correlated, and do the provide any evidence for the dimeric arrangement mentioned? The PlaceObjects plugin for Chimera can be very helpful for visualizing this: https://www.biochem.mpg.de/7939908/Place-Object

      Supp figure 4(b-d): Perhaps these models could be colored by pLDDT scores (with a key indicating the color scheme), so the reader can assess the quality of the predictions?

      How were the measurements of the membrane thickness and putative PTP layer carried out? On the tomogram projections? STAs? How were the boundaries of the layers established (e.g., map threshholding if STA?)? This information appears to be missing from the methods.

      Some tubes that are labeled as 'PTempty' actually contain cargo and look dense (example supp. Fig 2c, left and middle panels). Is it fair to classify these as empty tubes?

      Fig. 3d: I am not entirely clear on what is being shown here. Are independent reconstructions of PTcargo and PTempty superposed (aligned on membrane)? The description in the figure legend doesn't clearly say what is being displayed. I think it might be more clear to show these side-by-side instead of superposed (i.e., 4 panels instead of 2).

      Sup Fig 1: Define S and SP in legend or just spell out on figure? Missing x-axis label on panel b.

      Fig. 4b and Sup Fig 2a: The depictions of the PT in the spore here are left-handed. In a few species, the coil of the PT was found to form a right-handed helix (Jaroenlak, et al.), and it seems plausible that this may be a general feature that would be conserved across microsporidia. I appreciate that it might not be actually known to be right-handed in V. necatrix, but if there is no strong data either way, perhaps it would make sense for these depictions of the PT to be right-handed.

      I think all three of us are more or less in consensus about this manuscript, and I largely agree with the other reviewers comments. I think after addressing reviewer suggestions, this will be a pretty nice story.

      Significance

      Overall, this manuscript from Sharma, et al. presents interesting new findings about the structure and cargo transport function of the microsporidian PT. Microsporidia infect a wide range of hosts, including humans, and how the PT mediates parasite entry into cells is poorly understood. The approaches used in this study are appropriate for tackling the questions at hand, and appear to be generally well executed and interpreted. The observation that ribosomes assemble into an array within the PT is very unexpected and quite fascinating, and may be of broader interest to researchers working on ribosome structure and function, in addition to researchers studying microsporidia. The approach to investigating proteins interacting with PTP3 was quite elegant, and yielded a list of potential interactors that appears to be of very high quality and is highly plausible based on the literature field. We think this work is a substantial advance in the field and provides important new insights into the organization of the PT. - Please define your field of expertise with a few keywords to help the authors contextualize your point of view:

      Structural biology, microsporidia - Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      We are not experts in proteomics/mass spectrometry

    1. Should I use zettelkasten? .t3_172ujnk._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } questionI am a student in college in the UK studying A levels (Advanced levels), this includes mathematics, biology, chemistry and physics. I dont really take notes for mathematics so I wont be using any type of note taking system for that but for the sciences IDK what to do.

      reply to u/Wooden-School-4091 at https://www.reddit.com/r/Zettelkasten/comments/172ujnk/should_i_use_zettelkasten/

      This comes up fairly frequently. See https://hypothes.is/users/chrisaldrich?q=tag%3A%27zettelkasten+for+studying%27 and related links for other variations and advice on this theme.

    1. ja. fehler:

      In Bayern hat sich eine konservative Mehrheit gebildet, die 67,4 Prozent der abgegebenen Stimmen erhalten hat: CSU (die Union wird hier mitgerechnet unter zumindest potentiell noch konservativ, die Red.), Freie Wähler und AfD.

      die einzige "konservative" partei ist die AFD, alle anderen sind betrüger ("conservatives in name only").

      aber die AFD war noch nie teil einer regierung, sonst würde man sehen: auch die AFD kann nichts ändern, weil alle entscheidungen kommen von oben, und politiker verkaufen diese entscheidungen nach unten, wie in einer dauerwerbesendung. deswegen, auch die AFD ist nur "controlled opposition".

      wenn politiker wirklich mal rebellieren gegen "oben", dann wird die zentralbank einfach die geldzahlungen einstellen, und am nächsten tag ist die regierung pleite. schon heute sind alle regierungen pleite, und leben von kredit von der zentralbank.

      Gebt mir die Kontrolle über die Währung einer Nation, und es ist mir gleichgültig, wer die Gesetze macht.

      -- Amschel Mayer Rothschild

      deswegen: politik ist zeitverschwendung. aktivismus heisst selbsthilfe, selbstorganisation, kleinstaaten.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Cincotta et al set out to investigate the presence of glucocorticoid receptors in the male and female embryonic germline. They further investigate the impact of tissue-specific genetically induced receptor absence and/or systemic receptor activation on fertility and RNA regulation. They are motivated by several lines of research that report inter and transgenerational effects of stress and or glucocorticoid receptor activation and suggest that their findings provide an explanatory mechanism to mechanistically back parental stress hormone exposure-induced phenotypes in the offspring.

      Strengths:<br /> - A chronological immunofluorescent assessment of GR in fetal and early life oocyte and sperm development.<br /> - RNA seq data that reveal novel cell type specific isoforms validated by q-RT PCR E15.5 in the oocyte.<br /> - 2 alternative approaches to knock out GR to study transcriptional outcomes. Oocytes: systemic GR KO (E17.5) with low input 3-tag seq and germline-specific GR KO (E15.5) on fetal oocyte expression via 10X single cell seq and 3-cap sequencing on sorted KO versus WT oocytes - both indicating little impact on polyadenylated RNAs<br /> - 2 alternative approaches to assess the effect of GR activation in vivo (systemic) and ex vivo (ovary culture): here the RNA seq did show again some changes in germ cells and many in the soma.<br /> - They exclude oocyte-specific GR signaling inhibition via beta isoforms.<br /> - Perinatal male germline shows differential splicing regulation in response to systemic Dex administration, results were backed up with q-PCR analysis of splicing factors.

      Weaknesses:<br /> - The presence of a protein cannot be entirely excluded based on IF data (staining of spermatids is referred to but not shown).<br /> - The authors do not consider post-transcriptional level a) modifications also trigged by GR activation b) non-coding RNAs (not assessed by seq).<br /> - Sequencing techniques used are not total RNA but either are focused on all polyA transcripts (10x) or only assess the 3' prime end and hence are not ideal to study splicing, The number of replicates in the low input seq is very low and hence this might be underpowered. Since Dex treatment showed some (modest) changes in oocyte RNA - effects of GR depletion might only become apparent upon Dex treatment as an interaction.<br /> - Effects in oocytes following systemic Dex might be indirect due to GR activation in the soma.<br /> - Even though ex vivo culture of ovaries shows GR translocation to the nucleus it is not sure whether the in vivo systemic administration does the same.

      The conclusion that fetal oocytes are "intrinsically buffered to GR signalling" is very strong, given that "only" poly A sequencing and few replicates of 3-prime sequencing have been analyzed and information is lacking on whether GR is activated in germ cells in the systemically dex-injected animals.

      This work is a good reference point for researchers interested in glucocorticoid hormone signaling fertility and RNA splicing. It might spark further studies on germline-specific GR functions and the impact of GR activation on alternative splicing.

      While the study provides a characterization of GR and some aspects of GR perturbation, and the negative findings in this study do help to rule out a range of specific roles of GR in the germline, there is still a range of other potential unexplored options. The introduction of the study eludes to implications for intergenerational effects via epigenetic modifications in the germline, however, it does not mention that the indirect effects of reproductive tissue GR signaling on the germline have indeed already been described in the context of intergenerational effects of stress. Also, the study does not assess epigenetic modifications.

      The conclusion that the persistence of a phenotype for up to three generations suggests that stress can induce lasting epigenetic changes in the germline is misleading. For the reader who is unfamiliar with the field, it is important to define much more precisely what is referred to as "a phenotype". Furthermore, this statement evokes the impression that the very same epigenetic changes in the germline have been observed across multiple generations.

      The evidence of the presence of GR in the germline is also somewhat limited - since other studies using sequencing have detected GR in the mature oocyte and sperm.

      The discussion ends again on the implications of sex-specific differences of GR signaling in the context of stress-induced epigenetic inheritance. It states that the observed differences might relate to the fact that there is more evidence for paternal lineage findings, without considering that maternal lineage studies in epigenetic inheritance are generally less prevalent due to some practical factors - such as more laborious study design making use of cross-fostering or embryo transfer. Since the authors comment on RNA-mediated inheritance it seems inevitable to again consider indirect effects.

    1. Comparing the two points, you can see that E is Pareto inefficient because both the rich and poor are better off at R than at E. The income distribution at R is also the one at which the poor are as rich as they can possibly be in this economy, as indicated by the feasible frontier. This is the point that Rawls favoured (and why we called it point R).

      The impact of free international financial markets on East Asia, as viewed through the lens of this section's framework, is complex. On one hand, these markets have stimulated economic growth in the region by facilitating investment and access to global capital, which has the potential to positively affect individuals' financial wealth and physical assets. However, the benefits have not been equally distributed, contributing to growing income disparities. According to SSRN, "growth-promoting economic freedoms hamper future progress by raising inequalities." The disparities are rooted in differences in education, gender, and social class, influenced by institutions and technology.

      Therefore, while free international financial markets have brought economic opportunities to East Asia, they have also exacerbated income inequality, highlighting the need to address these disparities by considering the interplay between institutions, technology, and individual endowments to achieve a more balanced outcome in the region.

      Works Cited: Ilkay Yılmaz , Mehmet Murat Balkan , Mehmet Nasih Tağ Income Inequality and Economic Freedom: The 2000s

    1. Total cost of ownership (TCO) addresses the total cost of software development from inception to sun setting. In 2011, the CRASH report stated the total cost of ownership for software code was $18/Line of Code (LOC). Of this, it is generally accepted that the majority of this cost is related to the maintenance of the software after its initial creation, with estimates ranging from 60-90%.

      $18 /LOC

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Royall et al. builds on previous work in the mouse that indicates that neural progenitor cells (NPCs) undergo asymmetric inheritance of centrosomes and provides evidence that a similar process occurs in human NPCs, which was previously unknown.

      The authors use hESC-derived forebrain organoids and develop a novel recombination tag-induced genetic tool to birthdate and track the segregation of centrosomes in NPCs over multiple divisions. The thoughtful experiments yield data that are concise and well-controlled, and the data support the asymmetric segregation of centrosomes in NPCs. These data indicate that at least apical NPCs in humans undergo asymmetric centrosome inheritance. The authors attempt to disrupt the process and present some data that there may be differences in cell fate, but this conclusion would be better supported by a better assessment of the fate of these different NPCs (e.g. NPCs versus new neurons) and would support the conclusion that younger centriole is inherited by new neurons.

      We thank the reviewer for their supportive comments (“…thoughtful experiments yield data that are concise and well-controlled…”).

      Reviewer #2 (Public Review):

      Royall et al. examine the asymmetric inheritance of centrosomes during human brain development. In agreement with previous studies in mice, their data suggest that the older centrosome is inherited by the self-renewing daughter cell, whereas the younger centrosome is inherited by the differentiating daughter cell. The key importance of this study is to show that this phenomenon takes place during human brain development, which the authors achieved by utilizing forebrain organoids as a model system and applying the recombination-induced tag exchange (RITE) technology to birthdate and track the centrosomes.

      Overall, the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology. The Discussion is excellent, it brings this study into the context of previous work and proposes very appealing suggestions on the evolutionary relevance and underlying mechanisms of the asymmetric inheritance of centrosomes. The main weakness of the study is that it tackles asymmetric inheritance only using fixed organoid samples. Although the authors developed a reasonable mode to assign the clonal relationships in their images, this study would be much stronger if the authors could apply time-lapse microscopy to show the asymmetric inheritance of centrosomes.

      We thank the reviewer for their constructive and supportive comments (“…the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology….”). We understand the request for clonal data or dynamic analyses in organoids (e.g., using time-lapse microscopy). We also agree that such data would certainly strengthen our findings. However, as outlined above (please refer to point #1 of the editorial summary), this is unfortunately currently not feasible. However, we have explicitly discussed this shortcoming in our revised manuscript and why future experiments (with advanced methodology) will have to do these experiments.

      Reviewer #3 (Public Review):

      In this manuscript, the authors report that human cortical radial glia asymmetrically segregates newly produced or old centrosomes after mitosis, depending on the fate of the daughter cell, similar to what was previously demonstrated for mouse neocortical radial glia (Wang et al. 2009). To do this, the authors develop a novel centrosome labelling strategy in human ESCs that allows recombination-dependent switching of tagged fluorescent reporters from old to newly produced centrosome protein, centriolin. The authors then generate human cortical organoids from these hESCs to show that radial glia in the ventricular zone retains older centrosomes whereas differentiated cells, i.e. neurons, inherit the newly produced centrosome after mitosis. The authors then knock down a critical regulator of asymmetric centrosome inheritance called Ninein, which leads to a randomization of this process, similar to what was observed in mouse cortical radial glia.

      A major strength of the study is the combined use of the centrosome labelling strategy with human cortical organoids to address an important biological question in human tissue. This study is similarly presented as the one performed in mice (Wang et al. 2009) and the existence of the asymmetric inheritance mechanism of centrosomes in another species grants strength to the main claim proposed by the authors. It is a well-written, concise article, and the experiments are well-designed. The authors achieve the aims they set out in the beginning, and this is one of the perfect examples of the right use of human cortical organoids to study an important phenomenon. However, there are some key controls that would elevate the main conclusions considerably.

      We thank the reviewer for their overall support of our findings (“..authors achieve the aims they set out in the beginning, and this is one of the perfect examples of the right use of human cortical organoids to study an important phenomenon…”). We also understand the reviewer’s request for additional experiments/controls that “…would elevate the main conclusions considerably.”

      1) The lack of clonal resolution or timelapse imaging makes it hard to assess whether the inheritance of centrosomes occurs as the authors claim. The authors show that there is an increase in newly made non-ventricular centrosomes at a population level but without labelling clones and demonstrating that a new or old centrosome is inherited asymmetrically in a dividing radial glia would grant additional credence to the central conclusion of the paper. These experiments will put away any doubt about the existence of this mechanism in human radial glia, especially if it is demonstrated using timelapse imaging. Additionally, knowing the proportions of symmetric vs asymmetrically dividing cells generating old/new centrosomes will provide important insights pertinent to the conclusions of the paper. Alternatively, the authors could soften their conclusions, especially for Fig 2.

      We understand the reviewer’s request. As outlined above (please refer to point #1 of the editorial summary), we had tried previously to add data using single cell timelapse imaging. However, due to the size and therefore weakness of the fluorescent signal we had failed despite extensive efforts. According to the reviewer’s suggestion we have now explicitly discussed this shortcoming and softened our conclusions.

      2) Some critical controls are missing. In Fig. 1B, there is a green dot that does not colocalize with Pericentrin. This is worrying and providing rigorous quantifications of the number of green and tdTom dots with Pericentrin would be very helpful to validate the labelling strategy. Quantifications would put these doubts to rest. Additionally, an example pericentrin staining with the GFP/TdTom signal in figure 4 would also give confidence to the reader. For figure 4, having a control for the retroviral infection is important. Although the authors show a convincing phenotype, the effect might be underestimated due to the incomplete infection of all the analyzed cells.

      We have included more rigorous quantifications in our revised manuscript.

      For Figure 1: There are indeed some green speckles that might be misinterpreted as a green centrosome. However, the speckles are usually smaller and by applying a strict size requirement we exclude speckles. To check whether the classifier might interpret any speckles as centrosomes, we manually checked 60 green “dots” that were annotated as centrosome. From these images all green spots detected as centrosome co-localized with Pericentrin signal (Images shown in Author response image 1).

      For Figure 4: as we are comparing cells that were either infected with a retrovirus expressing scrambled or Ninein-targeting shRNA we compare cells that experienced a similar treatment. Besides that, only cells infected with the virus express Cre-ERT2 whereby only the centrosomes of targeted cells were analyzed. Accordingly, we only compare cells expressing scrambled or Ninein-targeting shRNA, all surrounding “wt” cells are not considered.

      Author response image 1.

      Pictures used to test the classifier. Each of the green “dots” recognized by the classifier as a Centriolin-NeonGreen-containing centrosome (green) co-localized with Pericentrin signal (white).

      3) It would be helpful if the authors expand on the presence of old centrosomes in apical radial glia vs outer radial glia. Currently, in figure 3, the authors only focus on Sox2+ cells but this could be complemented with the inclusion of markers for outer radial glia and whether older centrosomes are also inherited by oRGCs. This would have important implications on whether symmetric/asymmetric division influences the segregation of new/old centrosomes.

      That is an interesting question and we do agree that additional analyses, stratified by ventricular vs. oRGCs would be interesting. However, at the time points analysed there are only very few oRGCs present (if any) in human ESC-derived organoids (Qian et al., Cell, 2016). However, we have now added this point for future experiments to our discussion.

    2. Reviewer #1 (Public Review):

      The manuscript by Royall et al. builds on previous work in the mouse that indicates that neural progenitor cells (NPCs) undergo asymmetric inheritance of centrosomes and provides evidence that a similar process occurs in human NPCs, which was previously unknown.

      The authors use hESC-derived forebrain organoids and develop a novel recombination tag-induced genetic tool to birthdate and track the segregation of centrosomes in NPCs over multiple divisions. The thoughtful experiments yield data that are concise and well-controlled, and the data support the asymmetric segregation of centrosomes in NPCs. These data indicate that at least apical NPCs in humans undergo asymmetric centrosome inheritance. The authors attempt to disrupt the process and present some data that there may be differences in cell fate, but this conclusion would be better supported by a better assessment of the fate of these different NPCs (e.g. NPCs versus new neurons) and would support the conclusion that younger centriole is inherited by new neurons.

    3. Reviewer #2 (Public Review):

      Royall et al. examine the asymmetric inheritance of centrosomes during human brain development. In agreement with previous studies in mice, their data suggest that the older centrosome is inherited by the self-renewing daughter cell, whereas the younger centrosome is inherited by the differentiating daughter cell. The key importance of this study is to show that this phenomenon takes place during human brain development, which the authors achieved by utilizing forebrain organoids as a model system and applying the recombination-induced tag exchange (RITE) technology to birthdate and track the centrosomes.

      Overall, the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology. The Discussion is excellent, it brings this study into the context of previous work and proposes very appealing suggestions on the evolutionary relevance and underlying mechanisms of the asymmetric inheritance of centrosomes. The main weakness of the study is that it tackles asymmetric inheritance only using fixed organoid samples. Although the authors developed a reasonable mode to assign the clonal relationships in their images, this study would be much stronger if the authors could apply time-lapse microscopy to show the asymmetric inheritance of centrosomes.

    1. Showers and shared kitchen facilities are in a warm, permanent building, rather than the canvas tents used sixty miles away in Seattle. Every tiny house has a porch and a bathroom. As an equal proportion of the development’s total price tag, each house costs $88,000; on an individual basis they are $19,000 per unit.

      Homeless people are actually getting their basic necessities covered and it helps with better hygiene that other people living in those cabins and camps desperately needed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful assessment of our work and their valuable critiques which we will address in the “Recommendations for the authors” section below. In particular, we appreciate Reviewer #3 noting the value of the C. elegans model system and our efforts to bridge models with our study. We agree with the reviewer that there is a need to clarify the rationale, presentation and interpretation of our results. We have substantially revised the text in our manuscript and Figure legend to address this issue, and provided extensive new commentary and citations to lay out the logic behind our experiments. Indeed, it was our oversight not being more thorough about this initially. We have further adjusted our conclusions to be less unequivocal. Finally, we added an RPM-1 signaling diagram (Fig. 8A) to more clearly annotate the players in the RPM-1/MYCBP2 signaling network that were evaluated genetically in Fig. 8. Importantly, we provide clearer commentary on how genetic enhancer effects with known RPM-1 binding proteins and the absence of genetic suppression in vab-1/Eph receptor double mutants with components of the RPM-1/FSN-1 ubiquitin ligase complex are consistent with the biochemical finding that MYCBP2 stabilizes but does not degrade EphB2. Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      Following extensive discussions between the three reviewers, all three agree that the C. elegans data, as presented, does not add to, and in fact might harm, your bottom line. Our combined suggestion is to take this data out unless you plan to improve it substantially. All reviewers are perplexed by Figure 2F and the presumed interactions of cytosolic proteins with the extracellular domain of EPHB2. At the very least, please provide some suggestions/model/interpretation.

      We have adjusted our manuscript substantially to address this. Please see detailed comments in the individual Reviewer sections below.

      We would like to thank the reviewers for their thorough examination of our manuscript, constructive criticisms, and helpful suggestions.

      Reviewer #1 (Recommendations For The Authors):

      The work is extensive in my view, and mostly of high quality. See minor comments on some of the figures below.

      Thank you very much.

      Two more major comments :

      • I don't think the C. elegans work adds to - in fact I think it hurts - the statement that this regulatory mechanism is specific to EphB2. I would advise the authors to take it out.

      We agree that C. elegans has a sole Eph receptor called VAB-1 and is therefore not a specific model for EPH2B. However, testing MYCBP2 specificity for EPHB2 was not the goal or our perceived value for the C. elegans experiments. We now clarify this in the text of the Results section.

      Rather, we are providing evidence that the C. elegans ephrin receptor interacts genetically with known MYCBP2/RPM-1 binding proteins. Moreover, we now provide an extensive array of citations to note that genetic enhancer interactions between different RPM-1/MYCBP2 binding proteins is well established. The reviewer has nicely highlighted for us that we handled the C. elegans genetics in too cursory a fashion in our original manuscript. We appreciate this being noted and have now aimed to make this substantially clearer. We hope the reviewer agrees that our revised C. elegans section accomplishes this goal.

      Furthermore, we extensively revised the text of the Results to emphasize a key point: our observation that axon termination defects are not suppressed in vab-1; fsn-1 and vab-1; rpm-1 double mutants excludes the possibility that the VAB-1 Eph receptor is a substrate that is inhibited or degraded by the RPM-1/FSN-1 ubiquitin ligase complex. If the VAB-1 Eph receptor were ubiquitinated and degraded by the RPM-1/FSN-1 complex, we would have observed a suppression of phenotype in vab-1; rpm-1 double mutants. The precedent for this genetic relationship between the RPM-1 ubiquitin ligase and its substrates that are degraded has been established by several prior studies (PMID: 15707898; PMID: 31676756; PMID: 35421092). We now more clearly note that the absence of genetic suppression in vab-1; rpm-1 double mutants and vab-1; fsn-1 double mutants is consistent with the non-canonical stabilizing role of MYCBP2 on EPHB2 that was observed in our biochemical experiments with mammalian cells.

      We also adjusted the text of the manuscript to stress that we are testing genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This is a key point, as genetic enhancer interactions are consistent with the Eph receptor functioning in the RPM-1 signaling network. This concept has been well established for RPM-1 binding proteins as now noted in our revised text with an extensive number of additional citations to published work.

      Based on the above arguments, we respectfully disagree with the reviewer that our C. elegans data should be removed from the paper. To re-iterate, we are not trying to evaluate specificity for MYCBP2 and EPHB2 in C. elegans. Rather, our goals are twofold: 1) To ask whether there is an evolutionarily conserved functional genetic link between Eph receptors and known RPM-1 binding proteins. 2) To provide further in vivo genetic evidence invalidating the hypothesis that Ephrin receptors could be ubiquitination substrates that are inhibited/degraded by MYCBP2.

      Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      • The cellular responses are not robust and the effects of MYCBP2 KO - although significant - are minor in most cases. But I don't think more experiments will help here.

      We interpret the comment about the robustness to mean that the extent to which a given cellular response is affected by the loss of MYCBP2 is minor. First, the cellular responses themselves are typical of previous studies and depend on the cellular biology underlying them. For example, a growth collapse of ~50-60% over a background of 10% (Fig. 7) is typical for these sorts of assays (PMID: 37369692; PMID: 33972524; PMID: 17785182). A decrease of cell area by ~25% (Fig. 3) is quite substantial if one considers how much of a cell’s volume is taken up by the nucleus and organelles. Second, the phenotypes elicited by the loss of MYCBP2 are likely brought on by a decrease in EphB2 protein levels, but not its complete absence, as suggested by our biochemical experiment. Given that EphB2 complete loss only affects the cellular responses to a limited extent, the minor effects are not a surprise (e.g. for GC collapse: PMID: 23143520). Nevertheless, the subtle changes in cellular phenotypes, elicited by EPHB2 signaling are often sufficient to achieve proper cell positioning and cell response to guidance cues. For instance, regulation of the growth cone collapse of the outgrowing axons requires delicate changes that are dynamic and temporal.

      Minor:

      Fig 1C - EPHA3 and EPHB2 seem to run in different sizes, is this the case? In 2A they run at the same size.

      We believe this size discrepancy is due to different percentages of SDS-PAGE gels used to resolve proteins. In Fig. 1C, we used a 6% gel for a Western blot analysis of both EPHA3/-B2-FLAG (~130 kDa) and MYCBP2 (~510 kDa). In Fig. 2A however, we performed Western blot analysis using 10% resolving gel to separate and detect EPHA3/-B2-FLAG along with MYC-FBXO45 (~30 kDa). We have reviewed the results obtained from additional biological replicates of this experiment, and observed a similar pattern in gel migration of EPHA3/-B2-FLAG across all replicates.

      Fig1F - I can't trust the MYCBP2 blot.

      Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the results replace the previous Fig. 1F panel as mentioned on line 158.

      In Fig2b the authors claim that there is enhancement in the binding of MYCBP2 and EPHB2 upon FBXO45 expression. For this type of statement quantification is required.

      The quantification is now included in Fig. 2C and its significance is mentioned on line 180. Our conclusion about the enhancement stands.

      Fig2G - it remained unclear to me where the binding site to MYCBP2 is, how long is the cytoplasmic tail in the DeltaICD protein?

      Based on our experimental observations from Fig. 2E-H, we concluded that the fragment encompassing the extracellular domain(s) and/or transmembrane (TM) domain of EPHB2 is necessary for the protein complex formation with MYCBP2. We would like to accentuate that the EPHB2-MYCBP2 interaction might not be direct, and might involve other transmembrane protein(s) acting as a scaffold for EPHB2 and MYCBP2 binding. We did not pursue experiments to determine the exact region of the extracellular-TM portion of EPHB2 that is required for the interaction with MYCBP2.

      The cytoplasmic tail in ΔICD protein consists of 25 aa of the N-terminal fragment of EPHB2 juxtamembrane (JM) region, which is adjacent to the TM helix, and followed by the 8 aa FLAG tag (EPHB2 ΔICD domain composition: extracellular domains – TM domain – 25 aa fragment of JM region – FLAG). We have determined the TM and JM sequences based on Hedger et al. (PMID: 25779975) and included the N-terminal portion of the JM region to facilitate proper ΔICD protein localization within the plasma membrane (PMID: 35793621). We modified the schematic in Fig. 2G to better visualise the EPHB2 truncations and now provide information on their size in the figure legend.

      Always good to have a model of how all these proteins work together.

      While we acknowledge that this would be helpful, we do not have a clear answer on how the EPHB2-MYCBP2 complex formation occurs. This requires further elucidation of the putative proteins involved in this ternary complex or testing the possibility that a MYCBP2 fragment is extruded extracellularly. Without these experiments there are too many possibilities to summarise into a clear model figure. We thus did not make any edits regarding these possibilities in the section starting on line 195.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.

      Thank you for your encouraging comments.

      Controls for the stripe assay may include Fc / Fc stripe assays.

      We have performed these control experiments and now include their quantifications in the results sectioning concerning Fig. 3, starting on line 249, and those concerning Fig. 6 on line 381.

      It is not clear to me why SD and not SEM has been used here for presentations.

      Standard deviation (SD) measures the dispersion of a dataset relative to its mean. The standard error of the mean (SEM) measures how much discrepancy is likely in a sample’s mean compared with the population mean. Thus, SEM includes a statistical inference about the sampling distribution while SD is a less “processed” measurement that by definition is larger than SEM. SEM might make the data look less dispersed and many journals encourage the use of SD in bar graphs (PMID: 16223828).

      Fig 7A: it is rather difficult to see 'branches' in Fig. 7A, better pictures and close-ups should be provided. How are branches defined? This piece of work needs more attention.

      To remedy this shortcoming, we now provide inverted images with GFP signal in dark pixels overlaid on Fc (white) / eB2 (pink) stripes next to the original images.

      Reviewer #3 (Recommendations For The Authors):

      1) My most important suggestion to the authors would be to more carefully describe the results and their interpretation of the results. Sometimes, the distinction is not clear.

      We modified the text throughout the manuscript to address this.

      2) There are several cases, when the authors report on trends that are not statistically significant (1D, for example), or report no change, when it is clear that the addition of one more sample could have dramatically made a difference (4M - see point 12).

      We agree that some of the nonsignificant differences could become significant if we added more Ns. But we prefer not to move our experimental design towards N-chasing and p-hacking (PMID: 25768323). The number of biological replicates is normally pre-determined before the onset of the experiment. Of course, some replicates can be discarded if there is a valid reason, such as a technical issue with the experiment or a positive control not working but this is not relevant for the dataset we have provided.

      3) Data in 1F is very difficult to interpret.

      As in response to Reviewer #1: Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the improved results are in revised Fig. 1F.

      4) Figure 2 puts Figure 1 in a strange perspective. If I understand correctly, fig 2 claims that EPHB2 interaction with MYCBP2 depends on FBXO45 - if that is the case then how does the binding in Figure 1 occur?

      Indeed, we propose that the EPHB2-MYCBP2 interaction depends on FBXO45. In Fig. 2, we reveal that FBXO45 enhances the formation of the EPHB2-MYCBP2 complex. Thus, we suspect that the endogenous FBXO45 present in HeLa cells and neurons would mediate the interaction between EPHB2 and MYCBP2 in Fig. 1 experiments. We were unable to show this by Western blotting due to lack of reliable commercial antibodies against FBXO45, the complex containing endogenous FBXO45 and EPHB2 is also implied by our AP-MS data (Fig. 1B) and published databases.

      5) I am still trying to wrap my mind around the results in 2G-H. So do MYCBP2 and FBXO45 bind the extracellular domain of EPHBP2? What does that mean?

      (see also our response to Reviewer #1, end of their section) Based on our experimental observations from Fig. 2G-H, we conclude that the fragment encompassing the extracellular domain(s) and/or transmembrane domain of EPHB2 is necessary for the protein complex formation with MYCBP2 and FBXO45. Although there is a possibility that MYCBP2 directly binds the extracellular portion of EPHB2, we have not formally tested this hypothesis. MYCBP2 has been previously shown to interact with the extracellular portion of transmembrane N-cadherin (CDH2) via BioID proximity labeling and AP-MS proteomics approaches (PMID: 32341084).

      Considering the results in Fig. 2A-B, we suspect that EPHB2-MYCBP2 interaction is indirect, as FBXO45 enhances this association. Secretion of FBXO45 and direct binding of FBXO45 to the extracellular cadherin (EC1-2) domains of N-cadherin has been documented (PMID: 25143387; PMID: 32341084). Although, not tested, this is also a possibility for EPHB2-FBXO45 mode of interaction. Nevertheless, we also cannot rule out the possibility that an unknown transmembrane protein binds EPHB2 extracellularly and the same unknown protein binds MYCBP2/FBXO45 intracellularly. Resolving this model is beyond the scope of this study and will require us to pursue extensive new lines of investigation.

      6) I don't understand the stable Hela cell line CRISPR - is this a stable MYCBP2 deletion? In which case why is there only a reduction, not complete elimination of the protein? Or, is this a stable integration of a plasmid generating gRNA against MYCBP2? In which case, I would expect a homozygous null to emerge at some point. In any case, this is not well explained.

      These lines are not derived from single cells infected with the CRISPR sgRNA-carrying viruses, therefore they are not clonal and probably contain some cells that express normal levels of MYCBP2, hence its detection on a Western. This is now clarified starting on line 221 and on line 608.

      7) In 3C - is this the right statistical analysis?? I would say you want to claim the different effect of the control +/- eB2 compared to the effect in the mutant +/- eB2. Still should be significant but I think a more correct analysis.

      We now include this comparison in Fig. 3C as well in the results section starting on line 234.

      8) The robustness of the assay in Figure 3D is underwhelming – how was the area measured?

      This is a live imaging experiment. Fig. 3D plots cell area at 60 minutes after ephrin-B2 addition as a fraction of the same cell’s area at 0 minutes (ephrin-B2 addition). For control cells that is a decrease of ~25%. If one considers that a cell’s nucleus and organelles like the Golgi Apparatus take up most of its volume, the magnitude is not that surprising.

      9) Figure 3F – did you try to plot the relative area of overlap divided by the total cellular area? You might get a more striking phenotype. Also – claiming that this confirms that MYCBP2 is REQUIRED for EPHB2 function is a bit overstated, especially given that we don’t know (do you?) the EPHB2 mutant phenotype in this assay.

      We preferred to stay with the original method of image quantification which we use for other assays. With respect to the requirement of MYCBP2 for EPHB2 function in the stripe assay, our logic is rooted in the observation that native HeLa cells do not respond to ephrin-B2 stripes (45.46 ± 7.62% of cells on eB2 stripes v. Fc; data not shown). When they are transfected with EPHB2 expression plasmids they do, therefore we assume that EPHB2 expression endows them with a sensitivity to eB2 stripes. A loss of MYCBP2 attenuates this sensitivity. We clarified this starting on line 246 and on line 251.

      10) I didn't quite get the difference between 4A and 4B.

      We apologize for the confusion. In Fig 4A, we used a stable HeLa cell line that has tetracycline-inducible expression of EPHB2-FLAG. Using these cells, we subsequently generated CTRLCRISPR or MYCBP2CRISPR cells. In these cells we then induced EPHB2 expression with tetracycline and observed that deletion of MYCBP2 resulted in the reduction of EPHB2 protein levels. To confirm this observation and to rule out the possibility that EPHB2 protein reduction is an effect of the CRISPR lines generation, we tested whereas MYCBP2 deletion reduces EPHB2, which has been transiently overexpressed (Fig. 4B). We hence conclude that loss of MYCBP2 decreases EPHB2 that was either expressed from a stable locus (Fig. 4A) or from transient transfection (Fig. 4B). We modified the Results section starting on line 262 to make this point clear.

      11) The entire link to lysosomal degradation should be strengthened. Perhaps I am confused, but if the reduced EPHB2 levels in MYCBP2 mutant cells result from impaired lysosomal degradation then inhibiting the lys-deg should bring the protein levels back to normal (i.e. CRISPR control) - no? As currently presented, I do not understand nor do I think the claim is strongly supported by the data.

      Before treatment with inhibitors, EPHB2 levels in MYCBP2CRISPR cells are already 40% lower than they are in CTRLCRISPR cells and in all our attempts, inhibitors can only rescue/restore EPHB2 in MYCBP2CRISPR cells to a level that is lower than in CTRLCRISPR cells. But this restoration is greater in MYCBP2CRISPR than in MYCBP2CTRL cells (BafA1: 19% increase in CTRL cells and 40% in MYCBP2CRISPR cells; CoQ: 10% comparing to 35%). This indicates that EPHB2 degradation through the lysosomal pathway in MYCBP2CRISPR cells is stronger, explaining why EPHB2 degradation is promoted in MYCBP2CRISPR cells, compatible with reduced EPHB2 levels and enhanced EPHB2 ubiquitination.

      12) 4M, O - reporting ns based on these data seems a bit strange to me... Add one point and it will be strongly significant.

      See our response to point (2), above. We prefer not to invoke potential p-hacking.

      13) 7d - so what are you claiming? That the cellular response to eB1 but not eB2 is affected by the addition of FBD1? this is almost the opposite of what you wrote in the text...

      We treated the cells with two different ephrin-B ligands to make a stronger conclusion. When using ephrin-B1, growth cone collapse in FBD1 WT is not significant comparing to Fc treatment. When using ephrin-B2, growth cone collapse in FBD1 WT is not as significant as it is in FBD1 mut group (* versus ). We interpret this as meaning that the EPHB2-mediated growth cone collapse to both ligands is dampened, when we disrupt the EPHB2-MYCBP2 association. The difference between these two ligands might be due to their different affinities for the receptor or signalling kinetics.

      14) By far the weakest link in this paper is the worm part. I think it's a pity because strengthening this would affect the significance of the finding. First, the authors mention new genes without introducing their relationship to the signaling pathway tested. Second, the textual logics should be strengthened. Finally and most importantly, when the difference between the phenotypic severity is so strong (vab-1 and rpm-1) then I think it's impossible to say anything from the double mutant.

      We appreciate the reviewer noting that they appreciate the value and importance of the C. elegans model. The goals of our C. elegans experiments were twofold:

      1) To evaluate genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This was not clearly explained in the original manuscript nor was the published precedent for these types of genetic enhancer experiments provided. We have now rectified this by substantially revising the text of the Results C. elegans section starting on line 431 and by adding several citations.

      2) Our C. elegans genetics confirmed that the VAB-1 Eph receptor is not inhibited/degraded by the RPM-1/MYCBP2 ubiquitin ligase complex. We have now revised the text to draw this point out more clearly.

      To further address the reviewer’s concerns, we have added a new schematic (Fig. 8A) to show the relationship between the RPM-1 and the RPM-1 binding proteins (FSN-1/FBXO45 and GLO-4/SERGEF) we are testing. We chose FSN-1 because it is part of the RPM-1 ubiquitin ligase complex and we chose GLO-4 because it functions outside the context of RPM-1 ubiquitin ligase signaling via the GLO-1 Rab GTPase to influence late endosomal/lysosomal biogenesis.

      Regarding the reviewer’s concern that different penetrance/frequency of defects between rpm-1 mutants and vab-1 mutants means outcomes with vab-1; rpm-1 double mutants cannot be interpreted. We respectfully disagree. An extensive number of published studies have demonstrated that RPM-1 binding proteins have milder phenotypes than rpm-1 mutants and display genetic enhancer effects as double mutants with one another (PMID:17698012, PMID: 22357847, PMID: 25010424, PMID: 24810406). We now make this point much more clearly. While the frequency of axon termination defects in rpm-1 mutants is high it is not completely saturated as the defect is not 100%. Moreover, a major point of the vab-1; rpm-1 double mutants is that they do not have a significant reduction in phenotypic penetrance/frequency. Thus, our system is fully capable of resolving genetic suppression, which did not occur. We now make this point much more carefully and clearly.

      To further address the reviewer’s concern, we have softened language about the VAB-1/Eph receptor functioning in the same pathway as RPM-1 throughout the manuscript. While we think this is still the case, because the frequency of axon termination defects is not fully saturated in rpm-1 mutants and defects could potentially become more severe (i.e. the hook might occur closer to the head of the animal rather than in the midbody). Nonetheless, this is not a critical point and we think it is more important to be clear about the two major goals and objectives of our C. elegans experiments. We hope the reviewer agrees that our rationale, logic and conclusions are more clearly and accurately drawn in the revised paper.

    1. Beyond just audio recordings so for that reason two of our senior 00:15:02 researchers Benjamin Hoffman and Maddie cusumano have also developed a biologer benchmark data set and so a biologer is an animal born tag like the one in the image on the right here 00:15:14 and these produce very valuable data because they can inform us about animal ecophysiology and allow us to improve conservation by monitoring animal movements and behaviors with very high 00:15:27 resolution
      • for: BEBE, biologger Ethogram Benchmark
    1. GET/active/Return the content of the active file open in Obsidian. Returns the content of the currently active file in Obsidian.返回Obsidian中当前活动文件的内容。 If you specify the header Accept: application/vnd.olrapi.note+json, will return a JSON representation of your note including parsed tag and frontmatter data as well as filesystem metadata. See "responses" below for details.如果您指定头部 Accept: application/vnd.olrapi.note+json ,将返回包括解析标签、前置数据以及文件系统元数据在内的笔记的JSON表示。有关详细信息,请参见下面的"responses"。

      该接口返回当前活动文件内容

    1. How do you think about the relationship between social media and “real life”?

      We have to admit that people nowadays cannot live without social media. Living in 2023, I believe that social media is no longer a tool to communicate, it is becoming more and more diverse and combines all kinds of functions such as a platform to show people "who they are". I know too many people who are social phobias but are a "stars" on social media. Back then, people like them would be judged as "people who don't live on the Internet", however, no one would tag them as "strange" anymore. Therefore, yes, social media has been included in real life and is making real life better and more diverse.

  2. Sep 2023
    1. Starting a blog .t3_16v8tfq._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } Hey everyone- I’m still trying to wrap my head on how to organize this.I have my antinet growing and I want to start a blog with the use of one of my notes as a springboard.Do I9 votesWork on the blog and store the index cards after the note that I’m drawing inspiration fromCreate a new blog section in my antinet and place them thereStore them in wherever and create an hub note that points to them

      reply to u/RobThomasBouchard at https://www.reddit.com/r/antinet/comments/16v8tfq/starting_a_blog/

      The answer is:<br /> D: Start a "blog" where you post your notes as status updates and interlink them a bit. When you've got enough, you organize them into a mini thesis and write a longer article/blog post about it.

      Examples: - https://hypothes.is/users/chrisaldrich?q=tag%3A%22thought%20spaces%22 and - https://indieweb.org/commonplace_book#The_IndieWeb_site_as_a_Commonplace_book

      tl;dr: Use your website like a public, online zettelkasten. 🕸️🗃️

    1. We’d like to set additional cookies to understand how you use GOV.UK, remember your settings and improve government services.

      test

    1. And the rise of deepfakes—wholly AI-generated content, as opposed to the Pelosi video’s edited clips from real (fact-checkable) speeches—will only make this problem more thorny and more urgent.

      With the introduction of deepfakes into society it is very important that online users educate themselves on how to properly spot these videos. It would be nice if platforms could tag these videos with warnings but since most don't, it is crucial to fact check each piece of content that may seem suspicious.

    1. o a URL or multiple URLs. Including a document’s DOI in the metadata of a web page will ensure that annotations appear on that document regardless of where it’s hosted.For example, an article published by Cell includes the tag<meta name="citation_doi" content="10.1016/j.

      this I don't quite understand

    1. Jerry Michalski says that The Brain provides him with a "neighborhood perspective" of ideas when he reduces the external link number for his graph down to 1.

      This is similar to Nicholas Luhmann's zettelkasten which provided neighborhoods of related notes based on distance from any particular note.

      Also similar to oral cultures who relied on movement through their environment for encoding memories and later remembering them. [I'll use the tag "environmental memory" to track this until a better name comes along.]

    1. Hi, I just started to use Zettlr for my thoughts, in stead of just individual txt-files. I find it easy to add tags to notes. But if you read manuals how to use ZettelKasten, most seem to advice to link your notes in a meaningful way (and describe the link). Maybe it's because I just really started, but I don't find immediate links when I have a sudden thought. Sometimes I have 2 ideas in the same line, but they're more like siblings, so tagging with the same keyword is more evident. How do most people do this?

      reply to u/JonasanOniem at https://www.reddit.com/r/Zettelkasten/comments/16ss0yu/linking_new_notes/

      This sort of practice is harder when you start out in most digital apps because there is usually no sense of "closeness" of ideas in digital the way that is implied by physical proximity (or "neighborhood") found in physical cards sitting right next to or around each other. As a result, you have to create more explicit links or rely on using tags (or indexing) when you start. I've not gotten deep into the UI of Zettlr, but some applications allow the numbering (and the way numbered ideas are sorted in the user interface) to allow this affordance by creating a visual sense of proximity for you. As you accumulate more notes, it becomes easier and you can rely less on tags and more on direct links. Eventually you may come to dislike broad categories/tags and prefer direct links from one idea to another as the most explicit tag you could give a note . If you're following a more strict Luhmann-artig practice, you'll find yourself indexing a lot at the beginning, but as you link new ideas to old, you don't need to index (tag) things as heavily because the index points to a card which is directly linked to something in the neighborhood of where you're looking. Over time and through use, you'll come to recognize your neighborhoods and the individual "houses" where the ideas you're working with all live. As an example, Luhmann spent his life working in sociology, but you'll only find a few links from his keyword register/subject index to "sociology" (and this is a good thing, otherwise he'd have had 90,000+ listings there and the index entry for sociology would have been utterly useless.)

      Still, given all this, perhaps as taurusnoises suggests, concrete examples may help more, particularly if you're having any issues with the terminology/concepts or how the specific application affordances are being presented.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1:

      1. If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Co-movement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.

      Please see the planned revision section for our response

      Reviewer #2:

      Major comment (requires additional experimentation)

      1. While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.

      Please see the planned revision section for our response

      Minor comments (addressable without additional experimentation)

      1. The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.

      We have added whether lines are homozygous or heterozygous to the manuscript. We also include a new Supplementary Figure panel (Fig S6) showing the genotyping data. In summary, all lines are homozygous except for PAFAH1B1-Halo (hESCs) which is heterozygous.

      1. Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.

      Our data suggest that the fast-moving spots have fewer dyneins than NEM treated static spots. We suggest this is because the fast-moving cargos are smaller than the average cargo and therefore have fewer dyneins on them. This is also supported by the smaller number of dyneins reported previously on endosomes as compared to the large lysosomes. We have clarified this in the discussion (page 7-8).

      1. The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".

      This has been removed.

      1. At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.

      We have softened the sentence by adding the phrase “better understand”.

      1. The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.

      We have added a section to the discussion to highlight that other cargos may behave differently from the fastest ones (page 7). We have also clarified the assumptions that lead us to expect a slower arrival time of the first signal (page 5).

      1. The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.

      We have softened this sentence from “it is clear” to “our results suggest” and explained in more detail why we make this conclusion

      1. The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".

      We have clarified we mean fast axonal transport and thank the reviewer for highlighting this point.

      1. When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).

      This was an omission on our part. The references have now been added.

      1. The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.

      We have added more information to the discussion. Although we cannot rule out this effect being due to the heterozygous tagging of our LIS1 cell line, we do not witness the same decrease in events in the retrograde direction. Therefore, we believe there is a subset of anterogradely moving dynein lacking LIS1. As discussed in the manuscript, this subset may already be bound to dynactin and therefore not require LIS1.

      1. For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.

      We have now included all p values in the figure legends and have removed the “ns” in Fig 1D. In our revised manuscript, only significant differences are highlighted in the figures.

      Reviewer #3:

      • if I look at the kymographs, trajectories appear rather complex, pausing, standing still, moving and everything mixed. The explanation of how actual trajectories are extracted and on what basis is very short, too short for me. I think the authors should expand this. Furthermore, I think it would be good if the authors would present, in their kymographs examples of the tracked (and also the not included) tracks. Maybe in supplementary info.

      The analysis of this data used the Trackmate Fiji plugin. This tracks spots frame to frame in a movie and then outputs the data of the tracks. No data was extracted from kymographs but they were used as a graphical illustration of the moving spots. To better explain our analysis pipeline, we have expanded our methods section and have added an example of a tracked movie (Video 15) as well as highlighted the tracked spots in one kymograph example (Figure 7S).

      • I found 'velocity' ill defined. I get the impression, judging from the number of points (compared to the other parameters) that the authors determine the average velocity of each individual trajectory. That is an important parameter (but should indeed be called 'trajectory averaged' velocity), but might not be the only one useful to learn from the data, where trajectories do not always appear to have constant speeds (pausing, etc.). Why do the authors not determine point-to-point velocities and plot histograms of those for all the trajectories (simply plot histograms of all the displacements between subsequent data points in trajectories)? This might provide great insight into the actual maximum velocity and the fraction of pausing or moving in opposite direction etc., providing much more molecular detail than currently extracted from the data.

      The reviewer is correct. We have measured the average velocity of the spots from the beginning of the track to the end. We have clarified this in the text. Furthermore, as stated above in the revision plan, we are currently doing the additional analysis and will include it in the final revision

      • I was a bit surprised to read that the authors have gone to the effort to create a dual-color labeled cell line, but did not do actual correlative two-color measurements (or at least show them). It would be so insightful to see dynein and dynactin move separately in the anterograde direction.

      Please see the planned revision section for our response.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary - The authors use a CRISPR knock-in gene editing strategy to label endogenous dynein, dynactin (p62 or Arp11) and dynein regulators (Ndel1 and Lis1) with Halo or SNAP tags. They do this in human iPSC and ESC cell lines engineered to express doxycycline-inducible NGN2 cloned into a "safe harbor" site of the genome. They induce the cells to differentiate into iNeurons using doxycycline and image the tagged proteins in axons with single molecule sensitivity using HILO illumination. The paper is clearly written, the description of the methods is thorough, and the data and figures (including the videos) are of good quality. The use of gene editing to knock the tags into the endogenous gene loci is a superior strategy to classic overexpression strategies. The authors also make effective use of microfluidic chambers to ensure the axons are uniformly orientated and coaligned over a distance of 500µm.

      Major comment (requires additional experimentation)

      1. While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.

      Minor comments (addressable without additional experimentation)

      1. The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.
      2. Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.
      3. The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".
      4. At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.
      5. The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.
      6. The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.
      7. The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".
      8. When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).
      9. The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.
      10. For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.

      Referee Cross-Commenting

      There seems to be agreement among all three reviewers that the authors should perform dual imaging of dynein and dynactin to prove that these proteins do indeed move together in the retrograde direction but separately in the anterograde direction. This would strengthen the study greatly.

      Significance

      General assessment - There are now multiple papers that have analyzed axonal transport of cargoes in iPSC-derived neurons, but this one appears to be the first to do it by tagging dynein motors and with single-molecule sensitivity. The principal conclusions are (1) that dynein is capable of long-range movement in axons and (2) that dynein moves dynein/Lis1 complexes are transported anterogradely in association with distinct cargoes from dynactin/Ndel1 complexes. The former is a modest conclusion and is entirely expected so not very impactful, but the latter is interesting and novel. The difference between the average velocities for the four proteins in the anterograde and retrograde directions is striking. All four move at similar velocities in the retrograde direction but in the anterograde direction, dynein and Lis1 move significantly faster than dynactin and Ndel1. Given these data, it is reasonable to infer that these proteins are being transported in two separate sets of cargoes. As the authors note in their Discussion, this is important because it could provide a mechanism for transporting dynein components anterogradely in a less active form that could then be activated when the components come together in the distal axon. However, I feel that one critical experiment is missing, which is to perform dual labeling of anterogradely transported dynein and dynactin in the same cells (see major comment). Without this experiment, the evidence is indirect.

      Audience - If confirmed by the dual labeling experiment, the authors' conclusions would represent a conceptual and mechanistic insight into the mechanism of bidirectional transport in axons that would be of broad interest to neuronal cell biologists studying neuronal trafficking.

      Expertise - This reviewer has expertise in the neuronal cytoskeleton, live imaging and axonal transport and has some experience working with iPSC-derived neurons.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      To image dynein in the axon at a single-molecule level, Fellows et al. used neuron-inducible human stem cell lines to Halo/SNAP tag endogenous dynein components by gene editing, and visualized fluorescently labeled protein molecules in differentiated neurons in microfluidic chambers by HILO microscopy-based live imaging. Using those cutting edge technologies, the authors demonstrate that in the axon, not only dynein and dynactin but also the dynein regulators LIS1 and NDEL1 can move long distance retrogradely towards the somatodendritic compartment. They also show that dynein /LIS1 move faster than dynactin/NDEL1 in the anterograde direction, suggesting that they are delivered separately to the distal end of the axon. The approach to study subcellular motility of endogenous dynein/dynactin is creative, the data are solid. I would like to suggest one experiment to support more strongly the authors' conclusions:<br /> If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Comovement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.

      Referee Cross-Commenting

      I agree with Reviewer 2 that the authors should clarify whether the knockin lines for dynein are homozygous. I also agree with both Reviewers 2 and 3 that the authors should do more analysis of the kymographs to obtain more information.

      Significance

      This is an elegant study on dynein motility and transport in vivo. The experimental approaches and findings presented in this manuscript are very valuable contributions to the field of dynein/dynactin and axonal transport. The results showing that dynein/dynactin can move long-range retrogradely in the axon are in good agreement with previous findings that dynein-driven cargo transport is highly processive, and the data suggesting that dynein and dynactin/NDEL1 are trafficked separately to the distal tip of the axon provide new insights into the regulatory mechanisms for the subcellular distribution and activity of molecular motors. Together these findings provide conceptual advances for understanding axonal transport. They will be of great interest to not only scientists in the field of intracellular transport but also those in cellular neurobiology.

    1. # Set the priority when loading # e.g., zsh-syntax-highlighting must be loaded # after executing compinit command and sourcing other plugins # (If the defer tag is given 2 or above, run after compinit command) zplug "zsh-users/zsh-syntax-highlighting", defer:2

      [!NOTE] zplug load 中,要设置加载优先级,可以使用?

      flashcard

      defer tag - If the defer tag is given 2 or above, run after compinit command

    1. Reviewer #2 (Public Review):

      Summary:<br /> The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.

      Strengths:<br /> The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggest a clustering of Myo10 is a feature of this motor.

      Weaknesses:<br /> One main critique of this work is that the Myo10 was overexpressed. Thus, the amount in the cell body compared to the filopodia is difficult to compare to physiological conditions. The amount in the filopodia was relatively small - 100s of molecules per filopodia so this result is still interesting regardless of the overexpression. However, the overexpression should be addressed in the limitations.<br /> The authors have not addressed the potential for variability in transfection efficiency. The authors could examine the average fluorescence intensity per cell and if similar this may address this concern.<br /> The SDS PAGE method of estimating the number of molecules is quite interesting. I really like this idea. However, I feel there are a few more things to consider. The fraction of HALO tag standard and Myo10 labeled with the HALO tagged ligand is not determined directly. It is suggested that since excess HALO tagged ligand was added we can assume nearly 100% labeling. If the HALO tag standard protein is purified it should be feasible to determine the fraction of HALO tagged standard that is labeled by examining the absorbance of the protein at 280 and fluorophore at its appropriate wavelength. The fraction of HALO tagged Myo10 labeled may be more challenging to determine, since it is in a cell lysate, but there may be some potential approaches (e.g. mass spec, HPLC).<br /> In Figure 1B, the stain free gel bands look relatively clean. The Myo10 is from cell lysates so it is surprising that there are not more bands. I am not surprised that the bands in the TMR fluorescence gel are clean, and I agree the fluorescence is the best way to quantitate.<br /> In Figure 3C, the number of Myo10 molecules needed to initiate a filopodium was estimated. I wonder if the authors could have looked at live cell movies to determine that these events started with a puncta of Myo10 at the edge of the cell, and then went on to form a filopodia that elongated from the cell. How was the number of Myo10 molecules that were involved in the initiation determined? Please clarify the assumptions in making this conclusion.<br /> It is stated in the discussion that the amount of Myo10 in the filopodia exceeds the number of actin binding sites. However, since Myo10 contains membrane binding motifs and has been shown to interact with the membrane it should be pointed that the excess Myo10 at the tips may be interacting with the membrane and not actin, which may prevent traffic jams.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some sentences need to be clarified and some additional data and references could be added.

      1) Line 18

      SRY is the sex-determining gene

      SRY is the testis-determining gene is more accurate as described in line 44

      Modification done

      2) Line 50

      Despite losing its function in early testis determination in mice, DMRT1 retained part of this function in adulthood when it is necessary to maintain Sertoli cell identity.

      Losing its function is misleading. The authors describe firstly that Dmrt1 has no obvious function in embryonic testis development but is critical for the maintenance of Sertoli cells in adult mice. The wording "losing its function in early testis" is confusing. Do the authors mean that despite the expression of Dmrt1 in early testis development, the function of Dmrt1 seems to be restricted to adults in mice? A comparison between the testis and ovary should be more cautious since GarciaAlonso et al (2022) have shown that the transcriptomics of supporting cells between humans and mice is partly different.

      That’s what we thought, and the sentence has been changed as follow: “Although DMRT1 is not required for testis determination in mice, it retained part of its function in adulthood when it is necessary to maintain Sertoli cell identity.” (line 51 to 53)

      3) Line 78

      XY DMRT1-/- rabbits showed early male-to-female sex reversal.

      Sex reversal indicates that there is no transient Sertoli cell differentiation that transdifferentiate into granulosa cells. This brings us to an interesting point. In the case of reprogramming, the transient Sertoli cells can produce AMH leading to the regression of the Mullerian ducts. In humans, some 9pdeleted XY patients have Mullerian duct remnants and feminized external genitalia. This finding indicates early defects in testis development.

      Is there also feminized external genitalia in XY Dmrt1−/− rabbits. Can the authors comment on the phenotype of the ducts?

      We proposed to add “and complete female genitalia” at the end of the following sentence: “Secondly, thanks to our CRISPR/Cas9 genetically modified rabbit model, we demonstrated that DMRT1 was required for testis differentiation since XY DMRT1-/- rabbits showed early male-tofemale sex reversal with differentiating ovaries and complete female genitalia.” (line 77 to 80)

      Indeed, since the first stage (16 dpc) where we can predict the sex of the individual by observing its gonads during dissection, we always predict a female sex for XY DMRT1 KO fetuses. It is only genotyping that reveals an XY genotype. At birth, our rabbits are sexed by technicians from the facility and again, but now based on the external genitalia, they always phenotype these rabbits as female ones. In these XY KO rabbits, the supporting cells never differentiate into Sertoli, and ovarian differentiation occurs as early as in XX animals. Thus, these animals are fully feminized with female internal and external genitalia. Most of 9p-deleted patients are not homozygous for the loss-offunction of DMRT1, and the remaining wild-type allele could explain the discrepancy between KO rabbits and humans.

      4) Line 53

      In the ovary, an equivalent to DMRT1 was observed since FOXL2 (Forkhead family box L2) is expressed in female supporting cells very early in development.

      Can the authors clarify what is the equivalent of DMRT1, is it FOXL2? DMRT1 heterozygous mutations result in XY gonad dysgenesis suggesting haploinsufficiency of DMRT1. However, to my knowledge, there is no evidence of haploinsufficiency in XX babies. Thus can we compare testis and ovarian genetics?

      We agree, the term “equivalent” is ambiguous, and we changed the sentence as follows: “In ovarian differentiation, FOXL2 (Forkhead family box L2) showed a similar function discrepancy between mice and goats as DMRT1 in the testis pathway. In the mouse, Foxl2 is expressed in female supporting cells early in development but does not appear necessary for fetal ovary differentiation. On the contrary, it is required in adult granulosa cells to maintain female-supporting cell identity.” (line 53 to 56)

      Regarding reviewer 2's question on haploinsufficiency in humans: the patient described in Murphy et al., 2015 is an XY individual with complete gonadal dysgenesis. But, it has been shown that the mutation carried by this patient leads to a dominant-negative protein, equivalent to a homozygous state (Murphy et al., 2022).

      For FOXL2 mutation in XX females, haploinsufficiency does not affect early ovarian differentiation (no sex reversal) but induces premature ovarian failure.

      We agree with the reviewer, we cannot compare testis and ovarian genetics considering two different genes.

      5) Line 55

      In mice, Foxl2 does not appear necessary for fetal ovary differentiation (Uda et al., 2004), while it is required in adult granulosa cells to maintain female-supporting cell identity (Ottolenghi et al., 2005). The reference Uhlenhaut et al (2009) reporting the phenotype of the deletion of Foxl2 in adults should be added.

      The reference has been added.

      6) Line 64<br /> These observations in the goat suggested that DMRT1 could retain function in SOX9 activation and, thus, in testis determination in several mammals.

      Lindeman et al (2021) have shown that DMRT1 can act as a pioneer factor to open chromatin upstream and Dmrt1 is expressed before Sry in mice (Raymond et al, 1999, Lei, Hornbaker et al, 2007). Whereas additional factors may compensate for the absence of Dmrt1, these results suggest that DMRT1 is also involved in Sox9 activation.

      Dmrt1 is indeed expressed before Sry/Sox9 in the mouse gonad. However, no binding site for DMRT1 could be observed at Sox9 enhancer 13 in mice. This does not support a role for DMRT1 in the activation of Sox9 expression in this species. Furthermore, in Lindeman et al 2021, the authors clearly state that DMRT1 acts as a pioneering factor for SOX9 only after birth. It does not appear to have this role before. One of the explanations put forward is that the state of chromatin is different during fetal development in mice: chromatin is more permissive and does not require a factor to facilitate its opening. This hypothesis is based in particular on the description of a similar chromatin profile in the precursors of XX and XY fetal supporting cells, where many common regions display an open structure (Garcia-Moreno et al., 2019). Once sex determination and differentiation are established, a sex-specific epigenome is set up in gonadal cells. Chromatin remodeling agents are then needed to regulate gene expression. We hypothesize that in non-murine mammals such as rabbits, the state of gonadal cell chromatin would be different in the fetal period, more repressed, requiring the intervention of specific factors for its opening, such as DMRT1.

      7) Figure 1

      Most of the readers might not be familiar with the developmental stages of the gonad in rabbits. A diagram of the key stages in gonad development would facilitate the understanding of the results.

      Thank you, it has been added in Figure 1.

      8) Figure 2

      Arrowheads are difficult to spot, could the authors use another color?

      Done

      9) Line 117: can the authors comment on the formation of the tunica albuginea? Do the epithelial cells acquire some specific characteristics?

      The formation of the tunica albuginea begins with the formation of loose connective tissue beneath the surface epithelium of the male gonad. The appearance of this tissue is concomitant with the loss of expression of DMRT1 in the cell of the coelomic epithelium. Our interpretation is that the contribution of the cells from the coelomic epithelium and their proliferation stops when the tunica begins to form because the structure of the tissue beneath the epithelium change, and the cellular interactions between the epithelium and the tissue below remain disrupted. By contrast, these interactions persist in the ovary until around birth for ovigerous nest formation.

      10) The first part of the results described DMRT1 expression in rabbits. With the new single-cell transcriptomic atlas of human gonads, it would be important to describe the pattern of expression in this species. This could be described in the introduction in order to know the DMRT1 expression pattern in the human gonad before that of the rabbit.

      A comment on the expression pattern of DMRT1 in human fetal gonads has been added in the discussion section: “In the human fetal testis, DMRT1 expression is co-detected with SRY in early supporting gonadal cells (ESCGs), which become Sertoli cells following the activation of SOX9 expression (Garcia-Alonso et al., 2022) » (line 222 to 224)

      11) Figure 3 supplement 3

      Dotted line: delimitation of the ovarian surface epithelium. Could the authors check that there is a dotted line?

      Done

      12) Figure 5 and Line 186

      Quantification is missing such as the % of germ cells, % of meiotic germ cells.

      Quantification is not easy to realize in rabbits because of the size and the elongated shape of the gonad. Indeed, it’s difficult to be sure that both sections (one from WT, the other from KO) are strictly in a similar region of the gonad and that the section is perfectly longitudinal or not. See also our answer to reviewer 3 (point 7) on this aspect. Actually, we are trying to make a better characterization of this XX phenotype and to find a marker of the pre-leptotene/leptotene stage susceptible to work in rabbits (SYCP3 will be the best, but we encountered huge difficulties with different antibodies and even RNAscope probe!). So actually, the most convincing indirect evidence of this pre-meiotic blockage (in addition to HE staining at 18 dpp in the new Figure 6) is the persistence of POU5F1 (pluripotency), specifically in the germinal lineage of KO XX and XY gonads. In addition to the new figure supplement 5, we can show you in Author response image 1: (i) the gonadal section at a lower magnification, where it is evident that there is a big difference between WT and KO germ cell POU5F1-stainings; and (ii) POU5F1 expression from a bulk RNA-seq realized the day after birth at 1 dpp where the difference is also transcriptionally very clear.

      Author response image 1.

      13) Line 186,

      E is missing at preleptoten

      Added

      14) Figure supplement 7.

      A magnification of the histology of the gonads is missing.

      This figure is only for showing the gonadal size, and there are the same gonads as in the new Figure 6. So, the magnification is represented in Figure 6.

      15)Discussion

      Line 201

      SOX9, well known in vertebrates,

      The references of the human DSD associated with SOX9 mutations are missing. Thank you, references have been added.

      16) Line 286

      One of the targets of WNT signaling is Bmp2 in the somatic cells and in turn, Zglp1, which is required for meiosis entry in the ovary as shown by Miyauchi et al (2017) and Nagaoka et al (2020). Does the level of BMP pathway vary in DMRT1 mutants?

      At 20 dpc, the expression level of BMP2 in XY and XX DMRT1 mutants gonads is similar to the one of XX control which is lower than in XY control (see the TMP values from our RNA-seq in Author response image 2).

      Author response image 2.

      Reviewer #2 (Recommendations For The Authors):

      Here are my minor comments:

      1) Line 106- You mention that coelomic epithelial cells only express DMRT1. Please add an arrow to highlight where you refer to.

      Done

      2) Line 112: In mice, the SLCs also express Sox9 but not Sry apart from Pax8. You mention here that the SLCs are expressing SRY and DMRT1 in addition to PAX8. Could you perhaps explain the difference? Please refer to that in the results or discussion.

      We add a new sentence at the end of this paragraph on SLCs: “As in mice, these cells will express SOX9 at the latter stages (few of them are already SOX9 positive at 15 dpc), but unlike mice, they express SRY.” (line 114 to 115)

      We already have collaborations with different labs on these SLC cells, and we will certainly come back later on this aspect, remaining slightly off-topic here.

      3) Could you please explain why did you chose to target Exon 3 of DMRT1 and not exons 1-2 which contain the DM domain? Was it to prevent damaging other DMRT proteins? Is there an important domain or function in Exon 2?

      Our choice was mainly based on technical issues (rabbit genome annotation & sgRNA design), but also we want to avoid targeting the DM domain due to its strong conservation with other DMRT genes. Due to the poor quality of the rabbit genome, exons 1 and 2 are not well annotated in this species. We have amplified and sequenced the region encompassing exons 1 & 2 from our rabbit line, but the software used for sgRNA design does not predict good guides on this region. The two best sgRNAs were predicted on exon 3, and we used both to obtain more mutated alleles.

      4) Your scheme in Supp Figure 4 is not so clear. It is not clear that the black box between the two guides is part of Exon 3 (labelled in blue).

      The scheme has been improved.

      5) Did you only have 1 good founder rabbit in your experiment? Why did you choose to work with a line that had duplication rather than deletion?

      Very good point! In the first version of this paper, we’d try to explain the long (around 2 years) story of breeding to obtain the founder animal. Here it is:

      During the genome editing process, we generate 6 mosaic founder animals (5 males and 1 female), then we cross them with wild-type animals to isolate each mutated allele in F1 offspring used afterward to establish and amplify knockout lines. Unexpectedly, we observe a very slow ratio of mutated allele transmission (5 on 129 F1 animals), and only one mutated allele has been conserved from the unique surviving adult F1 animal. It consists of an insertion of the deleted 47 bp DNA fragment, flanked by the cutting sites of the two RNA guides used with Cas9.<br /> The main hypothesis to explain this mutation event is that in the same embryonic cell, the deletion occurs on one allele then the deleted fragment remains inserted into the other allele. Under this scheme, the embryonic cell carries a homozygous DMRT1 knockout genotype, albeit heterogeneous, with a deleted allele (del47) and the present allele (insertion of a 47 bp fragment leading to an in sense duplication). This may explain the very low frequency of transmission since all germ cells carrying a homozygous DMRT1-/- genotype will probably not be able to enter the meiotic process as suggested by our results on XX and XY DMRT1-/- ovaries. Finally, and under this hypothesis, the way we obtained this unique founder animal remains a mystery!

      6) Figure 4- real-time data- where does it say what is a,b,c,d of the significance? It should appear on the figure itself and not elsewhere.

      Modification done.

      7) If I understand correctly, you were able to get the rabbits born and kept to adulthood (you show in supp figure 7 their gonads). What was the external phenotype of these rabbits? Did the XY mutant gonads have the internal and external genitals of a female (oviduct, uterus, vagina etc.)?

      See our answer to Reviewer 1 on this question (point 3).

      8) Line 20: It is more correct to write 46, XY DSD rather than XY DSD

      Modification done.

      9) Line 21: you can remove the "the" after abolished

      Modification done.

      10) Line 31: consider replacing the first "and" by "as well as" since the sentence sounds strange with two "and".

      Modification done.

      11) Line 212- Please check with the eLife guidelines if they allow "data not shown" in the paper.

      This is unspecified.

      Reviewer #3 (Recommendations For The Authors):

      The following points should be addressed.

      1) The in situ's in Fig 1 and 2 are very clear. Fig 1 and Fig 2, In situ hybridisation in tissue sections, it looked like DMRT1 could be expressed in some cells where SRY mRNA is absent @ E13.5dpc and 14.5 dpc. Do you think this is real, or maybe Sry is turned off now in those cells?

      Based on the results of in situ hybridizations, DMRT1 appears to be expressed by both coelomic epithelium and genital crest medullar cells in a pattern that is actually broader than that of SRY. Moreover, in rabbits, SRY expression seems to start in the medulla of the genital ridge rather than in the surface epithelium, as described in mice (see Figure 1 at 12 and 13 dpc). Nevertheless, more detailed analyses are needed to ensure the lineage of cells expressing SRY and/or DMRT1, such as single-cell RNAseq at these key stages of sexual determination in rabbits (from 12 to 16 dpc).

      2) It is curious that SRY expression is elevated in the DMRT1 KO (Knockout) rabbit gonads. Does this suggest feedback inhibition by DMRt1, or maybe indirect via effect on Sox9 (as I believe Sox9 feeds back to down-regulate Sry in mouse, for example).

      The maintenance of SRY expression in the DMRT1 -/- rabbit testis seems to be linked to the absence of SOX9 expression. We believe that, as in mice, SOX9 would down-regulate SRY (even if, in rabbits, SRY expression is never completely turned off).

      3) I suggest the targeting strategy and proof of DMRT1 knockout by sequencing etc. be brought out of the suppl. Data and shown as a figure in the text.

      See also our answer to reviewer 2 (point 5). It has needed huge efforts to obtain these DMRT1 mutated rabbit line, and of course, it constitutes the basis of the study. But regarding the title and the main message of the article, we are not convinced that the targeting strategy should be moved into the main text.

      4) Unless there are limitations imposed by the journal, I also feel that Suppl Fig 5 (the immunostaining) deserves to be in the paper text too. The Fig showing loss of DMRt1 by immunostaining is important.

      We include the figure supplement 5 in the main text. So, Figure 4E and figure supplement 5 have been combined into a new Figure 5.

      5) The RT-qPCR data should have the statistics clarified on the graphs. (e.g., it is stated that, although Sox9 mRNA is clearly down, there is a slight increase compared to control on KO XX gonads. Is this statistically significant? Figure legend states that the Kruskal-Wallis test is used, and significance is shown by letters. This is unclear. It would be better to use the more usual asterisks and lines to show comparisons.

      Modification done.

      6) Reference is made to DMRT1+/- rabbits having aberrant germ cell development, pointing to a dosage effect. This is interesting. Does the somatic part of the gonad look completely normal in the het knockouts?

      DMRT1 heterozygous male rabbits have a phenotype of secondary infertility with aging, and we are trying now to better characterize this phenotype. The problem is complex because, as we cannot carry out conditional KO, it remains difficult to decipher the consequence of DMRT1 haploinsufficiency in the Sertoli cells versus the germinal ones. Anyway, the somatic part is sufficiently normal to support spermatogenesis since heterozygous males are fertile at puberty and for some months thereafter.

      7) Can the authors indicate why meiotic markers were not used to explore the germ cell phenotype? It would be advantageous to use a meiotic germ cell marker to definitely show that the germ cells do not enter meiosis after DMRT1 loss. (Not just H/E staining or maintenance of POU). Example SYCP3, or STRA8 (as pre-meiotic marker) by in situ or immunostaining. Even though no germ cells were detected in adult KO gonads.

      The expression of pre-meiotic or meiotic markers is currently under study in DMRT1 -/- females. Transcriptomic data (RNA-seq) are also being analyzed. We are preparing a specific article on the role of DMRT1 in ovarian differentiation in rabbits. We felt it was important to reveal the phenotype observed in females in this first article, but we still need time to refine our description and understanding of the role of DMRT1 in the female.

      8) What future studies could be conducted? In the Discussion section, it is suggested that DMRT1 could act as a pioneering factor to allow SRY action upon Sox9. How could this be further explored?

      To explore the function of DMRT1 as a pioneering factor, it now seems necessary to characterize the epigenetic landscapes of rabbit fetal gonads expressing or not DMRT1 (comparison of control and DMRT1-/- gonads). Two complementary approaches could be privileged: the study of chromatin opening (ATAC-seq) and the analysis of the activation state of regulatory regions (CUT&Tag). The study of several histone marks, such as H3K4me3 (active promoters), H3K4me1 (primed enhancers), H3K27ac (enhancers and active promoters), and H3K27me3 (enhancers and repressed promoters), would be of great interest. However, these techniques are only relevant for gonads that can be separated from the adjacent mesonephros, which is only possible from the 16 dpc stage in rabbits. To perform a relevant analysis at earlier stages, a "single-nucleus" approach such as ATAC-seq singlenucleus or multi-omic single-nucleus combining ATAC-seq and RNA-seq could be used.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1 major comments:

      The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuration represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.

      We thank reviewer 1 for pointing out the correct E2-E1 heterodimer configuration. To address this, we corrected the position of E2 and E1 in Figure 4 based on previous cryoEM study1, keeping E2 always on the exterior in the E2-E1 heterodimer. We also replaced the Indian Ocean Lineage (IOL) E2-E1 structure1 in the original Figure 4 with the CHIKV 181/clone 25 structure which was recently analyzed by Katherine Basore et al.2. In a single E2-E1 heterodimer, all six unique CHIKV positive selection sites are located on the outside of the structure after correcting the configuration. In addition, we investigated two of the unique CHIKV positively selected sites that are important for virion production, E2-V135 (V460 in the original manuscript version) and E1-V220 (V1029 in the original manuscript version), in trimerized structure of E2-E1 heterodimers. We found that the E2-V135 and E1-V220 residues in one heterodimer are facing E2 of the neighboring heterodimer on either side. Interestingly, while V135 is embedded between the E2 proteins of two different heterodimers, E1-V220 is partially embedded by E1 and the neighboring E2 and partially exposed to the outside. This suggests that even though both E2-V135 and E1-V220 might be crucial for CHIKV E2-E1 trimerization, E1-V220 provides an additional docking site for host factor interactions. We thank review 1 again for this important comment leading to these new findings. We have updated Figure 4F-4G and the corresponding result section (lines 201-209) in this partially revised manuscript.

      1. Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficiently does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host factor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.

      We thank the reviewer for these concerns. Given the low viral protein expression in macrophages (Figure 1A), we need an efficient system to enrich for large amounts of CHIKV glycoproteins for identifying host interactors through mass spectrometry. Adding tag/reporter proteins, such as mCherry, between E3 and E2 have been used to label alphavirus glycoproteins in previous study2, which is why we chose to use this myc tag labeling strategy coupled with myc Ab-conjugated agarose beads for AP-MS. However, like reviewer 1 speculated, inserting myc tag between E3 and E2 does attenuate CHIKV infectivity according to the reduced supernatant viral titers of 293T cells transfected with CHIKV/myc-E2 genomic RNA in comparison to those of cells transfected with unmodified CHIKV vaccine strain 181/clone 25 genomic RNA (shown in revision plan). Despite the attenuation, CHIKV/myc-E2 harvested from transfected 293T cells still reaches a titer over 108 pfu/ml, which allowed us to identify interactors by AP-MS.

      We further analyzed the cleavage efficiency of glycoproteins by comparing the expression levels of E3-E2-6K -E1, E3-E2 (p62), E2, and E3 in 293T cells transfected with unmodified CHIKV or CHIKV/myc-E2 genomic RNA (result shown in revision plan). We didn’t detect any uncleaved forms of glycoproteins in cells transfected with either unmodified CHIKV or CHIKV/myc-E2 RNA when we probed with E2 antibody. However, probing with E3 antibody prior to longer exposure of the immunoblot showed higher E3-E2-6k-E1 and E3-E2 (p62) levels in cells transfected with CHIKV/myc-E2 RNA, suggesting that both mature E2 and E2-containing precursor polyproteins are available to be pulled down. Overall, the expression levels of mature E2 detected by E2 antibody are similar.

      We thank reviewer 1 for providing a thorough dissection of all the possible interactions between the identified host factors and cleaved/uncleaved glycoproteins. This is a very interesting question. As reviewer 1 mentioned that E1 usually appears with E2 or E3-E2 in heterodimer forms, we were also surprised to find that E2 does not interact with either of the two host factors. To address this, we plan to conjugate E2 and E1 to protein A/G beads, respectively, for a reciprocal pulldown to validate CHIKV glycoprotein interactions with SPCS3 and eIF3k. Results from this experiment will be included in the fully revised manuscript.

      1. If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.

      We thank Reviewer 1 for this insightful suggestion. We agree that it would be informative to examine the interactions between ONNV glycoproteins and identified host factors (SPCS3 and eIF3k). Unfortunately, there is no commercial ONNV glycoprotein antibody available making this experiment unfeasible. Interestingly, we did observe reduced interactions between the host factors SPCS3 and eIF3k and the CHIKV E1-V220I mutant (V1029I in original manuscript version) where the positively selected site in E1 was mutated to the homologous ONNV residue (please refer to our response to Reviewer 3’s major comment #1). This result suggests that the ONNV glycoproteins likely have an attenuated E1-host factor binding site as the reviewer speculated.We have included this as Figure 7A in partially revised manuscript.

      1. E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting with SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.

      We thank Reviewer 1 for proposing this interesting hypothesis. Given the unexpected absence of E2 in our validation of host factor-E1 pulldown, we speculate that a group of free E1 proteins with distinct function is interfering with host factors in the ER, which is a model worth further investigation and discussion. A great example of this is the alphavirus nonstructural protein 3 (nsP3) that plays essential roles in RNA replication, although depending on the alphavirus not all of the nsP3 in the cell colocalizes with dsRNA, suggesting there is a separate distinct pool of nsP3 outside of active viral replication complex that interacts with host factors in these observed larger cytoplasmic aggregates3. To address this, we plan to use laser confocal microscopy to observe the interactions between host factors (SPCS3, eIF3k), and CHIKV E2 and E1. We will include this result as well as our proposed model in the fully revised manuscript.

      Reviewer 1 minor comments:

      1. In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?

      We thank Reviewer 1 for this comment. The (-) RNA is synthesized before the synthesis of subgenomic mRNA and therefore can reflect more accurately early viral replication and nonstructural protein functions. This is the reason why we consider the (-) RNA levels evaluated by specific nsP1 TaqMan probes to be more appropriate for determining early stage differences between ONNV and CHIKV replication in Figure 1 as the goal of that figure is to define the steps in CHIKV life cycle that are more efficient than those of ONNV in THP-1 derived macrophages. On the other hand, the (+) RNA evaluated by E1 primers that we used in the later figures monitors viral RNA synthesis over time in the reflection of genomic (+) RNA and subgenomic mRNA transcribed from (-) RNA templates. Similar levels of (+) RNA and contrasting virion titers really point the difference to the later stages of subgenomic mRNA translation, viral glycoprotein secretion, and assembly.

      We have generated ONNV/myc-E2 reporter virus and assessed viral glycoprotein expression through flow cytometry using a FITC -conjugated anti-myc antibody in the THP-1 derived macrophages transfected with CHIKV/myc-E2 and ONNV/myc-E2 (shown in revision plan). The results show that the expression of ONNV glycoproteins is more inhibited than that of CHIKV glycoproteins, though both of their expression levels in macrophages seem to be suppressed. Since there is no commercial ONNV antibody available, we were unable to compare capsid expression levels between the two viruses. Overall, differences in the myc-tagged glycoprotein expression levels of the two viruses reveals ONNV defect in either structural protein translation or glycoprotein maturation .

      1. Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.

      We thank Reviewer 1 for this suggestion. We have changed the order of ONNV and CHIKV bars in figure 2E and figure3 so the CHIKV bar consistently comes first in all the figures.

      1. Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made with the CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.

      We thank Reviewer 1 for this informative comment. We agree that the incompatible E2-E1 heterodimer formation may not be the only reason that causes attenuation of ONNV/CHIKV E1 and ONNV/CHIKV E2. There may be multiple factors contributing to the fitness of the chimeras, which requires more in-depth mechanistic investigations and is out of the scope of this study. We have now removed the explanation “potentially due to incompatible heterodimer formation between ONNV E2 and CHIKV E1” in line 144.

      1. When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.

      We thank Reviewer 1 for this comment. We revised the amino acid numbers in the manuscript to start from the beginning of each structural protein. To look more into these residues in ONNV, we aligned CHIKV and ONNV from different lineages and compared the 6 positively selected sites (refer to our response to Reviewer 1’s minor comment #5). We found that E2-135 and E1-220 which are essential for CHIKV production are valines in all the aligned CHIKV strains. For the aligned ONNV strains, E2-135 are all leucines and E1-220 are all isoleucines. While valine, leucine and isoleucine are all amino acids with hydrophobic side chains, valine has the shortest side chain. The length of the side chains may lead to different hydrophobic properties that affect protein folding, which warrants further structural analysis.

      1. How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 residues? and compared to ONNV?

      We thank Reviewer 1 for this question, which is also raised by Reviewer 2. In order to address this question, we plan to use the virulent CHIKV La Reunion strain to study the infection of THP-1 derived macrophages with non-attenuated CHIKV in BSL-3. We are getting trained in the BSL-3 facility and will soon be certified.

      We thank Reviewer 1 for this insightful suggestion on investigating the conservation of these positively selected sites in different strains. We have aligned the sequences of ONNV and CHIKV strains from different lineages, including CHIKV vaccine strain 181/clone 25 and Thai strain AF15561 (the parental strain of CHIKV 181/clone 25) (alignment shown in revision plan). We found that the two positively selected sites with negative effects on virion production, E2-135 and E1-220 (sites 460 and 1029 in original manuscript version), are very conserved in either CHIKV or ONNV strains. CHIKV E2-135 is always valine (V) regardless of the lineages, while ONNV E2-135 is always leucine (L). CHIKV E1-220 is always V, while ONNV E1-220 is always isoleucine (I).

      We also analyzed the amino acid heterogeneity of E2-135 and E1-220 in 397 CHIKV patient sequences from NCBI Virus database. Most of the amino acids at these 2 sites are V. The counts of each amino acid at E2-135 and E1-220 is summarized in table below. This result suggests that valine residues at E2-135 and E1-220 are crucial for CHIKV fitness and strongly selected during viral evolution. The sequence alignment and table will be included and discussed in the fully revised manuscript .

      E2-135

      E1-220

      Valine (V)

      394

      392

      Alanine (A)

      1

      3

      Methionine (M)

      1

      0

      Glutamic acid (E)

      0

      1

      Glycine (G)

      1

      0

      Isoleucine (I)

      0

      1

      1. When describing the last results section, "CHIKV E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.

      We thank Reviewer 1 for pointing out the importance of cell type clarification in the last results section. We now consistently use “THP-1 derived macrophages” instead of “macrophages” in this section.

      1. The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.

      We thank Reviewer 1 for the comment regarding the disconnection of the last two figures in this paper which is also shared by the other reviewers. We have taken 3 approaches to address this comment: 1) We performed a pulldown of the host factors (SPCS3, eIF3k) identified in Figure 5 with CHIKV positively selected mutants examined in Figure 4 with deficient virion production. The result is presented in our response to Reviewer 3’ s major comment #1, suggesting that the positively selected site in E1 is essential for CHIKV glycoprotein interaction with host factors. 2) To complement our first experiment, we will also determine structural protein expression and processing of parental and E1 mutant CHIKV in eIF3k CRISPR knockout 293T cells. 3) Finally, we plan to perform CORUM analysis to identify high confidence functional protein complexes using our 14 hits found in both mass spec experiments, which will provide mechanistic insights into how these identified cellular complexes and processes might modulate CHIKV infection.

      Reviewer 2’s major comments

      The authors elegantly demonstrate that CHIKV structural proteins confer an advantage over ONNV structural proteins in a step in the replication cycle downstream of virus RNA synthesis, possibly virion assembly. This point would be strengthened determining the particle-to-PFU ratio of the parental viruses and the chimeras . Presumably, the ratio would increase in the chimeras containing CHIKV structural proteins.

      We thank Reviewer 2 for this comment. We agree that determining particle-to-PFU ratios of parental and chimeric viruses will strengthen this study. To obtain the particle-to-PFU ratio, we infected THP-1 derived macrophages with CHIKV, ONNV and chimeras containing CHIKV glycoproteins (Chimera I, and ONNV/CHIKV E2+E1) for 24 h. To quantify the secreted viral particles, we extracted viral RNA in the supernatant and detected (+) viral RNA through TaqMan assay with specific nsp1 probes. The released infectious virions were evaluated through plaque assay. The particle-to-PFU ratios are summarized in the table below. The results show that ONNV has the highest particle-to-PFU ratio (41398), suggesting defective ONNV genome encapsidated in particles leading to defective virion production. On the other hand, the particle-to-PFU ratio of CHIKV (747) is 55-fold lower than that of ONNV. Replacing E3-E2-6K-E1 of ONNV with CHIKV homologous proteins reduces the particle-to-PFU ratio by 8 fold to 4875. Replacing E2 and E1 of ONNV with the ones from CHIKV (ONNV/CHIKV E2+E1) reduces the particle-to-pfu ratio by 20 fold to 2017, suggesting that CHIKV glycoproteins enhance the infectivity of viral progenies produced by THP-1 derived macrophages. We have included the results in Figure 3D-3E in our partially revised manuscript and described in lines 149-158.

      1. Additionally, the authors should consider performing virion assembly blocking assays with a small molecule inhibitor to determine if this abrogates the virus production advantage of CHIKV structural proteins within the ONNV backbone.

      We thank Reviewer 2 for this insightful comment. As the secretory pathway is commonly important for alphavirus glycoprotein maturation and assembly, it will be informative to interrogate CHIKV glycoprotein trafficking and assembly through this pathway using specific inhibitors, such as dihydropyridine FLI-06 and golgicide A . Golgicide A is a reversible inhibitor of the cis-Golgi GBF1, which leads to rapid disassembly of the Golgi and trans-Golgi network (TGN)4. FLI-06 is a new inhibitor that interferes with cargo recruitment to ER-exit sites and disrupts Golgi without depolymerizing microtubules or interfering GBF15. We pretreated THP-1 derived macrophages with 10 uM FLI-06 or golgicide A for 30 mins prior to infection with CHIKV, ONNV, Chimera I, or ONNV/ CHIKV E2+E1. After 1 hour of virus adsorption in PBS with 1% FBS in the absence of the inhibitors, the cells were treated with the inhibitors at the same concentration (10uM) in complete medium for 24 h. The plaque assay result shows that all the viruses are sensitive to secretory pathway inhibition, however, the production of viruses containing CHIKV glycoproteins is significantly more attenuated by FLI-06 and golgicide A. This suggests that CHIKV glycoproteins-mediated trafficking and assembly is more heavily dependent on the host secretory pathway . We will include this result in the fully revised manuscript.

      1. Finally, the authors should perform competition experiments with the chimeric viruses and ONNV in macrophages to determine if the chimeras can outcompete the parental ONNV strain. Based on their data, the chimeric viruses should outcompete.

      We thank Reviewer 2 for this inspiring suggestion. The competition experiment is an innovative and informative way to evaluate whether CHIKV glycoproteins confer a selective advantage on virion production in THP-1 derived macrophages. We plan to infect THP-1 derived macrophages with ONNV and ONNV/CHIKV E2+E1 and detect the viral glycoproteins secreted in the supernatant by western blot, although there is a possibility that this experiment might not work due to superinfection exclusion. Given that there is no commercial antibody of ONNV available, we need to use tagged viruses for this competition experiment. We constructed ONNV/CHIKV myc-E2+E1 that has a myc tag at the N-terminus of CHIKV E2, and ONNV/HA-E2 that has a HA tag at the N-terminus of ONNV E2. Our first attempt at concentrating the viral progenies released by THP-1 derived macrophages infected with the two tagged viruses has not been successful. We performed sucrose gradient ultracentrifugation of the supernatant viral particles but the myc and HA tags were not detected in the expected sucrose layer. Next, we plan to use myc-Ab and HA-Ab conjugated beads to pull down the supernatant viral particles to detect the ratio of ONNV/CHIKV myc-E2+E1 and ONNV/HA-E2 secreted by THP-1 derived macrophages. This will determine whether ONNV containing CHIKV glycoproteins can outcompete ONNV in co-infected cells due to increased viral fitness.

      1. The authors use both primary macrophages and macrophage cell lines as their in vitro model system and make one of their major points (listed in the title) that the determinants they identified in the CHIKV structural proteins convert macrophages into dissemination vessels; however, they do not show: 1) an in vivo model that the CHIKV-ONNV chimeras disseminate more efficiently than the parental ONNV; and 2) that these chimeras generate virus more efficiently specifically in macrophages. It would be useful to show that ONNV and CHIKV have equivalent virion production in other cell lines and that the advantage conferred by CHIKV structural proteins in the ONNV backbone is specific to macrophages. The authors should also change their title to reflect that dissemination is not directly being addressed in their study; the implications of their in vitro experimentation in a mammalian host would be more appropriate for the discussion.

      We acknowledge the limitations of the study, which include a lack of direct demonstration of in vivo dissemination. To address these concerns, we will include further discussion of our in vitro findings in the context of viral dissemination in mammalian hosts in the fully revised manuscript. We are also testing ONNV, CHIKV, Chimera I and ONNV/CHIKV E2+E1 infections in 293T cells to investigate whether the advantage conferred by CHIKV glycoproteins are macrophage specific.

      We have also updated the title to accurately reflect the significance of this research: “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”.

      Reviewer 2’s optional comments

      1. The authors use CHIKV-ONNV chimeras but it would be interesting to test other chimeras to determine if CHIKV structural proteins confer the same advantage in the backbone of other arthritogenic alphaviruses. The study would also be strengthened by using a pathogenic strain of CHIKV instead of the vaccine strain, as this is significantly attenuated in vivo.

      We thank Reviewer 2 for this suggestion which is also suggested by Reviewer 1 in their minor comment #5. We plan to use virulent CHIKV La reunion strain and carry out infection experiments in BSL-3 to strengthen this study. We are getting trained in the BSL-3 facility and will be certified soon.

      1. In Figure 4, the authors identify residues in the CHIKV structural proteins that appear to be under positive selection in human subjects and generate point mutants in these residues with the corresponding ONNV residues. They find that one mutation, V1029I located in E1, completely abolishes virion production in THP-1 macrophage cell lines. However, in their previous chimeric experiments, they find that neither CHIKV E1 or E2 was sufficient to increase virus production in the ONNV backbone. The authors should address this discrepancy, otherwise they should consider moving the data in their point mutation experiments to a supplementary figure. While worthy of reporting, especially given the patient data, these experiments do not buttress the points made in the previous figures.

      We thank Reviewer 2 for this insightful comment. According to previous studies, E2 and E1 always interact with each other from the step of the formation of single heterodimer in the ER to heterodimer trimerization before viral particle assembly. Although the E1-V220 site (previously called V1029) on the exterior of a single E2-E1 heterodimer appears to not be engaged in the E2-E1 interaction E1-V220 is partially exposed and protruding into the groove formed by E1 and the E2 of neighboring heterodimer, accessible to host factors. As such, mutating CHIKV E1-V220 to the ONNV residue (E1-V220I) may not only disrupt E2-E1 trimerization but also interfere viral glycoprotein interaction with host factors(presented in our response to Reviewer 1’s major comment #1). Similarly, solely swapping E2 or E1 with CHIKV substitute in the ONNV backbone would also affect the interaction between neighboring E2 and E1 in trimerized spike, which may explain why neither ONNV/CHIKV E2 or ONNV/CHIKV E1 rescues virion production in THP-1 derived macrophages . We have included this in the partially revised discussion section lines __ __296-313.

      1. The authors conclude their manuscript with an assessment of several host proteins, namely SPCS3 and eIF3k, that were identified by mass spectrometry and whose knockdown results in increased virion production. The authors speculate about the role of these proteins but do not provide any mechanistic detail on how they might be playing a role. It is unclear that the putative antiviral role of these proteins involves steps downstream of virus replication, especially given that the authors speculate translation might be affected by eIF3k which, if the case, RNA synthesis should also be expected to be affected.

      We thank Reviewer 2 for this comment. We acknowledge that we have yet a full mechanistic understanding of how SPCS3 and eIF3k impact virion production. We plan to investigate their antiviral roles in our follow-up studies. For our partial revision, we have constructed several single eIF3k knockout (KO) clones of 293T cells. The eIF3k sgRNA we designed targets exon 3 which would eliminate expression of all 3 splice isoforms of eIF3k (KO schematic and sequence verification of CRISPR KO shown in revision plan). Unfortunately, we failed to obtain single clones of 293T cells with SPCS3 complete KO, consistent with a previous study by Rong Zhang et al6 that were unable to recover SPCS3 KO clones likely due to the importance of SPCS3 in cell survival. We infected an eIF3k KO clone (clone 9) with CHIKV vaccine strain 181/clone 25, ONNV SG650, and SINV Toto1101. Interestingly, we found that the antiviral activity of eIF3k is specific to CHIKV as CRISPR KO of eIF3k increases CHIKV production by 2.5 fold but not ONNV or SINV production (shown in revision plan). We have included this in the partially revised manuscript in__ line 272-282 (Figure 7B-7D).__

      We presume that Reviewer 2’s inference of eIF3k’s potential effects on viral RNA synthesis is based on our speculation of its antiviral role in viral translation, which may affect viral nonstructural gene expression. We would like to clarify that eIF3k is not an initiation factor traditionally needed for cap-dependent translation. It is also not clear what translation process (nonstructural polyprotein translation from viral genomic RNA or structural polyprotein translation from viral subgenomic mRNA) involves eIF3k if it indeed affects viral protein expression. Notably, previous SINV studies imply that alphavirus structural polyprotein translation may employ unique mechanisms without the requirement of several crucial initiation factors4,5. It will be interesting to see whether eIF3k participates in viral subgenomic mRNA translation as that would affect viral glycoprotein expression leading to reduced virion production. We have now included additional discussion on eIF3k antiviral mechanisms in the partially revised manuscript in lines 345-353.

      1. Overall, while the initial chimeric virus and domain swap approach is strong, the manuscript would benefit with a more thorough examination of virion assembly steps and a mechanistic link to virion production. Otherwise, the authors should revise the structure of their manuscript by de-emphasizing points about virion assembly and leave room for other mechanistic explanations of their chimeric data that more clearly link the host antiviral factor/E1 binding studies.

      We thank the reviewer for these positive comments and suggestions. We have addressed this by further interrogating the production kinetics of CHIKV, ONNV, and the chimeras containing CHIKV glycoproteins through determining their particle-to-PFU ratios as well as treating infected cells with secretory pathway inhibitors (refer to our responses to Reviewer 2 major comments #1 and #2). We have also included additional discussion on eIF3k antiviral mechanisms specifically on how it may affect other steps of the viral life cycle in the partially revised manuscript in lines 345-353 (refer to our response to Reviewer 2 optional comment #3).

      Reviewer 3’s critique comments

      1. Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelope proteins and list of interactors are not brought together in one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6.

      We thank Reviewer 3 for the insightful suggestions to better connect the first (CHIKV determinants) and second (CHIKV glycoprotein interactors) parts of the manuscript. In response to the Reviewer’s comment, we tested the binding of SPCS3 and eIF3k to CHIKV E1 with E1-V220I (V1029I in original manuscript version) mutation (shown in revision plan) which was shown to abrogate virion production in THP-1 derived macrophages in Figure 4E. We transfected plasmids expressing 3XFLAG-tagged SPCS3/eIF3k or empty vector for 24 h followed by transfection with plasmids expressing either the parental CHIKV vaccine strain 181/clone 25 poly-glycoproteins (E3-myc-E2-6K-E1) or poly-glycoproteins with the E1-V220I mutation. Interestingly, we found that mutating CHIKV E1-V220 to the homologous ONNV residue reduces the binding to either SPCS3 or eIF3k. This result strongly suggests that the positively selected E1-V220 is located in the interaction interface between E1 and SPCS3/eIF3k, confirming the genetic conflict between E1 and these host factors to be one of the major drivers of CHIKV evolution observed at site E1-V220. We have included this result in partially revised manuscript in Figure 7A and in lines 265-271.

      1. The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized.

      We thank Reviewer 3 for pointing out the insufficient clarification of the block leading to defective CHIKV mutant virion production. We previously detected E2 expression from 293T cells transfected with poly-glycoproteins (E3-myc-E2-6K-E1) containing E2-V135L (V460L in original manuscript version), E2-A164T (A489T in original manuscript version), E2-A246S (A571S in original manuscript version) and E1-V220I (V1029I in original manuscript version). We found that only E2-V135L mutation can lead to unexpected E2 cleavage (shown in revision plan) as we mentioned but not shown in the original manuscript. This explains why E2-V135L mutation attenuates infectious CHIKV production.

      The E2 expression of E1-V220I appears to be not affected in 293T cells transfected with poly-glycoproteins with E1-V220I (shown in revision plan ). In addition, the E1-host factor binding result in our response to Reviewer 3’s major comment #1 showed that E1 with the positively selected site mutation V220I can also be successfully expressed in 293T cells after transfection with poly-glycoprotein. Based on these current data, E1-V220I mutation likely abrogates virion production without affecting glycoprotein expression.

      Our previous result of the ONNV particle-to-PFU ratio reveals that ONNV RNA is released but encapsidated in defective particles causing its attenuation in infected macrophages. Thus, even though the glycoproteins of E1-V220I can be expressed, the diminished virion production of CHIKV E1-V220I can still be ascribed to 1) blocked viral particle release and 2) production of defective particles like ONNV. Given that it is not feasible to obtain particle-to-PFU ratio of E1-V220I mutant which fails to form plaques, Reviewer 3’s suggestion to assess the supernatant viral RNA will be a nice approach to address this question. To further address this concern, we plan to transfect THP-1 derived macrophages with CHIKV E1-V220I mutant RNA to detect the intracellular viral glycoprotein expression and supernatant viral RNA levels through western blot and TaqMan assay, respectively.

      1. Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.

      We also thank Reviewer 3 for the suggestion to check whether the identified host factors specifically target CHIKV or inhibit the infection of ONNV as well. We previously tried but were facing some issues. Since only a small fraction of macrophages can be infected with CHIKV and even a smaller fraction can be infected with ONNV (Figure 1A), it is hard to elucidate the roles of these identified host factors in ONNV infection by siRNA knockdown. We decided to take a more rigorous approach to investigate the antiviral specificity of identified host factors, especially understudied SPCS3 and eIF3k, to different alphaviruses by generating complete knockout 293T single cell clones. Despite the fact that we did not successfully generate SPCS3 complete KO, we obtained an eIF3k KO single cell clone and infected it with CHIKV, ONNV and SINV (refer to our response to Reviewer 2 optional comment #3). We found that eIF3k only has antiviral activity against CHIKV with almost no effects on ONNV or SINV infection. We have included this in our partially revised manuscript in line 272-282 (Figure 7B-7D).

      Reviewer 3's minor comments:

      Other points to consider:

      1. The title does not fit the manuscript findings and should be modified.

      We thank Reviewer 3 for this important comment, which was also brought up by Reviewer 2. We have now changed our title to “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”, which more accurately reflects the significance of our research.

      1. It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.

      We apologize for the confusion caused by including SINV and RRV results in Figure 1. We intended to show the superiority of CHIKV in infecting primary monocyte derived macrophages among arthritogenic alphaviruses, which we speculate may provide the molecular basis for macrophage-mediated CHIKV dissemination and disease. We would like to keep the SINV and RRV infection results in Figure 1 to highlight the relative susceptibility of macrophages to CHIKV. To echo the additional alphaviruses tested in Figure 1 and bring the story full circle, we included the result of SINV infection of eIF3k CRISPR KO 293T cells in Figure 7B-7D. These results uncover inhibitory activities of eIF3k that are specific to CHIKV.

      1. Is the data presented in Figure 1A significant?

      We thank Reviewer 3 for this question. We infected both THP-1 derived macrophages and primary monocyte derived macrophages with EGFP-expressing alphaviruses each in duplicates for two independent times. The general low expression of EGFP in all virus-infected groups refrains us from drawing conclusions based on statistically significant differences observed with MFI, hence we chose to show representative scatter plots in the original manuscript. To address Reviewers 3's question, we plotted the infected cell (EGFP+) based on the percentages of the experimental duplicates (shown in revision plan), and found CHIKV infection to be the most significantly different from that of the other alphaviruses in primary monocyte derived macrophage . The numbers above the bar charts are the mean percentages of EGFP+ cells.

      1. The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.

      This is an excellent suggestion as the host factors identified by AP-MS not only contain interactors of CHIKV mature E2 but also those of uncleaved E2-containing precursor polyproteins. We modified Figure 4A to reflect all E2/E2-containing poly-glycoproteins present in CHIKV-infected cells (shown in revision plan).

      1. There is little justification for the candidates assessed in

      We understand Reviewer 3’s concern. Due to the nature of mass spectrometry studies which predict protein-protein interactions rather than direct functional validation, we acknowledge that we may miss some host candidates that have anti- or pro-CHIKV activities. Although justification of hit selection from mass spectrometry datasets is more difficult than that from CRISPR KO screen datasets, we set up specific criteria to identify host protein candidates with the greatest potential to functionally interact with CHIKV glycoproteins. Most of the proteins we chose to validate (Figure 6a) were identified in both of our independent AP-MS experiments, which both pass through a P-value threshold of 0.05 and log2 fold change of 0.

      1. Extended data Figure 3 is very difficult to read due to the small font size.

      We apologize for the small font in Extended data Figure 3. We plan to replace Figure EV3 ( Extended data 3 in unrevised version) with a CORUM protein-protein interaction network that centers on the significant hits identified by both AP-MS experiments, but includes hits from either one of the two experiments in these functional protein complexes. The figure will be more concise and centralized, and the font will be bigger.

      1. Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.

      We thank Reviewer 3 for this question. In Figure 6D, we expressed CHIKV glycoproteins through transfecting CHIKV genomic RNA into 293T cells, while, in Figure 4B, we expressed CHIKV glycoproteins through transfecting poly-glycoprotein plasmid (pcDNA3.1-E3-myc-E2-6K-E1) into 293T cells, which are complementary approaches to express CHIKV glycoproteins to validate their interactions with identified host factors. We have now added schematics to illustrate the different experimental strategies above the figures in this partially revised manuscript (shown in revision plan).

      References:

      Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010). Jose, J., Tang, J., Taylor, A. B., Baker, T. S. & Kuhn, R. J. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells. Viruses 7, 6182–6199 (2015). Götte, B., Liu, L. & McInerney, G. M. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 10, 105 (2018). Saenz, J. B. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5, 157–165 (2009). Krämer, A. et al. Small molecules intercept Notch signaling and the early secretory pathway. Nat. Chem. Biol.9, 731–738 (2013). Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review: In this manuscript the authors generated macrophages derived from the THP-1 cell line or human peripheral blood mononuclear cells stimulated with MCSF and infected them with alphaviruses some containing GFP expression cassettes. In Figure 1, they demonstrate that CHIKV infected these cells more robustly than RRV, SINV or the related ONNV. The authors generated an extensive array of CHIKV/ONNV chimeras to identify the viral proteins that dictate release from infected macrophages and narrowed it down to the envelop proteins E1 and E2. Fine mapping identified a couple of single mutations that affected macrophage infection outcomes. The authors then shifted their approach to identifying env protein interactors using a myc-tag pulldown methods followed by mass spectrometry. The assay identified a number of proteins including those involved in vesicular transport and interferon pathways. siRNA knockdown experiments were performed to identify interactors and many of them were shown to improve virus output.

      Critique: Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelop proteins and list of interactors are not brought together in on one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6. The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized. Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.

      Other points to consider:

      1. The title does not fit the manuscript findings and should be modified.
      2. It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.
      3. Is the data presented in Figure 1A significant?
      4. The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.
      5. There is little justification for the candiates assessed in
      6. Extended data Figure 3 is very difficult to read due to the small font size.
      7. Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.

      Significance

      The study provides a fresh look at Alphavirus replication in macrophages. There are a number of issues that should be worked out that would enhance impact and interpretation of this study.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      In this work Yao et al. show CHIK is able to infect macrophages in contrast to other arthritogenic alphaviruses RRV, ONNV, and SINV. They use a series to chimeric viruses made with ONNV, the closest species to CHIK, and determine the E2-E1 proteins are important viral determinants which allow CHIK to replicate in machophages compared to ONNV. By comparing 397 CHIK sequences from infected patients, they identified 14 residues under pervasive and positive selection. Of these, 3 residues in E2 and 3 residues in E1 (amino acids) were different between CHIK and ONNV suggesting these residues contributed to the difference in macrophage tropism of CHIK compared to ONNV. The authors go on to determine what host factors the CHIK E2 protein is interacting with to presumably connect the viral and host determinants for CHIK infection in macrophages.

      Major concerns:

      1. The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuation represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.
      2. Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficeintly does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host facor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.
      3. If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.
      4. E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting wht SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.

      Minor concerns:

      1. In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?
      2. Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.
      3. Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made witht he CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.
      4. When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjeacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.
      5. How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 resdiues? and compared to ONNV?
      6. When describing the last results section, "CHIK E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.
      7. The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.

      Referees cross-commenting

      I agree with R#2 that having some Particle:PFU data would add some data to determine why such differences in titers/infectivity.

      I also see how this m/s could be split into two different m/s. One that focuses on the chimeric viruses and another that identifies the host factors important and goes in more depth with mechanism

      Significance

      Strengths:

      The authors have tackeled an intriguing question: why do some alphaviruses infect macrophages and others do not. They have used a chimeric approached to very systematically identify the viral determinants E2 and E1 as being important in macrophage infection. Using AP-MS they identify host factors that interact with E2 (possibly E2 and E1, see comments above) but if their findings that E1 has a role in attenuating a host antiviral factor, this would be fantastic.

      More and more examples of viral proteins having multiple roles during infection are in the literature. The idea that structural proteins also attenutate host antivirals is a developing field and vastly understudied. By fleshing out the results some more the authors might be onto something ery important in alphavirus virology.

      Limitations:

      The study has it is presented is limited in the validation of host factors and their interacting partners. I have many questions about the methodology, validation, and model from this last section.

    1. folgezettel pushes the note maker toward making at least one connection at the time of import.

      There is a difference between the sorts of links one might make when placing an idea into an (analog) zettelkasten. A folgezettel link is more valuable than a simple tag/category link because it places an idea into a more specific neighborhood than any handful of tags. This is one of the benefits of a Luhmann-artig ZK system over a more traditional commonplace one, particularly when the work is done up front instead of being punted to a later time.

      For those with a 1A2B3Z linking system (versus a pure decimal system), it may be more difficult to insert a card before other cards rather than after them because of the potential gymnastics of numbering and the natural tendency to put things into a continuing linear order.

      See also: - https://hypothes.is/a/ToqCPq1bEe2Q0b88j4whwQ - https://hyp.is/WtB2AqmlEe2wvCsB5ZyL5A/docdrop.org/download_annotation_doc/Introduction-to-Luhmanns-Zette---Ludecke-Daniel-h4nh8.pdf

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their careful reading of the document and feedback which will help us to improve our manuscript. We will go through their comments one by one.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study would be much convincing if additional line of eukaryotic cells can be used to demonstrate the GEF-GAP synergy tis important for cell physiology. In addition, it would be best to demonstrate the spatiotemporal interaction of GEF-GAP using high-resolution live cell imaging.

      Response from the authors:

      The reviewer requests additional in vivo data to support our in vitro findings:

      (1) The reviewer requests in vivo data showing that GEF-GAP synergy is important for cell physiology. We believe that in order to show GEF-GAP synergy in vivo, Cdc42 cycling rates would need to be measured in vivo. For that single-molecule resolution is required – to track a single Cdc42 molecule and measure its GTPase cycling. We agree that such data would indeed be interesting, but are unaware of established techniques that would facilitate measurements of Cdc42 cycling rates in vivo.

      (2) The reviewer requests in vivo data showing the spatiotemporal interaction of GEF-GAP. Cdc24 and Rga2 are shown to interact (direct or mediated by another protein) (McCusker et al. 2007, Breitkreutz et al. 2010, Chollet et al. 2020). Cdc24 and Rga2 share 11 binding partners (https://thebiogrid.org/31724/table/saccharomyces-cerevisiae-s288c/cdc24.html, https://thebiogrid.org/32438/table/saccharomyces-cerevisiae-s288c/rga2.html) and have been found at the polarity spot (Gao et al. 2011). Live cell imaging of fluorescently tagged Cdc24 and Rga2 will show that they exhibit some interaction, but not specify the role of the interaction nor if the interaction is direct or mediated by one of the shared binding partners. In order to show a direct interaction between Cdc24 and Rga2, one could consider (A) super-resolution imaging or (B) FRET experiments: For both fluorescently tagged Cdc24 and Rga2 cell lines would need to be constructed.

      (A) Super-resolution imaging could show direct interaction between Cdc24 and Rga2, but even with the techniques available this would be on the limit. Further, it is usually done in fixed cells, and not in live cells (as requested from the reviewer).

      (B) To show a direct interaction of Cdc24 and Rga2 using FRET, suitable protein constructs would need to be engineered. We believe that the main obstacle in showing direct binding of Cdc24 and Rga2 using FRET is to design the fluorophore linker. The linker would need to be designed in such a way that it is flexible enough to give a FRET signal even if the two large proteins bind on the opposite sites of the fluorophore, but also is stiff/short enough to not show binding if both proteins are in close proximity through binding to a common binding partner.

      __We believe that an investigation of GEF GAP binding in vivo is beyond the scope of this study. Instead, we will further explore one possible mechanism underlying GEF GAP synergy - Cdc24 Rga2 binding - through conducting Size-Exclusion Chromatography Multi-Angle Light Scattering experiments with purified Cdc24 and Rga2 (alone and in combination). __

      Reviewer #1 (Significance (Required)):

      The revised study would provide first line evidence that GEF-GAP synergy to be general regulatory property in eukaryotic kingdom.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The study entitled, "The GEF Cdc24 and GAP Rga2 synergistically regulate Cdc42 GTPase cycling" by Tschirpke et al., uses an in vitro GTPase assay to examine the GTPase cycle of Cdc42 in combination with its GEF and GAP effectors. The authors find that the Cdc24 GEF activity scales non-linearly with its concentration and the GAP Rga2 has substantially weaker effect on stimulating Cdc42 GTPase activity. Not surprisingly, the combined addition of Cdc24 and Rga2 lead to a substantial increase in Cdc42 GTPase activity.

      **Referees cross-commenting**

      In Zheng, Y., Cerione, R., and Bender, A. (1994) J. Biol. Chem. 269: 2369-2372 (Fig. 3C), the authors show that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity.

      Reviewer #2 (Significance (Required)):

      There is very little new information in this manuscript. Previous studies (Rapali et al. 2017) have shown that the scaffold protein Bem1 enhances the GEF activity of Cdc24. It is expected that the reconstitution of a GEF and GAP protein promote the GTPase cycle and indeed Zheng et al. (1994) showed that that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity. Hence the only potentially interesting finding in this work is that, in solution Cdc24 activity scales non-linearly with its concentration. However as this GEF and Cdc42 are associated with the membrane, the relevance of solution studies are less clear and furthermore the mechanistic basis for the non-linearity is not explored in detail. Given the limited new information from this work, the findings are, in their current form, too preliminary.

      Response from the authors:

      __We appreciate the reviewer recognizing our work on the non-linear concentration-dependence of Cdc24’s activity. We disagree that this is the only new finding in our study: __

      We explore the effect of Cdc24 and Rga2 on Cdc42’s entire GTPase cycle and show that Cdc24 and Rga2 synergistically upregulate Cdc42 cycling. So-far Cdc42 effectors were only characterized in isolation (with the exception of Cdc24-Bem1 (Rapali et al. 2017)) and through how they affect a specific GTPase cycle step. The regulation of single GTPase cycle steps through an effector yields mechanistic insight into this specific GTPase cycle step. However, it does not show how the effector affects overall GTPase cycling of Cdc42 – a process Cdc42 constantly undergoes in vivo. Our approach allows us to study synergistic effects between proteins affecting different GTPase cycle steps. Synergies are another regulatory layer of the polarity system, adding further complexity: Which polarity proteins exhibit synergy, to which extend? The assay employed here, which studies the entire GTPase cycle, enables studying the effect of any GTPase cycle regulator, alone and in combination with another regulator.

      The reviewer states that the GEF GAP synergy is to be expected, as it was already shown in Zheng et al. 1994. In Fig. 3C Zheng et al. shows the time course of the GTPase activity of Cdc42 in presence of Cdc24, Bem3, and Cdc24 plus Bem3. Fig. 3C is the only data in which the combined effect of a GEF (Cdc24) and a GAP (Bem3) is investigated. The data indicates synergy, but is neither discussed as such in the text of the publication, nor analyzed quantitatively. Further, only one concentration of each effector (GEF/GAP) is used and the study uses a Bem3 peptide containing codons 751-1128 (30%) of the full-length BEM3 gene. Zheng et al. 1994 gives an early indication of GEF GAP synergy, but does not claim, discuss, or further investigate the synergy as such. In contrast, we use full-length Rga2 (not Bem3) as GAP, conduct several concentration-dependent assays, and analyze them quantitatively. We thank the reviewer for pointing out the pioneering character of Zheng et al.‘s study and will mention it more prominently in our report. However, we disagree that Zheng et al. sufficiently studied the GEF GAP interaction. To our awareness no theoretical studies include a GEF GAP synergy term, which we would expect if GEF GAP synergy is well-established in the field.

      The reviewer criticizes the relevance of bulk in vitro studies (lacking membranes) of proteins that bind to membranes in vivo. We agree that the presence of a membrane can affect the protein’s property, and we can not exclude that membrane-binding could alter the magnitude of a GEF GAP synergy. However, we believe that membrane-binding does not impede the GEF GAP synergy altogether. If membrane binding would influence GTPase properties that strongly, other studies on Cdc42’s GTPase activity and GEF and GAP activity, that do not include a membrane, would be inconclusive as well (e.g. Zheng et al. 1993, Zheng et al. 1994, Zheng et al. 1995, Zhang et al. 1997, Zhang et al. 1998, Zhang et al. 1999, Zhang et al. 2000, Zhang et al. 2001, Smith et al. 2002, Rapali et al. 2017). Both studies mentioned by the reviewer (Zheng et al. 1994, Rapali et al. 2017) were also conducted without membranes present.

      We believe that an inclusion of membrane-binding into reconstituted Cdc42 systems will enhance our understanding of Cdc42 and recognize it as a next step, which could be enabled by the assay used in our study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This work reports a biochemical analysis of the effects of a recombinant yeast GEF (Cdc24) and GAP (Rga2) on Cdc42 GTPase cycling in vitro. The central conclusion is that the GEF and GAP act "synergistically", which occurs "due to proteins enhancing each other's effects". By this they appear to mean that the GEF enhances the GAP's activity and vice versa. I was not persuaded that this is correct, and was confused by many aspects of the approach and interpretation, as outlined below.

      1. GEF and GAP are expected to accelerate GTPase cycle synergistically even with no effect on each other's activity:

      The Cdc42 GTPase cycle is understood to occur via distinct steps (GDP release, GTP binding, and GTP hydrolysis): GDP release and GTP hydrolysis are intrinsically slow steps that are accelerated by GEFs (GDP release) and GAPs (GTP hydrolysis). This fundamental biochemistry was established in the 1990s using biochemical assays that measure each step independently. Here instead the authors use an assay that measures [GTP] decline in a mix with 5 uM starting GTP, 1 uM Cdc42, plus or minus some amount of GEF or GAP. They assume exponential decline of [GTP] with time, yielding a cycling "rate". If that is so, then one would expect that added GEF would accelerate only the first step, leaving a slow GTP hydrolysis step that limits the overall cycling rate, while added GAP would accelerate only the last step, leaving a slow GDP release step that limits the overall cycling rate. Adding both together would speed up both steps, and should therefore "synergistically" accelerate cycling. This would be expected based on previous work and does not imply that GEF or GAP are affecting each other's action (except trivially by providing substrate for the next reaction). If the authors wish to demonstrate that something more complex is indeed happening, they need to use assays that directly measure the sub-reaction of interest, as done by prior investigators.

      Response from the authors:

      The reviewer raises the point that we do not consider a simpler, rate-limiting model and that this rate-limiting model could explain our synergy between GAP and GEF in accelerating the GTPase cycle.

      We very much welcome this consideration of the reviewer! We will add a clarification to our manuscript to explain why a rate-limiting model/interpretation does not match our data.

      Intuitively, the rate-limiting model is appealing, as it permits interpretation of cycle rate increases in terms of individual biochemical steps. So, a consideration of this model is indeed relevant. However, as also noted by the reviewer in the next points, data from e.g., figure 3e are not compatible with a simple rate-limiting model with two steps (hydrolysis and nucleotide exchange). We will explain how the acceleration of the total rate by both GAP and GEF individually does not match the rate-limiting model, even if we assume maximal effects of adding GAPs and GEF to the cycle. For this purpose, we consider the rate-limiting model scenario where the sensitivity of the GTPase cycle to adding GAP/GEF is maximized, so the best case-scenario for the rate limiting step-model.

      In the rate-limiting step model, we assume that we have a GTPase cycle in which at least one of the three GTPase cycle steps is rate-limiting: (A) GTP binding, (B) GTP hydrolysis, and (C) GDP release.

      We assume that the addition of a GEF and GAP only accelerates GDP release and GTP hydrolysis respectively. Biochemically, all three steps in the GTPase cycle are expected to be relevant. However, here we will consider only the final two steps, as sensitivity to rate limitation by GAP/GEF is maximized when time spent in the GAP/GEF-independent step in the cycle (step A: GTP) is negligible (i.e. never rate-limiting). The two-step model thus consists of (1) a nucleotide exchange step (step C+A) which is dominated by GDP release (step C) and assumed to be accelerated exclusively by the GEF, and (2) a GTP hydrolysis step (step B) exclusively enhanced by the GAP.

      In the rate limiting step model GEF-GAP synergy can appear if one of the conditions applies:

      1. the addition of a GAP speeds up the GTP hydrolysis step so much that the hydrolysis step stops (or almost stops) being the rate-limiting step, or
      2. the addition of a GEF speeds up the GDP release step so much that the release step stops (or almost stops) being the rate-limiting step. In these conditions, the acceleration of the GTPase cycle, accomplished by adding only a GAP or adding only a GEF, is interdependent. Therefore, we consider the possible acceleration of the GTPase cycle by GAP and GEF individually, and compare these to our observations to determine whether the rate-limiting step model can explain our data.

      The GTPase cycle time Tc is thus composed of hydrolysis Th and nucleotide exchange time Te, and the rates r are connected through:

      1/rc=1/rh + 1/re

      If we compare the ratio of the rates with protein (GAP/GEF) added in the assay (index 1) with the basal rate without protein added (index 0), we obtain the cycle acceleration factor alpha:

      alpha=rc1/rc0=(1/rh0 + 1/re0)/(1/rh1 + 1/re1)=(re0 + rh0)/(re0*rh0/rh1 + rh0*re0/re1)

      Here, rc1 and rc0 are the total GTPase cycle rate with and without effector respectively, rh1 and rh0 are the GTP hydrolysis rate with and without effector respectively, and re1 and re0 are the nucleotide exchange rate with and without effectors respectively.

      There is indeed an interdependence created between how much the GAP and GEF can both accelerate the total cycle, if the GAP and GEF are assumed to only accelerate GTP hydrolysis and nucleotide exchange respectively. E.g., how much the total GTPase cycle rate rc is accelerated by an increase in GTP hydrolysis rate rh depends on and can be limited by the current nucleotide exchange rate re. However, this interdependence is too strict to match the data in Figure 3e, as we will explain in the next paragraphs:

      When we only add a GAP and the GAP accelerates only the GTP hydrolysis rate (re1=re0), then the maximal total GTPase cycle rate acceleration alphaGAP that the GAP can accomplish is when rh1>>rh0,re0:

      alphaGAP=rc1/rc0=(1/rh0 +1/re0)/(1/rh1+1/re0)=(re0+rh0)/(re0*rh0/rh1+rh0)

      ~(re0+rh0)/rh0=1+ re0/rh0

      We thus assume the GAP accelerates the cycle so much that the hydrolysis step is much faster than the exchange step, at which point the effect of adding more GAP would saturate. We note that we do not consider the GAP concentration regime where we see saturation, thus in reality the acceleration by the GAP is more restricted than predicted here.

      Analogously, if the GEF accelerates only the nucleotide exchange rate (rh1=rh0), then the maximum GTPase cycle rate ratio will be when re1>>re0,rh0 , yielding acceleration factor alphaGEF :

      alphaGEF= rc1/rc0=1+ rh0/re0

      Again, note we assume the GEF accelerates the cycle so much that the exchange step is much faster than the hydrolysis step, at which point the effect of adding more GEF would saturate. We note that we do not observe the GEF concentration regime where we see saturation, thus in reality the acceleration by the GEF is more restricted than predicted here.

      We see that the maximum gain in rates for GAP-only and GEF-only assays is limited by the same basal GTP hydrolysis and nucleotide exchange rates (rh0 and re0), leading to the following interdependence:

      alphaGAP=1+ 1/(alphaGEF -1)=alphaGEF/(AlphaGEF -1)

      In our GAP-only and GEF-only assays (Fig. 3e, Tab. 2), we see both a 2-fold and 100-fold increase in the total rate respectively. A 100-fold acceleration factor of the GEF would maximize the GAP acceleration factor to 1.01 (or alternatively, the 2-fold GAP acceleration would maximize the GEF acceleration to 2), which are both significantly lower than what we observe. So even though we made favorable assumptions for the rate-limiting model to maximize rate sensitivity to GAP/GEF, namely neglecting nucleotide binding and assuming GAP/GEF concentrations that saturate in their effects, we still cannot reproduce the acceleration factors in our GAP-only and GEF-only assays.

      Moreover, a rate-limiting step model would also imply saturation effects as stated in the next point of the reviewer. While we observe saturation in total rate acceleration for certain GAP concentrations, we use GEF and GAP concentrations in the combined protein assays for which no saturation effects were observed. Absence of saturation in both cycle steps simultaneously is also not reconcilable with the rate-limiting step model, as will be further discussed in the next point of the reviewer.

      In summary, this means that the rate-limiting model is not sufficient to explain our results: the GAP/GEF synergy we observe is not simply resulting from GEF and GAP independently lifting two different rate-limiting steps.

      Model-based interpretation of the GTPase assay is poorly supported:

      The assay employed measures overall GTP concentration with time. It is assumed (but not well documented-see below) that [GTP] declines exponentially, and that the rate constant for a particular condition can be fit by the sum of a series of terms that are linear or quadratic in the concentrations of Cdc42, GEF, and GAP. There is no theoretical derivation of this model from the elementary reactions, and the assumptions involved are not well articulated.

      As discussed in point 1 above, one would expect that a GEF or GAP alone could only accelerate the cycle to a certain point, where the other (slow) reaction becomes rate limiting. But that does not appear to be true for their phenomenological model, where slow steps (small terms in the sum) will always be overwhelmed by fast steps. This is not the traditional understanding of how GTPases operate.

      Response from the authors:

      The reviewer expresses the concern that because we do not derive our coarse-grained model from elementary reactions, we miss important effects that can occur when adding GAP and GEFs, particularly saturation.

      We understand the concern of the reviewer that if a rate-limiting step model is considered, saturation effects of GAP/GEF will limit the amount with which these effectors can speed up the total cycle. Our coarse-grained model indeed does not account for this saturation. However, as discussed in the previous point of the reviewer, we do not opt for the rate-limiting model interpretation, as the GAP and GEF effects are not compatible with the rate-limiting step model.

      Secondly, we agree that for high enough concentrations of GEF and GAPs, we would experience a saturation in the effect of adding the effectors. We are aware of this possibility, and we verify that we are not in saturation regimes with our added proteins by checking the plots of the individual protein titrations (see Figure 3a-d). If we enter the saturation regime, we expect a negative second derivative in the rate as function of protein concentration (the curve shallows off). We do not see this for any protein except for Rga2 at some point, as discussed in our main text of the manuscript. However, for this protein we only use the data in the linear regime for further analysis. In short, we understand the concern of the author but we empirically check that we are not in the saturation regime.

      Data that do not conform to expectation are not explained: Strangely, the data (as interpreted by the model assumptions) also appear inconsistent with the expectation of rate-limiting steps. GEF addition (alone) is said to accelerate cycling 100-fold, while GAP addition (alone) accelerates it 2-fold. But that would seem to imply that GDP release takes up >99% of the basal cycle (so accelerating that step alone reduces cycling time 100-fold), while GTP hydrolysis takes up >50% of the basal cycle (so accelerating that step alone reduces cycling time 2-fold). In the conventional understanding of GTPase cycles, these cannot both be be true (as the steps would then add to >100% of the basal cycle). There is no attempt to reconcile these findings with previous work.

      Response from the authors:

      The reviewer raises the point that our findings do not match the expectations of the rate-limiting model perspective.

      We fully agree with the reviewer that our data is not compatible with the rate-limiting step model. The 100-fold and 2-fold gain of the total cycle rates for GEF-only and GAP-only assays are one of our arguments against the rate-limiting model view, as described in the first point of the reviewer. Also, our lack of saturation as described in the previous point of the reviewer provides another argument against using expectations based on rate-limiting steps to interpret our findings.

      Lack of detailed timecourse data:

      The decline in [GTP] with time is stated to be exponential, allowing extraction of an overall cycling "rate". But this claim is supported only weakly (S3 Fig. 1 uses only 3 timepoints, is not plotted on semi-log axis, and does not report fit to exponential vs other models) and only for the Cdc42-alone scenario: no data at all are presented to support exponential decline in reactions with GEF or GAP. Most assays seem to measure only a single timepoint, so extraction of a "rate" is very heavily influenced by the unsupported assumption of exponential decline. And if the decline is not exponential, it becomes extremely difficult to interpret what a single timepoint means.

      Response from the authors:

      The reviewer requests additional timeseries data with GEF and GAP to support the assumption of an exponential decline of GTP in the assay and requests to plot it on a semi-log axis.

      We will add data for Cdc42 + Cdc24 and for Cdc42 + Rga2 with two to three time points, and plot it as requested on a semi-log axis.

      Other issues with interpretation of the data:

      (i) It is unclear why the authors chose to employ an assay that is much harder to interpret than the biochemical assays used by others. In biochemical studies, assays that report an output of multiple reactions are always harder to interpret than assays targeting a single reaction. As well-established assays are available for each individual step in GTPase cycles, any conclusions must be supported using such assays.

      Response from the authors:

      The reviewer wonders why an assay that investigates several GTPase steps at once was chosen over assays that investigate sub-steps of the GTPase cycle, given that these give more mechanistic insights.

      We agree that assays investigating GTPase cycle substeps can give more mechanistic insights into these specific steps. However, they do not allow to study how proteins affecting different steps act together. We were interested in investigating the overall GTPase cycle of Cdc42 and a possible interplay of GEFs and GAPs. Cdc42 GTPase cycling was found to be a requirement for polarity establishment (Wedlich-Soldner et al. 2004) and Cdc42 GTPase cycling is physiologically relevant. Ultimately, we hope that in vitro results provide stepping stones towards understanding the complex and less controlled in vivo environment. The in vivo environment often entails the output of many reactions combined, so there is every incentive to study aggregated effects of a full cycle which are not necessarily the sum of individual outputs.

      __We believe that both assay types – assays that investigate sub-steps and yield mechanistic details, and assays that investigate the entire cycle – are important and disagree that one assay type is superior to the other. Instead, we believe they complement each other. __

      (ii) The reported basal (and GEF/GAP-accelerated) rates are very slow, perhaps due to poor folding of recombinant proteins. This raises the possibility that much of the Cdc42 is inactive. If so, then accelerated GTP hydrolysis could come from increasing the active fraction of Cdc42, rather than catalyzing a specific step.

      Response from the authors:

      The reviewer wonders whether the reported rates are slow due to poor folding of recombinant Cdc42. We used S. cerevisae Cdc42, for which it has been shown that it has a significantly lower basal GTPase activity than Cdc42 of other organisms (see Zhang et al. 1999). Many other studies on Cdc42 were conducted with human Cdc42, which has a significantly higher basal GTPase activity (Zhang et al. 1999). We assessed the activity of several recombinantly expressed Cdc42 constructs previously (Tschirpke et al. 2023). We there observed that most constructs had a similar GTPase activity, only some purification batches and constructs had a significantly reduced GTPase activity (which might be linked to poor folding). The Cdc42 construct used here shows a similar activity as the active Cdc42 constructs in Tschirpke et al. 2023, and we therefore believe that it exhibits proper folding. If recombinant Cdc42 folds poorly, we would expect greater variations between Cdc42 constructs and purification batches (caused by different levels of folding/ a different fraction of active Cdc42) than what we observed previously (see Tschirpke et al. 2023).

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      (iii) The GEF and GAP preparations include multiple partial degradation products and it is unclear whether the measured activities come from full-length proteins or more active fragments.

      Response from the authors:

      We agree with the reviewer that the Cdc24 and Rga2 preparations contain degradation products.

      It would be more ideal if the protein purifications were entirely pure, but this is experimentally very difficult to achieve for the used proteins (which are large and partially unstructured, making them prone to partial degradation). Further, it is not uncommon to use protein preparations where some degradation products were present (e.g. Zheng et al. 1993, Zheng et al. 1994). Other studies did not show their purified preparations.

      The vast majority of the Cdc24 preparation is the full-length protein. We therefore expect that the degradation fragments only contribute in a small extend to the overall protein behavior.

      The Rga2 preparation contains a higher amount of degradation product, but only larger size protein fragments (> 60kDa), suggesting that the fragments contain at least and more than 1/3 of the full-length protein (the protein fragments are thus the size or larger than of the GAP peptides used previously). The fragments could in principle have a higher or lower activity. We account for fragments of no/lower activity by comparing our cycling rates to those of BSA/Casein, which has no specific effect on Cdc42. The cycling rate Rga2 is almost an order of magnitude greater than that of BSA/Casein, suggesting that the effect of the full-length protein dominates. We could only imagine that a Rga2 fragment has a higher GAP activity if the fragment consists mainly of the GAP domain and if in Rga2 the activity of the GAP domain is downregulated. Nevertheless, we will do an additional experiment using a purified GAP domain peptide to assess that if a GAP domain by itself has a higher GAP activity than our Rga2 preparation. Using that data, we will discuss possible implication of the GAP fragments in our manuscript.

      (iv) Cdc42 cycling is also accelerated by BSA and casein, suggesting that there are poorly understood aspects of the assay and that GEF and GAP actions may (like BSA and casein) involve non-canonical effects on Cdc42. As GEF and GAP are expected to interact better with Cdc42 than BSA or casein, these effects could dominate the observed changes in GTP levels.

      Response from the authors:

      The reviewer raises the concern that the effects of the added effector proteins on the rates could be caused by non-canonical effects. We do not believe non-canonical effects play a relevant role in our assays. While BSA and casein accelerate the GTPase cycle in our assays, the GAP effect and GEF effect are orders of magnitude stronger.

      (v) Cdc42-alone cycling assays are said to be reproducible. However, assays with added GEF/GAP/BSA/Casein yield rates that vary almost an order of magnitude between replicates. This poor reproducibility further reduces confidence in the findings.

      Response from the authors:

      The reviewer is concerned about the variations in Cdc42 effector rates.

      __We disagree that the variations are concerning and believe to have accounted for them in our analysis: __The Cdc42 (Cdc42 alone) data is very reproducible (see Tschirpke et al. 2023). The GTPase assay is generally sensitive to small concentration changes and errors introduced through pipetting small volumes (as required for the assay). We believe that the small variation observed for Cdc42 alone is because Cdc42 has such a low basal rate and therefore the small concentration changes due to pipetting have a smaller effect. Once other effectors are added, especially highly GTPase stimulating ones as Cdc24, small concentration changes due to pipetting can lead to larger variations between assays (small variations in Cdc24 concentration lead to larger changes in remaining GTP due to Cdc24’s strong and non-linear effect on Cdc42). We conduct the assays multiple times to account for these variations. In our analysis we do not compare single rate numbers but the orders of magnitude of the rate, and report the variations present. Even given the present variations, the differences in effect sizes are still significant. We map and discuss assay variation in (Tschirpke et al. 2023), to which we refer to several times throughout the manuscript.

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      (vi) It is unclear what timepoint was used for the different assays. 1.5 h at 30 degrees seems to be the standard here for the Cdc42-alone assays, but I assume that cannot be what was measured to assess GTP decline for GEF-containing assays as there would be very little GTP left at 1.5 h.

      Response from the authors:

      We used 60-100 min as incubation times for all assays. The assay data will be published on a data server, where all these numbers can be checked. We further added a clarification to the materials and methods section. In order to still have remaining GTP for the Cdc42 GEF mixtures after 60-100 min, we lowered the used protein concentrations.

      (vii) The graph reporting GEF activity is plotted only for [GEF]Response from the authors:

      The graphs show the full range of protein concentrations used.

      In order to calculate K1, K2, K3,Cdc24, K3,Rga2, K3,Cdc24,Rga2 from k1, k2, k3,Cdc24, k3,Rga2, k3,Cdc24,Rga2, …, a protein concentration has to be included in the term (as K1 = k1 [Cdc42], ….). In order to make K comparable, we chose to use 1uM for all protein concentrations. This was done to compare the cycling rate values of different proteins. 1uM was a choice, in the same fashion 0.2uM could have been chosen.

      __We will further discuss in the manuscript how the choices in protein concentration affect the effector strength on Cdc42. __

      (viii) S8 Data with casein seems very noisy and it is no longer at all clear that the quadratic fit for [Cdc24] is justified. Also, the symbol colors are very similar so it is hard to tell what data corresponds to what condition. The synergy between Cdc24 and Rga2 is also very noisy and the fits seem arbitrary.

      Response from the authors:

      The reviewer is concerned with (1) the noise in the S8 data, and (2) the Cdc42-Cdc24-Rga2 fits.

      (1) We acknowledge in the manuscript that the S8 data is noisy and should be viewed with caution. We do not put much emphasis on these data sets and their interpretation and show them only in the supplement.

      (2) We disagree that the Cdc42-Cdc24-Rga2 fits are arbitrary. The fits contain several data points per protein, and reproduce the rate values from Cdc42-Cdc24 and Cdc42-Rga2 assays well.

      The reviewer is concerned with the color scheme choice in the fits.

      __We will adapt the color scheme of the fits to make the colors more distinguishable. __

      (ix) It is disturbing that different Cdc42 constructs behave quite differently (S4). This suggests that protein behavior is influenced by the various added epitope tags and protease cleavage sites (they also leave the C-terminal CAAX box rather than removing the AAX as would happen in vivo). These features raise the concern that these findings may not be directly relevant to the situation with endogenous yeast Cdc42. Of course, it is also the case that relevant Cdc42 biochemistry occurs with prenylated Cdc42 on membranes.

      Response from the authors:

      The reviewer is concerned that the behavior of the Cdc42 constructs is influenced by their tags. In a previous manuscript (Tschirpke et al. 2023) we explored the effect of various N- and C-terminal tags on Cdc42, by comparing it to Cdc42 that is not tagged in that position. We found that most tags, including the tags present in the Cdc42 construct used here, do not affect Cdc42’s properties.

      Instead, we found a general, tag independent, heterogeneity in Cdc42 behavior (which can occur between purification batches and between constructs (but not between different assays)): in some batches GTPase activity depended quadratically on its concentration, others showed a linear relationship. Most batches exhibited a mixed behavior. The differences between the batches are generally small, and only visible in the activity to concentration plots and because of the assay’s high accuracy. We use a two-parameter fit (k1 [Cdc42] + k2 [Cdc42]2) to phenomenologically account for this heterogeneity, and to estimate the basal Cdc42 GTPase activity. We do not interpret this heterogeneity, as more research is needed. We believe that Cdc42 still has unexplored properties, of which this heterogeneous behavior can be one. We speculate in Tschirpke et al. 2023 that it is linked to Cdc42 dimerization mediated by its polybasic region, a relationship that is far from being fully understood yet. __We believe that it is of scientific interest to point out heterogeneous behaviors to encourage more research. __

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      The reviewer is concerned that our findings are biologically not relevant, as our experiments (1) included Cdc42 that was not prenylated and (2) did not include membranes.

      (1) We here used recombinantly purified proteins, which do not contain posttranslational modifications, such as prenylations. So-far Cdc42’s prenyl group, which is responsible for binding it to membranes, has not been linked to its GTPase properties. We therefore believe that unprenylated Cdc42 is an equal choice to prenylated Cdc42 when studying Cdc42’s GTPase cycle. Further, the use of recombinantly purified proteins can be of advantage: when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications (PTMs). Thus, the purified protein is a mixture of protein with different PTMs. For example, S. cerevisae Cdc42 undergoes ubiquitinylation (Swaney et al. 2013, Back, Gorman, Vogel, & Silva 2019), phosphorylation (Lanz et al. 2021), farnesylation and geranyl-geranylation (Caplin, Hettich, & Marshall 1994). We here used protein preparations that do not contain PTMs, and show how they behave. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. If Cdc42’s PTMs affect it’s GTPase behavior, the observed behavior of natively purified Cdc42 would represent the average behavior of the mixture. It then would require additional work to disentangle which PTMs affect the GTPase cycling in which way. The use of recombinantly expressed Cdc42 does not require this work, and can set the baseline for how Cdc42 without PTMs behaves. If in the future a link between Cdc42’s GTPase behavior and PTMs are found, the work here could be used as a baseline for Cdc42’s behavior when it is without PTMs.

      (2) The concern about missing membranes was also raised by reviewer 2 (significance), and we like to refer to our response there.

      Reviewer #3 (Significance (Required)):

      The basic biochemistry of Cdc42 cycles was figured out about 30 years ago. However, those studies did not examine how combinations of Cdc42 regulators (as opposed to individual regulators) might interact to produce effects not expected from combining their individual actions. Recently, this combination approach did lead to interesting findings by Rapali et al. This approach is worthwhile and addresses a major question of interest to the broader field of GTPase biochemistry.

      One main limitation of this study is technical: the main assay is less informative (though perhaps easier) than traditional assays, and it is unclear whether the recombinant proteins employed retain their normal activities. Another limitation is the model-based interpretation of the assay that does not include the potential for rate-limiting steps.

      Response from the authors:

      We thank the reviewer for the detailed comments.

      One important point of confusion originated from our lack of discussion concerning a rate-limiting step model, which is an obvious starting point for modelling the GTPase cycle. We thank the reviewer for pointing this out, and we will include an explanation in our manuscript why we reject this model and instead opt for a coarse-grained model.

      Firstly, a rate-limiting model would generate saturation effects that we would observe when adding GEF and/or GAPs. In assays exploring GEF GAP synergy we use GEF and GAP concentrations for which no saturation effects were observed.

      Secondly, in our data we observed a two-fold increase of the total GTPase cycling rate when adding a GAP and a 100-fold rate increase when a GEF is added. These increases are not compatible with a model where either hydrolysis or nucleotide exchange limits the GTPase cycle. While a synergy could arise from the rate-limiting model perspective, the incompatibility of the rate-limiting model with the GAP-only and GEF-only assay data excludes this synergy explanation. Finally, through coarse-graining our model we avoid using single step parameters from literature which are incompatible in terms of proteins/buffers used. (For example; the mayor studies that kinetically characterized the individual GTPase steps of Cdc42 used human Cdc42 (Zhang et al. 1997, Zhang et al. 2000). Because human Cdc42 exhibits a higher basal GTPase activity (Zhang et al. 1999) we are skeptical how useful it is to transfer these parameters to S. cerevisae Cdc42.)

      At the same time, coarse-graining our model permits absorbing unidentified molecular details which is essential when we wish to incorporate BSA and casein rate contributions.

      The reviewer finds our assay, which investigates the GTPase cycle as a whole, less informative. Assays investigating single GTPase cycle sub-steps give more mechanistic insights into these steps. We opted for an assay that studies GTPase cycling as a whole instead, as we were interested in studying how proteins effecting different steps act together. We believe that both assay types are important as they complement each other.

      The reviewer is concerned about our use of recombinant proteins, and whether they retain their normal activities. We assessed Cdc42’s GTPase activity and the influence of added purification tags extensively (Tschirpke et al. 2023), and found that added tags do not affect Cdc42’s GTPase properties. We checked Cdc24’s GEF activity using the GTPase assay and found that it bound strongly to Bem1, as expected (Tschirpke et al. 2023). The Cdc24 concentrations needed to affect Cdc42’s GTPase activity were similar to those used previously (Rapali et al. 2017), suggesting that it is fully active. A similar comparison for Rga2 was not possible, as so-far only domains of Rga2 were used (Smith et al. 2002). We here used recombinantly purified proteins, which do not contain posttranslational modifications (PTMs). To our knowledge the PTMs of the herein used proteins are not linked to their GTPase/GEF/GAP properties. Thus, a lack of PTMs does not diminish our findings. Further, when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications in vivo. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. We here used protein preparations that do not contain PTMs, and show how they behave, setting the baseline for proteins without PTMs behaves. If in the future a link between GTPase behavior and PTMs are found, the work here could be used as a baseline for the proteins behavior when it is without PTMs.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary

      The GTPase cdc42 is a key determinant of yeast polarization. Its activity is amplified at the site of polarization through a poorly defined positive feedback mechanism, and depends on numerous GAPs regulating GTP hydrolysis and the GEF cdc24 that regulates GDP release. These components have previously been evaluated for their quantitative effects on the individual steps in the GTPase cycle that they modulate, but potential interactions between the cdc24 GEF and any GAP could not be examined based on these assays. The authors validate and employ a bulk assay of the total GTPase cycle based on GTP consumption to study the activities of and potential interactions between cdc24 and the GAP Rga2. Fitting their data to a mathematical model, they come to three central conclusions: (1) the activating activity of cdc24 to activate cdc42 GTPase activity is nonlinear, showing a quadratic relationship, (2) Rga2 shows a much lower activating activity that is linear at low levels before saturating, and (3) there is a strongly synergistic interaction between the activating activities of cdc24 and Rga2. Some hypotheses for the mechanistic bases of these findings are hypothesized, but not further investigated. Their conclusions are well supported by the data which appears to be of sufficient rigor.

      Major comments

      The three main conclusions of the manuscript are well supported by the data and associated modeling.

      One unresolved issue is the discrepancy between the authors' conclusion that the non-linear activation by cdc24 is likely a result of oligomerization, whereas Mionnet et al 2008 reach the opposite conclusion. It seems that the authors wish to discount the Mionnet results because they used truncated constructs to test deficient oligomerization and an engineered construct to test induced oligomerization. If the authors are correct, then a relatively easy test would be to introduce the oligomerization deficient mutants defined by Mionnet into their fuill length construct and compare to wild type protein. While the authors' measured results don't depend on the offered mechanism and this experiment is therefore optional, their explanation is quite unsatisfying, especially since an experiment to resolve the difference is entirely feasible and not very strenuous.

      Response from the authors:

      __The reviewer suggests to conduct experiments with oligomerization deficient Cdc24 mutants to test our hypothesis that the non-linear concentration dependence of Cdc24’s activity is due to Cdc24 oligomerization. __

      We agree that this is an insightful experiment, and will conduct it. In order to observe the effect in our GTPase assays, we require a mutant that is oligomerizes substantially less than wild-type protein. Mionnet et al. constructed several Cdc24 mutants, but none were entirely oligomerization deficient. However, the DH5 (L339A/E340A) mutant showed a 10-fold reduction in oligomerization and the DH3 (F322A) mutant exhibited 2.5-fold reduction in oligomerization. We will therefore use the DH5 and DH3 mutant for two additional experiments.

      Minor comments

      The results in Fig S4 serve as assay validation, and this should be pointed out early in the Results section. I was initially concerned when the assay was described as based on consumption of GTP that a significantly diminished pool would alter the rate and thereby distort results, and being made aware of the S4 result would have alleviated that concern as I read further.

      Response from the authors:

      We believe that the reviewer refers to S3 (not S4). We appreciate this suggestion and now mention it earlier.

      On page 4 and Fig S4 the authors mention several cdc42 constructs, some of which show linear activity curves and others slightly non-linear curves. I was unable to find where these constructs or their differences are discussed. The authors should also tell us if the construct used for the remaining experiments was one of the two shown in S4, or a different one.

      Response from the authors:

      We added the requested information and explanations to the manuscript.

      It seems that in Fig 4 and Fig S8, some points are missing from the graphs. Were all concentrations for each condition not always assayed, or is some data omitted for some reason? For example, for the 0.125 microM Rga2 condition, only two points are shown vs 4 for some other conditions, and the two missing ones are expected to not be excluded by the >5% GTP remaining criterion.

      Response from the authors:

      The reviewer wonders whether Fig.4 and Fig. S8 miss data points. This is not the case, and __we added clarifying information to the manuscript. __

      In detail: Not all assays contain the same amount of data points/ concentrations for each protein. We first assessed Cdc42 alone using several Cdc42 concentration. We then examined the individual Cdc42 – effector mixtures, using a larger number of effector concentrations. We included a reduced number of effector concentrations in the assays containing two effectors and Cdc42. It would be ideal to include more concentrations, but this is not always feasible: The assay involves a multitude of pipetting steps and is sensitive to any pipetting errors. Further, assays can vary slights from each other, therefore all samples that ought to be compared need to be included in each assay.

      Each three-protein assay contains samples shown (Cdc42, Cdc42 + effector 1, Cdc42 + effector 2, Cdc42 + effector 1 + effector 2) and additional ‘buffer’ wells used for normalization. Each data point shown corresponds to the average of 3-4 replica samples per assay. We therefore did not include all concentrations in all conditions. As pointed out, Fig. 4a only shows two data points for the 0.125uM Rga2 axis (Rga2 + Cdc42 and Rga2 + Cdc24 + Cdc42). The rational was the following: We included three Cdc24 concentrations (for proper fitting for K3,Cdc24), three Rga2 concentrations (for proper fitting for K3,Rga2), and 5 mixtures of the used Cdc24 and Rga2 concentrations (for proper fitting for K3,Cdc24,Rga2).

      The Cdc42-Rga2-BSA and Cdc42-Rga2-Casein data is rather sparse and would benefit from additional data points. However, we only use those as control experiments and are cautious in their interpretation.

      In these graphs, a diamond symbol of slightly varying color is used for the different conditions. The different colors are hard to distinguish. Please use different shape symbols for the different conditions, and choose colors that are more distinct.

      Response from the authors:

      We will adapt the color scheme of the fits to make the colors more distinguishable.

      There are a few sentences that are of unclear meaning, for example on page 10, "It was suggested that each GAP plays a distinct role in Cdc42 regulation, of which the level of GAP activity could be a part of [Smith et al., 2002]." There are also typos and grammatical errors that should be fixed.

      Response from the authors:

      __We will further check the document for potentially unclear sentences and will try to clarify them, as well as further check for grammatical and spelling errors. __

      Reviewer #4 (Significance (Required)):

      Significance

      The most novel and important finding is the strong synergy observed between cdc24 and Rga2 in activating cdc42 GTPase activity. This is undoubtedly an important mechanism underlying positive feedback in polarization. The measured non-linear activity of cdc24 alone is also quite important given that availability of cdc24 is thought to be a critical in vivo stimulus for polarization. However, the unexplained discrepancy between this result and that of Mionnet leaves one to wonder which result is more reliable. Only Mionnet attempts to directly test whether oligomerization is important in cdc24 activity.

      The conclusions are of importance to a broad audience of cell biologists, though the lack of any mechanism for the synergy or the non-linearity of cdc24 activity somewhat diminishes significance.

      Note that my expertise and that of my co-reviewer is in the biology, and while we are able to follow the contributions of the modeling, we do not have the expertise to critically evaluate for potential errors or weaknesses in the modeling itself.

      The reviewer wonders whether our data or the data of Mionnet et al. on the link between Cdc24 oligomerization and its GEF activity is more reliable and suggests to conduct experiments with oligomerization deficient Cdc24 mutants.

      We thank the reviewer for this recommendation and we will do the suggested experiments to resolve the seemingly contradicting observations by us and Mionnet et al..

      The reviewer would find mechanistic insights into (2) the non-linear concentration dependence of Cdc24’s activity and (2) the Cdc24-Rga2 synergy useful.

      (1) We will conduct experiments with partially oligomerization deficient Cdc24 mutants, as suggested by the reviewer.

      (2) We speculate that Cdc24-Rga2 binding could lead to the synergy. ____We will add data on Cdc24 – Rga2 binding (in vitro: Size-Exclusion Chromatography Multi-Angle Light Scattering) to this study.

    1. Reset Background color CSS Ask Question Asked 7 years, 11 months ago Modified 7 years, 11 months ago Viewed 5k times Report this ad This question shows research effort; it is useful and clear 2 This question does not show any research effort; it is unclear or not useful Save this question. Show activity on this post. I am developing a project where I am supposed to make a particular part of div flash, (or blink only once) The HTML : <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink" >Current Price</p> and the CSS <style> #divtoBlink{ background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } </style> It blinks, and changes colour to green. But the color stays green. I want to reset the background: #008800; to white or transparent again. Is there a property or tweak that I can use? Any help is appreciated. htmlcsscss-animations ShareShare a link to this question Copy linkCC BY-SA 3.0 Follow Follow this question to receive notifications edited Oct 5, 2015 at 12:08 Harry 87.6k2525 gold badges203203 silver badges215215 bronze badges asked Oct 5, 2015 at 11:58 ShahsaysShahsays 42111 gold badge77 silver badges2525 bronze badges 3 why not use jquery ? – Farrukh Faizy Oct 5, 2015 at 12:00 6 @MuhammadFarrukhFaizy: Because these sort of things can be handled without using jQuery. – Harry Oct 5, 2015 at 12:01 @MuhammadFarrukhFaizy Why not use Assembler? Yes right, because it is much to complicated to get such a task done using Asembler. Or a scripting language incl. a complete application framework (like jQuery)… – feeela Oct 5, 2015 at 12:19 Add a comment  |  2 Answers 2 Sorted by: Reset to default Highest score (default) Trending (recent votes count more) Date modified (newest first) Date created (oldest first) This answer is useful 5 This answer is not useful Save this answer. Show activity on this post. I think what you need is only for the background to become transparent after blink and for the text to remain visible. If that is the case, use the below snippet. When opacity is animated from 1 to 0, the whole element along with its content would become invisible. Instead, animating just the background should be enough. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { background: #008800; } to { background: transparent; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet Original Answer: All that is needed is to add animation-fill-mode: forwards so that the element holds the state as at its final keyframe (which is opacity: 0 or transparent). Currently the animated element reverts back to its original state (background: #008800) once the animation is complete. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications edited Oct 5, 2015 at 12:15 answered Oct 5, 2015 at 12:04 HarryHarry 87.6k2525 gold badges203203 silver badges215215 bronze badges 4 Well,after blinking it faded out everything inside the div tag. – Shahsays Oct 5, 2015 at 12:10 1 @FaizanShah: Yes, isn't that what you wanted? If not, can you please clarify more. (Edit: I think you are maybe looking for only the background to become transparent but content to be visible. If yes, please refer the first snippet in my answer now.) – Harry Oct 5, 2015 at 12:11 You see this is a label which is supposed to say Current Price. applying css, the color changes to green, but stays green. applying your method, it removes the green AND the current price. – Shahsays Oct 5, 2015 at 12:14 @FaizanShah: Glad to be of help. Please don't forget to accept the answer (click on the hollow tick mark below the voting icon). – Harry Oct 5, 2015 at 12:19 Add a comment  |  Report this ad This answer is useful 1 This answer is not useful Save this answer. Show activity on this post. I think in your situation it is easier to change the pattern. the initial color is white, then let it blink to green and reset again to your wished color (white or transparent). easy solution via custom defined keyframes. (look at the fiddle) #divtoBlink{ background: #fff; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { 0% { background: #008800;} 50% { background: #fff;} // optional sugar any color between.. 100% { background: #fff; } } http://jsfiddle.net/a2pg246h/ ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications answered Oct 5, 2015 at 12:14 MarcMarc 2,66933 gold badges3434 silver badges4141 bronze badges 0 Add a comment  |  Your Answer StackExchange.ifUsing("editor", function () { StackExchange.using("externalEditor", function () { StackExchange.using("snippets", function () { StackExchange.snippets.init(); }); }); }, "code-snippets"); StackExchange.ready(function() { var channelOptions = { tags: "".split(" "), id: "1" }; initTagRenderer("".split(" "), "".split(" "), channelOptions); StackExchange.using("externalEditor", function() { // Have to fire editor after snippets, if snippets enabled if (StackExchange.settings.snippets.snippetsEnabled) { StackExchange.using("snippets", function() { createEditor(); }); } else { createEditor(); } }); function createEditor() { StackExchange.prepareEditor({ useStacksEditor: false, heartbeatType: 'answer', autoActivateHeartbeat: false, convertImagesToLinks: true, noModals: true, showLowRepImageUploadWarning: true, reputationToPostImages: 10, bindNavPrevention: true, postfix: "", imageUploader: { brandingHtml: "Powered by \u003ca href=\"https://imgur.com/\"\u003e\u003csvg class=\"svg-icon\" width=\"50\" height=\"18\" viewBox=\"0 0 50 18\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\u003ctitle\u003eImgur Logo\u003c/title\u003e\u003cpath d=\"M46.1709 9.17788C46.1709 8.26454 46.2665 7.94324 47.1084 7.58816C47.4091 7.46349 47.7169 7.36433 48.0099 7.26993C48.9099 6.97997 49.672 6.73443 49.672 5.93063C49.672 5.22043 48.9832 4.61182 48.1414 4.61182C47.4335 4.61182 46.7256 4.91628 46.0943 5.50789C45.7307 4.9328 45.2525 4.66231 44.6595 4.66231C43.6264 4.66231 43.1481 5.28821 43.1481 6.59048V11.9512C43.1481 13.2535 43.6264 13.8962 44.6595 13.8962C45.6924 13.8962 46.1709 13.2535 46.1709 11.9512V9.17788Z\"/\u003e\u003cpath d=\"M32.492 10.1419C32.492 12.6954 34.1182 14.0484 37.0451 14.0484C39.9723 14.0484 41.5985 12.6954 41.5985 10.1419V6.59049C41.5985 5.28821 41.1394 4.66232 40.1061 4.66232C39.0732 4.66232 38.5948 5.28821 38.5948 6.59049V9.60062C38.5948 10.8521 38.2696 11.5455 37.0451 11.5455C35.8209 11.5455 35.4954 10.8521 35.4954 9.60062V6.59049C35.4954 5.28821 35.0173 4.66232 34.0034 4.66232C32.9703 4.66232 32.492 5.28821 32.492 6.59049V10.1419Z\" /\u003e\u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M25.6622 17.6335C27.8049 17.6335 29.3739 16.9402 30.2537 15.6379C30.8468 14.7755 30.9615 13.5579 30.9615 11.9512V6.59049C30.9615 5.28821 30.4833 4.66231 29.4502 4.66231C28.9913 4.66231 28.4555 4.94978 28.1109 5.50789C27.499 4.86533 26.7335 4.56087 25.7005 4.56087C23.1369 4.56087 21.0134 6.57349 21.0134 9.27932C21.0134 11.9852 23.003 13.913 25.3754 13.913C26.5612 13.913 27.4607 13.4902 28.1109 12.6616C28.1109 12.7229 28.1161 12.7799 28.121 12.8346C28.1256 12.8854 28.1301 12.9342 28.1301 12.983C28.1301 14.4373 27.2502 15.2321 25.777 15.2321C24.8349 15.2321 24.1352 14.9821 23.5661 14.7787C23.176 14.6393 22.8472 14.5218 22.5437 14.5218C21.7977 14.5218 21.2429 15.0123 21.2429 15.6887C21.2429 16.7375 22.9072 17.6335 25.6622 17.6335ZM24.1317 9.27932C24.1317 7.94324 24.9928 7.09766 26.1024 7.09766C27.2119 7.09766 28.0918 7.94324 28.0918 9.27932C28.0918 10.6321 27.2311 11.5116 26.1024 11.5116C24.9737 11.5116 24.1317 10.6491 24.1317 9.27932Z\"/\u003e\u003cpath d=\"M16.8045 11.9512C16.8045 13.2535 17.2637 13.8962 18.2965 13.8962C19.3298 13.8962 19.8079 13.2535 19.8079 11.9512V8.12928C19.8079 5.82936 18.4879 4.62866 16.4027 4.62866C15.1594 4.62866 14.279 4.98375 13.3609 5.88013C12.653 5.05154 11.6581 4.62866 10.3573 4.62866C9.34336 4.62866 8.57809 4.89931 7.9466 5.5079C7.58314 4.9328 7.10506 4.66232 6.51203 4.66232C5.47873 4.66232 5.00066 5.28821 5.00066 6.59049V11.9512C5.00066 13.2535 5.47873 13.8962 6.51203 13.8962C7.54479 13.8962 8.0232 13.2535 8.0232 11.9512V8.90741C8.0232 7.58817 8.44431 6.91179 9.53458 6.91179C10.5104 6.91179 10.893 7.58817 10.893 8.94108V11.9512C10.893 13.2535 11.3711 13.8962 12.4044 13.8962C13.4375 13.8962 13.9157 13.2535 13.9157 11.9512V8.90741C13.9157 7.58817 14.3365 6.91179 15.4269 6.91179C16.4027 6.91179 16.8045 7.58817 16.8045 8.94108V11.9512Z\"/\u003e\u003cpath d=\"M3.31675 6.59049C3.31675 5.28821 2.83866 4.66232 1.82471 4.66232C0.791758 4.66232 0.313354 5.28821 0.313354 6.59049V11.9512C0.313354 13.2535 0.791758 13.8962 1.82471 13.8962C2.85798 13.8962 3.31675 13.2535 3.31675 11.9512V6.59049Z\" /\u003e\u003cpath d=\"M1.87209 0.400291C0.843612 0.400291 0 1.1159 0 1.98861C0 2.87869 0.822846 3.57676 1.87209 3.57676C2.90056 3.57676 3.7234 2.87869 3.7234 1.98861C3.7234 1.1159 2.90056 0.400291 1.87209 0.400291Z\" fill=\"#1BB76E\"/\u003e\u003c/svg\u003e\u003c/a\u003e", contentPolicyHtml: "User contributions licensed under \u003ca href=\"https://stackoverflow.com/help/licensing\"\u003eCC BY-SA\u003c/a\u003e \u003ca href=\"https://stackoverflow.com/legal/content-policy\"\u003e(content policy)\u003c/a\u003e", allowUrls: true }, onDemand: true, discardSelector: ".discard-answer", enableTables: true, isStacksEditorPreviewEnabled: false ,immediatelyShowMarkdownHelp:true,enableTables:true,enableSnippets:true }); } }); Thanks for contributing an answer to Stack Overflow!Please be sure to answer the question. Provide details and share your research!But avoid …Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.To learn more, see our tips on writing great answers. Draft saved Draft discarded Sign up or log in StackExchange.ready(function () { StackExchange.helpers.onClickDraftSave('#login-link'); }); Sign up using Google Sign up using Facebook Sign up using Email and Password Submit Post as a guest Name Email Required, but never shown StackExchange.ready( function () { StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f32948073%2freset-background-color-css%23new-answer', 'question_page'); } ); <h3 class="flex--item fs-title">Post as a guest</h3> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <label class="s-label" for="display-name">Name</label> <div class="d-flex ps-relative"> <input class="s-input" id="display-name" name="display-name" maxlength="30" type="text" value="" tabindex="105" placeholder="" /> </div> </div> </div> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <div class="flex--item"> <div class="d-flex gs2 gsy fd-column"> <label class="flex--item s-label" for="m-address">Email</label> <p class="flex--item s-description">Required, but never shown</p> </div> </div> <div class="d-flex ps-relative"> <input class="s-input js-post-email-field" id="m-address" name="m-address" type="text" value="" size="40" tabindex="106" placeholder="" /> </div> </div> </div> Post Your Answer Discard By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct. Not the answer you're looking for? Browse other questions tagged htmlcsscss-animations or ask your own question.

      how are you doing this

    1. Reviewer #1 (Public Review):

      In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.

      The paper addresses a deep, normative question, namely why task information is distributed across several areas.

      Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method. Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).

      If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match. I point out some suggestions for improvement below.

      Major points<br /> (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.

      However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.

      A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity). However, there is no IB prediction about what the representation of DLPFC should look like. Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.

      (2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).

      Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.

      I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.

      (3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.

      (a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.

      (b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?

      (4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.

      First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.

      Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.

      More generally, it would be useful to clarify what exactly is sufficient:

      (a) the information distribution occurs in any RNN, i.e., also in one-area RNNs<br /> (b) the information distribution occurs when there are several, sparsely connected areas<br /> (c) the information distribution occurs when there are feedforward-dominated connections between areas

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      The VAP proteins are well established as tail anchored proteins of the ER membrane. VAPs mediates co-operation between the ER and other organelles by creating a transient molecular tether with binding partners on opposing organelles to form a membrane contact site over which lipids and metabolites are exchanged. Proteins which bind VAPs generally contain a short FFAT motif, of varying sequence which binds the MSP domain of VAP. More recently the FFAT motif has been more extensively analysed in multiple different proteins and differential phosphorylation of the FFAT motif has been shown to either enhance or block VAP binding depending on the position of the phosphosite.

      Recent work conducted by the authors demonstrated that a small population of VAPB is not exclusively localised to the ER and can also reach the inner nuclear membrane. They also identified ELYS as a potential interaction partner of VAPB in a screening approach. ELYS is a nucleoporin that can be found at the nuclear side of the nuclear envelope where it forms part of nuclear pore complexes. During mitosis, ELYS serves as an assembly platform that bridges an interaction between decondensing chromosomes and recruited nucleoporin subcomplexes to generate new nuclear pore complexes for post-mitotic daughter cells. In this manuscript, James et al seek to explore this enigmatic potential interaction between ELYS and VAPB to address why VAPB may be found at the inner nuclear membrane.

      Peptide binding assays and some co-immunoprecipitation experiments are used to demonstrate that interactions occur via the MSP-domain of VAPB and FFAT-like motifs within ELYS. In addition, it is demonstrated that, for the ELYS FFAT peptides, the interaction is dependent on the phosphorylation status of serine residues of a particular FFAT-motif that can either promote or reduce its affinity to VAPB. Of most relevance is a serine in the acidic tract (1314) which, when phosphorylated increases VAPB binding. This is completely in line with what is already known about the FFAT motif and so is not surprising, in particular when using a peptide in an in vitro assay.

      The authors then utilise cell synchronisation techniques to provide evidence that both phosphorylation of ELYS and its binding to VAPB are heightened during mitosis. Immunofluorescence and proximity ligation assays are used to demonstrate that the proteins co-localise specifically during anaphase and at the non-core regions of segregating chromosomes.

      The manuscript is concluded by investigating the effect of VAPB depletion on mitosis with some evidence to suggest that transition from meta-anaphase is delayed and defects such as lagging chromosomes are observed.

      Major comments

      Overall, this manuscript is well written and the data presented in Figures 1-3 convincingly show the nature of the interaction between ELYS and VAPB. Clearly the proteins interact via FFAT motifs and this interaction appears to be enhanced during mitosis. However, the work as is, relies heavily on peptide binding assays and would benefit from additional experiments to further support the results. The authors need to more clearly show that this specific phosphorylation happens during mitosis, they may have this data but it is not clearly explained. In addition, the data that VAPB-ELYS interaction contributes to temporal progression of mitosis (as per the title) is not sufficiently clear. VAPB silencing appears to have some impact on mitosis but this is not the same thing. So this section needs to be strengthened before this statement can be made.

      The authors claim that the study "suggests an active role of VAPB in recruiting membrane fragments to chromatin and in the biogenesis of a novel nuclear envelope during mitosis". Given the data presented in Figures 4 and 5, this appears to be rather speculative with little evidence to support it, so data should be provided or this statement toned down. Currently, without additional supporting data the authors may wish to revise the overarching conclusions of the study and change the title.

      Specific points.

      Peptide pull down assays clearly show which FFAT-like motifs are important in facilitating binding. The co-immunoprecipitation systems used in Figure 2 also provide useful information on the interaction in a cell context. The authors should combine these findings by introducing full length ELYS mutants with altered FFAT-like motifs into their stably expressing GFP-VAPB HeLa cell line and then performing Co-IPs to help identify which FFAT motif/s drive the mitotic interaction. Other mutants of ELYS harbouring either phosphomimetic or phospho-resistant residues may also be introduced to further investigate mechanisms of the molecular switch in a cellular environment to support the work currently done with peptides alone. This is an obvious gap in the work which, based on the other data the authors have shown, should presumably be straightforward and would also lead directly into the next major point.

      • Whilst silencing VAPB does appear to delay mitosis, no reference is made to ELYS throughout Figure 5 nor as part of its associated discussion. Given that VAPB has more than 250 proposed binding partners, the observed aberration of mitotic progression could result from a huge number of indirect processes. Further work is needed to link the experiment specifically to the VAPB-ELYS interaction and not just loss of VAPB. We would suggest generating a complementation system where ELYS is either knocked out or silenced and then wild-type ELYS and an ELYS FFAT mutant (which cannot interact with VAPB),and/or a phospho mutant (whose interaction cannot be regulated during mitosis) are introduced. Then the observed effects can be better attributed to the VAPB-ELYS interaction and not just loss of VAPB.
      • The immunofluorescence and PLA results in Figure 4 could be strengthened by including other ER markers. This would show that co-localisation of ELYS at the non-core region is specific to VAPB protein, not any ER protein or rather than an artefact of the ER being pushed out of the organelle exclusion zone during mitosis and therefore 'bunching' at the periphery of the nuclear envelope. It would be worthwhile repeating these experiments with candidates such as VAPA, other ER membrane proteins or at least GFP-KDEL, to make this phenomenon more convincing. As part of this the authors should ideally generate a complemented ELYS KO (see point above) to avoid the residual activity attributed to endogenous background in the PLA Figure 4E.
      • Authors should clarify if the phosphorylation events (in particular S1314) only occur or are increased during mitosis. This may be data they have from the MS experiment in Figure 3 or it could also be shown using a phospho-antibody (although this can be challenging if a suitable antibody cannot be made).
      • The authors should clarify why they need to do these semi in-vitro assays with purified GST-VAPB-MSP on beads and then lysates added and not just a standard co-IP. If this is simply signal intensity due to a very small proportion of VAPB binding to ELYS then this is fine but this should be stated and it should be made clear that ELYS is not a major binding partner - most of VAPB is on the ER. Otherwise, this is misleading.

      I estimate that the suggested alterations above would incur approximately 3-6 months of additional experimental work, depending on if KO cell lines were required.

      Minor comments

      • To show that the observed interactions and potential role of VAPB-ELYS interaction is universal it would be useful to have at least a subset of experiments also shown in another cell line or system - this is now also a requirement for some journals.
      • Consider re-wording the title of the manuscript to better reflect the data presented within the study. Alternatively, provide further evidence that VAPB-ELYS interactions directly affect temporal progression of mitosis to validate this claim, as discussed above.
      • Quantification of blots in Figure 2A could allow measurement of relative binding affinities between VAPB-ELYS throughout the cell cycle. The same could be applied to the effect of phosphorylation on binding affinity in Figure 2D.
      • The cells used are never clearly mentioned in the text - I assume this is always in HeLa but this should be added in all cases for clarity
      • Page 8: "As shown in Fig. 2A,a large proportion of GFP-VAPB was precipitated under our experimental conditions." - I don't understand how this is shown in this figure as the non-bound fraction is not shown?
      • Please provide some controls to demonstrate the extent to which the samples used are asyn, G1/M or M.
      • Page 9 - why are Phos-tag gels not shown as this would make this result more convincing?
      • Figure 3A - I find the SDS-PAGE gel confusing. Why not show the whole gel and why is the band size apparently reduced in the mitotic fraction when previously it was increased (by phosphorylation)? It would also be useful to see if there were any other band shifts.
      • "FFAT-2 of ELYS is regulated by phosphorylation" The way you have setup the experiment leads the reader to think you are going to show which sites are differentially phosphorylated in mitosis, but then this is not the case - so there seems no purpose to doing the experiment this way. If you used TMT MS approach you would be able to potentially quantify the change in phosphorylation at the FFAT motif sites in mitosis. Otherwise what is the purpose of using these 2 samples, mitotic and AS?
      • For all of the antibodies used, in particular for the PLA, please provide evidence of validation of the antibodies.
      • Just a minor point to consider - In the methods for your lysis buffer you use 400mM NaCl - might this slightly reduce the VAPB-FFAT interaction? Worth considering reducing this?
      • "The rather small difference observed between the wild-type and the mutant protein observed in this experiment probably results from the presence of endogenous VAPB in the stable cell lines, which could form dimers with the exogeneous HA-tagged versions." If this is the case then please demonstrate that this is happening, or use the KO approach in the major points above.
      • "we now show that the proteins can indeed interact with each other, without the need for additional bridging factors (Figs. 1 and 3)." You show that the peptides can bind - but this is not the same thing as the peptide in the full context of the protein - so this should be toned down or removed.
      • "Remarkably, this region is highly conserved between species, suggesting that it is important for protein functions (data not shown)". Please show the alignments so the reader can judge for themselves. It is conserved in ALL species and the phosphosites are also conserved??
      • "In our experiments, knockdown of VAPA alone did not lead to a delay in mitosis (data not shown). " Why not show this data - as this is a very interesting and potentially important observation? Also add the validation of knockdown of VAPA.
      • I find the end to the discussion to the paper rather abrupt. It would be interesting to discuss further how VAPB, but not apparently VAPA reaches the INM and if so why this function is required of an ER adaptor and not another more obvious adaptor protein. In short - why would VAPB be performing this role?

      Referees cross-commenting

      I agree with the comments of the other reviewers, and they are very much in line with my own review. We all seem convinced that VAPB binds ELYS via a pFFAT, and that this interaction is enhanced during mitosois. However the role of this interaction in mitotic progression remains unclear and based on this data should not be claimed in the title or discussion of the paper.

      Significance

      Overall, if the manuscript could be improved with the suggested changes, then this could be a considerable conceptual advance in how we understand the VAP proteins, showing functions beyond those as an ER adaptor. This would be significant for the field.

      In the context of the existing literature the work does not advance our knowledge of FFAT-VAP interactions, this has already been shown, but it would give a nice example of how this can be regulated during mitosis and how VAP can contribute beyond just as an ER adaptor at membrane contact sites.

      There would be a wide audience in the cell biology field and more widely as mutations in VAPB cause a form of ALS, and many people are working in this area.

      My field of expertise is in organelle cell biology and membrane contact sites.

    1. (1:20.00-1:40.00) What he describes is the following: Most of his notes originate from the digital using hypothes.is, where he reads material online and can annotate, highlight, and tag to help future him find the material by tag or bulk digital search. He calls his hypothes.is a commonplace book that is somewhat pre-organized.

      Aldrich continues by explaining that in his commonplace hypothes.is his notes are not interlinked in a Luhmannian Zettelkasten sense, but he "sucks the data" right into Obsidian where he plays around with the content and does some of that interlinking and massage it.

      Then, the best of the best material, or that which he is most interested in working with, writing about, etc., converted into a more Luhmannesque type Zettelkasten where it is much more densely interlinked. He emphasizes that his Luhmann zettelkasten is mostly consisting of his own thoughts and is very well-developed, to the point where he can "take a string of 20 cards and ostensibly it's its own essay and then publish it as a blog post or article."

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank all reviewers for taking the time to evaluate our manuscript. Many helpful suggestions and discussion points were raised. These comments were instrumental to provide more data that strengthen our conclusion about the relevance of centrin condensation in vivo, expand our findings to other organisms, and improve the manuscript in general. Details are given in the following individual replies.

      Reviewer #1 (Evidence, reproducibility and clarity):

      Voss and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.

      Major concerns:

      1. The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.

      We understand this comment by the reviewer. There are multiple dimensions to the potential of centrins to condensate, such as the specific centrin family member, in vivo vs in vitro situation, and media conditions. Naturally it is difficult to represent these various conditions in a concise and compelling title but in line with the suggestion by Reviewer 2 we are changing the title to “Malaria parasite centrins can assemble by Ca2+-inducible condensation” to reflect the conditionality of this process.

      1. A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins?...

      Centrin accumulation at the centriolar plaque and assembly of the centriolar plaque itself must be differentiated. Although compelling we are already very careful in the text about extrapolating our findings about centrin accumulation in cells to centriolar plaque or centrosomal assembly in general. We, however, thank the reviewer for this important comment and now have carried out hexanediol treatment of wild type parasites to test the effect on centrin in a native context. After IFA staining we failed to detect any centrin foci at the centriolar plaques, suggesting that they can be resolved by inhibiting weak hydrophobic interactions that are typical for phase separation (now Fig. 6, lines 283ff).

      Concerning the effect of tagging we have generated new data of cells overexpressing an untagged version of PfCen1 in parasites, which still shows formation of ECCAs as revealed by IFA (now Fig. 4H-K, lines 243ff). This significantly alleviates the concern that the observed phenomenon is only a consequence of GFP-tagging. Our in vitro data already showed that native and tagged PfCentrin1 & 3 can undergo condensation.

      Concerning the critical concentration of our in vitro assay we find it to be around 10-15 µM without the addition of crowding agents such as PEG (now Fig. S3C, lines 120ff). To our understanding it is challenging to select an in vitro concentration that is adequate to define a threshold for “biological relevance” due to so many additional factors playing a role in vivo. Those factors can also favor a phase separation locally when total saturation concentration is not reached as we now discuss in more detail (lines 440ff). For reference the critical concentration of FUS, which is one of the most studied phase separating proteins in model system, is around 2 µM, but concentrations below 15 µM are well within the range of what is observed for in vitro LLPS. Additionally, it is important to consider that we find Cen1/3 and HsCen2 LLPS is inducible and reversible and that very homologous proteins i.e. Cen2 and 4 serve as an adequate internal control.

      … A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.

      We indeed attempted several unsuccessful iterations of tagging Cen1/3 with HA and GFP tag and now explain this in the text more clearly (lines 81ff). We did not attempt tagging Cen2 and 4 as they do not display phase separation in vitro or carry IDRs.

      If the tagged molecules used in the biochemical parts of this study are functional, it is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.

      Our data shows that in vitro Cen1-GFP can undergo Ca2+-inducible and reversible LLPS and that GFP-tagged centrins can still localize to the centriolar plaque. Centrin function, however, certainly goes beyond its ability to condensate and localize. It is easily conceivable that interaction with critical binding partners at the centriolar plaque is inhibited by tagging a protein as small as centrin, which prohibits tagging the endogenous version, while its ability to phase separate remains unaltered. To dynamically study a protein in cells tagging is, however, unavoidable. Even though tagging affects any proteins function to highly variable degree we are still convinced that studying those proteins still provides useful information. Our mutant versions of PfCen1 in vivo shows that non-condensating version display different localization. Importantly, as mentioned above, we now provide images of cells overexpressing an untagged Cen1 version, which still causes ECCA formation (Fig. 5H-K). Ultimately, even though tagged versions might not be fully functional, our observations are compatible with the ability of centrins to condensate in vivo.

      1. If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.

      Thank you for this comment. Transgenic expression of proteins can in principle influence their behavior. In the context of this study the overexpression is, however, used intentionally since protein concentration correlates with the phase separation. Here, transgenic overexpression is used as a tool, rather than being a confounding factor, and ECCA formation can be used as quantifiable phenotype. The observation that ECCAs appear significantly earlier the higher they are expressed is in our opinion one of the stronger points of evidence that this result from phase separation in vivo. Yet centrins maintain their centriolar plaque localization and no significant impact on growth is observed. To definitely answer whether phase separation of endogenous centrin is occurring during centriolar plaque accumulation is challenging. These challenges and limitations are now addressed in the significantly extended discussion. As explained above untagged Cen1 also forms ECCAs.

      A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.

      We thank the reviewer for this suggestion. We have now added spatial measurements of the centrin signal dimensions at the centriolar plaque of mitotic spindle containing nuclei in PfCen1-GFP overexpressing vs non-induced cell lines. We found that the width of the centrin-signal at the centriolar plaque was unaltered while the height only increased by 11% (Fig. S9). Further, we found no significant growth phenotype in overexpressing parasites, which indicates that the centriolar plaque is functional.

      Due to several confounding factors, we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Furthermore, the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein.

      1. It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.

      Based on the published in vitro studies on other centrins, we did not anticipate the His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6His-Cen3 protein and found no significant differences in our turbidity assays. Nevertheless, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no fundamental differences in our LLPS assay aside some slight variation in the kinetics (Fig. S3E).

      1. The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.

      We very much thank the reviewer for this suggestion, which helped to significantly improve the manuscript. We have purposefully included the commentary by Andrea Musacchio to highlight a different (possibly the most antipodal) point of view on the role of biomolecular condensation in membraneless organelle formation for the unfamiliar readers that might be just getting to know the field of phase separation. In the absence of word limitations, the reviewer is right to point out the lack of more extensive discussion. We now have significantly extended this section and address the suggested points including the potential role of the novel centriolar plaque protein Slp, which was not published upon submission of our previous version (lines 450ff.)

      1. It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.

      Since it is the first description of phase separation of centrin, it would indeed be interesting to explore the functional relevance in other organisms such as humans. We are considering approaching this in the future. We have, as requested above, significantly extended the discussion and now also include this aspect. Earlier reports have e.g. shown centriole overduplication in human cells upon centrin overexpression.

      Minor points

      1. There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).

      Thank you for detecting this error, which we now corrected (line 60). Centrin 4 seems only to be an expressed gene in mice.

      1. Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.

      Thank you for those suggestions. The text has been modified accordingly.

      Referees cross-commenting

      I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of high concentrations.

      Reviewer #1 (Significance):

      The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.

      With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.

      We appreciate that the reviewer considers our manuscript of interest for a broad audience. We feel that our modifications of the text including a more thorough contextualization and addition of some new experimental data now sufficiently supports our claims.

      Reviewer #2 (Evidence, reproducibility and clarity):

      The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.

      Major comments

      A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".

      In the context of phase separation, protein concentration is of course a critical metric. However, in vitro and in vivo concentrations cannot be directly compared as the composition of the surrounding solute has a significant impact on the effective saturation concentration. In vitro we find a saturation concentration for Cen1 of 10-15 µM (Fig. S3C), which is within a range that is frequently found other in vitro studies as listed in the in vitro LLPS data base (PMID: 35025997). We now more explicitly discuss this in the text (lines 422ff). At this point, unfortunately, we have no means of investigating the absolute concentrations of centrin in vivo and to our knowledge no such data is available for apicomplexan. Additionally, one has to keep in mind the presence of other centrin family members in the cell which can interact and co-condensate as well as other centriolar plaque proteins, like PfSlp, but are difficult to separate through analysis. Further we now discuss several contexts that modify the saturation concentration in vivo (lines 440ff).

      As explained above in a response to Reviewer 1, we were not able to produce a satisfactory quantification of the overexpression levels. We are repasting the previous response here:

      “Due to several confounding factors we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Lastly the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein. “

      Concerning the title, as explained above, we followed the suggestion and added the word “can”.

      B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.

      We thank the reviewer for requesting clarification. Movies S1 and S2 are by no means direct evidence for biomolecular condensation and we do not claim them to be but rather say that they are “…reminiscent of biomolecular condensates…”. We think that this is an appropriate entry into the subsequent analyses. For Movie S1 it is noteworthy that the shape of the accumulation, which can only be resolved by super-resolution microscopy in live cells, is round as would be expected for a liquid condensate in the absence of forces and on these short time scales. Nevertheless, the centriolar plaque must be duplicated which might be the process partly depicted in Movie S2. The observation that centrin can be still change its shape at least suggests that it is not a solid aggregate. In the context of centriolar plaque biology and the technological advance of applying live cell STED in P. falciparum, we think these data are still worth reporting.

      Concerning Movies S3 and S4 we have carefully selected the focal plane to highlight all the hallmarks of LLPS. Since the protein droplets freely move in 3D throughout the entire imaged liquid volume there is no z-plane that is in focus. Our positioning of the focal plane presents the best compromise between showing round droplet shape, droplet fusion events, and surface wetting. All those observations demonstrate the liquid nature of the condensates. Fusion events are indeed relatively rare, and we do not go beyond this qualitative statement that it can be seen.

      C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).

      Thank you for this suggestion. Since reviewer 1 made a similar comment, I’m reiterating our previous reply here: Generally speaking, and based on the published in vitro studies on other centrins, we didn’t anticipate the very small His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6xHis-Cen3 protein and found no significant differences in our turbidity assays. However, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no significant differences in our LLPS assay (Fig. S3E).

      D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.

      This is an interesting and helpful suggestion. We now tested 1,6-hexanediol addition to recombinant PfCen1 and wildtype parasites (now Fig. 6). Interestingly the dissolving effect of hexanediol on PfCen1 in vitro was moderate, which we attribute to the polar component in centrin assembly, which has been documented earlier (Tourbez et al. 2004). In vivo, however, only 5 min of treatment caused a striking dissolution of most centrin foci in wild type parasites, which is compatible with the interpretation that centrin or centriolar plaque assembly could be driven by biomolecular condensation.

      E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.

      We thank the reviewer for this suggestion. It would of course be exciting to investigate in more detail how widely this biochemical property of some centrins is conserved. To take a first step in that direction, we have recombinantly expressed centrins containing some N-terminal IDRs from C. reinhardtii, T. brucei and S. cerevisiae to represent organism of significant evolutionary distance. Using our in vitro phase separation assays, we found a very similar behavior to PfCen1 for two centrins while yeast Cdc31, although forming droplets, had a much higher saturation concentration, which could be explained by the significantly lower intrinsic disorder in its sequence (now new Fig. 3).

      Minor comments

      1) For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.

      Unfortunately, this experiment is not feasible since Cen3 does not produce droplets at 10 µM. Hence, in Fig. 3D we aimed to test if Cen1 is incorporated into preformed droplets i.e. whether there is still some interaction between them. We have, however, tested the addition of Cen2 to Cen1 and Cen3 and as expected from the inability PfCen2 to condensate we did not find the same synergistic effect as for Cen1 and 3 together (now Fig. S6). The combination of Cen1/2/3 still enabled co-condensation while addition of Cen4 did not further improve droplet formation. Taken together this strongly suggests that only Cen1 and 3 contribute to the phase separation in vitro (lines 184ff).

      2) The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.

      Thank you for pointing this out. While PfCen1 is not reactive to Magnesium, PfCen3 and HsCen2 do display a small reaction, which we now more clearly mention in the text (lines 118ff). Of note Mg2+ and other divalent cation are known to generally promote phase separation.

      3) Do the authors think that PfCen2 and PfCent4 localize to the centriolar plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.

      This is indeed a point worth discussing. Centrins can of course still interact in the absence of biomolecular condensation and their localization to the centriolar plaque is not dependent on their ability to phase-separate as seen for PfCen2 and 4. We have recently described a novel centriolar plaque protein PfSlp that interacts with centrins and might assist recruitment (Wenz et al. 2023). Cellular condensates are, however, often separated into scaffold proteins, which actually phase separate and client protein which get recruited into those condensates. It is easily conceivable that Cen1 and 3 participate in formation of the biomolecular condensate into which Cen2 and 4 as well as other centriolar plaque proteins might be recruited. Unfortunately, we were not yet able to establish a recruitment hierarchy by e.g. dual-labeling of centrins to test whether PfCen1 and 3 might appear prior to PfCen2 and 4. We now include those aspects in the extended discussion.

      4) Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.

      Thank you for suggesting this relevant control experiment. We have carried out CD spectroscopy of wild type and EFh-dead PfCen1 and find no difference in secondary structure distribution. We now added these data to the supplemental information (now Fig. S14).

      5) It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?

      Thank you for requesting clarification. We will assume the reviewer is referring to Fig S4B. We wanted to show that contrary to PfCen3 that PfCen1 droplets can still be resolved after an elongated period of incubation with calcium but forgot to mark the timepoint of EDTA addition at 180 min in the graph. We have now corrected this and further reworded the sentence for more clarity (lines 132ff).

      6) Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.

      Indeed, the correlation is modest but statistically significant, which is why we decided to place this data in the supplemental information. The used statistical test was an F-test provided by Prism, which compares two competing regression models, which we now mention in the legend. Combining the two data sets is unfortunately not possible since they arise from two independent sets of measurements where different imaging settings had to be used to adjust for the very different fluorescent protein levels in both lines after induction.

      7) The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).

      This is an interesting point. Although centrin does localize to the inside of the centriole (https://doi.org/10.15252/embj.2022112107), more precisely one pool at the distal part and one pool at the core, there is no evidence that it is itself part of the helical inner scaffold described by the authors even though it might localize in close proximity to it. Further, there are several examples where polymers such as microtubules act as seeding point for biomolecular condensates or the other way around, and our work suggest this could be a potential working model for centrins. We have discussed our results extensively with the two corresponding authors of the aforementioned study (i.e. Virginie Hamel and Paul Guichard) and agreed that our data are not conflicting. Nevertheless, we include the inner centriole localization and potential association with polymer structures of centrin in our extended discussion.

      9) Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).

      We appreciate the comment by the reviewer. Centrins seem to have many different potential roles that remain to be clarified. While we are excited about this, we think it is too early to speculate about the impact of centrin condensation on less well studied aspects of centrins such as nucleotide excision repair. We, however, now cite this study in the discussion to highlight the functional diversity of centrins.

      Small things

      • Fig. 1A: change color for microtubules as red on red is difficult to discern.

      Throughout our publications we use this shade of magenta to label microtubules in schematics and have therefore opted to use a slightly brighter shade of red for the RBCs instead to improve visibility.

      • Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.

      We have verified the position of the boxes and found them to be accurate. Possibly the different imaging modality used for both panels (confocal vs STED) creates this impression.

      • line 266: typo, promotor > promoter.

      Has been corrected.

      • line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.

      Has been added.

      • line 363: "an" missing before "HC".

      Has been corrected.

      • line 428: it would be best to deposit the macros on Github or an analogous repository.

      Macros have been deposited on https://github.com/SeverinaKlaus/ImageJ-Macros (line 737)

      • line 461: "to the" is duplicated.

      Has been corrected.

      • Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).

      Since we cannot easily change the line colors of the IDR graphs, we have inverted the font color for Fig. S5B instead.

      • Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.

      Has been corrected.

      Reviewer #2 (Significance):

      This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.

      Field of expertise: cell biology.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary:

      The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.

      Major comments:

      1. Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.

      We have not attempted N-terminal tagging ourselves but through personal communication with Rita Tewari we were informed that neither N- nor C-terminal tagging for PbCen1-3 was successful in the context of the study published by Roques et al 2018. We have only unsuccessfully attempted C-terminal tagging in several iterations. Due to importance of N-terminus for interaction and function in other organisms it is plausible that N-terminal tagging is even more unlikely to work. Since we have not exhaustively attempted every tagging strategy on every centrin we, as suggested, rephrased the text accordingly (lines 81ff).

      1. Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?

      As we could show for PfCen1-GFP, the tag did not impair its ability to undergo LLPS which is at least partly mediated by the N-terminus, and that it could still properly localizes to the centriolar plaque. The fact that some endogenous centrins cannot be tagged suggest that there is a functional relevance to the C-terminus that could e.g. be an interaction with other essential centriolar plaque components. As suggested in a reply to Reviewer 1, we consider a substantial and centrin-specific effect of the small His-tag on phase separation unlikely. To be sure, we have repeated our turbidity assays with tag-free versions of PfCen1-4 and found no change in phase separation properties (now Fig. S3E).

      1. It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?

      These are important questions by the reviewer. Due to the high sequence homology centrin antibodies, even if raised against a specific centrin (such as PfCen3 in this study), will likely cross-react with other centrins. So far, we have not been able to produce a staining were the anti-GFP-positive foci are devoid of anti-centrin3 staining, which limits the interpretation of these data. The outer centriolar plaque compartment containing centrin is, however, well defined by now and the localization pattern of endogenous centrin and Centrin1 and 4-GFP seems identical. In a more recent study from our lab Cen1-GFP IP has identified other endogenous centrins as interaction partners (Wenz et al 2023), like the Roques et al. 2018 study did for PbCen4-GFP indicating that the tag does not abolish interaction between centrins. So far, we have never detected any ECCAs, nor have we identified any similar structure in the literature. This suggest that this is indeed a consequence of excessive centrin concentration. Importantly we now have added data from a new parasite line overexpressing untagged PfCen1 using the T2A skip peptide (pFIO+_GFP-T2A-Cen1) which displays ECCAs upon induction, showing that this effect is not a mere consequence of tagging (now Fig. 5H-K).

      Minor comments:

      1. How were the times (post addition of Ca2+) presented in Figure 2A determined?

      We noted down the time of calcium addition and cross-referenced it with the timestamps available in the metadata of the movie files (e.g. file creation timepoint marks the start of the movie). We now mention this in the legend.

      1. Line 126: Figure 1B should be Figure 1C

      2. Line 145: Figure 1C-D should be Figure 1D-E

      3. Line 151: Figure 3A should be Figure 4A

      Thank you for spotting these mistakes, which now have been corrected.

      1. Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar

      Thank you for this good suggestion.

      1. Any growth phenotype changes observed in the overexpressors?

      The parasite lines seem to silence the Cen1-4-GFP expression plasmids readily, which suggest that there might be a growth disadvantage. However, repeated attempts to quantify a growth phenotype were unsuccessful due to high variability in the data, which might be partly connected to the fact that the fraction of GFP positive cells after induction can vary between lines and replicas.

      1. How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.

      ECCAs in the pArl strains have been observed on very limited instances but are too rare to be quantified. We now mention this in the text (lines 217ff).

      1. Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)

      It was indeed a typographical error that was now corrected.

      1. Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.

      Cloning strategy has been expanded with additional information for clarity.

      1. Line 295: include abbreviation of cRPMI here rather than in Line 303

      Has been corrected.

      1. Line 322: typographical error on WR99210 working concentration?

      Has been corrected.

      1. Line 372: Last sentence on area and raw integrated density measurement is unclear.

      We have reformulated the sentence for more clarity.

      1. Line 461: typographical error in last sentence

      Has been corrected.

      1. Line 532: Figure 4E should be Figure 4F

      Has been corrected.

      Reviewer #3 (Significance):

      DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.

      My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.

      We thank the reviewer for the appreciation of our work in terms of insight and technology development.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.

      Major comments:

      1. Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.
      2. Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?
      3. It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?

      Minor comments:

      1. How were the times (post addition of Ca2+) presented in Figure 2A determined?
      2. Line 126: Figure 1B should be Figure 1C
      3. Line 145: Figure 1C-D should be Figure 1D-E
      4. Line 151: Figure 3A should be Figure 4A
      5. Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar
      6. Any growth phenotype changes observed in the overexpressors?
      7. How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.
      8. Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)
      9. Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.
      10. Line 295: include abbreviation of cRPMI here rather than in Line 303
      11. Line 322: typographical error on WR99210 working concentration?
      12. Line 372: Last sentence on area and raw integrated density measurement is unclear.
      13. Line 461: typographical error in last sentence
      14. Line 532: Figure 4E should be Figure 4F

      Significance

      DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.

      My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.

      Major comments

      • A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".
      • B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.
      • C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).
      • D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.
      • E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.

      Minor comments

      1. For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.
      2. The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.
      3. Do the authors think that PfCen2 and PfCent4 localize to the centriole plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.
      4. Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.
      5. It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?
      6. Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.
      7. The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).
      8. Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).

      Small things

      • Fig. 1A: change color for microtubules as red on red is difficult to discernn.
      • Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.
      • line 266: typo, promotor > promoter.
      • line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.
      • line 363: "an" missing before "HC".
      • line 428: it would be best to deposit the macros on Github or an analogous repository.
      • line 461: "to the" is duplicated.
      • Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).
      • Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.

      Significance

      This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.

      Field of expertise: cell biology.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Voss, Reinert and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.

      Major concerns:

      1. The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.
      2. A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins? A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.

      If the tagged molecules used in the biochemical parts of this study are functional, It is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.<br /> 3. If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.

      A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.<br /> 4. It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.<br /> 5. The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.<br /> 6. It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.

      Minor points

      1. There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).
      2. Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.

      Referees cross-commenting

      I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of of high concentrations.

      Significance

      The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.

      With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Radial spokes are evolutionarily conserved protein complexes that are important for cilia motility. So far, the composition of certain radial spokes was investigated in the algae Chlamydomonas, mice, and humans. This work by Bicka et al. investigated the composition of radial spokes in the ciliate Tetrahymena by analyzing knockouts and strains that express tagged radial spoke proteins, using mass spectrometry and cryo-electron tomography. While three specific types of radial spokes have been reported thus far, this study suggests that in Tetrahymena, there is another layer to the variability in radial spokes. Additionally, many proteins with predicted enzymatic folds have now been assigned to radial spokes. The comparison of ciliary complexes between species is important to define the basic principles that govern cilia motility, as well as to reveal the differences that enable cilia of various organisms to beat in diverse environments.

      Strengths:<br /> The manuscript includes a thorough bioinformatic analysis of radial spoke proteins in Tetrahymena and reveals the presence of multiple orthologs to certain algae and mammalian radial spoke proteins. The mass spectrometry analysis and cryo-electron tomography experiments are solid and informative. This work provides a lot of important data and thus, opens the door to resolve the exact composition and structures of radial spokes in Tetrahymena and perhaps other species.

      Weaknesses:<br /> The assignment of the three RSP3 orthologs to RS1, RS2, and RS3 is based only on missing structures in the knockouts. Although this method is informative, it is not sufficient to draw conclusions regarding the positions of the missing proteins. There are numerous examples where a structure was missing, but the absent protein was localized elsewhere (i.e., absence of central pair protrusions in patients with mutations in radial spoke proteins). To directly demonstrate the position of an RSP3 ortholog in a certain radial spoke, the protein can be labeled with a tag that is visualized in subtomogram averages (as was done in Oda et al., 2014 and other studies). Relying on the data from knockouts alone, the model for radial spoke composition in Tetrahymena (Fig. 6) may be incomplete.

      The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.

    2. Author Response

      We thank Editors and Reviewers for their positive evaluation of our work and appreciation of new findings and applied interdisciplinary approaches. We also thank for pointing out manuscript weaknesses as well as for all suggestions and advices that can strengthen this manuscript. We apologise for mistakes, overstatements or discrepancies in citing figures as well as omitted references.

      The first part of the manuscript focuses on the Tetrahymena RSP3 genes mutants.  Tetrahymena genome encodes three RSP3 paralogs that are the components of different radial spokes and likely form homo- and heterodimers. Thus, the proteomic analyses of Tetrahymena radial spokes are more complicated compared to the similar analyses in organisms having a single RSP3 protein.

      Next, we attempted to identify proteins specific for each RS type. Conducting this research, we took advantage of six different radial spoke knockout mutants (RSP3A-KO, RSP3B-KO, RSP3C-KO, CFAP206-KO, CFAP61-KO, and CFAP91-KO) and compared wild-type and mutants’ ciliomes using two methods, LFQ and TMT (for each mutant the experiment was repeated three times). Comparative analyses of the wild-type and mutants ciliomes allowed us to identify Tetrahymena radial spoke proteins, in the case of RS1 (WT versus RSP3A-KO), RS2 (WT versus RSP3B-KO, RSP3C-KO, and CFAP206-KO), and RS3 (wild-type versus  CFAP61-KO and CFAP91-KO). The extensive proteomic analyses were combined with detailed bioinformatics studies and co-immunoprecipitation and BioID assays to verify the presence of identified proteins in RS complexes. 

      Importantly, in the case of RS1 and RS2 spokes, our findings are in agreement with data obtained for Chlamydomonas and mammalian radial spokes. Thus, it is very likely, that newly discovered RS1 and RS2 proteins as well as identified Tetrahymena RS3 proteins are also true RS subunits.

      As an outcome of this part, we propose a model of the RS protein composition in a ciliate Tetrahymena. We agree that this model requires further experimental verification (for example by pull-down experiments).  However, considering the number of identified proteins, this is a considerable amount of additional work that we would like to publish as separate papers. We would like to add that our current analyses of additional RS3 mutant (that will be published separately) support findings regarding RS3 proteomic composition.

      Reviewer 2:

      The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.

      The BirA* tag is approximately 30 kDa protein and thus it can be transported to cilia by diffusion. BirA* ligase present throughout the cilia could randomly biotinylate proteins including radial spoke proteins. Thus, expression of the BirA* alone is not the best control. We have performed numerous BioID experiments in which BirA* tag was fused with T/TH subunits (CFAP43, CFAP44, Urbanska et al., 2018), subunits of the small complex positioned parallel to N-DRC (CCDC113, CCDC96, Bazan et al., 2021), CFAP69, SPEF2A (C1b central apparatus complex, Joachimiak et al., 2021), N-DRC proteins (Ghanaeian et al., Biorxiv, 2023) and subunits of other ciliary complexes (our unpublished data). The comparison of the earlier obtained BioID data with RSP BioID data, prove that identified proteins are specifically associated with radial spokes. Therefore, in our model, wild-type cells are a good control for BioID experiments.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful and positive evaluation of our work. Below, we have addressed all of the essential revisions and provide point-by-point responses to all of the reviewer comments. Additionally, we include with this resubmission quantification microneme localization, determined by expansion microscopy, which further validates the central role of HOOK in microneme trafficking.

      Suggested revisions:

      1. Please confirm the interaction between CDPK1 and ROM4 by reciprocal IP.

      Prompted by the reviewers suggestions we examined more closely the pulldowns of WT and myristoylation-deficient CDPK1 (cMut). ROM4 had been identified as differentially enriched in the cMut pulldown; however, upon closer examination we realized that the abundance of ROM4 is actually even greater in the untagged control and therefore likely a variable contaminant in the pulldowns. We have re-analyzed the results of those pulldowns to focus on proteins significantly enriched in association with either WT or cMut CDPK1, relative to untagged controls. Among this set of 16 enriched proteins, only three proteins appeared differentially enriched between WT and cMut. None of the proteins associated with CDPK1 inform pathways related to parasite motility and were therefore not pursued further in this study.

      2. Please compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      We compared expression levels of CDPK1 using immunoblot with an anti-CDPK1 antibody comparing TIR1, CDPK1-AID, cWT and cMut parasites, which we have included in panel G of Figure 2–figure supplement 1. Endogenous AID tagging of CDPK1 resulted in a decrease in the abundance of CDPK1. cWT and cMut complementation result in similar expression levels to the AID-tagged iKD CDPK1, albeit the cMut complement has marginally higher expression. Since CDPK1 is essential for the lytic cycle, insufficient levels of the cWT expression would have displayed defects in our plaque assays. We have updated our results to reflect this new data:

      “Additionally, we compared endogenous CDPK1 expression to mAID-tagged, cWT, and cMut strain (Figure 2–figure supplement 1). Introduction of a mAID tag to CDPK1 led to a reduction in CDPK1 levels, but these levels were equivalent to complementation products in cWT and cMut parasites.”

      3. Please attempt to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1.

      The kinase activity in aerolysin-treated parasites was unaffected by the 1B7 inhibitory nanobody, demonstrating that parasites remain impermeable to proteins as small as 15 kDa.  Furthermore, we localize CDPK1 by immunofluorescence in aerolysin-treated parasites to show that the localization of CDPK1 is indistinguishable from that of vehicle-treated parasites, suggesting that overall CDPK1 localization is unaffected by aerolysin treatment. We include this data in panel B in Figure 3–figure supplement 1. Nevertheless, in the manuscript we discuss the limitations of the thiophosphorylation experiment:

      “While our approach largely maintains kinases in their subcellular context, aerolysin treatment disrupts native ion concentrations and detaches the plasma membrane from the inner membrane complex (IMC) (Wichroski et al., 2002).”

      Because of these limitations we rely on the overlap of CDPK1-dependent targets between our thiophosphorylation and time course experiments.

      4. Please confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins.

      In response to this suggestion, we tagged the C termini of TGGT1_306920 and TGGT1_316650 with 3xHA epitopes. Although immunoprecipitation of TGGT1_316650 was unsuccessful, immunoprecipitation of TGGT1_306920 identified HOOK and FTS as significantly enriched proteins. We include this new data in panel C of Figure 5 and have updated our results:

      “To further confirm the interaction, we fused a 3xHA tag to the C terminus of TGGT1_306920, performed IP-MS and compared protein enrichment to the HOOK-3xHA IP (Figure 5C). HOOK, FTS, and TGGT1_306920 were significantly enriched across both IP-MS experiments, whereas TGGT1_316650 is only significantly enriched in HOOK and FTS pulldowns. This suggests the presence of multiple HOOK complexes composed of the core HOOK and FTS proteins that bind with either TGGT1_316650 or TGGT1_306920.”

      While further interactions with other members of the complex still need to be validated it is not the standard of the field to validate every member of a protein complex by reciprocal IP. Our HOOK and FTS IP-MS results each identified HOOK, FTS, TGGT1_306920, and TGGT1_316650 and our TGGT1_306920 IP-MS identified all members except TGGT1_316650. These interaction partners were found significantly enriched compared to parental controls, which make the observation of the complex robust.

      Reviewer #1 (Recommendations For The Authors):

      I have only a few minor comments:

      1. In the supplemental data section I would include a document of code ( R script) used for the analysis. If this is too cumbersome then I would instead suggest that like done with proteomic data, the code should be deposited in a database that provides a DOI for access, instead of only being provided on request. This can be done by use of an electronic laboratory notebook or via Github.com or a similar service.

      Zip files containing R code and CSVs have been included for the sub-minute resolution phosphoproteomics (Supplementary File 11) and thiophosphorylation (Supplementary File 12).

      2. It would be useful to expand the discussion of the other 2 proteins identified in the HOOK complex TGGT1_316650 and 306920. Do these have homologs to proteins in other organisms? Based on HOOK in other eukaryotes can you provide a model of the 4 proteins in the complex that you identified? Was any work done on 316650 and 306920 with regards to genetic KO or auxin regulation to see if they also provided a similar phenotype to what was described with HOOK and FTS?

      We have included the following information in our discussion:

      “It also remains unknown how the HOOK complex binds to micronemes. In H. sapiens and D. melanogaster, RAB5 on vesicles interacts with FHIP in the HOOK complex(Bielska et al., 2014; Gillingham et al., 2014; Guo et al., 2016; Xu et al., 2008; Yao et al., 2014). We speculate that TGGT1_306920 may serve the role of FHIP within the HOOK complex as it is fitness conferring whereas TGGT1_316650 appears dispensable but the complex's binding partner on micronemes remains unknown. RAB5A and RAB5C have been implicated in the biogenesis of micronemes, but their roles during exocytosis have not been explored(Kremer et al., 2013). Understanding how micronemes are recognized may elucidate how cargo specificity is achieved and regulated.”

      TGGT1_306920 is conserved amongst coccidians and shares similar localization to HOOK and FTS. TGGT1_316650 is conserved amongst apicomplexans and more broadly in subsets of other eukaryotic phyla. Given our IP-MS data, HOOK and FTS form a core complex that is either bound to TGGT1_316650 or TGGT1_306920. Given that TGGT1_306920 appears to be important for parasite fitness, based on genome-wide screening data (Sidik, Huet, et al. 2016), we speculate this could function to mediate the linkage to microneme organelles. At this time, we have no additional data to present on 316650 and 306920. Additional biochemical studies will be needed to characterize the stoichiometry of complexes and their function; however, we propose that HOOK and FTS are interacting as previously described in opisthokonts (Bielska et al., 2014, Guo et al., 2016 and Zhang et al., 2014). 

      3. The myristoylation data section ended with "additional studies will be required to understand how myristoylation influences CDPK1 activity". What studies are required to further this understanding? I assume these studies are difficult and that is why they were not part of this outstanding paper.

      The effect of myristoylation is modest during acute phenotypes like egress (see Figure 2H). Moreover there were no significant differences between cWT and cMut that could explain the impact of CDPK1 on microneme secretion, which was the purpose of this study. Further studies would require a phosphoproteomic workup of the cWT and cMut, which is beyond the scope of the present study.

      4. In the key resource table, in the first column reagent type I suggest you indicate this as T. gondii RH strain to make it clear the background strain (I know it is encoded in additional information but the first column should also be clear).

      We have updated the key resources table to indicate the T. gondii strains used are of RH background.

      Reviewer #2 (Recommendations For The Authors):

      I have a few minor comments that could be addressed by modification of the current version of the manuscript.

      Line 290, where authors classify proteins phosphorylated in CDPK1 dependent manner into five groups, it would be helpful to list at least class 1 (five proteins) and class 2 (four proteins) in the text of the results section. Further since in the same paragraph, the authors are also describing figure 3G, it would be helpful if the groups are identified with roman numerals or as class A, B, C, D, and E. Currently, in fig 3G, the three columns (CDPK1 dependent, CDPK1 independent and fitness scores) are also identified as 1, 2 and 3 and these nomenclatures could be confused with the five different classes of putative substrates.

      We thank the reviewer for their helpful suggestion. We have renamed the classes of CDPK1 targets using roman numerals I, II, III, IV, and V. We have also listed out the proteins in Class I and Class II in the results section as follows:

      “Class I contains five proteins for which the same phosphorylated site was identified in both the time course and thiophosphorylation experiments and include: TGGT1_227610, TGGT1_221470, TGGT1_235160, TGGT1_273560 (KinesinB), and TGGT1_310060. Class II contains four proteins for which phosphorylated sites identified across both approaches were within 50 amino acid residues of one another and include: TGGT1_289100 (MIC18), TGGT1_309190 (AIP), TGGT1_254870, and TGGT1_259630.”

      Line 398, the expansions of the abbreviations FTS and FHIP should be included.

      We have included the expansions of the abbreviations for FTS and FHIP:

      “In D. melanogaster and mammals, HOOK proteins have been shown to form dimers and bind Fused Toes (FTS) and FTS and HOOK-interacting protein (FHIP) via a C-terminal region that interacts with vesicular cargo (Christensen et al., 2021; Krämer and Phistry, 1996; Lee et al., 2018; Xu et al., 2008).”

      The HOOK protein shows CDPK1-dependent phosphorylation at multiple sites S167, S177, and S189-191. In the discussion section, it would be helpful if the authors can speculate about the importance of these phosphorylated residues on the functioning of HOOK.

      Prior to engaging parasite motility, micronemes are positioned at the apical third of the parasite, but after an increase in intracellular Ca_2+_, micronemes rapidly traffic to the apical tip of the parasite. Our results indicate that both CDPK1 kinase activity and HOOK are required for microneme trafficking. Given the association of micronemes with tubulin-based structures such as the cortical microtubules and conoid, activation of trafficking along such structures must be rapid, on the time scale of seconds. Cell-free reconstitution assays generated from opisthokonts indicate that activating adaptors like HOOK are necessary to activate processive dynein trafficking along microtubules in addition to conferring cargo selectivity. In intracellular non-motile parasites, HOOK is expressed and localized to the apical end and cytosol prior to the activation of rapid microneme trafficking, consistent with regulation of HOOK activity. We have included reference to this type of regulation and our expectation that CDPK1 activates the HOOK complex as part of the Discussion:

      “Phosphorylation has been reported to regulate the function of activating adaptors. In HeLa cells, phosphorylation of BICD2 facilitates recruitment of dynein and dynactin (Gallisà-Suñé et al. 2023). Analogously, phosphorylation of JIP1 mediates the switch between kinesin and dynein motility of autophagosomes in murine neurons (Fu et al. 2014). We therefore speculate that phosphorylation of HOOK by CDPK1 may activate the adaptor by promoting its interaction with dynein and dynactin to initiate trafficking of micronemes.”

      Reviewer #3 (Recommendations For The Authors):

      1. CDPK1 myristoylation. The loss of myristoylation of CDPK1 appears to increase its interaction with ROM4 which also becomes cytosolic instead of localizing to the plasma membrane. As ROM4 is necessary for microneme discharge after proteolysis it would be interesting to investigate the specific relation between CDPK1 and ROM4 and to confirm the interaction by reciprocal IP.

      Please see our response to Suggested Revision #1.

      2. CDPK1 myristoylation, Figure 2D. It would be useful to compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      Please see our response to Suggested Revision #2.

      3. Thiophosphorylation. The authors used the bacterial toxin aerolysin to semi-permeabilize parasite membranes by forming 3-nm pores. Aerolysin affects the membrane integrity, however, the authors demonstrated that CDPK1 is possibly associated with membrane structures (Figure 2E/F). Could it be possible to transiently destabilize the membrane before to treat with KTPγS or ATP? If not, it would be necessary to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1 before identifying proteins specifically labelled by CDPK1G and not by CDPK1M (Figure 3C).

      Please see our response to Essential Revision #3.

      4. IP-MS on HOOK-3xHA parasites. The authors' results suggest that HOOK and FTS form a functional complex implicated in microneme exocytosis. It would be interesting to know if HOOK knockdown can have an effect on FTS expression or localization and reciprocally.

      While we agree with the reviewer that this is an interesting question, we focused this paper on the discovery of the complex in relation to CDPK1. Understanding the regulation and interaction of the complex components is the focus of ongoing work and will require generation of new strains and additional mass spectrometry. For those reasons we find these experiments fall beyond the scope of the present study.

      5. FTS-Turbo-ID. (Line 443-444) Authors should confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins, it will give strength to their conclusion. In fact, without confirmation, everything is based on suggestions that were also formulated but not confirmed in humans. The physical existence of this putative complex should be demonstrated by co-IP experiments. In addition, the missing player is a dynein candidate itself, which leaves the model vulnerable. Short of pursuing this experimentally, it should at least be commented on in the Discussion.

      Please see our response to Sugegsted Revision #4. Our IP-MS experiments of HOOK-3xHA and FTS-3xHA indicate interactions with HOOK, FTS, TGGT1_316650, and TGGT1_306920. Our FTS-TurboID experiments also suggest an interaction between FTS, HOOK, TGGT1_316650 and TGGT1_306920. Furthermore, our TGGT1_306920 IP-MS data identifies HOOK and FTS, but not TGGT1_316650, suggesting distinct complexes with HOOK and FTS as core components.

      6. MIC2 secretion (Fig 5J). The rep represented by the grey dot with a white outline seems like an outlier result compared to the other 2 reps. Basically, without this rep there at least is a strong trend that there is a difference in secretion without EtOH stimulation. That is what actually would be expected, for constitutive secretion! Please carefully reconsider these data - e.g. check for outlier statistics and/or add reps.

      We present three independent biological replicates, showing a significant difference in microneme secretion following depletion of CDPK1, HOOK, or FTS. It is expected, based on our prior experience, that microneme secretion will vary day to day. However, the expected trend can be observed in all replicates. We are unclear what the reviewer means by constitutive secretion since some low-level of calcium-dependent microneme discharge is expected even in the absence of stimulation, barring BAPTA-AM treatment. Even in the absence of EtOH stimulation (left graph in Fig. 5J), the trend of diminished basal MIC2 release holds when CDPK1, HOOK, or FTS is knocked down.

      7. Apical accumulation of micronemes. A similar observation was made upon manipulation of Ferlin1, which is a manuscript on BioRXivs. Since other BioRXiv manuscripts are cited in the presented work, this is an omission.

      We apologize for this omission and have updated the manuscript accordingly:

      “It therefore appears that the initial round of microneme discharge during egress depends on CDPK1, and only subsequent rounds require the HOOK complex. Indeed, a fraction of micronemes are already found docked at the apical complex prior to the transition from the replicative to the motile stages, and may constitute the first round of microneme exocytosis (Mageswaran et al., 2021; Sun et al., 2022). Ferlin 1 (FER1) was recently shown to be involved in microneme positioning and overexpression of FER1 was sufficient to initiate an initial round of microneme exocytosis and induce egress (Tagoe et al. 2020).”

      Minor comments:

      1. Concerning the expression of the HOOK protein in Figures 4B, and C, could the author indicate why they performed the IFA after 24h of auxin treatment and the WB after 40h of treatment?

      The difference in timing was for technical reasons. Our immunoblots and additional assays such as microneme secretion require more parasites, such that we harvest at the end of the lytic cycle to increase yields. For the IFAs, we perform these at 24 hrs, which allows for depletion and replication, but captures parasites in small vacuoles that show clear localization patterns. Furthermore, our microneme relocalization studies in Figure 6 were also performed after 24 hrs of auxin treatment, yet exhibit a trafficking defect following  24 hr HOOK depletion.

      2. Fig 4H. The color of CDPK1-AID on the left and the HA on the top (HOOK) do correspond but indicate different proteins. Please label HOOK text in teal, not CDPK1.

      We have changed the text color of the strain names on 4H to black to avoid confusion with the IFA channel labels.

      3. I would like to suggest adding the "Key resources tables" in the supplementary data because it makes the materials & methods harder to read.

      The key resources table was included at the beginning of the Materials and Methods section as indicated in eLife’s instructions to the authors.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study expands on current knowledge of allosteric diversity in the human kinome by C-terminal splicing variants using as a paradigm DCLK1. The authors provide solid evolutionary and some mechanistic evidence how C-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as protein-protein interactions. The data will be of interest to researchers in the kinase and signal transduction field.

      We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on bioRxiv and have included the link: We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on biorxiv and have included the link here: https://www.biorxiv.org/content/10.1101/2023.03.29.534689v2.

      Reviewer #1

      Summary

      In the study by Venkat et al. the authors expand the current knowledge of allosteric diversity in the human kinome by c-terminal splicing variants using as a paradigm DCLK1. In this work, the authors provide evolutionary and some mechanistic evidence about how c-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as interfering with protein-protein interacting interfaces that altogether provides evidence of c-terminal isoform specific regulation of the catalytic activity in protein kinases.

      The paper is overall well written, the rationale and the fundamental questions are clear and well explained, the evolutionary and MD analyses are very detailed and well explained. The methodology applied in terms of the biochemical and biophysical tools falls a bit short in some places and some comments and suggestions are given in this respect. If the authors could monitor somehow protein auto-phosphorylation as a functional readout would be very useful by means of using phospho-specific antibodies to monitor activity. Overall I think this is a study that brings some new aspects and concepts that are important for the protein kinase field, in particular the allosteric regulation of the catalytic core by c-terminal segments, and how evolutionary cues generate more sophisticated mechanisms of allosteric control in protein kinases. However a revision would be recommended.

      Major Comments

      The authors explain in the introduction the role of T688 autophosphorylation site in the function of DCLK1.2. This site when phosphorylated have a detrimental impact on catalytic activity and inhibits phosphorylation of the DCX domain. allowing the interaction with microtubules. In the paper they show how this site is generated by alternative splicing and intron skipping in DCLK1.2. However there is no further functional evidence along the functional experiments presented in this study.

      1) What is the effect of a non-phosphorylable T688 mutant in terms of stability and enzymatic activity? What would be the impact of this mutant in the overall auto-phosphorylation reaction?

      The role of T688 phosphorylation on DCLK1 functions has been explored in previous studies (Agulto et al, 2020: PMID: 34310279), although only relevant to DCLK1.2 splice variants, since this site is lacking in DCLK1.1. These studies showed that mutation of T688 to an alanine increases total kinase autophosphorylation (ie autoactivity) and the subsequent phosphorylation of DCX domains, which in turn decreases microtubule binding. Given this information, our goal was to use an evolutionary perspective to investigate this, alongside less-well characterized aspects of DCLK autoregulation, including co-conserved residues in the catalytic domain and C-terminal tail. However, to address the reviewers question of a non-phosphorylatable T688 mutant, we performed MD simulations of T688A and T688E (a phosphomimic) mutant and include a new supplementary figure (Figure 5-supplement 3) which show the two mutants slightly destabilize the C-tail relative to wt (1 and 2 angstrom increase in RMSF for T688E and T688A respectively), but by themselves cannot dislodge the C-tail from the ATP binding pocket. Thus, other co-conserved interactions as revealed by our analysis, are likely to contribute to the autoregulation of the kinase domain by the C-terminal tail. We have incorporated these observations into the revised results section.

      Furthermore, to address the reviewer’s question in terms of site-specific autophosphorylation as a marker of DCLK1.2 activity, we have now performed a much-more detailed phosphoproteomic analysis of a panel of purified DCLK1.2 proteins after purification from E.coli (Figure 8-figure supplement 2). This showed that we are only able to detect Thr 688 phosphorylated in our ‘activated’ DCLK1.2 mutants, and not in the autoinhibited WT DCLK1.2 version of the protein. This apparent contradiction does not necessary discount Thr 688 as an important regulatory hotspot, but, together with the MD simulations, may imply a decreased contribution of pThr 688 in facilitating/maintaining DCLK1.2 auto-inhibition than previously anticipated, especially in the context of the numerous other stabilizing amino acid contacts that we describe between the C-tail and the ATP-binding pocket. We do, however, propose a mechanism for pThr688 as a potential ATP mimic based on MD analysis. However, we only found MS-based evidence for phosphorylation at this (and other sites in the same peptide) in highly active DCLK1.2 mutants, in which the C-tail remains uncoupled from the ATP-binding site, even in the presence of this regulatory PTM. We acknowledge that better understanding of DCLK biology will require a detailed appraisal of how the DCLK auto-inhibited states are subsequently physiologically regulated (PTMs, protein-protein interaction etc.), but this is beyond the scope of our current evolutionary investigation, and the absence of phosphospecific antibodies makes this challenging currently. We intend to expand upon our current work by assessing the relative contribution of multiple DCLK phosphorylation sites (including, but not limited to, Thr 688) with regard to cellular DCLK auto-regulation in future studies, in part by generating such site-specific phospho-antibodies.

      2) Have the authors made an equivalent T687/688 tanden in DCLK1.1 instead of the two prolines?

      This is a good point. We have not considered introducing a T687/688 tandem mutation into DCLK1.1 (at the equivalent position to that of DCLK1.2), primarily because the amino acid composition of their respective C-tail domains are so highly divergent across the tail (due to alternative splicing, as discussed in our paper). As discussed in our present study, there are numerous contacts made between specific amino acids in the regulatory C-tail and the kinase domain of DCLK1.2, which functionally occlude ATP binding, and thus change catalytic output. It is these contacts, which are determined by the specific amino acid sequence identity, and not the extended length of the DCLK1.2 C-tail per se, that drives autoinhibition. The alternate amino acid sequence identity of the C-tail of DCLK1.1 does not enable such contacts to form, which we believe explains the different activities of the two isoforms.

      Furthermore, our mutational analysis reveals clearly that Thr688 and several other sites are more highly autophosphorylated in the artificially activated DCLK1.2 constructs than WT DCLK1.2, and as such it remains our hypothesis that introduction of the tandem phosphorylation sites into DCLK1.1 is unlikely to be sufficient to impose an auto-inhibitory conformation of the enzyme.

      3) Could T688 autophosphorylation be used as a functional readout to evaluate DCLK1.2 activity?

      We agree with the reviewer’s suggestion about using autophosphorylation (including potentially Thr688 for DCLK1.2) as a functional read out for DCLK1 activity. In our present study, we identify phosphorylated peptides containing pThr688 only in the mutationally activated DCLK1.2 variants. We have now taken this analytical approach further and performed a detailed comparative phosphoproteomic characterisation of all of our DCLK1 constructs, where we observe marked differences in the overall phosphorylation profiles of the mutant DCLK1.2 (and DCLK1.1) proteins relative to the less phosphorylated WT DCLK1.2 kinase. This manifests as a depletion in the total number of confidently assigned phosphorylation sites within the kinase domain and C-tail of WT DCLK1.2, and also as a depletion in the abundance of phosphorylated peptides for a given site. To help visualise this, individual phosphorylation sites have been schematically mapped onto DCLK1, which has been included as a new extended supplementary figure (Figure 8-figure supplement 2). For comparative analysis of phosphosite abundance, we could only select peptides that could be directly compared between all mutants (identical amino acid sequences) and those found to be phosphorylated in all proteins (these are Ser660 and Thr438); these are now shown in figure supplement 2 as a table. These site occupancies follow what we see with respect to the increased catalytic activity between DCLK1.1 and DCLK1.2 mutants versus DCLK1.2. We also detect increased phosphorylation of DCLK1.1 and activated DCLK1.2 mutants in comparison to (autoinhibited) DCLK1.2, supporting the hypothesis that these mutants are relieving the autoinhibited conformation.

      4) What are the evidences of the here described c-terminal specific interactions to be intra-molecular rather than inter-molecular? Have the authors looked at the monodispersion and molecular mass in solution of the different protein evaluated in this study? Basically, are the proteins in solutions monomers or dimers/oligomers?

      Analysis of symmetry mates in the crystal structure of DCLK1.2 (PDB ID: 6KYQ) provide no evidence for inter-molecular interactions. Furthermore, to evaluate oligomerization status in solution, we conducted an analytical size exclusion chromatography (SEC) and our analysis reveals that both DCLK1.1 and DCLK1.2 predominantly exist as monomers in solution (Figure 3-Supplements 1-3). These results suggest that the C-terminal tail interactions are primarily intra-molecular.

      5) (Figure 3) Did the authors look at the mono-dispersion of the protein preparation? The sec profile did result in one single peak or multiple peaks? Could the authors show the chromatogram? how many species do you have in solution? Was the tag removed from the recombinant proteins or not?

      Yes, as mentioned above, the SEC profile resulted in a single peak for both DCLK1.1 and DCLK1.2, which was confirmed as DCLK1 by subsequent SDS-PAGE. We have included the chromatogram and gels in supporting data (Figure 3-supplements 1-3) in the revised manuscript and updated the Methods section. ‘The short N-terminal 6-His affinity tag present on all other DCLK1 proteins described in this paper was left in situ on recombinant proteins, since it does not appear to interfere with DSF, biochemical interactions or catalysis.’

      6) Authors should do Michaelis-Menten saturation kinetics as shown in Figure 3C with the WT when comparing all the functional variant analysed in the study. So we can compared the catalytic rates and enzymatic constants (depicted in a table also) kcat, Km and catalytic efficiency constants (kcat/Km)

      Thank you for your suggestion. We have performed the requested comparative kinetics analyses for selected functional DCLK1 variants at the same concentration as suggested, using our real-time assay to determine Vmax for peptide phosphorylation as a function of ATP, but at a fixed substrate concentration (we are unable to assess Vmax above 5 µM peptide for technical reasons). The results of these analyses have been included in the revised version of Figure 8-Supplement 1, where they support differences in both Vmax and Km[ATP]; the ratio of these values very clearly points to differences in activities falling into ‘low’ or ‘high’. This kinetic analysis fully supports our initial activity assays, where mutations predicted to uncouple the auto-inhibitory C-tail rescue DCLK1.2 activity to levels similar to DCLK1.1 towards a common substrate.

      Minor Comments

      It is very interesting how the IBS together with the pT688 mimics ATP in the case of DCLK1.2 to reach full occupancy of the active site. On Figure 8 you evaluate residues of the GRL and IBS interface to probe such interactions.

      1) Did the authors look at the T688 non-phosphorylable mutant?

      See our response to Major Comment 1 above. In addition, due to the absence of T688 in DCLK1.1, we did not look at the T688A mutant of DCLK1.2 biochemically, partially because it has been characterized in previous studies, but partially because this site is preceeded by another Thr residue. The lack of a selective antibody towards this site makes it difficult to evaluate the role of T688 phosphorylation specifically with respect to DCLK cellular functions and interactions. Therefore, we focused our in vitro efforts to understand how mutations in the IBS impact the catalytic activity of DCLK1.2 by comparing different variants to DCLK1.1.

      2) Classification of DCLK C-terminal regulatory elements.

      It would be useful to connect the different regulatory elements described in this study to a specific functional and biological setting where these different switches play a role e.g. microtubule interactions and dynamics, cell cycle, cancer, etc..

      While the primary focus of our paper is on the mechanism of allosteric regulation of DCLK1, we have indeed touched upon the potential implications of the various regulatory elements of the tail on functions such as microtubule binding and phenotypic effects like cancer progression. However, we acknowledge that a comprehensive understanding of these effects would necessitate a more detailed investigation. This could potentially involve the integration of RNA-seq data with extensive cell assays to evaluate phenotypic effects. We believe that such a future study would be a valuable extension of our current work and could provide further insights into the functional roles of DCLK1.

      3) (Figure 3) Could the authors explain the differences in yield between the WT and the D531A mutant. Apparently, it [the yield] does not appear to be caused by a lower stability as indicated by the Tm. Could the authors comment on this? It is important to compare different samples in parallel, in the same experiment and side by side. This applies to the thermal shift data comparing WT and a D531A mutant on panel D and also on panel C a comparison between WT and D531A as negative control should be shown.

      WT and D533A (kinase-dead) were indeed analysed in parallel, but have been split in two panels to make the data easier to interpret. The modest differences in yield is likely explained by experimental prep-to-prep variations. Our experience shows that many protein kinase yields vary between kinase and kinase-dead variants, likely due to bacterial toxicity related to enzyme activity. In regards to thermal stability, we would like to emphasize that Differential Scanning Fluorimetry (DSF) is to our mind a more informative and quantitative measure of protein stability than yield from bacteria, because both assess purified proteins at the same concentration. We believe that the DSF data provide a more accurate representation of the real stability differences between the WT and D533A mutant.  

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all three Reviewers for their thorough assessment of our manuscript and their constructive comments and suggestions.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.

      The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:

      We thank the Reviewer for their constructive comments and general support for publication of our study.

      Major points

      - The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.

      We thank the Reviewer for the various suggestions regarding the comparison between the localization of the tagged and native isoforms. In our reply below, we will separately discuss the possibilities and our considerations for fixed samples and live cell imaging. We apologize for the lengthy response but for transparency reasons, we would like to give a thorough overview of our efforts for isoform-specific localization in cells, something for which we have limited space in the manuscript.

      Fixed samples:

      It was a significant experimental challenge to comparing the labeling of the β- and γ-actin specific antibodies with our internally tagged actin system (Fig. 5A-D). The reason for this is that the labeling of the samples with the β- and γ-actin specific antibodies requires treatment with methanol (Dugina et al., J Cell Sci, 2009), most likely to disturb the interaction of actin with actin-binding proteins that prevent the binding of the antibodies due to steric hindrance. Methanol treatment, however, precludes the co-labeling with phalloidin, likely due to changes in the tertiary/quaternary protein structure of F-actin. Initially, we have put a lot of effort in trying to simultaneously label phalloidin with the actin specific antibodies but even very brief methanol treatment (seconds), before or after phalloidin labeling, completely prevents/reverses the binding of phalloidin. Importantly, also the ALFA tag labeling was suboptimal after methanol treatment.

      The fact that we could not perform these double labelings led us to perform different ratio calculations for the β- and γ-actin antibody and the ALFA tag labeling. In the case of the antibody immunofluorescence labeling, we simply divided the signal of the β-actin and γ-actin since we could simultaneously label the isoforms in the same cell. In the case of the ALFA tag labeling, we used phalloidin for independent signal normalization and then performed a second normalization. Although this complicates the normalization procedure (ALFA tag signal of β- and γ-actin is first normalized to total F-actin and then a ratio is calculated) and understandably leads to some confusion, this was the only way forward to obtain the results presented in the manuscript.

      The Reviewer points out that “What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers.”. In our images, we observe very little cytosolic background from both antibody stainings. More importantly, for the quantitative analysis, the fluorescence intensity values were corrected for the background values observed in cytosolic areas so even if the signal is present, it should not affect our analysis. We do admit though that we could have been more careful with the term “cortex” since the observed signal could indeed be a mix of radial fibers and the actin cortex. The reviewer further states that “I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers.” Although the differences are small, we consistently observe a differential fluorescence intensity of β- and γ-actin in actin-based structures with a relatively stronger signal of γ-actin in stress fibers (Fig. 5C). Since we always normalize the fluorescent signal intensity per cell, this strongly indicates a genuine accumulation of one isoform over the other in specific actin-based structures. This observation is very consistent in our experiments and also aligns with many published studies where differences in the localization of β- and γ-actin are reported in various cell types (Pasquier et al., Vasc Cell, 2015; van den Dries et al., Nat Comms, 2019; Malek et al., Int J Mol Sci, 2020). As for the segmentation, we mentioned in the Methods section that we selected small regions (0.5x0.5mm) that exclusively contain stress fiber or “cortex” regions. The regions shown in Fig. 5B are therefore larger than the analyzed regions, something which we will better indicate in the revised manuscript.

      Planned revision: We will provide a more detailed explanation of our quantitative analysis in the Methods section such that it is more clear how our normalization procedure was performed. Furthermore, we will adapt Fig. 5A-B such that it better visualizes how we defined the regions for quantification. As per the Reviewer’s suggestion, we will also apply a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures (the crossbows as suggested by the Reviewer) and also explore the possibilities of investigating the differential localization in double-tagged cells. We will also reconsider the use of the term “cortex” for the region that is pointed out in Fig. 5A-B.

      Live cell imaging:

      We agree with the Reviewer that it would be very valuable to attempt simultaneous live cell imaging of two isoforms. Yet, for this, we would need two tag/fluorophore systems that allow the visualization of internally tagged isoforms in living cells. As presented in our original manuscript, we have successfully inserted many different epitope tags (FLAG/AU1/AU5/ALFA) in the T229/A230 position to demonstrate the versatility of our tagging approach. Yet, despite significant efforts to identify a second tag/fluorophore system that would allow isoform-specific live cell imaging, we only succeeded in designing one strategy to perform live cell imaging, i.e. with the ALFA tag (Götzke, Nat Comms, 2019). Part of the reason for this is that so far, no high affinity nanobodies have been generated against the classical epitope tags (FLAG, AU5 etc.). This is an established challenge since classical epitope tags are typically linear/unstructured while nanobodies require folded secondary structures for epitope recognition such as alpha helices (the ALFA tag was specifically designed as such).

      Besides the successful ALFA tag approach we have tried the following additional approaches for live cell imaging: 1) __full-length GFP, 2) full-length GFP with linker, 3) GFP11 (to complement with GFP1-10 (Cabantous et al., Nat Biotech, 2005) 4) GFP11 with linker 5) FLAG Frankenbodies (Zhao et al., Nat Comms, 2019; Liu et al., Genes Cells, 2021) in FLAG IntAct cells and 6) __Tetracysteine/FlAsH labeling. Importantly, each of these additional internally tagged actins, except for those that contained full-length GFP, showed a high colocalization with the cytoskeleton, again demonstrating the versatility of the T229/A230 position to tag actin. Unfortunately, none of these approaches satisfactorily visualized the actin isoforms in living cells. We will therefore briefly summarize our findings here.

      (1-2, integration of full-length GFP and GFP with linker) Probably not surprisingly, but integrating the entire coding sequence of GFP or GFP flanked by linkers (each 5AA in length) within the T229/A230 position did not results in a proper localization of actin.

      (3-4, integration of GFP11 and GFP11 with linker) Next, we assessed the localization of the GFP11 tagged actin versions (GFP11: 16AA, GFP11+linker: 26AA). Because GFP11 is not visible without GFP1-10 complementation, we also tagged actin at the N-terminus simply for proof of concept where the internally tagged actins would end up. Interestingly, both GFP11-actin and GFP11+linker-actin properly integrated within the cytoskeleton as demonstrated by the FLAG staining. This again demonstrates the versatility of the T229/A230 position and strongly suggests that even the integration of 26AA within this position does only minimally affect the polymerization of actin into the cytoskeleton.

      (3-4) After confirmation of the proper integration of GP11-actin and GFP+linker-actin we continue to express the GFP1-10 in these cells. Unfortunately, this resulted in no or only very minimal localization of the actin to the cytoskeleton, demonstrating that GFP-complementation hampers the integration into the cytoskeleton.

      (5, use of FLAG Frankenbodies) We also expressed FLAG Frankenbodies into our FLAG IntAct cells in an attempt to visualize the isoforms in living cells. FLAG Frankenbodies are single chain antibodies fused to GFP and can be expressed in cells to visualize FLAG-tagged proteins (Liu et al., Genes Cells, 2021). Although a cytoskeletal labeling was indeed discernable in some cells, the FLAG Frankenbody signal overlapped much less with the total actin signal as compared to the FLAG immunofluorescence labeling, indicating that the incorporation of the FLAG-tagged actin was much less in the presence of the FLAG Frankenbody. Also, a significant fraction of the cells demonstrated a homogenous cytosolic signal.

      (6, Use of tetracysteine/FlAsH) Although the tetracysteine tag/FlAsH system is widely known to induce artefacts, we still aimed to evaluate if for live cell imaging of IntAct actins. Similar to GFP11, we first determined the integration of tetracysteine-actin into the cytoskeleton with the use of an additional N-terminal FLAG tag and demonstrate that it was properly integrated into the actin cytoskeleton. Unfortunately, after brief incubation with FlAsH-EDT2, we noted 1) a significant amount of background fluorescence, preventing proper actin visualization and 2) that the cell became static indicating toxicity of the FlAsH-EDT2 compound. Titrating down the amount of FlAsH-EDT2 did not alleviate these drawbacks and only resulted in less fluorescence.

      Overall, based on these experiments, we concluded that the T229/A230 position itself is very versatile, as demonstrated by the proper localization of the GFP11-actin variants and the TetraCys-actin. At the same time, none of these tag/fluorophore systems properly visualized actin in living cells. Although we are unsure what the reason is for this, it is easily imaginable that the on/off kinetics of the split GFP system and the FLAG Frankenbodies are suboptimal to allow for the rapid and continuous integration of actin monomers into the F-actin cytoskeleton. We therefore also concluded that currently, the ALFA tag/nanobody system is apparently unique in its ability to visualize epitope tagged actin in living cells (as shown in the manuscript). For simultaneous visualization of multiple isoforms, we rely on progress on the development of novel nanobody-based tags, something we hope the Reviewer will agree is outside the scope of the current work.

      *- The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential. *

      We acknowledge that N-terminally tagged actin has been used extensively for actin research (especially before the introduction of Lifeact). For our studies, however, we were specifically interested in whether the internally tagged actins show similar characteristics as compared to wildtype actin. We have not included N-terminally tagged actin in all of our experiments, since this would not affect our conclusions with respect to the functionality of our internally tagged actins. We expect that for future investigations to for example further establish the importance of actin N-terminal modifications in the differential regulation of actin isoforms, the comparison between internally and N-terminally tagged actins could be very instrumental. Yet, we consider this comparison outside the scope of the current manuscript. For now, the results in the manuscript provide evidence that our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus. As such, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants.

      *- Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations) *

      We thank the reviewer for their positive comments and feedback regarding expression of IntAct variants in yeast. Currently, we have expressed IntAct as an extra copy in the presence of native Act1 of S. cerevisiae. All the IntAct variants have been expressed under a commonly used constitutive TEF1 promoter. We agree with the Reviewer that it would be valuable to attempt to express the tagged forms as the only copy of actin.

      Planned revisions:

      1) As per the Reviewer’s suggestion, we will attempt to make yeast strains with IntAct as the sole expressing actin copy by using the well-established 5-FOA-based plasmid shuffle system in yeast. We will use a ∆act1 strain containing wildtype act1 in a centromeric ura-plasmid described in Harrer et. al, 2007 (generously shared by Prof. Jessica and Prof. Amberg at Upstate Medical University of New York, USA) and express IntAct exogenously via additional plasmids. Shuffling of these strains on 5-FOA will cause the loss of ura-plasmid containing the wildtype act1 copy and will determine whether yeast cells will be able to survive with IntAct as the sole source of actin. If the cells do survive with IntAct as a sole copy, we will perform subsequent analysis for assessing actin cytoskeleton organization under these conditions.

      2) As the reviewer has mentioned, expression of NbALFA during live-cell imaging experiments hindered incorporation of IntAct into linear actin cables in yeast (Suppl. Fig. S13). As per the reviewer’s suggestion, we will now try to create an inducible-expression system for the NbALFA-mNG and observe its effects on incorporation into formin-made actin cables after induction. We have already created NbALFA-mNG constructs under galactose-inducible GALS and GAL1 promoters and are currently constructing yeast strains for these experiments.

      __3) __We will add an extra supplementary Figure to indicate the sequence differences of the various actin variants that we have expressed in yeast.

      - As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.

      We already performed AlphaFold predictions of the tagged actin monomers, but we have decided to not include these predictions in the manuscript because of two reasons. First and foremost, while the prediction confidence of the non-tagged region is very high (pLDDT > 90), the prediction confidence of the tagged region is very low (pLDDT https://alphafold.ebi.ac.uk/faq), pLDDT values below 70 should be treated with caution and values below 50 should not be interpreted. Intriguingly, the low confidence aligns with the fact that for both tags, the prediction does not match with known features of the tag. The FLAG tag should be a linear/unstructured region in order to be recognized by the antibody and the ALFA tag should organize into an alpha helix (Götzke et al., Nat Comms, 2019). Yet, in the prediction, the FLAG tag partially continues as an alpha helix and the ALFA tag is only a small helix with part of the tag being unstructured. Second, more minor, reason for not including the predictions is that AlphaFold does not predict to what extend the tag is flexible, which means that even if the tagged region is predicted correctly, it is difficult to say whether the regions will interfere with binding of proteins.

      Despite the low prediction confidence, we used the published actin-tropomyosin cryoEM structure (von der Ecken et al., Nature, 2015) to replace WT actin with ALFA tag actin and the results are shown below. Again, although results should be interpreted with caution, the tag does not seem to obstruct monomer-monomer interactions within an F-actin filament and also the tropomyosin binding surface is relatively distant from the tag region, suggesting that these interactions are likely not disturbed by introducing the tag.

      - For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?

      Planned revision: Following the Reviewer’s suggestion, we will perform a western blot analysis to compare posttranslational modification (arginylation) of tagged and wildtype actins.

      Technical issues

      - There is no scale for the color coding in Fig. 5A, B

      We deliberately did not add a numerical scale because the images are normalized which means that presenting the actual numbers might be misleading. The numbers could be interpreted as if they actually present the amount of β-actin relative to γ-actin which is not the case due to staining differences and the normalization procedure.

      - The y-scales for Fig. 5C and D need to be identical to allow direct comparison

      Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the reviewer, we will also critically evaluate our normalization procedure and present those numbers in Fig. 5C-D if the values turn out to be different.

      - Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).

      We normalized the Pearson coefficient values for visual representation of the results. The majority of the raw coefficient values (more than 80%) are between 0.20 and 0.75 (see raw values in the associated excel file). Theoretically, Pearson coefficient values are possible between 1 (or-1 for negative correlations) and 0. The much smaller window in our values as compared to the theoretical window (0.55 vs 1) led us to normalize the values such that they can be presented on a scale from “maximum expected colocalization” to “minimum expected colocalization”. In this way, the differences between the various tagged actins are much better appreciated in the Figure. As to reporting the R2, the Reviewer is correct. Reporting the R2 is an inadvertent mistake from our side and we will correct it.

      Planned revision: We will change the R2 in the text to PCC or Pearson Correlation Coefficient.

      *- All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias. *

      Planned revision: As also indicated above, we will add new experiments to better compare the localization of the isoforms in tagged and parental cells. These new experiments will also be accompanied by a more detailed explanation of how the regions were selected and quantified.

      - In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.

      In Fig. 2A, we used the heterozygous FLAG-actin cells to directly compare the production of β-actin from the knock-in allele and the wildtype allele in the same cells. The fact that the two bands observed in this western blot analysis (upper and lower) are almost the same (with the FLAG band being a bit more intense) provides the strongest indication that the tag does not interfere with the expression of actin. In Suppl. Fig. 5D, we show that the expression of β-actin is also unaffected in the hemizygous FLAG actin cells, which exclusively express tagged actin.

      Planned revision: As per the Reviewer’s suggestion, we will also add a western blot analysis on the expression of both actin isoforms and total actin in hemizygous cells.

      *- Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage. *

      We kindly refer to our response on Page 5/6 for why we have not included the N-terminal control.

      Planned revision: The co-sedimentation assay is an excellent suggestion by the reviewer. Following the Reviewer’s suggestion, we will perform F/G-actin fractionation and assess the presence of several F-actin associated proteins in the F-actin fraction.

      - Fig. 2A has no loading control

      We show this western blot to indicate that the WT actin and tagged actin are expressed at similar levels in the heterozygous knock-in cells. For this, no loading control is needed because we only compare the intensity of the upper band (tagged actin) with the lower band (WT actin).

      - The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?

      We agree with the reviewer that the differences in the localization between some of the internally tagged actins between the HT1080 and RPE1 cells might be confusing, especially for the A230-A231 variant for example. Yet, the fact that also in these cells, the T229-A230 variant performs equally well as compared to N-terminally tagged actin is an important confirmation that this variant is properly integrated into actin-based structures, independent of cell type. This makes the support for choosing this variant to continue with our studies stronger. A possible explanation for the differences is that RPE1 cells in general tend to form more stress fibers as compared to the HT1080. Since the localization to stress fibers is different between the internally tagged actins, this may explain the differences observed in colocalization.

      __Planned revision: __We will add a short text, in the Results or the Discussion, on the differences between the colocalization values between HT1080 and RPE1 cells.

      *- The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed. *

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      - Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)

      Planned revision: We will carefully check our statistics and revise where appropriate.

      Minor points

      - Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific.

      We will rephrase the text in the introduction. Regarding the development isoform-specific nanobodies. Although this sounds like a promising way forward, this would likely not result in isoform-specific targeting in living cells. Similar to the antibodies, isoform-specific nanobodies would have to be generated against the N-terminus which, under native conditions, is likely not available due to the occupation with actin-binding protein. Also, since the N-terminus is not structured, it may be extremely challenging to generate nanobodies against these epitopes.

      *- L 71: "involved" in the kinetics is not a good term - maybe affects or regulates.... *

      We will rephrase the text.

      - L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.

      We will rephrase. We agree that clonal variation could be a danger if actin levels are to be investigated. For future follow-up studies, we plan to make additional cell lines to avoid clone-specific conclusions.

      ***Referees cross-commenting** *

      *I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field). *

      Planned revision: We will perform the essential controls as suggested by Reviewer 2. Furthermore, for future experiments, we do envisage the production and purification of internally tagged actins and investigate their binding properties in in vitro reconstitution assays. We have already started with optimizing these approaches through our ongoing collaboration (KD, SP).

      Reviewer #1 (Significance (Required)):

      *Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.) *

      *Strength: main finding convincing, strong genome edited cell lines *

      *Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement *

      *Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin. *

      Audience: general cell biology - very broad interest

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.

      To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.

      We thank the Reviewer for their constructive comments and general positive evaluation of our study.

      *Reviewer #2 (Significance (Required)): *

      Concerns:

      1. There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.

      Planned revision: __We will add the following controls to exclude that any of the labeling procedures produces anything that would mimic the localization of actin: 1) Immunofluorescence staining of the used tags (FLAG/ALFA) in cells that do not have tagged actins 2) Expression of ALFA-Nb-GFP and ALFA-Nb-mScarlet in cells that do not have tagged actins 3)__ Expression of free GFP in cells that have tagged actins. We will co-stain these cells with phalloidin to visualize F-actin and determine if any signal is specifically localized to the actin cytoskeleton.

      2. The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.

      We would like to point out that the reduction is only 20-25 percent depending on the specific western blot analysis and the loading control. Still, the Reviewer is correct about the necessity of the F:G actin measurements of the ALFA-tagged IntAct cells and we therefore included those as Suppl. Fig. 9 in the original manuscript (text on page 9). The quantification of these assays clearly demonstrated that the F-G actin ratio in the ALFA-tagged IntAct cells is the same as in parental cells.

      3. It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.

      Planned revision: We have already performed proliferation and migration experiments in cells that stably express the ALFA-Nb-GFP. These data indicated that proliferation and migration are not affected by the presence of the nanobody and these data will be included in the revised manuscript. To note, in the original manuscript, we already showed that treadmilling of actin at the lamellipodia is not affected by the presence of the ALFA-Nb-GFP.

      4. It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.

      We do not understand this specific request of the Reviewer. To our knowledge, it is not possible to assess how much of a probe (in this case the ALFA-Nb-GFP) binds the target (in this case the ALFA-IntAct actins) in living cells. This is not only the case for the ALFA-Nb-GFP but also for any other probe. As an example, when expressing Lifeact, we also do not know how much of the actin molecules within F-actin get labeled with Lifeact and how uniform the labeling is. From the results of the live-cell imaging we can only conclude that the binding is at least so effective that we can readily observe and discern all the actin-based structures that are also observed by Lifeact (see Suppl. Fig. 8 for Lifeact-GFP/ALFA-Nb-mScarlet cotransfection). Whether the regions that do not have F-actin only contain ALFA-Nb-GFP that is bound to actin monomers or also contains a significant fraction of free ALFA-Nb-GFP seems an issue that cannot be addressed.

      5. To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      6. Was it possible to make an IntAct gene substitution in yeast?

      Planned revision: We thank the reviewer for this interesting question and as also suggested by Reviewer 1, we are now constructing yeast strains with IntAct as the sole expressing actin copy by using the well-established plasmid shuffle system in yeast. The results of these experiments will determine the ability of IntAct to completely substitute actin function in yeast.

      Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.

      We appreciate the reviewer for their constructive feedback and completely agree that it is important to document how IntAct behaves in scenarios where other labelled actins have failed. As a proof of principle, IntAct incorporates into both formin- and Arp2/3- made linear and branched actin filaments in yeast (Fig.5E, Suppl. Fig. 14) and this data shows that IntAct labelling strategy is the first to achieve good integration into both these structures as previous efforts with labelled actin such as GFP-Actin fail to incorporate into formin-made actin filaments (Doyle et al., PNAS, 1996). Thus, we believe that IntAct does perform better than other labelled actins in yeast, although, further optimizations are required to overcome limitations regarding incorporation into actin cables in the presence of the ALFA nanobody.

      Planned revision: We have already extended applicability of IntAct to another well-known fungal model system, the fission yeast Schizosaccharomyces pombe (S. pombe). We expressed IntAct variants of human β- and γ- actin, budding yeast actin (Sc-IntAct) and fission yeast actin (Sp-IntAct) from an exogenous plasmid under the native S. pombe actin promoter in an S. pombe strain that constitutively expresses the Nb-ALFA-mNG. Live-cell microscopy of S. pombe cells expressing these proteins revealed that all IntAct variants localize to actin patch-like structures located at the cell poles and cell division site (during cytokinesis). These structures show similar dynamics as reported for actin patches of S. pombe previously (Pelham et al., Nat Cell Biol, 2001). These preliminary results suggest that IntAct proteins show a similar localization pattern to only branched actin networks found in the actin patches of S. pombe like we had previously observed for the budding yeast, S. cerevisiae (Fig. S13 in manuscript). The underlying mechanism for this exclusion from linear actin cable network from both budding and fission yeast remain unknown and may represent an inherent specificity and sensitivity of yeast formins. Our current and future experiments will express IntAct variants in absence of the ALFA nanobody and determine the level of incorporation into actin cables, patches, and actomyosin ring.

      Planned revision: We have also already performed a quantitative analysis to ascertain the effect of Sc-IntAct expression of cortical actin patch dynamics which represent sites of endocytosis in yeast (Young et al., J Cell Biol, 2004; Winter et al., Curr Biol, 1997). We compared actin cortical patch lifetimes between wildtype cells and cells expressing Sc-Act1 or Sc-IntAct as an extra copy. We used Abp1-3xmcherry as a marker for actin patches and quantified the time window between the appearance and disappearance of a patch (actin patch lifetime) from time-lapse microscopy experiments. Our preliminary results indicate that actin patch lifetimes are unaffected by exogenous expression of both Sc-Act1 or Sc-IntAct suggesting that IntAct does not negatively influence or alter actin patch dynamics. These observations suggest its applicability as a direct visualization strategy for actin at the cortical patches in budding yeast alongside existing surrogate markers like Abp1, Arc15, etc (Goode et al., Genetics, 2015; Wirshing et al., J Cell Biol, 2023).

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      *Summary: *

      This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.

      *Major comments: *

      The paper is interesting and experiments are convincing.

      *My main concerns are the following : *

      - Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.

      We thank the Reviewer for pointing this out. We are aware of this review that includes phosphorylation on Thr229 as a possible PTM. Yet, this PTM is only reported in one of the Tables of the Review and not further discussed in the text. It is also unclear how the authors determined that Thr229 is a possible phosphorylation site except for the notion that this residue is a threonine and exposed at the surface of the actin molecule. Together with the fact that there is no evidence from primary studies that Thr229 is phosphorylated, we therefore decided to not include it in our discussion.

      - The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.

      We thank the Reviewer for bringing up this important point. To a certain extent, the conservation argument is true for all of the residues/domains in actin. Any manipulation will change a conserved part of the actin molecule in one way or another and thereby potentially modify its function. This is also evident from the fact that for most of the internally tagged actins, we observed a very poor colocalization with the actin cytoskeleton (Fig. 1). While for the T229/A230, we have not observed any major effects yet, this certainly does not mean that no further changes or defects will be uncovered in future experiments. Nonetheless, since our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants. We have already included in the discussion that, at this point, we can only speculate as to why this variant performs much better than the others (Page 16 of the manuscript) and that possible explanations are the location at the inner domain and the higher structural plasticity of this region as compared to the rest of the molecule, as found during an alanine mutagenesis screen (Rommelaere et al., Structure, 2003).

      - It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?

      Planned revision: This is an interesting suggestion. We will perform nuclear-cytosol fractionation experiments and determine whether ALFA-actin is still correctly translocated to the nucleus.

      *- OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below) *

      For further biochemical characterization and a detailed investigation of the precise assembly kinetics of the tagged actins, we (KD, SP) are already working together to set up in vitro reconstitution experiments. Yet, as also indicated by the Reviewer, we consider these experiments outside of the scope of the current work.

      *Minor comments: *

      Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed:

      -line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions'?

      In our understanding, the term ‘native’ is generally used when referring to conditions in which proteins are in their natural state, without alterations due to heat or denaturants, and possibly also still interacting with their binding partners. We will rephrase to better indicate that in this specific case, we mean that the region that harbors the N-terminus is usually occupied by actin-binding proteins, preventing the binding of the antibody due to steric hindrance.

      - figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.

      Planned revision: This is a good point, we will add extra annotation in the graph to better link the panels with each other. We will also add additional annotation in Fig. 1D-F for the same purpose.

      - figure 1A : it could be informative to indicate subdomains in this panel.

      Planned revision: We will add the numbers for the subdomains in Fig. 1A.

      - figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.

      __Planned revision: __We will better explain the normalization procedure in the Methods section.

      - figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.

      Planned revision: This is a good point and completely overlooked by us. We will introduce this Figure later such that the ALFA tag is already introduced.

      - section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.

      Planned revision: We will add extra motivation for why we added multiple tags.

      - figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise?

      Planned revision: This indeed is an important point and we will change the phrasing of this section to provide a more quantitative and accurate description of the western blot quantifications.

      - figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      *- Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ? *

      The lower value for FLAG-tag actin has likely to do with the properties of the antibody and suitability for immunofluorescence. For reason that we do not know, we usually detect more background for the FLAG tag antibody as compared to the other antibodies/ALFA tag nanobody. Since the Pearson correlation coefficient quickly decreases with suboptimal labeling, this is likely the reason that the values for FLAG-actin are lower as compared to the other tagged actins. Importantly, in our biochemistry experiments (F/G-actin), we detect no difference between FLAG-actin and ALFA-actin indicating that it is rather the immunofluorescence and sensitive Pearson correlation analysis than the integration of actin that causes this difference.

      - line 205 "The results from these experiments show that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.

      Planned revision: The point that the co-immunoprecipitation does not demonstrate direct interactions between formins and actin is well taken. We, however, do not claim that this assay proofs that formin activity, or formin-based integration of actin monomers, is similar with tagged actin as compared to wildtype actin. Nonetheless, we will critically re-evaluate the relevant passages and rephrase the text to avoid any confusion.

      - figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.

      Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the Reviewer (and of Reviewer #1), we will also critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different.

      - figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?

      We kindly refer to our answer to Reviewer #1 on Page 2 for a detailed explanation on the experimental challenge of comparing the localization of wildtype and tagged actin isoforms.

      Planned revision: We will critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different. Furthermore, we will add a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures and also explore the possibilities of investigating the differential localization in double-tagged cells.

      *- The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks. *

      We acknowledge the reviewer’s concern regarding the inability of ALFA-tagged actin to incorporate into yeast actin cables when NbALFA is co-expressed and will discuss this point further in the revised manuscript. We have now observed the same limitation for fission yeast actin cables as well and combined, these observations may represent a tighter control and sensitivity of yeast formins towards any perturbations in actin size (since NbALFA binds to ALFA tag with picomolar affinity). To address this issue and as also suggested by Reviewer 1, we are now creating yeast strains with inducible control of NbALFA expression under GALS/GAL1 promoters and observe the labelling of actin structures after this approach. Additionally, expression of variants of NbALFA with high dissociation rates may also allow labelling of actin cables and would be certainly worth a try in the future. A structural comparison between mammalian and yeast formins may be required to shed some light on the molecular basis of this fundamental difference.

      However, since in the absence of the nanobody, this limitation is overcome (Fig. 5E, Suppl. Fig. 14), we believe that with additional modifications and fast developments in imaging technologies, this limitation can be overcome in the future. Thus, IntAct as a labeling strategy represents an advancement over existing labelled actins with the most important aspect being the identification of the T229/A230 residue pair to be permissive for integration of various tags even as large as GFP11 fragment including a linker (26AA) (Reviewer Fig. 2). Importantly, the T229/A230 site is conserved across many organisms (such as Chlamydomonas reinhardatii, Cryptococcus neoformans, etc) and may act as a framework to study the actin cytoskeleton especially in organisms where known surrogate markers like phalloidin and Lifeact may not work or work only sub optimally.

      *Reviewer #3 (Significance (Required)): *

      *General assessment: *

      *This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence. *

      *Advance: *

      *This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics. *

      *Audience: *

      *This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study. *

      *Expertise: *

      *My expertise is in vitro actin biochemistry. *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.

      Major comments:

      The paper is interesting and experiments are convincing.

      My main concerns are the following :

      • Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.
      • The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.
      • It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?
      • OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below)

      Minor comments:

      Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed :

      • line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions' ?
      • figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.
      • figure 1A : it could be informative to indicate subdomains in this panel.
      • figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.
      • figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.
      • section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.
      • figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise ?
      • figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.
      • Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ?
      • line 205 "The results from these experimentsshow that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.
      • figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.
      • figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?
      • The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks.

      Significance

      General assessment:

      This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence.

      Advance:

      This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics.

      Audience:

      This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study.

      Expertise:

      My expertise is in vitro actin biochemistry.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.

      To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.

      Significance

      Concerns:

      1. There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.
      2. The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.
      3. It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.
      4. It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.
      5. To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.
      6. Was it possible to make an IntAct gene substitution in yeast?

      Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.

      The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:

      Major points

      • The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.
      • The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential.
      • Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations)
      • As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.
      • For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?

      Technical issues

      • There is no scale for the color coding in Fig. 5A, B
      • The y-scales for Fig. 5C and D need to be identical to allow direct comparison
      • Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).
      • All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias.
      • In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.
      • Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage.
      • Fig. 2A has no loading control -
      • The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?
      • The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed.
      • Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)

      Minor points

      • Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific 
      • L 71: "involved" in the kinetics is not a good term - maybe affects or regulates....
      • L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.

      Referees cross-commenting

      I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field).

      Significance

      Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.)

      Strength: main finding convincing, strong genome edited cell lines

      Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement

      Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin.

      Audience: general cell biology - very broad interest

  3. Aug 2023
    1. Der indische Konzern Adani, der von der gleichnamigen Familie kontrolliert wird, hat offenbar über Jahre in seine eigenen Aktien investiert, um die Kurse hochzutreiben. Adani gehört zu den Firmen, die durch Investitionen in Kohle und Flughäfen maßgeblich zum Wachstum der Emissionen beitragen. Sie hat enge Beziehungen zum indischen Präsidenten Modi, dessen Regierung Schutz der Interessen von Adani vorgeworfen wird. https://www.theguardian.com/world/2023/aug/31/modi-linked-adani-family-secretly-invested-in-own-shares-documents-suggest-india

      Mehr zu Adani: https://hypothes.is/search?q=tag%3A%22actor%3A%20Adani%22

    1. Reviewer #1 (Public Review):

      Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.

      Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.

      Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.

      --My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.

      --Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do N-terminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.

      --As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?

      --Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?

      --The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?

    1. Thus far, we see 125 comments tagged ChatGPTedu(https://hypothes.is/search?q=tag%3AChatGPTedu), thoughthere are likely many more not tagged.

    Tags

    Annotators

    1. For context, I don't use a traditional Zettelkasten system. It's more of a commonplace book/notecard system similar to Ryan HolidayI recently transitioned to a digital system and have been using Logseq, which I enjoy. It's made organizing my notes and ideas much easier, but I've noticed that I spend a lot of time on organizing my notesSince most of my reading is on Kindle, my process involves reading and highlighting as I read, then exporting those highlights to Markdown and making a page in Logseq. Then I tag every individual highlightThis usually isn't too bad if a book/research article has 20-30 highlights, but, for example, I recently had a book with over 150 highlights, and I spent about half an hour tagging each oneI started wondering if it's overkill to tag each highlight since it can be so time consuming. The advantage is that if I'm looking for passages about a certain idea/topic, I can find it specifically rather than having to go through the whole bookI was also thinking I could just have a set of tags for each book/article that capture what contexts I'd want to find the information in. This would save time, but I'd spend a little more time digging through each document looking for specificsCurious to hear your thoughts, appreciate any suggestions

      reply to m_t_rv_s__n/ at https://www.reddit.com/r/Zettelkasten/comments/164n6qg/is_this_overkill/

      First, your system is historically far more traditional than Luhmann's more specific practice. See: https://boffosocko.com/2022/10/22/the-two-definitions-of-zettelkasten/

      If you're taking all the notes/highlights from a particular book and keeping them in a single file, then it may be far quicker and more productive to do some high level tagging on the entire book/file itself and then relying on and using basic text search to find particular passages you might use at a later date.

      Spending time reviewing over all of your notes and tagging/indexing them individually may be beneficial for some basic review work. But this should be balanced out with your long term needs. If your area is "sociology", for example, and you tag every single idea related to the topic of sociology with #sociology, then it will cease to have any value you to you when you search for it and find thousands of disconnected notes you will need to sift through. Compare this with Luhmann's ZK which only had a few index entries under "sociology". A better long term productive practice, and one which Luhmann used, is indexing one or two key words when he started in a new area and then "tagging" each new idea in that branch or train of though with links to other neighboring ideas. If you forget a particular note, you can search your index for a keyword and know you'll find that idea you need somewhere nearby. Scanning through the neighborhood of notes you find will provide a useful reminder of what you'd been working on and allow you to continue your work in that space or link new things as appropriate.

      If it helps to reframe the long term scaling problem of over-tagging, think of a link from one idea to another as the most specific tag you can put on an idea. To put this important idea into context, if you do a Google search for "tagging" you'll find 240,000,000 results! If you do a search for the entirety of the first sentence in this paragraph, you'll likely only find one very good and very specific result, and the things which are linked to it are going to have tremendous specific value to you by comparison.

      Perhaps the better portions of your time while reviewing notes would be taking the 150 highlights and finding the three to five most important, useful, and (importantly) reusable ones to write out in your own words and begin expanding upon and linking? These are the excerpts you'll want to spend more time on and tag/index for future use rather than the other hundreds. Over time, you may eventually realize that the hundreds are far less useful than the handful (in management spaces this philosophy is known as the Pareto principle), so spending a lot of make work time on them is less beneficial for whatever end goals you may have. (The make work portions are often the number one reason I see people abandoning these practices because they feel overwhelmed working on raw administrivia instead of building something useful and interesting to themselves.) Naturally though, you'll still have those hundreds sitting around in a file if you need to search, review, or use them. You won't have lost them by not working on them, but more importantly you'll have gained loads of extra time to work on the more important pieces. You should notice that the time you save and the value you create will compound over time.

      And as ever, play around with these to see if they work for you and your specific needs. Some may be good and others bad—it will depend on your needs and your goals. Practice, experiment, have fun.

      Meme image from Office Space featuring a crowd of office employees standing in front of a banner on the wall that reads: Is this Good for the Zettelkasten?

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review of: "An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans"<br /> Authors: Cristina Tocchini and Susan Mango

      The MS2-MCP imaging platform is an essential imaging system that enables dynamic quantification of mRNA transcription, abundance, location, and turnover in living biological systems. In the last ten or so years, this approach has been used in extremely successful ways in Drosophila embryos to dissect both the regulatory logic underpinning early transcriptional organization and activation with unprecedented resolution and, furthermore, how active mRNA localization outside of the nucleus impacts pattern formation. The authors correctly point out that full implementation of this tool has been suspiciously lacking in the C. elegans community for some time (aside from a few noted implementations).

      In this manuscript, Tocchini and Mango directly approach this deficit in a thoughtful study where many of the salient features of MS2 epitope tagging are systematically measured. Specifically, the authors use CRISPR genomic engineering to tag two separate dosage-sensitive, developmental genes and study the expression and function of these genes within the context of the MS2/MCP-GFP system. The authors demonstrate that the location of the MS2 epitope insertion within the endogenous 3'UTR is an important design consideration for functional, downstream implementation of the imaging system. In both cases, insertion of the MS2 hairpins near the end of the open reading frame of either gene results in overt and specific developmental phenotypes that phenocopy previously characterized loss of function alleles of each gene. The design of these experiments is high in quality in that they measure both the levels of cytoplasmic abundance of the various epitope-tagged mRNAs as well as the protein expression levels for these transgenes (by monitoring the levels of GFP expression (each MS2-tagged gene encodes a functional GFP-tagged allele). In two clear transgene examples, they demonstrate that the loss of function phenotypes of the proximally-tagged (closest to the ORF) transgenes disrupt mRNA levels and expression and reduce the proper localization of these mRNAs. This may be why previous attempts at implementing this important imaging system have failed.

      The authors then characterize the cellular systems that cause the differential expression of MS2-tagged transgenes. The authors note that previous studies on simpler systems and in C. elegans have suggested that the nonsense-mediated mRNA decay (NMD) pathway limits the expression of mRNAs with exceptionally long 3'UTRs. Tocchini and Mango then use C. elegans NMD mutants to demonstrate that ablation of this natural RNA degradation system corrects the developmental and gene expression defects associated with the reduction of function MS2 insertion alleles. These experiments are complete and compelling as they are validated at all levels (GFP expression (via quantification of GFP expression) and mRNA expression, and mRNA localization levels (via in situ hybridization).

      The authors then make the case that the type and expression levels of the MCP-GFP fusion protein are also essential features that need to be optimized for an effective imaging system. The authors suggest that optimal visualization of endogenous genes requires the surprisingly low-level expression of the MCP-GFP fusion protein. The authors use a novel transgene that differs from the conventional system. Specifically, the Tocchini system employs a 2xMCP ORF fused to 2xmCherry ORFs fusion. This transgene lacks the NLS typically used to localize exported mRNAs in the cytoplasm and also encodes two MCPs that may or may not facilitate dimerization on the MS2 hairpins. They demonstrate that endogenous, epitope-tagged transgenes can be visualized in developing embryos and that tethering this 2xMCP fusion to the reporter transcript does not alter RNA expression levels. While the authors demonstrate that visualization is possible with this system, it is hard to tell if this fusion protein dramatically improves over other available systems without a direct comparison. For instance, measuring the signal-to-noise (S/N) ratio of localized 2xMCP-2xmCherry would be a good addition and support the author's claims. If it were an exceptional system, these calculations should exceed the well-characterized and quantified MCP-GFP system described in Lee et al. 2019 ((Lee et al., 2019). It is just too hard to know if this is a dramatic element that should now be included in future RNA localization experiments.

      Minor critiques:

      1. The authors should provide more details in the experimental description of the MS2-tagged alleles (or in the figure images). It needs to be clarified in the main text how many MS2 hairpins there are, though this can be found in the materials and methods. In addition, it would be nice to know if these were any of the variations of MS2 hairpins that have already been optimized in some other way to increase or decrease structure or RNA metabolism defects in other systems. Specifically, are these hairpins the newest versions, V6 or V7, described in manuscripts from the Singer laboratory (e.g., (Tutucci et al., 2018))? For aficionados of this imaging system, it would be important to qualify each of the potential new features that make the results in this manuscript so clear and important.
      2. For people that are colorblind (or have reduced ability to distinguish some colors from others (like me, a reviewer)), it would be nice to have the MS2 illustrations in Figures 1A and B not have that color within the black, normal UTR. It's picky, but I had to ask someone what color that was.

      References:

      Lee, C., Shin, H., and Kimble, J. (2019). Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell 50, 426-435 e424.

      Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81-89.

      Significance

      In summary, this is a well-written and critical addition to the literature that will hopefully increase the implementation of this system in C. elegans research. The systematic approach to getting a new experimental platform up and running certainly has a place in the canon. Aside from the missing elements regarding the putative improvements and/or direct comparisons between different MCP fusion proteins, the manuscript is solid, important, and nearly ready to go.

      It is an advance and will, as noted above, likely serve to help implement this system by other C. elegans reserachers.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1) The authors need to validate that RAP1-HA still retains its essential function. As indicated above, if RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. These cells should also have the WT VSG expression pattern, and RAP1-HA should still interact with TRF.

      We demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 with HA without disrupting its nuclear localization (Yang et al. 2009, Cell), all of which indicate that the HA-tag does not affect protein function. As for the suggested experiment, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric repeats rather than direct protein-protein interactions.

      2) The authors need to remove the His6 tag from the recombinant RAP1 fragments before the EMSA analysis. This is essential to avoid any artifacts generated by the His6-tagged proteins.

      Our controls show that the His-tag is not interfering with RAP1-DNA binding. We show in Fig 3CG by EMSA and in Fig S5 by EMSA and microscale thermophoresis that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which demonstrates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G and Fig S5, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, the full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding. We have worked with many different His-tagged proteins for nucleic acid binding and enzymatic assays without any interference from the tag (Cestari and Stuart, 2013; JBC; Cestari et al; 2013, Mol Cell Biol; Cestari and Stuart, 2015, PNAS; Cestari et al. 2016; Cell Chem Biol; Cestari et al. 2019 Mol Biol Cell).

      3) More details need to be provided for ChIPseq and RNAseq analysis regarding the read numbers per sample, mapping quality, etc.

      Table S3 includes information on sequencing throughput and read length. Mapping quality was included in the Methods section “Computational analysis of RNA-seq and ChIP-seq”, starting at line 499. In summary, we filtered reads to keep primary alignment (eliminate supplementary and secondary alignments). We also analyzed ChIP-seq with MAPQ ≥20 (99% probability of correct alignment) to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq). We included Fig S4 to show the effect of filtering alignments on the active vs silent ESs. We used MAPQ ≥30 to analyze RNA-seq mapping to VSG genes, including those in subtelomeric regions. Our scripts are available at https://github.com/cestari-lab/lab_scripts. We also included in the Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”

      4) The authors should revise the Discussion section to clearly state the authors' speculations and their working models (the latter of which need solid supporting evidence). Specifically, statements in lines 218 - 219 and lines 224-226 need to be revised.

      The statement “likely due to RAP1 conformational changes” in line 228 discusses how binding of PI(3,4,5)3 could affect RAP1 Myb and MybL domains binding to DNA. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative. For lines 224-226 (now 234-235), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. To make it clear that it does not refer to telomeric ESs, we edited: “The finding of RAP1 binding to subtelomeric regions other than ESs, including centromeres, requires further validation.” Since RAP1 binding to centromeres is not the focus of the work, future studies are necessary to follow up, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers.

      Our model is based on the data presented here but also on scientific literature. We have reviewed the Discussion to prevent broad speculations. When discussing a model, we stated (line 245): “The scenario suggests a model in which …”, to state that this is a working model. Similarly, in Results (line 201) we included: “Our data suggest a model in which…”.

      5) The authors should revise the title to reflect a more reasonable conclusion of the study.

      We agree that the title should be changed to imply a direct role of PI(3,4,5)P3 regulation of RAP1, which is not captured in the original title. This will provide more specific information to the readers, especially those broadly interested in telomeric gene regulation and RAP1. The new title is: PI(3,4,5)P3 allosteric regulation of repressor activator protein 1 controls antigenic variation in trypanosomes

      6) The authors are recommended to provide an estimation of the expression level of the V5-tagged PIP5pase from the tubulin array in reference to the endogenous protein level.

      The relative mRNA levels of the exclusive expression of PIP5Pase mutant compared to the wildtype is available in the Data S1, RNA-seq. The Mut PIP5Pase allele’s relative expression level is 0.85fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared normalized RNA-seq counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We included a statement in the Methods, lines 275-278: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”

      7) The authors are recommended to provide more detailed EMSA conditions such as protein and substrate concentrations. Better quality EMSA gels are preferred.

      All concentrations were already provided in the Methods section. See line 356, in topic Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see lines 375-376 in topic Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show agreeable results (Fig 3 and 5, and Fig S5. Microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      Figures

      All figures should have their axes properly labeled and units should be indicated. For many of the ChIPseq datasets it is not clear whether the authors show a fold enrichment or RPM and whether they used all reads or only uniquely mapping reads. Especially the latter is a very important piece of information when analyzing expression sites and should always be reported. The authors write, that all RNA-seq and ChIP-seq experiments were performed in triplicate. What is shown in the figures, one of the replicates? Or the average?

      ChIP-seq is shown as fold enrichment; we clarified this in the figures by including in the y-axis RAP1-HA ChIP/Input (log 2). We included in figure legends, see line 710: “Data show fold-change comparing ChIP vs Input.”. For quantitative graphs (Fig 2B, D, and E, and Fig 5F and G), data are shown as the mean of biological replicates. Graphs generated in the integrated genome viewer (IGV, qualitative graphs) is a representative data (Fig 2A, C, and F, and Fig 5D-E). All statistical analyses were calculated from the three biological replicates. Uniquely mapped reads were used. We also included ChIP-seq analysis with MAPQ ≥10 and 20 (90% and 99% probability of correct alignment, respectively) to distinguish RAP1 binding to ESs. Fig S4 shows the various mapping stringency and demonstrates the enrichment of RAP1-HA to silent vs active ES.

      Figure 1 is very important for the main argument of the manuscript, but very difficult (impossible for me) to fully understand. It would be great if the author could make an effort to clarify the figure and improve the labels. Panel Fig 1E. Here it is impossible to read the names of the genes that are activated and therefore it is impossible to verify the statements made about the activation of VSGs and the switching.

      We have edited Fig 1E to include the most abundant VSGs, which decreased the amount of information in the graph and increased the label font. We also re-labeled each VSG with chromosome or ES name and common VSG name when known (e.g., VSG2). We included Table S1 in the supplementary information with the data used to generate Fig 1E. In Table S1, the reader will be able to check the VSG gene IDs and evaluate the data in detail. We included in the legend, line 700: “See Table S1 for data and gene IDs of VSGs.”

      Figure 1F: This panel is important and should be shown in more detail as it distinguishes VSG switching from a general VSG de-repression phenotype. VSG-seq is performed in a clonal manner here after PIP5Pase KD and re-expression. To show that proper switching has occurred place in the different clones, instead of a persistent VSG de-repression, the expression level of more VSGs should be shown (e.g. as in panel E) to show that there is really only one VSG detected per clone. For example, it is not clear what the authors 'called' the dominant VSG gene.

      We showed in supplementary information Fig S1 B-C examples of reads mapping to the VSGs. Now we included a graph (Fig S1 D) that quantifies reads mapped to the VSG selected as expressed compared to other VSG genes considered not expressed). The data show an average of several clones analyzed. Other VSGs (not selected) are at the noise level (about 4 normalized counts) compared to >250 normalized counts to the selected as expressed VSGs.

      As mentioned in the public comments, I don't see how the data from Fig 1E and 1F fit together. Based on Fig 1E VSG2 is the dominant VSG, based on Fig 1F VSG2 is almost never the dominant VSG, but the VSG from BES 12.

      In Fig 1E, the VSG2 predominates in cells expressing WT PIP5Pase, however, in cells expressing Mut PIP5Pase, this is not the case anymore. Many other VSGs are detected, and other VSG mRNAs are more abundant than VSG2 (see color intensity in the heat map). The Mut cells may also have remaining VSG2 mRNAs (from before switching) rather than continuous VSG2 expression. This is the reason we performed the clonal analysis shown in Fig 1F, to be certain about the switching. While Fig 1F shows potential switchers in the population, Fig 1E confirms VSG switching in clones.

      Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12.

      Note that in Fig 1F, tet + cells did not switch VSGs at all; all 118 clones expressed VSG2. We relabeled Fig 1F for clarity and included the VSG names. We added gene IDs in the Figure legends, see line 702 “ BES1_VSG2 (Tb427_000016000), BES12_VSG (Tb427_000008000)…”

      Statements in Introduction / Discussion

      The statement in lines 82/83 is very strong and gives the impression that the PIP5Pase-Rap1 circuit has been proven to regulate antigenic variation in the host. However, I don't think this is the case. The paper shows that the pathway can indeed turn expression sites on and off, but there is no evidence (yet) that this is what happens in the host and regulates antigenic variation during infection. The same goes for lines 214/215 in the discussion.

      We agree with the reviewer, and we edited these statements. The statement lines 82-83: “The data provide a molecular mechanism…” to “The data indicates a molecular mechanism…” For lines 224225: “and provides a mechanism to control…” to “and indicates a mechanism to control…”. We also included in lines 261-262: “It is unknown if a signaling system regulates antigenic variation in vivo.” Also edited lines 262-263: “…the data indicate that trypanosomes may have evolved a sophisticated mechanism to regulate antigenic variation...”.

      New vs old data

      In general, for Figures 1 - 4, it was a bit difficult to understand which panels showed new findings, and which panels confirmed previous findings (see below for specific examples). In the text and in the figure design, the new results should be clearly highlighted. Authors: All data presented is new, detailed below.

      Figure 1: A similar RNA-seq after PIP5Pase deletion was performed in citation 24. Perhaps the focus of this figure should be more on the (clone-specific) VSG-seq experiment after PIP5Pase re-introduction.

      This is the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG expression and switching, and repression of subtelomeric regions, is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. Hence, the relevance and difference of the RNA-seq here vs the previous RNA-seq of PIP5Pase knockdown.

      Figure 2: A similar ChIP-seq of RAP1 was performed in citation 24, with and without PIP5Pase deletion. Could new findings be highlighted more clearly?

      Our and others’ previous work showed ChIP-qPCR, which analyses specific loci. Here we performed ChIP-seq, which shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. To improve clarity in the manuscript, we edited lines 129-130: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”

      Figure 4: Binding of Rap1 to PI(3,4,5)P3, but not to other similar molecules, was previously shown in citation 24. Could new findings be highlighted more clearly?

      We published in reference 24 (Cestari et al. Mol Cell Biol) that RAP1-HA can bind agarose beadsconjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions. To clarify, we edited the manuscript in lines 180-182: “To determine if RAP1 binds to PI(3,4,5)P3 in vivo, we in-situ HA-tagged RAP1 in cells that express the WT or Mut PIP5Pase and analyzed endogenous PI(3,4,5)P3 levels associated with immunoprecipitated RAP1-HA”.

      Sequencing.<br /> I really appreciate the amount of detail the authors provide in the methods section. The authors do an excellent job of describing how different experiments were performed. However, it would be important that the authors also provide the basic statistics on the sequencing data. How many sequencing reads were generated per run (each replicate of the ChIP-seq and RNA-seq assays)? How long were the reads? How many reads could be aligned?

      The sequencing metrics for RNA-seq and ChIP-seq for all biological replicates were included in Table S3 (supplementary information). The details of the analysis and sequencing quality were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. To be clearer about the analysis, we also included in Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestari-lab/VSG-Bar-seq.”.

      Minor comments:

      Figure 1B: I would recommend highlighting the non-ES VSGs and housekeeping genes with two more colors in the volcano plot, to show that it is mostly the antigen repertoire that is deregulated, and not the Pol ll transcribed housekeeping genes. This is not entirely clear from the panel as it is right now.

      The suggestion was incorporated in Fig 1B. We color-coded the figure to include BES VSGs, MES VSGs, ESAGs, subtelomeric genes, core genes (typically Pol II and Pol III transcribed genes), and Unitig genes, those genes not assembled in the 427-2018 reference genome.

      Were the reads in Figure 2a filtered in the same way as those in Figure 2C? To support the statements, only unique reads should be used.

      Yes, we also added Fig S4 to make more clear the comparison between read mapping to silent vs active ES.

      It would be good if the authors could add a supplementary figure showing the RAP1 ChIP-seq (WT and cells lacking a functional PIP5Pase) for all silent expression sites.

      We had RAP1 ChIP-seq from cells expressing WT PIP5Pase already. We have it modified to include data from the Mutant PIP5Pase. See Fig S3 and S5.

      In Figure 5D, after depletion of PIP5Pase, RAP1 binding appears to decrease across ESAGs, but ESAG expression appears to increase. How can this be explained with the model of RAP1 repressing transcription?

      We included in the Results, lines 208-212: “The increased level of VSG and ESAG mRNAs detected in cells expressing Mut PIP5Pase (Fig 5D) may reflect increased Pol I transcription. It is possible that the low levels of RAP1-HA at the 50 bp repeats affect Pol I accessibility to the BES promoter; alternatively, RAP1 association to telomeric or 70 bp repeats may affect chromatin compaction or folding impairing VSG and ESAG genes transcription.”.

      Reviewer #3 (Recommendations For The Authors):

      Line 114 - typo? Procyclic instead of procyclics:

      Fixed, thanks.

      Line 233 - the phrasing here is confusing, may want to replace "whose" with "which" (if I am interpreting correctly):

      Thanks, no changes were needed. I have had the sentence reviewed by a Ph.D.-level scientific writer.

      Methods - there is no description of VSG-seq analysis in the methods. Is it done the same way as the RNA-seq analysis? Is the code for analysis/generating figures available online?

      The procedure is similar. We included an explanation in Methods, lines 503-504: “RNA-seq and VSG-seq (including clonal VSG-seq) mapped reads were quantified…”. Also, in lines 522-54: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”.

      Fig 1H - Is this from RNA-seq or VSG-seq analysis of procyclics?

      The procyclic forms VSG expression analysis was done by real-time PCR. To clarify it, we included it in the legend “Expression analysis of ES VSG genes after knockdown of PIP5Pase in procyclic forms by real-time PCR”. We also amended the Methods, under the topic RNA-seq and real-time PCR, line 402-407: “For procyclic forms, total RNAs were extracted from 5.0x108 T. brucei CN PIP5Pase growing in Tet + (0.5 µg/mL, no knockdown) or Tet – (knockdown) at 5h, 11h, 24h, 48h, and 72h using TRIzol (Thermo Fisher Scientific) according to manufacturer's instructions. The isolated mRNA samples were used to synthesize cDNA using ProtoScript II Reverse Transcriptase (New England Biolabs) according to the manufacturer's instructions. Real-time PCRs were performed using VSG primers as previously described (23).”

      Fig 2 A - Where it says "downstream VSG genes" I assume "downstream of VSG genes" is meant? the regions described in this figure might be more clearly laid out in the text or the legend

      Fixed, thanks. We included in the text in Results, line 140: “… and Ts and G/Ts rich sequences downstream of VSG genes”.

      Fig 2E - what does "Flanking VSGs" mean in this context?

      We added to line 705, figure legends: “Flanking VSGs, DNA sequences upstream or downstream of VSG genes in MESs. “

      Fig 2H - Why is the PIP5Pase Mutant excluded from the Chr_1 core visualization?

      We did not notice it. We included it now; thanks.

    2. Reviewer #1 (Public Review):

      Comments on the original submission:

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) has shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulate the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch".

      Comments on revised manuscript:

      In this revised manuscript, Touray et al. have responded to reviewers' comments with some revisions satisfactorily. However, the authors still haven't addressed some key scientific rigor issues, which are listed below:

      1. It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.

      There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behave as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).

      Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.

      For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.

      2. There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.

  4. cybermental.github.io cybermental.github.io
    1. Only tags present on the page are shown; to interact with tags from elsewhere, use Tag Lookup

      This works as the info or trend button. It is configured on in the Page editor and shows only specific tags for that page. But it not restricted to tags in the page itself but configured in the page editor.

    1. Outer alignment asks the question - "What should we aim our model at?" In other words, is the model optimizing for the correct reward such that there are no exploitable loopholes? It is also known as the reward misspecification problem.

      [!NOTE] Outer Alignment / Reward Misspecification Promblem 是指什么?

      flashcard

      模型是否在向人类真正的目标优化

    1. Inner alignment asks the question - “Is the model trying to do what humans want it to do?”, or in other words can we robustly aim our AI optimizers at any objective function at all?

      [!NOTE] Inner Alignment 的基本思想是?

      flashcard

      确保模型确实在向特定目标优化

    1. AI Boxing is attempts, experiments, or proposals to isolate ("box") a powerful AI (~AGI) where it can't interact with the world at large, save for limited communication with its human liaison. It is often proposed that so long as the AI is physically isolated and restricted, or "boxed", it will be harmless even if it is an unfriendly artificial intelligence (UAI).

      [!NOTE] 将 AI 隔绝在“容器”中的做法在英语中可以称为?

      flashcard

      AI Boxing/Containment

    1. block a text with the cursor

      This is how an annotated text looks like. You can use markdown to comment as well. Even an equation such as $$e = m \cdot c^2$$ will render nicely.

    1. The Capitalocene challenges the Popular Anthropocene’s Two Century model of modernity – a model that has been the lodestar of Green Thought since the 1970s (Moore 2017a).

      It thus sees modernity as a longer phenomenon, that goes well beyond the IR

    1. Reviewer #1 (Public Review):

      Anderson, Henikoff, Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high-quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila. Some new analyses and a few new experiments are suggested here, which hopefully further take advantage of these data sets and make some results more conclusive.

      Major comments:

      1). The step-wise accumulation of H3K4me2 in bam, aly and wt testes are interesting. Is it possible to analyse the cis-acting sequences of different groups of genes with distinct H3K4me2 features, in order to examine whether there is any shared motif(s), suggesting common trans-factors that potentially set up the chromatin state for activating gene expression in a sequential manner?

      2). Pg. 4, line 141-142: "we cannot measure H3K4me2 modification at the bam promoter in bam mutant testes or at the aly promoter in aly mutant testes", what are the allelic features of the bam mutant and aly mutant? Are the molecular features of these mutations preventing the detection of H3K4me2 at the endogenous genes' promoters? Also, the references cited (Chen et al., 2011) and (Laktionov et al., 2018) are not the original research papers where these two mutants were characterized.

      3). The original paper that reported the Pc-GFP line and its localization is: Chromosoma 108, 83 (1999). The Pc-GFP is ubiquitously expressed and almost present in all cell types. In Figure 6B, there is no Pc-GFP signals in bam and aly mutant cells. According to the Method "one testis was dissected", does it mean that only one testis was prepared for immunostaining and imaging? If so, definitely more samples should be used for a more confident conclusion. Also, why use 3rd instar larval testes instead of adult testes? Finally, it is better to compare fixed tissue and live tissue, as the Pc-GFP signal could be lost during fixation and washing steps. Please refer to the above paper [Chromosoma 108, 83 (1999)] for Pc-GFP in spermatogonial cells and Development 138, 2441-2450 (2011) for Pc-GFP localization in aly mutant.

      4). Ubiquitinylation of histone H2A is typically associated with gene silencing, here it has been hypothesized that ubH2A contributes to the activation of Y chromosome. This conclusion is strenuous, as it entirely depends on correlative results. For example, the lack of co-localization of ubH2A immunostaining and Pc-GFP are not convincing evidence that ubH2A is not resulting from PRC1 dRing activity. It would be a lot stronger conclusion by using genetic tools to show this. For example, if dRing is knocked down (using RNAi driven by a late-stage germline driver such as bam-Gal4) or mutated in spermatocytes (using mitotic clonal analysis), would they detect changes of ubH2A levels?

      5). Regarding "X chromosome of males is thought to be upregulated in early germline cells", it has been shown that male-biased genes are deprived on the X chromosome [Science 299:697-700 (2003); Genome Biol 5:R40 (2004); Nature 450:238-241 (2007)], so are the differentiation genes of spermatogenesis [Cell Research 20:763-783 (2010)]. It would be informative to discuss the X chromatin features identified in this work with these previous findings. For example, the lack of RNAPII on X chromosome in spermatocytes could be due to a few differentiation genes expressed in spermatocytes located on the X chromosome.

    1. The value of provenance information  Adding provenance information to media to combat misinformation is not a new idea, and early research seems to show that it could be promising: one project from a master’s student at the University of Oxford, for example, found evidence that users were less susceptible to misinformation when they had access to provenance information about content.

      How computationally expensive is this to tag content in this way?

    1. ```js // Create a portal with the wikipedia page, and embed it // (like an iframe). You can also use the <portal> tag instead. portal = document.createElement('portal'); portal.src = 'https://en.wikipedia.org/wiki/World_Wide_Web'; portal.style = '...'; document.body.appendChild(portal);

      // When the user touches the preview (embedded portal): // do fancy animation, e.g. expand … // and finish by doing the actual transition. // For the sake of simplicity, this snippet will navigate // on the onload event of the Portals element. portal.addEventListener('load', (evt) => { portal.activate(); });

      // Adding some styles with transitions const style = document.createElement('style'); style.innerHTML = portal { position:fixed; width: 100%; height: 100%; opacity: 0; box-shadow: 0 0 20px 10px #999; transform: scale(0.4); transform-origin: bottom left; bottom: 20px; left: 20px; animation-name: fade-in; animation-duration: 1s; animation-delay: 2s; animation-fill-mode: forwards; } .portal-transition { transition: transform 0.4s; } @media (prefers-reduced-motion: reduce) { .portal-transition { transition: transform 0.001s; } } .portal-reveal { transform: scale(1.0) translateX(-20px) translateY(20px); } @keyframes fade-in { 0% { opacity: 0; } 100% { opacity: 1; } }; const portal = document.createElement('portal'); // Let's navigate into the WICG Portals spec page portal.src = 'https://wicg.github.io/portals/'; // Add a class that defines the transition. Consider using // prefers-reduced-motion media query to control the animation. // https://developers.google.com/web/updates/2019/03/prefers-reduced-motion portal.classList.add('portal-transition'); portal.addEventListener('click', (evt) => { // Animate the portal once user interacts portal.classList.add('portal-reveal'); }); portal.addEventListener('transitionend', (evt) => { if (evt.propertyName == 'transform') { // Activate the portal once the transition has completed portal.activate(); } }); document.body.append(style, portal); ```

      ```js // Feature detection

      if ('HTMLPortalElement' in window) { // If this is a platform that have Portals... const portal = document.createElement('portal'); ... } ```

      js // Detect whether this page is hosted in a portal if (window.portalHost) { // Customize the UI when being embedded as a portal }

      ```js // Send message to the portal element const portal = document.querySelector('portal'); portal.postMessage({someKey: someValue}, ORIGIN);

      // Receive message via window.portalHost window.portalHost.addEventListener('message', (evt) => { const data = evt.data.someKey; // handle the event }); ```

    1. Author Response

      Reviewer #1 (Public Review):

      The Authors of this study have investigated the consequence of knocking out protein 4.1B on hippocampal interneurons. They observed that in 4.1B KO mice, the myelinization of axons of PV and SST interneurons was altered. In addition, the molecular organization of the nodal, heminodal, and juxtaparanodal parts of the interneuron axons was disrupted in 4.1B KO mice. Further, the authors found some changes in spiking features of SST, but not PV interneurons as well as synaptic inhibition recorded in CA1 pyramidal cells. Lastly, 4.1B KO mice showed some impairment in spatial memory.

      Strengths

      One of the strengths of this MS is the multilevel approach to the question of how myelinization of interneuron axons can contribute to hippocampal functions. Further, the cell biological results support the claim of the reorganization of channel distributions at axonal nodes.

      Weaknesses

      1) Although the authors acknowledge that SST is expressed in different GABAergic cell types in the hippocampus, they claim that OLM cells, which express SST are subject to changes in 4.1B KO mice. However, this claim is not supported by data. Both OLM cells and GABAergic projection cells expressing SST have many long-running axons in the stratum radiatum, where the investigations have been conducted (e.g. Gulyas et al., 2003; Jinno et al., 2007). Thus, the SST axons can originate from any of these cell types. In addition, both these GABAergic cells have a sag in their voltage responses upon negative current injections (e.g. Zemankovics et al., 2010), making it hard to separate these two SST inhibitory cell types based on the single-cell features. In summary, it would be more appropriate to name the sampled interneurons as SST interneurons. Alternatively, the authors may want to label intracellularly individual interneurons to visualize their dendrites and axons, which would allow them to verify that the de-myelinization occurs along the axons of OLM cells, but not SST GABAergic projection neurons.

      We agree and named the sampled interneurons as SST interneurons throughout the text. We acknowledge that SST GABAergic projection cells have long-running axons in the stratum radiatum (Gulyas et al., 2003; Jinno et al., 2007) that may be also dysmyelinated. See Results lanes 200 and 350.

      2) Although both the cellular part and the behavioral part are interesting, there is no link between them at present. The changes observed in spatial memory tests may not be caused by the changes in the axonal de-myelinization of hippocampal interneurons. Such a claim can be made only using rescue experiments, since changes in 4.1B KO mice leading to behavioral alterations may occur i) in other cell types and ii) in other regions, which have not been investigated.

      Alteration of spatial memory has not been previously reported in the 4.1B KO mice. Our results leave open the possibility that dysmyelination of inhibitory interneurons in the hippocampus may induce impaired cognitive ability (see preprint). We agree that future studies investigating a putative rescue of spatial memory by means of virus-mediated expression of 4.1B in hippocampal Lhx6 interneurons would be very informative.

      Reviewer #2 (Public Review):

      In this study, Pinatel et al. address the role of interneuron myelination in the hippocampus using a 4.1B protein mouse knockout model. They show that deficiency in 4.1B significantly reduces myelin in CA1 stratum radiatum, specifically myelin along axons of parvalbumin and somatostatin hippocampal interneurons. In addition, there are striking defects in the distribution of ion channels along myelinated axons, with misplacement of Na channel clusters along the nodes of Ranvier and the heminodes, and a pronounced decrease in potassium channels (Kv1) at juxtaparanodes. The axon initial segments of SST are also shorter. Because the majority of myelinated axons in the stratum radiatum of the hippocampus belong to PV and SST interneurons such profound changes in myelination are expected to affect interneuronal function. Interestingly, the authors show that PV basket cells' properties appear largely unaffected, while there are substantial changes in stratum oriens O-LM cells. Inhibitory inputs to pyramidal neurons are also changed. Behaviorally, the 4.1B KO mice exhibit deficits in spatial working memory, supporting the role of interneuronal myelination in hippocampal function. This study provides important insights into the role of myelination for the function of inhibitory interneurons, as well as in the mechanisms of axonal node development and ion channel clustering, and thus will be of interest to a broad audience of circuit and cellular neuroscientists. However, the claims of the specificity of the reported changes in myelination need to be better supported by evidence.

      Strengths:

      The authors combine a wide array of genetic, immunolabeling, optical, electrophysiological, and behavioral tools to address a still unresolved complex problem of the role of myelination of locally projecting inhibitory interneurons in the hippocampus. They convincingly show that changing myelination and ion channel distribution along nodes and heminodes significantly impairs the function of at least some interneuron types in the hippocampus and that this is accompanied by behavioral deficits in spatial memory.

      Regarding the organization of myelinated axons, the lack of 4.1B causes striking changes at the nodes of Ranvier that are convincingly and beautifully presented in the Figures. While the reduction in Kv1 in 4.1B KO mice has been previously reported, the mislocalization of sodium channels at the nodes and heminodes had only been observed in developing but not adult spinal cords. This difference in the dependence of the sodium channel distribution on 4.1B in adult hippocampus vs spinal cord may hold important clues for the varying role of myelin along axons of different neuronal types.

      The manuscript is very well written, the discussion is comprehensive, and provides detailed background and analysis of the current findings and their implications.

      Weaknesses:

      Because of the wide diversity of interneuron types in the hippocampus, and also the presence of myelinated axons from other neuron types as well, including pyramidal neurons, it is very difficult to disentangle the effects of the observed changes in the 4.1 B KO mouse model. While the authors have been careful to explore different possibilities, some of the claims of the specificity of the reported changes in myelination are not completely founded. For example, there is no compelling evidence that the myelination of axons other than the local interneurons is unchanged. The evidence strongly supports the claims of changes in interneuronal myelination, but it leaves open the question of whether 4.1B lack affects the myelination of hippocampal pyramidal neurons or of long-range projections.

      This is an important question also raised by Reviewer 1. We have now quantified the density of paranodes in the alveus as shown in Figure 1I. Paranode density was not affected in the alveus nor in the stratum lacunosum-moleculare suggesting that myelinated axons connecting extra-hippocampal areas may be preserved. In particular, this is an indication that the axons of pyramidal neurons that run into the alveus should be properly myelinated.

      To be able to better interpret the changes in the 4.1B KO mice, knowledge of the distribution of 4.1B in the hippocampus of control mice will be very helpful. The authors state that 4.1B is observed in PV neurons but not in pyramidal neurons, however, the evidence is not convincing. Thus, the lack of immunolabeling at the pyramidal neuron cell bodies does not indicate that 4.1B is missing at the axonal level. The analysis also leaves out the question of whether 4.1 B is seen in the axons of somatostatin neurons.

      We agree and do not exclude that 4.1B may be expressed along the axons of pyramidal neurons. We performed double-staining for SST and 4.1B to show that 4.1B is localized along the internode and enriched at the paranodes of SST axons as observed for PV axons (Figure 4F). The enrichment of 4.1B in GABAergic neurons was previously observed in premyelinated hippocampal cell culture (Bonetto et al. 2019).

      Reviewer #3 (Public Review):

      Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-Lhx6 tdTomato reporter line in combination with mutants for crucial membrane and cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.

      The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.

      Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals.<br /> Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n.

      Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).

      As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D.

      We agree with all these comments. We improved Fig.1 I and J by adding more data (n=4 mice). We would like to point out that the phenotype of the 4.1B KO mice is highly penetrant. The selective loss of myelin in the hippocampus was observed in the two different genetic background (4.1B-/- and 4.1B-/-;Lhx6;tdTomato mice) and at all the ages examined (P25P180).

      For the quantitative morphological analysis: We considered “n=number of animals” in Figure 1 to describe the massive and selective alteration of myelin in the hippocampus of 4.1B KO mice. In the following Figures, we considered n=ROIs (Figure 2, Figure 3, Figure 6) for the density of SST and PV interneurons or oligodendroglial cells and n=individual structures (Figure 4, Figure 5, Figure 8) for a more precise sampling of the structure heterogeneity (internode, node, AIS). Means ± SEM are indicated in the text corresponding to plot boxes and distribution plots in the Figures.

      Concerning AIS measurements, we considered “n” as individual AIS in a coherent manner with the electrophysiological recordings in which “n” is the individual cells. We hope that we have now better illustrated the AIS of SST cells in the stratum oriens in the new Figure 8 with single channel images. In contrast to the AIS of pyramidal neurons that display sinuous feature, the AIS of SST neurons (and especially O-LM cells which axons run straight across the stratum radiatum) show a rather straight organization.

      We improved our measurements of the AIS structural parameters (onset, length) of SST neurons of the stratum oriens using confocal imaging with a 20x objective, 0.54 µm steps, Nyquist conditions. Indeed, these new measurements confirmed that the AIS of SST neurons was significantly shorter in the 4.1B KO mice.

      The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).

      We added these sentences in the Discussion:

      Lane 527: Supporting this notion, previous studies have reported an adaptive response of the AIS of cortical pyramidal neurons in the cuprizone chemical model of demyelination. Specifically, it was observed that the length of the AIS is reduced together with a more proximal site of the onset. These changes reduce the AIS excitability suggesting a compensatory mechanism to ectopic action potentials generated in demyelinated axons (Hamada and Kole, 2015).

      Lane 556: Interestingly, in cortical pyramidal neurons, demyelination induced by cuprizone causes the restructuring of AIS and reduces excitability at this site. “Acute demyelination leads to a more proximal onset of AIS without a change in the length of ßIV spectrin expression. However, the AIS of these acutely demyelinated axons display a reduced length of Nav1.6 channel expression and extended Kv7.3 channel expression at the distal site (Hamada and Kole, 2015).”

      Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.

      The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.

    2. Reviewer #3 (Public Review):

      Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-tdTomato reporter line in combination with crucial cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.

      The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.

      Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals. Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n. Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).

      As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D. The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).

      Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.

      The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.

    1. Reviewer #1 (Public Review):

      In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.

      CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.

      Specifically, the strengths of this method are:<br /> 1) The successful use of various cell lines and transfection methods.<br /> 2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.<br /> 3) Flexibility in choice of overlapping sequences, making this system more versatile.<br /> 4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.<br /> 5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.<br /> One weakness of the latter point, which is also pointed out by the authors, is that the direct rescue of clinical isolates was not tested for sequence fidelity.

      The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.

      Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.

  5. www.dreamsongs.com www.dreamsongs.com
    1. Because this PDF does not include outline metadata, I have inserted jump points by highlighting the names of the chapter on the page where that chapter begins for each chapter in the book. These can be filtered by the "chapter heading" tag.

    1. Why is the index card half full?

      reply to u/ManuelRodriguez331 at https://www.reddit.com/r/Zettelkasten/comments/15ehcy5/why_is_the_index_card_half_full/

      There has been debate about the length of notes on slips since the invention of slips and it shows no signs of coming to broad consensus other than everyone will have their personal opinion.

      If you feel that A6 is is too big then go down a step in size to A7. One of the benefits of the DIN A standard is that you can take the next larger card size and fold it exactly in half to have the next size smaller. This makes it easier to scale up the size of your cards if you prefer most of them to be smaller to save space, just take care not to allow larger folded cards to "taco" smaller cards in a way they're likely to get lost. If you really needed more space, you could easily use an A1 or A2 and fold it down to fit inside of your collection! (Sadly 4x6 and 3x5 cards don't have this affordance.)

      Fortunately there are a variety of available sizes, so you can choose what works best for yourself. Historically some chose large 5x8", 6x9", or even larger "slips". Some have also used different sizes for different functions. For example some use 3x5 for bibliographic cards and 4x6 for day-to-day ideas. I've seen stacked wooden card catalog furniture that had space for 3x5, 4x6, and 8.5x11 in separate drawers within the same cabinet. Some manufacturers even made their furniture modular to make this sort of mixed use even easier.

      One of the broadly used pieces of advice that does go back centuries is to use "cards of the same size" (within a particular use case). This consensus is arrived at to help users from losing smaller cards between larger/taller cards. Cards of varying sizes, even small ones, are also much more difficult to sort through. Slight of hand magicians will be aware of the fact that shaving small fractions of length off of playing cards is an easy way of not only marking them, but of executing a variety of clever shuffling illusions as well as finding some of them very quickly by feel behind the back. Analog zettelkasten users will only discover that smaller, shorter cards are nearly guaranteed to become lost among the taller cards. It's for this reason that I would never recommend one to mix 4x6, A6, or even the very closely cut Exacompta Bristol cards, which are neither 4x6 nor A6!

      I once took digital notes and printed them on paper and then cut them up to fit the size of the individual notes to save on space and paper. I can report that doing this was a painfully miserable experience and positively would NOT recommend doing this for smaller projects much less lifelong ones. Perhaps this could be the sort of chaos someone out there might actually manage to thrive within, but I suspect it would be a very rare individual.

      As for digital spacing, you may win out a bit here for "saving" paper space, but you're also still spending on storage costs in electronic formatting which historically doesn't have the longevity of physical formats. Digital also doesn't offer the ease of use of laying cards out on a desktop and very quickly reordering them for subsequent uses.

      There are always tradeoffs, one just need be aware of them to guide choices for either how they want to work or how they might work best.

      Personally, I use 4x6" cards because I often write longer paragraphs on them. Through experimentation I found that I would end up using two or more 3x5 cards more often than I would have had mostly blank 4x6 cards and used that to help drive my choice. I also find myself revisiting old cards and adding to them (short follow ups, links to other cards, or other metadata) and 3x5 wouldn't allow that as easily.

      As ever, YMMV...

      See also: [[note lengths]] and/or [[note size]].

  6. Jul 2023
    1. Reviewer #1 (Public Review):

      The aim of this paper is to describe a novel method for genetic labelling of animals or cell populations, using a system of DNA/RNA barcodes.

      Strengths:<br /> • The author's attempt at providing a straightforward method for multiplexing Drosophila samples prior to scRNA-seq is commendable. The perspective of being able to load multiple samples on a 10X Chromium without antibody labelling is appealing.<br /> • The authors are generally honest about potential issues in their method, and areas that would benefit from future improvement.<br /> • The article reads well. Graphs and figures are clear and easy to understand.

      Weaknesses:<br /> • The usefulness of TaG-EM for phototaxis, egg laying or fecundity experiments is questionable. The behaviours presented here are all easily quantifiable, either manually or using automated image-based quantification, even when they include a relatively large number of groups and replicates. Despite their claims (e.g., L311-313), the authors do not present any real evidence about the cost- or time-effectiveness of their method in comparison to existing quantification methods.<br /> • Behavioural assays presented in this article have clear outcomes, with large effect sizes, and therefore do not really challenge the efficiency of TaG-EM. By showing a T-maze in Fig 1B, the authors suggest that their method could be used to quantify more complex behaviours. Not exploring this possibility in this manuscript seems like a missed opportunity.<br /> • Experiments in Figs S3 and S6 suggest that some tags have a detrimental effect on certain behaviours or on GFP expression. Whereas the authors rightly acknowledge these issues, they do not investigate their causes. Unfortunately, this question the overall suitability of TaG-EM, as other barcodes may also affect certain aspects of the animal's physiology or behaviour. Revising barcode design will be crucial to make sure that sequences with potential regulatory function are excluded.<br /> • For their single-cell experiments, the authors have used the 10X Genomics method, which relies on sequencing just a short segment of each transcript (usually 50-250bp - unknown for this study as read length information was not provided) to enable its identification, with the matching paired-end read providing cell barcode and UMI information (Macosko et al., 2015). With average fragment length after tagmentation usually ranging from 300-700bp, a large number of GFP reads will likely not include the 14bp TaG-EM barcode. When a given cell barcode is not associated with any TaG-EM barcode, then demultiplexing is impossible. This is a major problem, which is particularly visible in Figs 5 and S13. In 5F, BC4 is only detected in a couple of dozen cells, even though the Jon99Ciii marker of enterocytes is present in a much larger population (Fig 5C). Therefore, in this particular case, TaG-EM fails to detect most of the GFP-expressing cells. Similarly, in S13, most cells should express one of the four barcodes, however many of them (maybe up to half - this should be quantified) do not. Therefore, the claim (L277-278) that "the pan-midgut driver were broadly distributed across the cell clusters" is misleading. Moreover, the hypothesis that "low expressing driver lines may result in particularly sparse labelling" (L331-333) is at least partially wrong, as Fig S13 shows that the same Gal4 driver can lead to very different levels of barcode coverage.<br /> • Comparisons between TaG-EM and other, simpler methods for labelling individual cell populations are missing. For example, how would TaG-EM compare with expression of different fluorescent reporters, or a strategy based on the brainbow/flybow principle?<br /> • FACS data is missing throughout the paper. The authors should include data from their comparative flow cytometry experiment of TaG-EM cells with or without additional hexameric GFP, as well as FSC/SSC and fluorescence scatter plots for the FACS steps that they performed prior to scRNA-seq, at least in supplementary figures.<br /> • The authors should show the whole data described in L229, including the cluster that they chose to delete. At least, they should provide more information about how many cells were removed. In any case, the fact that their data still contains a large number of debris and dead cells despite sorting out PI negative cells with FACS and filtering low abundance barcodes with Cellranger is concerning.

      Overall, although a method for genetic tagging cell populations prior to multiplexing in single-cell experiments would be extremely useful, the method presented here is inadequate. However, despite all the weaknesses listed above, the idea of barcodes expressed specifically in cells of interest deserves more consideration. If the authors manage to improve their design to resolve the major issues and demonstrate the benefits of their method more clearly, then TaG-EM could become an interesting option for certain applications.

    2. Reviewer #2 (Public Review):

      In this manuscript, Mendana et al developed a multiplexing method - Targeted Genetically-Encoded Multiplexing or TaG-EM - by inserting a DNA barcode upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct. This Multiplexing method can be used for population-scale behavioral measurements or can potentially be used in single-cell sequencing experiments to pool flies from different populations. The authors created 20 distinctly barcoded fly lines. First, TaG-EM was used to measure phototaxis and oviposition behaviors. Then, TaG-EM was applied to the fly gut cell types to demonstrate its applications in single-cell RNA-seq for cell type annotation and cell origin retrieving.

      This TaG-EM system can be useful for multiplexed behavioral studies from next-generation sequencing (NGS) of pooled samples and for Transcriptomic Studies. I don't have major concerns for the first application, but I think the scRNA-seq part has several major issues and needs to be further optimized.

      Major concerns:<br /> 1. It seems the barcode detection rate is low according to Fig S9 and Fig 5F, J and N. Could the authors evaluate the detection rate? If the detection rate is too low, it can cause problems when it is used to decode cell types.<br /> 2. Unsuccessful amplification of TaG-EM barcodes: The authors attempted to amplify the TaG-EM barcodes in parallel to the gene expression library preparation but encountered difficulties, as the resulting sequencing reads were predominantly off-target. This unsuccessful amplification raises concerns about the reliability and feasibility of this amplification approach, which could affect the detection and analysis of the TaG-EM barcodes in future experiments.<br /> 3. For Fig 5, the singe-cell clusters are not annotated. It is not clear what cell types are corresponding to which clusters. So, it is difficult to evaluate the accuracy of the assignment of barcodes.<br /> 4. The scRNA-seq UMAP in Fig 5 is a bit strange to me. The fly gut epithelium contains only a few major cell types, including ISC, EB, EC, and EE. However, the authors showed 38 clusters in fig 5B. It is true that some cell types, like EE (Guo et al., 2019, Cell Reports), have sub-populations, but I don't expect they will form these many sub-types. There are many peripheral small clusters that are not shown in other gut scRNA-seq studies (Hung et al., 2020; Li et al., 2022 Fly Cell Atlas; Lu et al., 2023 Aging Fly Cell Atlas). I suggest the authors try different data-processing methods to validate their clustering result.<br /> 5. Different gut drivers, PMC-, PC-, EB-, EC-, and EE-GAL4, were used. The authors should carefully characterize these GAL4 expression in larval guts and validate sequencing data. For example, does the ratio of each cell type in Fig 5B reflect the in vivo cell type ratio? The authors used cell-type markers mostly based on the knowledge from adult guts, but there are significant morphological and cell ratio differences between larval and adult guts (e.g., Mathur...Ohlstein, 2010 Science).<br /> 6. Doublets are removed based on the co-expression of two barcodes in Fig 5A. However, there are also other possible doublets, for example, from the same barcode cells or when one cell doesn't have detectable barcode. Did the authors try other computational approaches to remove doublets, like DoubleFinder (McGinnis et al., 2019) and Scrublet (Wolock et al., 2019)?<br /> 7. Did the authors remove ambient RNA which is a common issue for scRNA-seq experiments?<br /> 8. Why does TaG-EM barcode #4, driven by EC-GAL4, not label other classes of enterocyte cells such as betaTry+ positive ECs (Figures 5D-E)? similarly, why does TaG-EM barcode #9, driven by EE-GAL4, not label all EEs? Again, it is difficult to evaluate this part without proper data processing and accurate cell type annotation.<br /> 9. For Figure 2, when the authors tested different combinations of groups with various numbers of barcodes. They found remarkable consistency for the even groups. Once the numbers start to increase to 64, barcode abundance becomes highly variable (range of 12-18% for both male and female). I think this would be problematic because the differences seen in two groups for example may be due to the barcode selection rather than an actual biologically meaningful difference.<br /> 10. Barcode #14 cannot be reliably detected in oviposition experiment. This suggests that the BC 14 fly line might have additional mutations in the attp2 chromosome arm that affects this behavior. Perhaps other barcode lines also have unknown mutations and would cause issues for other untested behaviors. One possible solution is to back-cross all 20 lines with the same genetic background wild-type flies for >7 generations to make all these lines to have the same (or very similar) genetic background. This strategy is common for aging and behavior assays.

    3. Reviewer #3 (Public Review):

      The work addresses challenges in linking anatomical information to transcriptomic data in single-cell sequencing. It proposes a method called Targeted Genetically-Encoded Multiplexing (TaG-EM), which uses genetic barcoding in Drosophila to label specific cell populations in vivo. By inserting a DNA barcode near the polyadenylation site in a UAS-GFP construct, cells of interest can be identified during single-cell sequencing. TaG-EM enables various applications, including cell type identification, multiplet droplet detection, and barcoding experimental parameters. The study demonstrates that TaG-EM barcodes can be decoded using next-generation sequencing for large-scale behavioral measurements. Overall, the results are solid in supporting the claims and will be useful for a broader fly community. I have only a few comments below:

      Specific comments:

      1. The authors mentioned that the results of structure pool tests in Fig. 2 showed a high level of quantitative accuracy in detecting the TaG-EM barcode abundance. Although the data were generally consistent with the input values in most cases, there were some obvious exceptions such as barcode 1 (under-represented) and barcodes 15, 20 (over-represented). It would be great if the authors could comment on these and provide a guideline for choosing the appropriate barcode lines when implementing this TaG-EM method.

      2. In Supplemental Figure 6, the authors showed GFP antibody staining data with 20 different TaG-EM barcode lines. The variability in GFP antibody staining results among these different TaG-EM barcode lines concerns the use of these TaG-EM barcode lines for sequencing followed by FACS sorting of native GFP. I expected the native GFP expression would be weaker and much more variable than the GFP antibody staining results shown in Supplemental Figure 6. If this is the case, variation of tissue-specific expression of TaG-EM barcode lines will likely be a confounding factor.

      3. As the authors mentioned in the manuscript, multiple barcodes for one experimental condition would be a better experimental design. Could the authors suggest a recommended number of barcodes for each experiential condition? 3? 4? Or more? Also, it would be great if the authors could provide a short discussion on the cost of such TaG-EM method. For example, for the phototaxis assay, if it is much more expensive to perform TaG-EM as compared to manually scoring the preference index by videotaping, what would be the practical considerations or benefits of doing TaG-EM over manual scoring?

    1. Isn’t it too much time and energy consuming? I’m not provoking, I’m genuine.

      reply to IvanCyb at https://www.reddit.com/r/antinet/comments/1587onp/comment/jt8zbu4/?utm_source=reddit&utm_medium=web2x&context=3 Asking broadly about indexing methods in zettelkasten

      When you begin you'll find yourself creating lots of index entries to start, in part because you have none, but you'll find with time that you need to do less and less because index entries already exist for most of what you would add. More importantly most of the entries you might consider duplicating are likely to be very near cards that already have those index entries.

      As an example if you have twenty cards on cultural anthropology, the first one will be indexed with "cultural anthropology" to give you a pointer of where to start. Then when you need to add a new card to that section, you'll look up "cultural anthropology" and skim through what you've got to find the closest related card and place it. You likely won't need to create a new index entry for it at all.

      But for argument's sake, let's say you intend to do some work at the intersection of "cultural anthropology" and "writing" and this card is also about "writing". Then you might want to add an index entry for "writing" from which you'll branch off in the future. This will tend to keep your index very sparse. As an example you can look at Niklas Luhmann's digitized collection to notice that he spent his career in the area of "sociology" but there are only just a few pointers from his index into his collection under that keyword. If he had tagged every single card related to "sociology" as "sociology" in his index, the index entry for it would have been wholly unusable in just a few months. Broadly speaking his entire zettelkasten is about sociology, so you need to delve a few layers in and see which subtopics, sub-subtopics, sub-sub-subtopics, etc. exist. As you go deeper into specific topics you'll notice that you branch down and out into more specific subareas as you begin to cover all the bases within that topic. If you like, for fun, you can see this happening in my digital zettelkasten on the topic of "zettelkasten" at https://hypothes.is/users/chrisaldrich?q=tag%3A%22zettelkasten%22. The tool only shows the top 50 tags for that subject in the side bar, but you can slowly dig down into subtopics to see what they look like and a bit of how they begin to overlap.

      Incidentally, this is one of the problems with those who tag everything with top level topic headings in digital contexts—you do a search for something important and find so much that it becomes a useless task to try to sift through it all. As a result, users need better tools to give them the ability to do more fine-grained searching, filtering, and methods of discovery.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Please find our point-to-point response to the reviewer’s comments below, where we marked all changes implemented in the manuscript in italics.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      With the emergence and spread of resistance to Artemisinin (ART), a key component of current frontline malaria combination therapies, there is a growing effort to understand the mechanisms that lead to ART resistance. Previous work has shown that ART resistant parasites harbour mutations in the Kelch13 protein, which in turn leads to reduced endocytosis of host haemoglobin. The digestion of haemoglobin is thought to be critical for the activation of the artemisinin endoperoxide bridge, leading to the production of free radicals and parasite death. However, the mechanisms by which the parasites endocytose host cell haemoglobin remain poorly understood.

      Previous work by the authors identified several proteins in the proximity of K13 using proximity-based labelling (BioID) (Birnbaum et al. 2020). The authors then went on to characterise several of these proteins, showing that when proteins including EPS15, AP2mu, UBP1 and KIC7 are disrupted, this leads to ART resistance and defects in endocytosis leading to the hypothesis that these two processes are inextricably linked.

      In this manuscript, Schmidt et al. set themselves the task of characterising more K13 component candidates identified in their previous work (Birnbaum et al. 2020) that were not previously validated or characterised. They chose 10 candidates and investigated their localisations, and colocalisation with K13, and their involvement in endocytosis and in vitro ART resistance, 2 processes mediated by K13 and some members of the K13 compartments

      The authors show that of their 10 candidates, only 4 can be co-localised with K13. Then, using a combination of targeted gene disruption (TGD) as well as knock sideways (KS), they characterised these 4 proteins found in the K13 compartment. They show that MyoF and KIC12 are involved in endocytosis and are important for parasite growth, however their disruption does not lead to a change in ART sensitivity. The authors also confirm the findings of their previous publication (Birnbaum et al. 2020), using a slightly different TGD

      (note from the authors: we apologise if this has not properly transpired from the manuscript but the difference between the TGDs is substantial and relevant: one has less than 3% of the protein left and hence can be considered to fully inactivate MCA2 and has a growth defect whereas the other contains about two thirds of the protein (1344 amino acids/~66% are left), has no growth defect, although it lacks the MCA2 domain (hence that domain can not be critical for the growth defect)),

      that MCA2 is involved in ART resistance, however they did not check whether its disruption impacts haemoglobin uptake. They also show that KIC11 is not involved in mediating haemoglobin uptake or ART resistance. To finish, the authors used AlphaFold to identify new domains in the proteins of the K13 compartment. This led them to the conclusion that vesicle trafficking domains are enriched in proteins of the K13 compartment involved in endocytosis and in vitro ART resistance.

      The majority of the experiments conducted by the authors are performed to a good standard in biological and technical replicates, with the correct controls. Their findings provide confirmation that their 4 candidate genes seem to be important for parasite growth, and show that some of their candidates are involved in endocytosis. While the KD and KS approaches employed by the authors to study their candidate genes each have their own advantages and can be excellent tools for studying a large sets or genes, this manuscript highlights the many limitations of these approaches. For example, the large tag used for the KS approach can mislocalise proteins or disrupt their function (as is the case for MyoF), resulting in spurious results, or indeed the inability to generate the tagged line (as is the case for MCA2). The KS approach also makes the results of a protein with a dual localisation, like KIC12, extremely difficult to interpret.

      We thank the reviewer for this thorough and insightful review.

      The limitations mentioned above were addressed in the response to the main points and a general detailed response in regards to the systems used for this research are added at the end of this rebuttal. Briefly summarised here: while we agree that there are limitations of the system used, we are convinced that

      • the advantages of using a large tag in most cases outweighs the drawbacks as it permits to track the inactivation of the target, if need be on the individual cell level

      • while not optimal for MyoF, the partial inactivation actually helps in its functional study as detailed in major point 23&28 or reviewer#3 major point 11: it shows a consistent correlation of the phenotype with different causes and degrees of inactivation (this is now better illustrated in Figure 1L1M). Further, regarding the concern of the large tag: the effect of the tag based on localisation was overestimated in the review by what seems to have been a mix up comparing numbers from MyoF with a number from MCA2 (there is a difference, but it is only small) (see reviewer#1 major point #23).

      • KS is the optimal method for most of the assays in this work (e.g. bloated food vacuole assays and RSAs); these assays would be impossible or difficult to use with other inactivation systems currently used in P. falciparum research (see details in the response to the specific points and after the rebuttal)

      In regards to the difficulty to interpret KIC12 data: this is only true for measuring absolute essentiality, everything else we believe we actually have the optimal method. If not KS, which method targets a specific pool of a protein with a dual localisastion? Again, our assays targeting the K13 pool and revealing the specific function would have been difficult or impossible with any other system.

      Ultimately the question is whether any other system would have resulted in a different conclusion on the function of the proteins studied. At present we are confident this would not be the case and other systems probably would not have delivered the specific functional data shown in this work. Clearly, more in depth work will provide more nuanced and detailed insights into the proteins analysed in this work and this likely will also include the use of other systems for specific aspects they are most suitable for. However, this (e.g. different complementations in a diCre cKO) is complex and therefore beyond what fits into this work which had the goal to assess which proteins are true positives for the K13 compartment and to place them into functional groups in regards to endocytosis.

      Moreover, the manuscript is disjointed at times, with the authors choosing to conduct certain experiments for only a subset of genes, but not for others. For example, considering that the aim of this paper was to identify more proteins involved in ART resistance and endocytosis, it is confusing why the authors do not perform the endocytosis assays for all their selected proteins, and why they do not do this for the proteins they identify in their domain search. There is significant room for improvement for this manuscript, and a generally interesting question.

      The reviewer remarks that not every experiment was done for every target. Based on the rebuttal we tried to amend this but also note that there was some sentiment by the reviewers to better stick to the point and not make the manuscript more disjointed. We attempted to balance that as much as possible and hope we were able to honour both aspects (amendments were done as detailed in the point by point response below).

      In regards to endocytosis and choice of targets: We did do endocytosis assays for all proteins that showed a growth phenotype upon inactivation in this work. We therefore assume the reviewer here refers to major point #40 asking for endocytosis assays with KIC4 and KIC5 (which were not studied in this manuscript) as well as MCA2 (point 17). We fully agree with the reviewer that this would fill a gap in the work on K13 compartment proteins but such assays are difficult with TGDs (there are issues with non-comparable samples and compensatory effects) and proteins that are not essential (and hence likely have a smaller impact on endocytosis when truncated). We nevertheless now carried them out, but due to the limitations to do this with these lines would be hesitant to draw definite conclusions (see major point 17 and 40 for details and outcomes).

      But in it's current format, other than confirming that MCA2 is involved in ART resistance (which was already known from the Birnbaum paper), the authors do not further expand our understanding of the link between ART resistance and endocytosis in this manuscript.

      We would like to point out that the importance of the K13 compartment and endocytosis goes beyond ART resistance (see e.g. also newly published papers on the K13 compartment in Toxoplasma, (Wan et al., 2023; Koreny et al., 2023)). Endocytosis is an essential and prominent process in blood stages. However, in contrast to processes such as invasion, our understanding about endocytosis is only rudimentary. Hence, this manuscript provides important insights on an emerging topic that in our opinion deserves more attention:

      • it identifies novel proteins at the K13 compartment and provides 2 new proteins in endocytosis (MyoF and KIC12); getting an as complete as possible list of proteins involved in the process will be critical to study and understand it

      • it leads to the realisation that not all growth-relevant proteins detected at the K13 compartment are needed for endocytosis

      • it provides domains and stage specificity of function for several K13 compartment proteins, overall bolstering the model of endocytosis in ART resistance and providing a framework critical to direct future studies on endocytosis and their detailed mechanistic function at the cytostome

      • the identified vesicle trafficking domains (for instance now also found in UBP1) are expected to strengthen the support for the role of endocytosis of the K13 compartment; this and also the above points are important as (based on the current literature) there still seems to be prominent sentiment in the field that (in part due to the involvement of UBP1 and K13) the cause of ART resistance is due to various unclearly defined stress response pathways

      • with MyoF it also shows the first protein in connection with the K13 compartment that acts downstream of the generation of hemoglobin-filled containers in the parasite and provides the first protein that explains the suspected involvement of actin in endocytosis (so far this was only based on CytD studies)

      Overall we therefore believe this manuscript contains critical information and a framework for future studies on endocytosis and the K13 compartment. We hope the relevance of endocytosis as one of the most prominent and essential processes in the parasites and the connection to various aspects linked with many commercial drugs (in addition to the role of endocytosis in ART resistance), is adequately explained in the introduction. We also would like to mention that the main focus of the work is reflected in the title of the manuscript which does not mention ART susceptibility.

      Major Comments

      1) line 31: please change defined to characterised - defined suggests that novel proteins were identified in this study, which is not the case.

      We apologise, but we do not fully understand this comment. We did identify novel proteins not before known to be at the K13 compartment (MCA2 (admittedly this one was likely but had not previously been verified), MyoF, KIC11 and KIC12). In our view "further defining the composition of the K13 compartment" therefore is an accurate statement. Additionally, the identification of previously not-discovered domains, the stage-specificity and function of these proteins helped to further define the K13 compartment.

      If the reviewer is referring to the fact that the proteins analysed in this study were taken from a previously generated list of hits, we would like to stress that the presence in such a list (obtained from a BioID, but also if from an IP etc) can not be equalled for them to be true positives, they are merely candidates that still need to be experimentally validated. This is what we did in this work to find out which further proteins from the list can be classified as K13 compartment proteins (for hits with lower FDRs this is even more relevant as illustrated by the fact that 6 of the here analysed hits were not at the K13 compartment). In an attempt to address this comment in the manuscript, we changed the wording of this sentence to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."

      2) line 37: please change 'second' to "another". As explained further below, the authors identified 3 classes of proteins (confer ART resistance + involved in HCCU, involved in HCCU only, or involved in neither).

      We realized that the groups description wasn’t clear in the abstract. Please see response to major comment #41 for a detailed answer to this (endocytosis is an overarching criterion, ART resistance is a subgroup and applies only to those proteins with a function in endocytosis in ring stages). To clarify this (see also major point #8) we added an explanation on the influence of stage-specificity of endocytosis on ART susceptibility to the introduction (line 76): In contrast to K13 which is only needed for endocytosis in ring stages (the stage relevant for in vitro ART resistance), some of these proteins (AP2µ and UBP1) are also needed for endocytosis in later stage parasites (Birnbaum et al., 2020). At least in the case of UBP1, this is associated with a higher fitness cost but lower resistance compared to K13 mutations (Behrens et al., 2021; Behrens et al., 2023). Hence, the stage-specificity of endocytosis functions is relevant for in vitro ART resistance: proteins influencing endocytosis in trophozoites are expected to have a high fitness cost whereas proteins not needed for endocytosis in rings would not be expected to influence resistance.” The abstract was changed in response to this and other comments and hope it is now clearer in regards to the groups.

      3) Line 40: You define KIC11 as essential but according to your data some parasites are still alive and replicating 2 cycles after induction of the knock sideways. Please consider changing "essential" to "important for asexual parasite growth".

      We fully agree with the reviewer, we reworded the sentence as suggested.

      4) Line 40: please change 'second group' to 'this group'

      We reworded this part of the abstract and it know reads: (line 38): “While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process.”

      5) line 41: state here that despite it being essential, it is unknown what it is involved in.

      With the newly added data we show that this protein either has a function in invasion or very early ring development although we did not see any evidence for the latter. We therefore changed the sentence to (line 43): “We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion*..” *

      6) Line 50: the authors should state here that there is actually a reversal in this trend over the last few years.

      Done as suggested.

      7) Line 54: please separate out the references for each of the two statements made in this line (a: that ART resistance is widespread in SEA, and b: that ART resistance is now in Africa) Reference 14 also seems to reference ART resistance in Amazonia - which is not covered by the statement made by the authors (in which case the authors should state ART is now present in Africa and South America). The authors should also reference PMID: 34279219 for their statement that ART resistance is now found in Africa (albeit a different mutation to the one found in SEA).

      Done as suggested.

      8) Line 65: it is also worth mentioning here that there are other mutations in proteins other than K13, such as AP2mu and UBP1 (PMID: 24994911;24270944) that can lead to ART resistance.

      As suggested by the reviewer, we included a sentence about non-K13 mutations linked with reduced ART susceptibility in the introduction (line 74): Beside K13 mutations in other genes, such as Coronin (Demas et al., 2018) UBP1 (Borrmann et al., 2013; Henrici et al., 2020b; Birnbaum et al., 2020; Simwela et al., 2020) or AP2µ (Henriques et al., 2014; Henrici et al., 2020b)* have also been linked with reduced ART susceptibility." *

      We here also added data on fitness cost that is related to this and is also relevant for the issue of proteins with a stage-specific function in endocytosis, making a transition for this statement which might help clarifying the grouping of K13 compartment proteins (see also major point #2).

      9) Line 80, 86: ref 43 is misused. Reference 43 refers to Maurer's clefts trafficking which takes place in the erythrocyte cytosol and is not involved in haemoglobin uptake as far as I know. Please replace ref 43 with one showing the role of actin in haemoglobin uptake.

      We thank the reviewer for pointing this out, Ref 43 was removed from the manuscript.

      10) Line 98: the authors state here that they 'identified' further candidates from the K13 proxiome. This suggests that they identified new proteins in this paper, when in fact the list was already generated in ref 26. All they did was characterise proteins from that list that were not previously characterised. The authors should therefore remove identified from this statement.

      We agree with the reviewer that we did not identify further candidates, we identified new K13 compartment proteins from the list of potential K13 compartment proteins. We therefore changed “identified further candidates” into “identified further K13 compartment proteins” (line 116). Please see also response to major comment #1.

      11) Line 107-108: it is not clear from this sentence why these proteins were left out of the initial analysis in Ref 26. A sentence here explaining this would be valuable for the reader.

      This is a good point. One reason why we did not analyse more in our previous publication was that we had to stop somewhere and adding more would have been very difficult to fit into what was already a packed paper. However, as shown in this work, the list does contain further interesting candidates (e.g. K13 compartment proteins that are involved in endocytosis).

      We altered the relevant part of the introduction to highlight that we previously analysed the top hits, clarifying that the 'remaining' hits analysed in this work were further down in the list. This now reads: (line 113)“We reasoned that due to the high number of proteins that turned out to belong to the K13 compartment when validating the top hits of the K13 BioID (Birnbaum et al., 2020), the remaining hits of these experiments might contain further proteins belonging to the K13 compartment.” We hope this clarifies that we simply moved further down in the candidate list.

      12) Line 117-123: The authors say that PF3D7_0204300, PF3D7_1117900 and PF3D7_1016200 were not studied because they were not in the top 10 hits. However, the current organisation of Supplementary Table 1 shows all 3 proteins among the top 10 hits (MyoF, KIC12, UIS14 and 0907200 being after them). I think the authors should reorganise their table. It is also unclear according to what the proteins in the table are ranked. Could the authors indicate the metric used for the ranking?

      We thank the reviewer for alerting us to this. The issue here is that the 3 non-analysed proteins belong to a 'lower stringency' group comprising hits significant with FDRThe information about ranking is now also included as “Table legend” in the revised manuscript and the Table heading has been changed to: List of putative K13 compartment proteins, proteins selected for further characterization in this manuscript are highlighted.”

      13) Line 129-141: Can the authors be clearer with their explanations of the identification of mutation Y1344Stop? One dataset (ref 61) shows that 52% of African parasites have a mutation in MCA2 in position 1344 leading to a STOP codon. But another dataset (ref 62) shows that the next base is also mutated, reverting the stop codon. That should have been seen in the first dataset as well. Could the authors please clarify.

      This mutation was first spotted in the MalariaGEN database (https://www.malariagen.net) (MalariaGEN et al., 2021), which allows online accessing of the data by using the “variant catalogue” tool, which is in a table format of frequency rather than in a sequence context. Hence, only after further research later on it became evident to us, that this mutation does not occur alone when looking at individual MCA2 sequences from patient samples in (Wichers et al., 2021b). We hope this is accurately reflected in our results section.

      14) Line 147: the authors say that MCA2 is expressed throughout the intraerythrocytic cycle as shown by live cell imaging. In Birnbaum et al 2020 fig 4I, the authors show that MCA2 is mainly expressed between 4 and 16hpi. But in Figure 1B of this manuscript there is a clear multiplication of MCA2 signal between trophozoite and schizont. How do the authors explain this discrepancy? Could expression of the truncated MCA2 be different than the full length? This cannot be assessed as expression and localisation of the full-length HA tag MCA2 is not shown in Schizonts.

      The key difference lies in transcription vs protein expression (usually protein levels peak after mRNA levels peak and - depending on turnover - protein levels can stay high even after mRNA levels have declined). Figure 4 of the Birnbaum et al paper presents transcriptomic data, but with a peak in trophozoites (The axis label in Fig. 4l of that publication is a bit confusing, as hour 0 is at the top, 48 h at the bottom; it is clearer in Fig. S13 of that paper) which would fit very well with the multiplication of the signal between trophozoites and schizonts mentioned by the reviewer. So, overall, the temporal peaks of transcripts and protein of that protein fit well.

      For the signal in rings: Likely the protein has a turnover rate that is sufficiently low for some protein to be taken into the new cycle after re-invasion. Also different transcriptomic datasets e.g. (Otto et al., 2010; Wichers et al., 2019; Subudhi et al., 2020) available on plasmoDB show some mRNA present across the complete asexual development cycle, with each dataset showing maximum peak at a slightly different stage.

      Even when located in foci and hence aiding detection of small amounts of protein (as is the case for MCA2-Y1344-GFP), the MCA2 signal in rings is not strong. For MCA2-TGD, the GFP signal is dispersed and therefore likely below our detection limit, while the same amount of protein concentrated at the K13 compartment is visible as foci in the MCA2-Y1344 cell line. Please note that MCA2-TGD has only 2.8% of the protein left whereas MCA2-Y1344 has 66.5% left and based on our manuscript is almost fully functional, hence fitting the different locations between the two versions.

      Overall we believe this shows that there are actually no significant discrepancies of the expression of the different MCA2 versions.

      15) Line 158: would it not have been more useful for the authors to have episomally expressed MCA2-3xHA in their MCA2Y1344STOP-GFPENDO line to make sure that the truncated protein is indeed going to the correct compartment? The experiments done by the authors suggests that the MCA2Y1344STOP goes to the right location but does not really confirm it.

      We appreciate the reviewers caution here. However, considering that MCA2Y1344STOP-GFPendo co-locates with mCherryK13 and endogenously HA-tagged full length MCA2 does the same to a similar extent, there is in our opinion little doubt that MCA2 is found at the K13 compartment and that this is similar with both constructs. If there are minor differences, these might as well occur if MCA2 is episomally (as suggested in the comment) instead of endogenously expressed. Given the limited insight, we therefore decided against the episomal overexpression (which due to its size of > 6000bp may also be somewhat less straight forward than it may sound).

      16) Line 191: it is stated that MCA2 confers resistance independently of the MCA domain, however in both the MCA2-TGD and MCA2Y1344STOP-GFPENDO parasites, the MCA domain is deleted, and for both parasites, there is resistance (albeit to a lower level in the MCA2Y1344STOP-GFPENDO line). Therefore, how can the authors state that the ART resistance is independent of the MCA domain? This statement should be that resistance is dependent on the loss of the MCA domain.

      We agree that this can’t be categorically excluded. However, a ~5 fold difference in ART sensitivity was observed between the parasites with MCA2 truncated at amino acid 57 compared to those with MCA at amino acid 1344 even though both do not contain the MCA2 domain. Hence, at least this difference is not dependent on the MCA2 domain. The larger construct missing the MCA domain shows only a very moderate reduction in RSA survival, again suggesting the MCA domain is not the main factor. We amended our statement in an attempt to more accurately reflect the data (line 487): This considerable reduction in ART susceptibility in the parasites with the truncation at MCA2 position 57 compared to the parasites still expressing 1344 amino acids of MCA2, despite both versions of the protein lacking the MCA domain, indicates that the influence on ART resistance is not, or only partially due to the MCA domain.” We would be hesitant to state the reviewer's conclusion that “resistance is dependent on the loss of the MCA domain”, as the larger construct missing the MCA2 domain has a milder RSA effect compared to MCA2-TGD, which suggests the reduction in ART susceptibility is independent of the MCA domain. These considerations also agree with the fact that the parasites with the longer MCA2 version (in contrast to the MCA2-TGD) do not have any detectable growth defect which indicates that the protein can fulfil its function without the MCA2 domain.

      17) Line 192: Why did the authors not check if MCA2 is involved in endocytosis? They state later on in the manuscript that they did not do endocytosis assays with TGD lines, however if the authors include the correct controls, this could be easily done. It would also be really interesting to see whether endocytosis gets progressively worse going from WT to MCA2Y1344STOP to MAC2TGD. This experiment (as well as doing endocytosis assays for KIC4 and KIC5 TGD lines) would drastically increase the impact of this study. These experiments would not take more than 3 weeks to perform, and would not require the generation of new lines.

      So far were very hesitant to do bloated FV assays with TGDs (even though TGDs were available for the genes encoding MCA2 and KIC4 and KIC5). The reason for this was:

      1. the fact that these proteins could be disrupted indicated either redundancy or only a partial effect on endocytosis which might lead to only small effects that likely are difficult to pick up in an assay scoring for the rather absolute phenotype of bloated vs non-bloated. Using the refined assay measuring FV size could partly amend this but we note that also FV without hemoglobin have a certain size, reducing the relative effect if there are smaller differences.
      2. a TGD line does not permit tightly controlled inactivation of the target which makes comparing the outcome of bloated food vacuole assays difficult if there are smaller growth and stage differences to the 3D7 control.
      3. in contrast to conditional inactivation parasites, the TGD lines had ample times to adapt to loss of the target protein (compensatory mechanisms are well known for endocytosis, for instance in clathrin mediated endocytosis loss of individual components can be compensated (Chen and Schmid, 2020)). We nevertheless see the reviewer's point that this should at least be attempted and now conducted these assays (see also major point 40). For MCA2 (as requested in this point), the data is shown in Figure S5C-E. This assay showed that in MCA2-TGD, MCA2Y1344STOP-GFPendo (similar to the 3D7 control) >95% of parasites developed bloated food vacuoles. Additionally, we also measured the parasite and food vacuole size of individual cells in an attempt to solve some of the problems with TGDs with such assays. In order to specifically solve problem 2 mentioned above, we analysed the food vacuoles of similarly sized parasites, however, they were non-distinguishable between the three lines. Of note, in agreement with the reduced parasite proliferation rate (Birnbaum et al., 2020) a general effect on parasite and food vacuole size was observed for MCA2-TGD parasites, indicating reduced development speed in these parasites. Hence, it is possible that a potential endocytosis reduction was accompanied by a slowed growth, and the comparison of similarly sized parasites may have obscured the effect. It is therefore not sure if there indeed is no endocytosis phenotype, although we can exclude a strong effect in trophozoites.

      Based on the RSA results at least rings can be expected to have a reduced endocytosis in the MCA2-TGD. Apart from options 1-3 mentioned above, it is therefore possible there is an effect restricted to rings, although in that case the reduced growth in trophozoites would be due to other functions of MCA2. Overall, we can conclude that the MCA2-TGD parasites do not have a strongly reduced endocytosis, but given the fact that the parasites are viable, this is not surprising. Whether the MCA2-TGD has no effect at all on endocytosis we would be very hesitant to postulate based on these results.

      18) The authors should consider re-organising the MCA2 section, first showing that the 3xHA tagged line colocalises with K13, then performing the new truncation.

      We attempted to re-organise as suggested but because we now included additional fluorescence microscopy images of schizont and merozoites (in response to reviewer 2 major comment 3) the main figure would become even larger. To prevent this, we kept the 3xHA data in the supplement.

      19) Line 197: Once again ref 43 is not correct to illustrate that actin/myosin is involved in endocytosis

      We thank the reviewer for pointing this out – we removed Ref 43.

      20) Line 202: the authors state that MyoF localises near the food vacuole from ring stage/trophs onwards. However, how can this statement be made in schizonts based on these images (Fig. 2A), where it doesn't look like MyoF is anywhere near the FV? This statement can only be made for schizonts if co-localised with a FV marker (which is done in Fig. 2B), however, based on the number of MyoF foci, it appears that this was not done for schizonts. Please either remove the statement that MyoF is near the food vacuole from trophs onwards (because it is only seen near the FV up until trophs) or show the data in Fig. 2B of schizonts to substantiate these claims.

      This is a valid point. We originally did not focus on schizonts because most markers end up in some focal area in the forming merozoite but other proteins (such as e.g. K13) also have one or more additional foci at the FV, making interpretation unclear, particularly if the schizont is still organizing to become fully segmented. This is why we generally focused the K13 co-localisations on the trophozoite stage to obtain the clearest information on endocytosis. However, given the fact that this manuscript gives the first localization of MyoF in P. falciparum parasites, we now provide a comprehensive time course (Figure 1C, S1A) including schizonts, which show quite a complex pattern: while the MyoF-GFP localization in trophozoites appeared as multiple foci close to K13 and also the FV, the MyoF-GFP pattern changes in late schizonts (fully segmented) and merozoites, appearing as elongated foci no longer close to K13 or the FV. Of note, this pattern has been previously reported for MyoE in P. berghei (Wall et al., 2019).

      We therefore revised the statement about MyoF localization in schizont to better reflect the observed localization: (line 175): In late schizonts and merozoite the MyoF-GFP signal was not associated with K13, but showed elongated GFP foci (Figure 1C, S2A) reminiscent of the MyoE signal previously reported in P. berghei schizonts (Wall et al., 2019).”

      21) Line 204-206: what does this statement bring to the paper? Is it to show that it is the real localisation of MyoF because 2 tag cell line show the same localisation? I don't think this is needed, especially as later in the manuscript an HA-tag MyoF line is used and show similar localisation.

      We see the reviewers point, but prefer to keep this data included in the supplement, particularly because potential differences in the location of tagged MyoF were a major concern.

      Related to the tag issue: in order to get a better understanding of the effect of C-terminally tagging with different sized tags we now performed a more detailed analysis of the MyoF-3xHA cell line (Figure S2F-G), showing that this cell line shows a growth rate similar to the 3D7 wild type parasites, and has less vesicles than the 2x-FKBP-GFP-2xFKBP cell line, but still slightly, but significantly more than 3D7 parasites. Overall, this indicates that the smaller 3xHA tag has less effect on the parasite, than the larger 2x-FKBP-GFP-2xFKBP tag (see also new Figure 1L, showing a correlation of level of inactivation and the endocytosis phenotype for MyoF).

      22) Line 212: The overlap of K13 with MyoF in Figure 2C 3rd panel (1st trophozoite panel) is not obvious, especially as the MyoF signal seems inexistant. I would advise the authors to replace with a better image. Also, why are there no images of schizonts shown in Figure 2C?

      As suggested we exchanged the trophozoite image of panel Figure 2 C (now Figure 1C) and expanded this panel with images covering the complete asexual development cycle including schizonts in response to this and the previous points. As indicated above (point 20), schizont stages are complex to interpret. While late schizonts likely are not very relevant for endocytosis this is the first description of the location of the protein in this parasite and we therefore now provide a more thorough representation of the MyoF location across asexual stages in Figure1C and S2A.

      23) Line 217: the spatial association of MyoF with K13 is very different when it is tagged with GFP and when it is tagged with 3xHA. The way the authors word it here, it seems that there is agreement with the two datasets, when this is not in fact the case (59% overlap for MyoF-GFP and only 16% overlap with MyoF-3xHA). These data suggest that the GFP and the multiple FKBP tags are doing something to the protein and therefore maybe the ensuing results using this line should not be trusted or be taken with a pinch of salt.

      We agree with the reviewer that the location of this MyoF-GFP in the cell might differ due to the partial inactivation but in contrast to this comment, the data does not indicate any large differences. It seems the reviewer mixed something up (the 59% mentioned might come from the MCA2 figure?). The data with the two lines with differently tagged MyoF co-localised with K13 are actually quite comparable: GFP-tagged vs HA-tagged MyoF overlapping with K13 was 8% vs 16% full overlap, 12% vs 19% partially overlapping foci, 36% vs 63% foci that were touching but not overlapping (compare what now is Figure 1D and Figure S2C). Only in the 'no overlap' there is a much smaller proportion in the HA-tagged line. However, given that these are IFAs which on the one hand are more sensitive to see small protein pools but on the other hand also have pitfalls due to fixing of the cells (e.g. tiny increase in focus size due to fixing could increase the number of touching foci that in live cells might be close but did not touch), some variation can be expected to the live cells. We agree though that the partly reduced functionality of MyoF might be the reason for the consistent tendency of a lower overlap even though the difference is much less than indicated in the comment. We added "with a tendency for higher overlap with K13 which might be due to the partial inactivation of the GFP-tagged MyoF" to the sentence "IFA confirmed the focal localisation of MyoF and its spatial association with mCherry-K13 foci"

      While we expect the fact that the difference between these parasites is only small somewhat reduces the "pinch of salt" with the MyoF line, we do agree that the partial functional inactivation of the GFP-tagged MyoF line may have some impact. However, we do not think that this means the results with the MyoF-GFP line are untrustworthy. On the contrary, it provides insights into its function that in some ways is equivalent to a knock down or TGD. Overall all the MyoF lines show: few vesicles occur in the MyoF-HA-line, more in the MyoF-GFP line and even more after knock sideways of MyoF-GFP. Importantly the severity of this phenotype correlates with the growth rates in these lines. Hence, together with the bloated food vacuole assays, this provides consistent data indicating that MyoF has a role in the transport of HCC to the FV and its level of activity correlates with the number of vesicles and growth. To better highlight this, it is now summarised in Figure 1M.

      24) Line 219: the authors state here that they could not detect MyoF-GFP in rings, when in Figure 2C they show MyoF-GFP in rings, and also show that they could detect MyoF in Sup Fig. 3B with the 3xHA tagged line. Is this a labelling mistake in Figure 2C? If the authors could indeed not see MoyF-GFP in rings, this statement should have been made when Figure 2A was presented, and not so late in the manuscript, which causes confusion.

      We thank the reviewer for pointing this out. We now provide a detailed time course (see also previous points) which shows that there is no detectable MyoF-GFP signal during ring stage development until the stage where the parasites starts the transition to trophozoites (i.e. MyoF-GFP signal could only be observed in parasites already containing hemozoin). In addition to the extended time course in Figure 1C (previously 2C) we included a panel of example ring stage images below to further highlight this. We also changed the labelling of the parasite with MyoF-GFP signal the reviewer mentions in Figure 1C to “late ring stage” (it already contains hemozoin) to clarify this.

      The description of Figure 1A is now changed to: (line 153) *“The tagged MyoF was detectable as foci close to the food vacuole from the stage parasites turned from late rings to young trophozoite stage onwards, while in schizonts multiple MyoF foci were visible (Figure 1A, S2A).” *

      Please see our answer to major comment #45 where we provide an explanation for the difference between MyoF-3xHA and MyoF-GFP signal in ring stage parasites.

      [Figure MyoF]

      25) Line 237: Showing a DNA marker (DAPI, Hoecht) for Figure 2E, and subsequent figures using mislocalisation to the nucleus, would help the reader assess efficiency of the mislocalisation.

      Please see response to major comment #64 for a detailed answer on why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.

      26) Line 254-256: authors should show the results of the bloating assay for parental 3D7 parasites (+ and - rapalog) to see whether the MyoF line - rapalog has increased baseline bloating. This applies to all subsequent FV bloating assays.

      We did do several controls for bloated assays (including +/- rapalog of an irrelevant knock sideways line as well as using a chemical insult for which the control was 3D7 without treatment) in previous work (Birnbaum et al., 2020), which indicated that there is no effect of rapalog to reduce bloating. Although these controls are more stringent, we nevertheless did a 3D7 +/- rapalog control and added this to the manuscript (Figure S2I). As it is not possible to do this side by side with the assays that are already in the manuscript and the +/- rapalog 3D7 cells consistently showed no or very low numbers of cells without bloating (and stringent controls in the past equally did not show an effect), we believe adding this control once suffices.

      27) Line 254-257: The authors say that because fewer parasites show a bloated food vacuole upon inactivation of MyoF it means that less hemoglobin reached the food vacuole. I understand the authors statement, however, shouldn't they look at the size of the food vacuole, instead of the number of parasites with bloated FV, to make such a statement? This has been done for KIC12 so why not doing it for MyoF?

      This was now done and is provided as Figure 1J-K, S2J. The results confirm the assessment scoring bloated vs non-boated food vacuoles.

      28) Line 259-261: these results would be difficult to interpret namely because the authors have dying parasites, which is exacerbated with the protein being knocked sideways. The authors should mention the pitfalls their knock sideways and tagging design here. Line 260-261: RSA is an assay relying on measuring parasite growth 1 cycle after a challenge with ART for 6 hours.

      Fortunately, this concern is unfounded, as the survival (measured by parasitemia after one cycle) of the same sample + and - DHA is assessed, isolating the DHA effect independent of potential growth defects which are cancelled out. Hence, if there were parasites dying in the MyoF line (please note that they might not actually die, but simply grow more slowly), this factor applies for both the + and - ART condition. As we are testing for a decreased susceptibility to ART which would manifest as an increased survival in RSA surfacing above 1%, antagonistic effects of reduced MyoF function and ART treatment would not result in detectable differences as without effect, the RSA survival is always close to zero.

      The same applies for the knock sideways where we assess the survival of +rapalog between +ART and -ART. If the reduced MyoF activity of the knock sideways leads to a decreased survival, this applies to both +ART and -ART. Please also note that rapalog was lifted after the DHA pulse (see e.g. Figure S2K).

      That effects on growth are cancelled out is nicely illustrated for proteins where there is a stronger and more rapid effect on growth upon their conditional inactivation. For instance when KIC7 is knocked aside, there is a considerable increased of RSA survival, even though continued inactivation of KIC7 would have a severe growth defect (Birnbaum et al., 2020). Vice versa, a growth defect alone does not result in reduced RSA susceptibility as evident from knock sideways of an unrelated protein or using a chemical insult (Figure 4H in (Birnbaum et al., 2020) or simply slowing the ring stage by e.g. reducing EXP1 levels (Mesén-Ramírez et al., 2019). Hence, a growth reduction is not expected to alter the RSA outcome. And even if it did, it would only lead to an underestimation of the readout if growth is too severely affected (which would be obvious in the + rapalog without DHA sample, which was not the case).

      In that respect it is valuable to have the rapid kinetics of knock sideways which permit inactivation of a protein before severe growth defects occur (although the only partial responsiveness of MyoF clearly is not the most optimal). In contrast, the absolute loss of a gene (as is the case if diCre is used) prevents (or at least makes it extremely difficult as the timing would need to exactly hit sufficient protein reduction without killing the parasite until the end of the RSA) using this system in these experiments (again see (Mesén-Ramírez et al., 2021) where in a EXP1 diCre based knock out RSA was only possible because we complemented with a lowly, episomally expressed EXP1 copy to have parasites with only a partial phenotype to do this assay).

      29) Line 261-263: the authors sate that MyoF has a function in endocytosis but at a different step compared to K13 compartment proteins. I am not sure what they mean here. Can this be clarified?

      The different steps in endocytosis are explained in the introduction and we now tried to further clarify this (line 98). So far VPS45 (Jonscher et al., 2019), Rbsn5 (Sabitzki et al., 2023), Rab5b (Sabitzki et al., 2023), the phosphoinositide-binding protein PX1 (Mukherjee et al., 2022), the host enzyme peroxiredoxin 6 (Wagner et al., 2022) and K13 and some of its compartment proteins (Eps15, AP2µ, KIC7, UBP1) (Birnbaum et al., 2020) have been reported to act at different steps in the endocytic uptake pathway of hemoglobin. While inactivation of VPS45, Rbsn5, Rab5b, PX1 or actin resulted in an accumulation of hemoglobin filled vesicles (Lazarus et al., 2008; Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023), indicative of a block during endosomal transport (late steps in endocytosis), no such vesicles were observed upon inactivation of K13 and its compartment proteins (Birnbaum et al., 2020), suggesting a role of these proteins during initiation of endocytosis (early steps in endocytosis).

      VPS45 has not apparent spatial connection to the K13 compartment but the fact that MyoF does - and its inactivation also results in vesicle accumulation - indicates that it is downstream of vesicle initiation, providing the first connection from the initiation phase to the transport phase. More evidence for these different steps of endocytosis has been published in a recent preprint from our lab, where we simultaneously inactivated a protein of both “endocytosis steps” (Sabitzki et al., 2023).

      To clarify this in the results as requested, we changed the statement to: (line 256) Overall, our results indicate a close association of MyoF foci with the K13 compartment and a role of MyoF in endocytosis albeit not in rings and at a step in the endocytosis pathway when hemoglobin-filled vesicles had already formed and hence is subsequent to the function of the other so far known K13 compartment proteins.”

      30) Do the authors mean that it is involved in endocytosis but not in ART resistance? If so, this is a very difficult statement to make since the parasites are dying. Is there any evidence of point mutations in MyoF in the field?

      We split this point to address all issues raised here. Please see response to point 29 which clarifies that this was meant in a different way and our response to point 28 which explains why the dying parasite issue is not expected to affect the RSA (please also note that we do not have evidence of actually dying parasites in the MyoF-2xFKBP-GFP-2xFKBP line, most likely the growth is slowed).

      The mutation issue is interesting. In fact evidence exists that MyoF mutations may be associated with resistance (Cerqueira et al., 2017) (please note that there it is still called MyoC) but in a recent preprint from our lab we did not find any evidence for a significantly changed RSA survival in 12 tested mutations in the corresponding gene (Behrens et al., 2023).

      To clarify this we added the following statement to the discussion (line 709): "Of note, mutations in myoF have previously been found to be associated with reduced ART susceptibility (Cerqueira et al., 2017), but 12 mutations tested in the laboratory strain 3D7 did not result in increased RSA survival (Behrens et al., 2023)*. *

      31) Line 298: the authors state that there is no growth defect in the first cycle when rapalog is added to the KIC11 line, however based on Figure 3D, there is evidently a 25% reduction in growth compared to - rapalog at day 1 post treatment, and a 60% reduction by day 2, which is still within the 1st growth cycle. The authors should either revise their statement or provide an explanation for these findings. The authors should also explain why their Giemsa data in Fig. 3E is not in accordance with their FACS data.

      We think there is a misunderstanding here, as our figure legend was not detailed enough and we apologise if this had been misleading. The growth effect is restricted to invasion or possibly the first hours of ring stage development (see point 4&5, reviewer 2), which in asynchronous cultures more rapidly takes effect as the culture also contains schizonts that immediately generate cells that re-invade but can't due to inactivation of KIC11 (due to the rapid action of the knock sideways, KIC11 is already inactivated). In contrast, in highly synchronous cultures, this effect can only be evident once the parasites reached the schizont stage (starting with rings this takes close to 2 days). We now clarify that Figure 2E (previously Figure 3D) shows growth data obtained with an asynchronous parasite culture, while in Figure 2F the growth assay is performed with tightly synchronized (4h window) parasites as stated in the Figure legend.

      We now explicitly state in each Figure legend and for each growth experiment throughout the manuscript whether we used asynchronous or synchronized parasites for growth assays.

      Related to this, the incorrect y-axis label of what is now Figure 2E mentioned in major comment #58 is now corrected.

      32) Line 301: KIC11 could also be important very early for establishment of the ring stage for example for establishment of the PV. Also, was mislocalisation assessed in rapalog-treated parasites at 72 hours or in cycle 3?

      This is a valid point and this has now been addressed. We performed an invasion/egress assay revealing similar schizont rupture rates, but significantly reduced numbers of newly formed ring stage parasites (Figure 2H, S3G), indicating an effect of KIC11 inactivation either on invasion or possibly the first hours of ring stage development. A very similar point was raised by Reviewer 2, please see reviewer 2; major comment #4. This is now also reflected in line 302, which now reads: ”… indicating an invasion defect or an effect on parasite viability in merozoites or early rings but no effect on other parasite stages (Figure 2F-H, Figure S3F-G).”

      We further included an assessment of mislocalization 80 hours after the induction of knock-sideways by addition of rapalog in Figure S3E which showed mislocalization of KIC11 to the nucleus.

      33) Line 311: the authors should change the sentence from 'not related to endocytosis' to 'not related to endocytosis or ART resistance'.

      Done as suggested.

      34) Line 323-325: Authors say that a nuclear GFP signal can be observed in early schizonts for KIC12. According to the pictures provided in Figure 4A and Figure S5A it is not very obvious. Also faint cytoplasmic GFP signal could only be background as we can see that exposure is higher for schizont pictures

      We changed the sentence (line 339) to: “…nuclear signal and a faint uniform cytoplasmic GFP signal was detected in late trophozoites and early schizonts and these signals were absent in later schizonts and merozoites (Figure 3A, Figure S4A,B).” in order to emphasize that the nuclear signal disappears early during schizont development.

      35) Line 326-328: The authors say that kic12 transcriptional profile indicate mRNA levels peak (no s at peak) in merozoites. Should they show live cell imaging of merozoites then? Because from the Figure 4A schizont pictures where schizonts are almost fully segmented no signal can be observed.

      The observation that mRNA levels of early ring stage expressed proteins tend to increase already in mature schizonts and merozoites is well established (e.g. (Bozdech et al., 2003)). A very good example for this are exported proteins of which most show a transcription peak in schizonts but the proteins are only detected in rings see e.g. (Marti et al., 2004). Hence, our observation for KIC12 is quite typical.

      We originally did not include merozoites, as in the last row of Figure 3B fully developed merozoites within a schizont with already ruptured PVM are shown and no GFP signal can be detected in these parasites. We now provide images of free merozoites in Figure S4A-B showing again no detectable GFP signal.

      We thank the reviewer for pointing out the typo, "peak" has been corrected.

      36) Line 347: The authors state that using the Lyn mislocaliser the nuclear pool of KIC12 is inactivated by mislocalisation to the PPM. This tends to suggest that only the nuclear pool of KIC12 is mislocalised. How is it possible that only the nuclear pool is mislocalised?

      The Lyn mislocaliser is at the PPM which is continuous with the cytostomal neck where the K13 compartment likely is found. The effect of the Lyn mislocalizer on the KIC12 protein pool localizing at the K13 compartment is therefore somewhat unclear. For this reason we already had the following statement in the original submission (line 400): “Foci were still detected in the parasite periphery and it is unclear whether these remained with the K13 compartment or were also in some way affected by the Lyn-mislocaliser.” We would like to stress here that the same does not apply to the nuclear mislocaliser, which is only a trafficking signal delivering KIC12 to the nucleus and hence likely does not affect the nuclear pool of KIC12, only the K13 compartment pool (the main interest of this manuscript).

      We realised that the statement towards the end of this paragraph was unnecessarily ambiguous in regards to the K13 compartment pool of KIC12 which might have caused some confusion about the function of this pool of KIC12 and therefore modified it to (line 374): "Due to the possible influence on the K13 compartment located foci of KIC12 with the Lyn mislocaliser, a clear interpretation in regard to the functional importance of the nuclear pool of KIC12 other than that it confirms the importance of this protein for asexual blood stages is not possible. In contrast, the results with the nuclear mislocaliser indicate that the K13 located pool of KIC12 is important for efficient parasite growth.". It is also important to note that this limitation does not apply to the NLS knock sideways in regard to the K13 compartment and that the endocytosis function of this pool of KIC12 seems solid which with this statement is enforced.

      37) Line 368-369: Effect was also only partial for MyoF. Why didn't you measure the same metrics for MyoF?

      This was now done and is provided as Figure 1J-K, S2J, confirming our previous interpretation, see also point #27 which raises the same point.

      38) Line 379: you don't know if all proteins acting later in endocytosis will have an increased number of vesicles as a phenotype

      This is based on our current definition as stated in the introduction. It assumes a directional vesicular transport of hemoglobin to the food vacuole where inhibition of early stages will prevent transport before HCC-filled autonomous vesicular containers have formed and entered the cell. In contrast later inhibition stops such containers from further transport, leading to their accumulation. Such an accumulation is visible after VPS45-inactivation and other proteins (Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023) or treatment with cytochalasin D (Lazarus et al., 2008). While it is possible that there may be smaller intermediates formed at the K13 compartment that later on unite or fuse with the compartment evident after VPS45 inactivation and these might be missed due to small size (i.e. inhibition of a step between K13 compartment and an early endosome or equivalent), this would still be upstream of the VPS45 induced containers and hence would be earlier. We therefore believe that based on the framework given in the introduction (see also (Spielmann et al., 2020)) to assume that a phenotype manifesting as reduced food vacuole bloating without formation of detectable vesicles likely signifies inhibition of the process early whereas reduced bloating but with vesicles signifies inhibition later in the process.

      39) Line 413-414: The authors state that no growth defect was observed upon KS of 1365800. Is growth alone enough to say that there is no impact on endocytosis?

      This is an interesting point. The endocytosis proteins we studied so far indicate that efficient impairment of endocytosis manifests as a severe growth defect. Hence, lack of a growth defect can be assumed to be an indicator for absence of an important role for endocytosis (or any other growth relevant process). Clearly there is a gradual response, such as seen in the different MyoF versions resulting in proportional growth and vesicle appearance phenotypes. Hence, a protein with a minor role might have slipped our attention but then it probably is also not a very important protein in endocytosis.

      To further strengthen our assessment of PF3D7_1365800 importance for asexual blood stage development, we now also generated a cell line expressing the PPM Mislocalizer, enabling knock sideways to the PPM. This was done because this protein consistently has a focus at the nucleus that may be within the nucleus. Again this revealed no growth defect upon inactivation (Figure S7D).

      40) Line 432: in this section, the authors state that KIC4 and KIC5 seem to have domains that may suggest these proteins are involved in endocytosis, based on the alpha fold data that is publicly available. Considering the authors have TGD-SLI versions of these lines (Birnbaum et al. 2020) and have already confirmed in this previous publication that they confer resistance to ART; it would make sense to look at endocytosis for these genes. This would be a relatively simple and straightforward experiment, taking no longer than two to three weeks, and would require no additional reagents or line generation. Doing these experiments would add a lot more weight to this final section. The authors later state that KIC4 and 5 are TGD lines, so not the best for endocytosis assays. It is unclear why this would be difficult to do if an adequate control is contained in the experiment (such as parental 3D7). It explains why they did not perform the MCA2 endocytosis assays further up, but in my opinion, an attempt at doing these assays is important and would significantly increase the impact of this paper. Identical as major comment #17.

      As stated in the manuscript and above, we were originally hesitant to do these assays due to the fact that we can't induce inactivation which is less ideal than comparing the identical parasite population split into plus and minus and is further complicated by the likely smaller effect as the TGDs still permitted growth. However, we see the point of the reviewer and now performed these assays using 3D7 as controls and taking extra care to account for stage differences between the TGD lines and 3D7. However, there was no significant difference in the bloated food vacuole assays with these cell lines. Due to the reasons mentioned in major point 17, we are not sure this indeed means these proteins have no role in endocytosis. One possible reason why we were able to obtain these TGDs may have been because the effect on endocytosis is less than in the essential proteins (or is ring stage specific) and in a TGD an endocytosis defect may therefore not be detectable with our assays (see details and further possible explanations in response to point 17).

      In an attempt to address the TGD issue, we generated knock sideways cell lines for KIC4 and KIC5. Unfortunately, the mislocalization of KIC5 to the nucleus was inefficient (see figure below). As this did not result in a growth defect (in contrast to the clear KIC5-TGD growth defect (Birnbaum et al., 2020)), this line is not suitable to study a potential role of this protein in endocytosis. Therefore, we performed the bloated food vacuole assay only with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites. However, this revealed no effect on HHC uptake, which is in line with the normal growth of KIC4-TGD parasites (Birnbaum et al., 2020) and suggests that this protein could only have a minor or redundant role in endocytosis (it is the line that shows the smallest effect in RSA). As the KIC4 and KIC5 knock sideway lines did not permit any conclusions, we did not include them into the revised manuscript but they can be found here:

      [Figure KIC4 knock sideways & KIC5 knocksideways]

      Figure legend: (A) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+ 1xNLS mislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Relative growth of asynchronous KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser plus rapalog compared with control parasites over five days. Three independent experiments were performed. Growth of knock sideways (+ rapalog) compared to control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (blue) or KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (red) parasites over five days. Mean relative parasitemia ± SD is shown. (B) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Growth of asynchronous KIC5-2xFKBP-GFP-2xFKBPendo+ 1xNLSmislocaliser plus rapalog compared with control parasites over five days. Four independent experiments were performed. __(C) __Bloated food vacuole assay with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 8 hours after inactivation of KIC4 (+rapalog). Cells were categorized as with ‘bloated FV’ or ‘non-bloated FV’ and percentage of cells with bloated FV is displayed; n = 3 independent experiments with each n=19-30 (mean 21.4) parasites analysed per condition. Representative DIC are displayed. Area of the FV, area of the parasite and area of FV divided by area of the corresponding parasites were determined. Mean of each independent experiment indicated by coloured symbols, individual datapoints by grey dots. Data presented according to SuperPlot guidelines (Lord et al., 2020); Error bars represent mean ± SD. P-value determined by paired t-test. Area of FV of individual cells plotted versus the area of the corresponding parasite. Line represents linear regression with error indicated by dashed line.

      41) Line 490-493: the authors state that the K13 compartment proteins fall in two groups, some that are involved in ART resistance AND endocytosis, and some that have different functions. However, in this manuscript the authors have demonstrated 3 flavours that K13 compartment proteins can come in: • Some that confer ART resistance and are involved in HCCU (MCA2) • Some that are involved in HCCU but not ART resistance (MyoF & KIC12) • Some that are involved in neither (KIC11) The authors should therefore revise this statement.

      We agree that this was not well phrased. To account for the fact that not all endocytosis proteins confer increased RSA survival to the parasites when inactivated we changed this statement (line 604): "This analysis suggests that proteins detected at the K13 compartment can be classified into at least two groups of which one comprises proteins involved in endocytosis or in vitro ART resistance whereas the other group might have different functions yet to be discovered.

      Generally, we believe that endocytosis is the overarching criterion and we therefore would like to keep the definitions of the main groups (endocytosis or not). As indicated by the title, the focus of the manuscript is on the K13 compartment for which so far endocytosis is the only experimentally associated function. That this group contains proteins that do not confer reduced ART susceptibility when conditionally inactivated (KIC12 and MyoF) is explained by their stage-specificity, making this a subgroup of the overarching endocytosis group.

      We realise that with the endocytosis data on the KIC4, KIC5 and MCA2 TGD there is now also a subgroup we were unable to demonstrate an endocytosis effect in trophozoites although they show changes in RSA survival. However, as indicated above, we would be hesitant to fully exclude some role of these proteins in endocytosis in rings. Particularly as a comparably small reduction in endocytosis protein activity or abundance is sufficient to increase RSA survival (Behrens et al., 2023). A principal classification of "endocytosis or ART resistance" or "neither endocytosis nor ART resistance" still accounts for this and therefore seems to us to be the most useful, particularly also in light of our domain identification that then can be linked with one or the other group.

      42) Line 508: the authors state that they expanded the repertoire of K13 compartments, when in fact they functionally analysed them - they did not do another BioID to identify more candidates.

      We respectfully disagree with the reviewer in this point, we did expand the repertoire of known K13 compartment proteins. Only independently experimentally validated proteins from proximity biotinylation experiments can be considered part of the K13 compartment (or any other cellular site or complex). Without validation of the location, the identified proteins can only be considered candidates. This is highlighted in this manuscript by the finding that several proteins of the list did not localize at the K13 compartment.

      43) Line 570-572: has anyone ever tested whether CytoD or JAS treatment in rings, is sufficient to mediate ART resistance? Something similar to what was done in PMID 21709259 with protease inhibitors. If not this would be a pretty interesting experiment for the authors to do that could shed more light on the MyoF data. It would take maybe 2 weeks to do and not require the generation of any new lines. This would clarify whether other Myosins other than MyoF are involved in endocytosis, as is suggested by previous publications (PMID: 17944961).

      We now included this experiment. In agreement with a lacking need of MyoF in rings and no effect on RSA survival, there was no increased survival of the parasites in RSA (neither on 3D7 nor on K13 C580Y parasites) after cytD treatment (new part in Figure 1M). We thank the reviewer for pointing out that this experiment might also inform on whether other myosins influence endocytosis in ring stages. We added (line 250): Similarly, also incubation with the actin destabilising agent Cytochalasin D (Casella et al., 1981), had no effect on RSA survival in 3D7 or K13C580Y (Birnbaum et al., 2020) parasites, indicating an actin/myosin independent endocytosis pathway in ring stage parasites (Figure 1M) and speaking against other myosins taking over the MyoF endocytosis function in rings.”

      44) Line 608: inhibitors targeting the metacaspase domain of MCA2 may inadvertently inactivate other essential parts of the protein. They authors should acknowledge this possibility in the text.

      The inhibitors used in the cited studies (Kumari et al., 2018) are validated metacaspase inhibitors, such as Z-FA-FMK (Lopez-Hernandez et al., 2003). Activity against the other parts of PfMCA2 - which apart from the MCA domain shows no homology to other proteins - is therefore unlikely.

      45) Line 624-625: the authors state that MyoF is 'lowly expressed in rings' - indeed this is the case in their MyoF-2xFKBP-GFP-2xFKBP line which the authors established has defects due to the tag, but it appears from their MyoF-3xHA tagged line that it is expressed in rings. The authors should therefore revise their statement, and be careful of making claims based on their defective line and using fluorescence imaging as their only metric. If they do want to make the statement that it is not there in rings, they should also do a western blot, which is much more sensitive since it amplifies the signal compared to an image of one parasite.

      This comment is related to major point #24. We also would like to stress that while the MyoF-GFP line already shows a phenotype, the impression of defectiveness based on its location is due to a mix up (see major point #23).

      We now provide a comprehensive time course of the MyoF-GFP signal (Figure 1C, S2A) showing that there is no detectable MyoF-GFP signal until the transition from ring to trophozoite stage. As this is all under the endogenous promoter, we do not think the partial functional inactivation of the tagging is the reason for the absence of the signal. If anything, we would have expected adding a stably folded structure such as GFP to increase the stability of the protein. The main reason for the discrepancy of MyoF signal in rings between the GFP-tagged line (of note there is also no detectable MyoF-GFP signal in MyoF-2xFKBP-GFP ring stage parasites (Figure S2B)) and the HA-tagged line likely is that IFA is much more sensitive than live GFP detection (similar to the high sensitivity the reviewer mentions in regards to WB). This discrepancy therefore is likely due to the fact that the lowly expressed MyoF only become apparent with the HA-tagged line due to the IFA. We therefore believe that MyoF is 'lowly expressed in rings' is an appropriate description of our results obtained with three different cell lines (MyoF-2xFKBP-GFP-2xFKBP, MyoF-2xFKBP-GFP and MyoF-3xHA). We hope this is sufficiently well reflected in the manuscript where we write ‘a low level of expression of MyoF in ring stage parasites.’ not that it is ‘not there in rings’ (line 174).

      46) Line 635: arguably this is the 3rd variety and not the 2nd (the authors already mentioned 2 types - ones that are involved in HCCU AND ART and those involved in HCCU only). See comment for line 490-493 above.

      See response for major comment #41, we now consistently used "or" instead of "and". See line 490-493 how this was resolved for what previously was line 635.

      47) Line 785: Bloated food vacuole assay/E64 hemoglobin uptake assay method specify that a concentration of 33mM E64protease inhibitor was used. However, in reference 44, cited in the manuscript, a concentration of 33µM E64 was used. Please confirmed if this is just a typo or if 1000x E64 concentration was used which renders the experiment invalid.

      We thank the reviewer for pointing this out, we corrected this typo and will look out for symbol font conversion errors for the resubmission.

      48) Line 788: it is unclear from this section what is considered a bloated food vacuole - is there an area above which the FV is considered bloated? Do the authors do these measurements manually or use an addon in FIJI/ImageJ? What is the cutoff for if a FV is bloated? Please clarify. Additionally, for the representative images + rapalog for Figures 2H and 4H, it would be useful to see where the authors delineate the FV (add a white circle showing what is actually measured).

      The bloated FV assay is well established (Jonscher et al., 2019; Birnbaum et al., 2020; Sabitzki et al., 2023). Although the bloating of the FV is a human judgment call, it is actually quite obvious: bloating appears as an easily spotted bulging of the FV in DIC. As also minor bloating is scored as 'bloated', it is a very conservative assay. Using an-add on to measure this is not straight forward. It is unclear how this bulging effect of the FV in DIC could be spotted by a software and due to the obviousness to human operators, potentially lengthy and complicated efforts to design appropriate machine learning options were not undertaken. The situation faced by the scorer of the assay is evident from Figure S4F-G which contains close to 50 "on rapalog" cells and close to 50 control cells, giving representative cells from all replicas of bloated FV assays with KIC12. Please note that these images shows the most complicated situation as far as bloated assays go, because the phenotype is not 100% (see Figure 3F) compared to e.g. KIC7 inactivation which leads to lack of bloating in almost all cells (see (Birnbaum et al., 2020) Figure 3E) but nevertheless the difference is still obvious. We are aware that in such situations (less than absolute inhibition) this assay scoring of "yes" or "no" is a surrogate for the actual level of inhibition and may be more subjective. This is why in this case we also did the FV size measurements (which are less dependent on human judgment) to further support this and give a better quantifiable measure. Of note, the bloated food vacuole judgments are done "blinded", i.e. the examiner does not know which sample they are looking at.

      In response to this reviewer's point we now also added the FV size refinement of the assay for MyoF inactivation which is one of the cases where inhibition of bloating is not in 100% of the cells (see major comment #27). Please also note here the advantage of the rapidly acting knock sideways technique for these assays which shows the sum of effect 8 h after initiating inactivation and for which we carefully control size of the cells which shows that there is no significant growth reduction over the assay time, excluding secondary effects due to a generally reduced viability. Compared to slower acting systems suggested to have been used instead (see introductory part and significance of this review), the rapid speed of knock sideways reduces the risk of potential pleiotropic or compensatory effects due to the time needed for proteins to be depleted if the gene or mRNA is targeted instead.

      The suggestion to include a ‘white circle’ (raised also as minor comment#27) is useful as an aid to see the food vacuole. However, in contrast to the Figures in (Birnbaum et al., 2020) (where we did add such a circle), we here included the DHE staining images in the figure, labelling the parasite cytosol which readily shows the FV (the FV corresponds to the region where there is no DHE staining). As this shows the position of the FV we would prefer to not obscure the DIC images with additional features to permit the reader to see the difference between bloated or non-bloated food vacuoles and keeping the image as natural as possible.

      49) Line 863-864: this sentence seems to be out of place.

      We thank the reviewer for pointing this out, the details of nucleus staining were moved to the correct part.

      50) Line 875: the authors state that there is a light blue wedge, when the circle consists of grey and black wedges. Please revise this.

      This has been corrected.

      51) Line 1059-1061: it is unclear whether the individual growth curves are different clones or whether they are just the same experiment repeated? If it is the latter, then why are they not combined, as is traditionally done?

      These are the individual replicates of the growth curves shown in Figure 1G of the same cell lines done on a different occasion. We always try to show as much of the primary data as possible and believe that showing individual data points from the different experiments is better than only the combined values which obscure the actual course of each experiment.

      52) Line 919-924: the authors mention a blue and red line, but there is only a black line in figure 3D. Moreover, the experiment of using the LYN mislocaliser was only done for KIC12 according to the manuscript. Additionally, the y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis there are several days. In the text it says there is no growth defect until the second cycle, but from this graph it appears the growth defect is evident as early as 1 day post rapalog treatment. Can the authors please clarify and correct the issues pointed out.

      We thank the reviewer for pointing this out, this was due to a copy & paste error in the figure legend that was now amended. We also fixed the incorrect axis label. For the last part (growth defect) please see detailed answer to Major comment#31 raising the same concern for KIC11 (in synchronous parasites the defect only takes effect once the cells reached the relevant stage whereas in asynchronous cultures there are always cells in the relevant stage that due to the rapid effect of the knock sideways already have a growth phenotype).

      53) Figure 1 panel B & C: the label of the figure where the signal from MCA2Y1344STOP-GFP is shown with the DAPI signal overlayed is deceptive since it suggests that this is the signal of full length MCA2. Please change the label of this panel from MAC2/DAPI to MCA2Y1344STOP/DAPI. The same is true for Panel C for the image labeled MCA2/K13 - please change this to MCA2Y1344STOP/K13.

      Done as requested.

      54) Figure 2B: what stages are these parasites? Please state this in the figure. Based on the MyoF pattern, it looks like rings in the upper panel and trophs in the bottom pannel. Why were schizonts not shown?

      Both are trophozoites (early trophozoite in top panel and late trophozoite in bottom panel). This is now labelled in what now is figure 1B. As stated above, schizont stages are less relevant for the topic of this manuscript and in order to prevent the manuscript from getting more disjointed and keeping it more focussed on the main topic, we decided to not include a schizont in the manuscript. Nevertheless, we included an example image below.

      [Figure MyoF_p40px schizont]

      55) Figure 2D&F: it is not very meaningful when growth assays are shown as a final bar after 4 days of growth. It is much more useful and informative to see a growth curve instead (as is shown in the supplementary), since it shows if the defect is apparent in the first growth cycle or later. With the way the data is currently shown, this is not apparent. I would advise the authors to switch the graph in 2F out of a combined graph of all the biological replicates growth curves for S3D - showing error bars.

      While we in principle fully agree with the reviewer in showing the course of the full experiment (which is available in Figure S2E), the key here is to show the overall difference. Hence, we would like to keep this comparison of the overall effect on growth in what now is Figure 1E and G. It is part of the argument to the doubts this reviewer raises to the function of MyoF (mainly in the overall assessment and the significance statement) to show that the phenotype is actually very consistent (partial inactivation through tagging or further inactivation using knock sideways increases endocytosis phenotypes, correlating with parasite viability).

      Please also note, that the growth curves upon knock sideways shown in Figure 1G, S2E are performed with asynchronous parasite cultures, which doesn’t allow us to draw direct conclusions about growth cycle effects.

      Nevertheless, we now also included the suggested combined data representation in Figure S2E.

      56) Figure 3: why were the calculation of FV area, parasite area and FV/parasite area only done for KIC12 and not done for MyoF? It would be interesting to see if any of these values are different for MyoF - whether the parasites are smaller in area and therefore FV smaller. Please present them Figure 2. Images should be already available and would not require further experiments to be done, only the analysis.

      This now has been done (confirming our results) and is included as Figure 1J-K, S2J. This point was also raised as major comment #37, please also see detailed answer there.

      57) Figure 3B: why is there no spatial association assessment for KIC11 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins.

      This is now included in Figure 2C.

      58) Figure 3D: The y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis the experiment takes place over several days. Is this a typo in the y axis? Additionally, the authors state in line 287-290 that the growth defect upon addition of rapalog is only seen in the second cycle, but from this graph it appears the growth defect is already evident 1 day post rapalog addition. The figure legend also does not make sense for this figure since it mentions a blue and a red line, when there is only a black line present. The legend also mentions the LYN mislocaliser which was used for KIC12 not KIC 11 (see above).

      We apologise for the inadequate legend and colour issues, this was amended. This point was also raised in major comment #31 and #52, please find detailed answer there.

      59) Figure 3E: the colour for Control and Rapalog 4 hpi are very similar and very hard to discern. Please choose an alternative colour or add a pattern to one of the samples. The y axis is also missing a label. Is this supposed to be parasitemia (%)?

      We thank the reviewer for pointing this out, the missing label is now included and the colour has been adapted to make them better distinguishable.

      60) Figure 4A: the ring shown in this figure does not appear to be a ring (it is far too large and appears to have multiple nuclei?). Do the authors have any other representative images to show instead?

      This is in fact a ring, but we realize that we accidentally included an incorrect size bar in the ring image of Figure 4A (now Figure 3A) (size bar for 63x objective instead of the correct one for the 100x objective), we apologise for this oversight. We don’t think this parasite has multiple nuclei, instead the Hoechst signal shows the often elongated nucleus seen in rings that can appear as two foci in Giemsa stained smears which leads to the typical diagnostic feature of P. falciparum rings in diagnostics. In order to exclude any doubts about the nuclear localization of KIC12 in rings, we here attached a panel with more examples of KIC12-2xFKBP-GFP-2xFKBP ring stage parasites.

      [Figure KIC12]

      61) Figure 4B: why is there no spatial association assessment for KIC12 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins. This should be done for the different life cycle stages considering the changing localisation of KIC12.

      This is now provided in Figure S4A. As suggested by the reviewer, we independently quantified the association for ring stage, early trophozoite and late trophozoites stage. As there is no KI12 signal in schizonts, we did not include a quantification for this stage.

      62) Figures 4C&E: it is extremely important to show the DNA stain in both these samples considering that a portion of KIC12 is in the nucleus! Please add the DAPI signal for these figures (as for all other figures!).

      Please see major comment #64 for a detailed answer why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.

      63) Figure 4E: this figure should be presented before 4D (considering the line being presented in 4E is used in an experiment in 4D). The authors should switch the order of these two.

      We see the point the reviewer is raising here, Figure 4D (now Figure 3D) also contains the data with the Lyn mislocaliser while we first talk about the NLS mislocaliser. This permits a better comparison between the two mislocaliser lines. However, first explaining the Lyn-mislocaliser and then going back to the NLS would make it rather complicated for the reader to follow the storyline and therefore we would like to keep the order as it is. We realise that this means the reader has to go back one figure part for seeing the Lyn growth data, but believe this is worth the benefit that the data is there compared to the NLS result.

      64) It is unclear why in many of the fluorescence images the authors do not show the DAPI signal - particularly when colocalising with K13 and when doing the knock sideways experiments. Please add these images to the figures - I would assume they have already been taken, so would simply involved adding the images to the panel.

      We did not include DNA staining (DAPI or Hoechst) for any of the images used to assess the efficacy of mislocalization, as we would prefer to keep the parasites as representative of a viable parasites in culture as possible. Hence they were imaged without DNA stain (these stains are toxic). We would like to point out that a DNA stain is not necessary, as the mislocaliser already marks the nucleus (in the case of the NLS mislocaliser), actually even somewhat more accurately, as it fills the entire nuclear space rather than only the DNA which is marked by DAPI or Hoechst.

      For LYN this admittedly is not the case, there the mislocaliser marks the plasma membrane. However, we think the proper control for efficient mislocalisation is the comparison between the GFP-tagged protein of interest and the mCherry mislocaliser to show mislocalisation, as previously done in our lab (e.g. (Birnbaum et al., 2017; Jonscher et al., 2019; Birnbaum et al., 2020)).

      Due to their toxicity, we also avoided nuclear staining in some other parts of the manuscript when we were of the opinion that a nucleus signal was not necessary.

      65) Throughout the manuscript, there is no western blot confirming the correct size of their modified proteins. This should be provided.

      We did perform Western blot analysis for both MCA2 cell lines. MCA2 is the only gene-product for which we generated a disruption for this work, and together with the severe truncation from previous work, we provided a Western blot-based confirmation of the correct size.

      The MCA2 disruptions are at least partially dispensable for in vitro parasite growth, hence if degradation occurred, this might not have been noticed. In that case we considered it relevant to show that the truncations were of the expected size. The other proteins in the main figures are essential for growth. Hence, if the tagging approach would lead to unexpected changes in protein integrity (which we assume is what was intended by this concern to be assessed with a Western blot), the parasites expressing the tagged MyoF, KIC11 and KIC12 would - due to their importance for asexual blood stage development - not have been obtained. Hence, we can assume the integrity of the tagged protein is very unlikely to have been affected in a functionally relevant way.

      66) None of the figures are appropriate for individuals with colour blindness, limiting their accessibility to the paper. Please change the colour schemes for all fluorescent images using magenta/green or an alternative colour combination appropriate for colourblind individuals.

      We thank the reviewer for this comment. This has now been amended, individual channels of fluorescence microscopy images are now shown in greyscale, while the overlay was changed to green/magenta.

      Minor Comments

      1) line 29: remove 'are'.

      Done.

      2) Line 29: the text says "HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins are among the few proteins so far functionally linked to this process." The sentence should be: 'HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process."

      Done.

      3) line 44: remove 'the'

      Done.

      4) Line 48: consider mentioning here that malaria is caused by the parasite Plasmodium - otherwise the first mention of parasite in line 52 is confusing for the non-specialist reader.

      Done.

      5) Line 49: estimated malaria-related death and case numbers are from the 2021 WHO World malaria report. You cite the 2020 WHO World malaria report.

      We now cite the newest WHO report.

      6) Line 53: please insert the word 'have' between now and also.

      Done.

      7) Line 54: please change 'was linked' to is linked

      Done

      8) Line 72: I would specify that free heme is toxic to the parasite. Especially as you mention that hemozoin is nontoxic.

      Sentence would be "where digestion results in the generation of free heme, toxic to the parasite, which is further converted into nontoxic hemozoin"

      Done.

      9) Line 90: authors should either say "in previous works" or "in a previous work"

      The text has been altered to say: “ in a previous work”.

      10) Line 91: "We designated these proteins as K13 interaction candidates (KICs)"

      Done.

      11) Line 95: please change 'rate' to number

      Done.

      12) Line 109: Please include a coma before (ii).

      Done.

      13) Line 112: as shown by Rudlaff et al in the paper you are citing, PPP8 is actually associated with the basal complex. You can say that "(ii) were either linked or had been shown to localise to the inner membrane complex (IMC) or the basal complex (PF3D7...).

      Done.

      14) Line 114: Protein PF3D7_1141300 is called APR1 in the manuscript but ARP1 in Supplementary Table 1. Please correct.

      Done.

      15) Line 131: please define SNP - this is the first use of the acronym.

      Done.

      16) Line 133-134: South-East Asia instead of "South Asia"

      Done.

      17) Line 135: please explain what TGD is - it is referred to over and over again in the manuscript without ever being explained.

      We apologise for this oversight. We now explain what is meant with TGD at the suggested point of the manuscript.

      18) Line 145: change 'Western blot' to western blot - only Southern blot is capitalised since it is named after an individual, while the other techniques are not.

      To the best of our knowledge this issue has not been resolved, some Journals capitalize the “W” (e.g. Science), while others don’t (e.g. Nature). We would prefer to continue to capitalize the “W”, as this is consistent with the original publication from (Burnette, 1981), but if there are strong objections, we would be happy to change this____.

      19) Line 152: add "the" between 'and spatial'

      Done.

      20) Line 158: please define SLI as selected linked integration, since it is the first use of the acronym.

      Done.

      21) Line 178: introduce a coma after protein. Sentence should be "Proliferation assays with the MCAY1344STOP-GFPendo parasites which express a larger portion of this protein, yet still lacking the MCA domain (Figure 1), indicated no growth ...

      Done.

      22) Line 195: the authors could mention that MyoF was previously called MyoC in the Birnbaum 2020 paper. I wanted to check back in the Birnbaum 2020 paper and could not find MyoF

      Good point, this was done.

      23) Line 200: "Expression and localisation of the fusion protein was analysed by fluorescent microscopy". Why expression was not analysed also by western Blot same as for MCA2?

      Please see major comment #64 for a detailed answer.

      24) Line 204: I could not find any mention of MyoF (Pf3D7_1329100) in reference 65. Please remove reference 65 if not correct. Also reference 66 looks at Plasmodium chabaudii transcriptomes so I would specify that "This expression pattern is in agreement with the transcriptional profile of its Plasmodium chabaudii orthologue"

      Reference 65 (Wichers et al., 2019) provides an RNAseq transcriptome dataset for asexual blood stage development of 3D7 (originating from the same source as the 3D7 used in this study). While Ref 66 (Subudhi et al., 2020) indeed contain transcriptomic data from P. chabaudi, the authors also provide a nice 2h window RNAseq transcriptome dataset for asexual blood stage development of Plasmodium falciparum. Both datasets are therefore suitable as reference for the statement about myoF transcription pattern. Both datasets are also easily accessible and show the pattern in a graph in PlasmoDB.

      25) Line 208: Please indicate a reference for P40 being a marker of the food vacuole

      Done.

      26) Line 220-224: The authors should consider changing to " Taken together these results show that MyoF is in foci that are mainly close to K13 and, at times, overlapping, indicating that MyoF is found in a regular close spatial association with the K13 compartment."

      The suggested wording introduces "mainly" for "frequently" and likely was in part motivated by the discrepancy in location between cell lines that we hope we now could clarify to be only minor (see major point #23). We therefore think the original wording appropriately summarises the findings (line 178): “*Taken together these results show that MyoF is in foci that are frequently close or overlapping with K13, indicating that MyoF is found in a regular close spatial association with the K13 compartment and at times overlaps with that compartment.” *

      27) Line 255: In Figure 2H, and subsequent figures showing bloated FV assay, I would delineate the food vacuole with dashed line as in Birnbaum et al. 2020 to help the reader understanding where the food vacuole is.

      In contrast to the Figures in Birnbaum et al. 2020, we here included the DHE staining (parasite cytosol) in images of bloated FV assays which visualizes the FV. We therefore decided to avoid any further marking, to keep the image as unprocessed as possible (see also major point 48).

      28) Line 265-266: Here the title says that KIC11 is a K13 compartment associated protein, but the title of Figure 3 says KIC11 is a K13 compartment protein. I noticed that you make the difference between K13 compartment protein et K13 compartment associated protein for MyoF for example which is not clearly associated with the K13 compartment. Which one is it for KIC11?

      The interpretation of the reviewer is correct, we indeed graded this subconsciously based on level of overlap. Based on the newly added quantification shown in Figure 2C, we describe KIC11 now as K13 compartment protein.

      29) Line 309-310: indicate a reference for your statement "which is in contrast to previously characterised essential K13 compartment proteins".

      Done, we now included Birnbaum et al. 2020 as reference for this.

      30) Line 377: Figure 4I, please correct 1st panel Y axis legend

      Done.

      31) Line 404: replace "dispensability" with dispensable

      Done.

      32) Line 416: can the authors provide any speculation as to why they observed these proteins as hits in the BioID experiments?

      As some of these proteins were less well or less consistently enriched, they could be background of the experiment. Alternatively, some could be proteins that only transiently interact with the K13 compartment.

      33) Line 451: Where the "97% of proteins containing these domains also contain an Adaptin_N domain and function in vesicle adaptor complexes as subunit a" come from. Do you have a reference?

      The statement now includes references and reads (with small changes to original submission): "More than 97% of proteins containing these domains also contain an Adaptin_N (IPR002553) domain (Blum et al., 2021) and in this combination typically function in vesicle adaptor complexes as subunit α (Hirst and Robinson, 1998; Traub et al., 1999) (Figure 5D) but no such domain was detectable in KIC5."

      34) Line 465-467: the same could be said for KIC4 as it also has a VHS domain.

      The critical issue is the combination of domains and their position within the protein. While KIC4 also contains a VHS domain, the VHS domain in KIC4 is N-terminal, not in a central position and it is also not the first structural domain to be identified in KIC4. The similarity to adaptin domains was already described ((Birnbaum et al., 2020) and annotated in PlasmoDB) and these domains are also involved in vesicle formation and trafficking. These aspects of the statement can therefore not be extended to KIC4. With regards to VHS domains being involved in vesicle trafficking, this is already stated in line 538: «KIC4 contained an N-terminal VHS domain (IPR002014), followed by a GAT domain (IPR004152) and an Ig-like clathrin adaptor α/β/γ adaptin appendage domain (IPR008152) (Figure 5A-C, Figure S8). This is an arrangement typical for GGAs (Golgi-localised gamma ear-containing Arf-binding proteins) which are vesicle adaptors first found to function at the trans-Golgi (Dell’Angelica et al., 2000; Hirst et al., 2000)

      35) Line 477-479: Can be rephrased to "However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 could be demonstrated, suggesting a limited role for PF3D7_1365800 in endocytosis. Or something like that. Makes it clearer.

      We rephrased this sentence and it now reads (line 592): However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 was observed, suggesting PF3D7_1365800 is not needed for endocytosis“.

      36) Line 535: Have AP-2a or AP-2b been shown to be at the K13 compartment?

      AP2m is at the K13 compartment (Birnbaum et al., 2020). Adaptor complexes are heterotetramers and their subunits do not typically function on their own and this is conserved across evolutionarily distant organisms. In agreement that this is also the case in P. falciparum, Henrici et al. (Henrici et al., 2020a) showed that both, AP-2a and AP-2b, were present in an AP2µ Co-IP, indicating that the AP2 complex consist of the ‘classical’ subunits in P. falciparum. Therefore, the presence of all subunits at the K13 compartment is very likely, although this has only been experimentally confirmed for AP2µ. Of note, for Toxoplasma gondii the presence of AP-2a and AP-2b at the micropore has been experimentally confirmed (Wan et al., 2023; Koreny et al., 2023) and interaction suggested by presence in the same IP as DRPC (Heredero-Bermejo et al., 2019).

      37) Line 569: reference 43 is wrong

      We thanks the reviewer for pointing this out – we removed Ref 43.

      38) Line 746: typo "ot" instead of or.

      Changed.

      39) Line 801: method for Domain Identification using AlphaFold specify that RMSDs of under 5Å over more than 60 amino acids are listed in the results. However, there is a typo in Figure 5B for KIC5 where it says "RMSD 4.0 Å over 8 aa". Please correct.

      Done. In addition, we have now applied a more stringent cut-off of 4Å over more than 60 amino acids to ensure a higher reliability of our hits. This decision was based on results from our preprint (Behrens and Spielmann, 2023). Because of this the phosphatase domain in KIC12 is no longer included in this manuscript and accordingly the following sentence has been deleted. In KIC12 we identified a potential purple acid phosphatase (PAP) domain. However, with the high RMSD of 4.9 Å, the domain might also be a divergent similar fold, such as a C2 domain, which targets proteins to membranes.”

      40) Line 856: In Figure 1E, please use the same Y axis legend as in Figure 2D "relative growth at day 4 [%] compared with 3D7"

      Done.

      41) Figure S1: Some PCR gels check for integration are presented as 5', 3' and ori whereas other gels are presented as ori, 5' and 3'. This is confusing.

      We agree that ideally the order of sample loading should be consistent and we apologise for this. The explanation for this is that these gels were run by different people at different times before we were able to better standardize the loading scheme. However, in the interest of not unnecessarily using resources for something that has a similar meaning, we would prefer not to repeat these PCRs and re-run them only for consistency reasons (as the conclusion is not affected by the different loading schemes).

      42) Figure S1: Why was the expression of only MCA2 was verified by Western blot? What about the other proteins?

      See response to major comment 56.

      43) Line 493: Considering KIC11 was not involved in HCCU or ART resistance it might be worth mentioning in this section that it is of note that there are no domains detected that would be involved in endocytosis.

      We agree that this is the case, however it is also the case for all other proteins that either are not involved in endocytosis and/or lowered susceptibility to ART. We therefore now added a summary statement addressing this in line 602: In contrast, the K13 compartment proteins where no role in ART resistance (based on RSA) or endocytosis was detected, KIC1, KIC2, KIC6, KIC8, KIC9 and KIC11, do not contain such domains (Figure 5E).” We did not add this at the suggested part of the manuscript as at that point the domain search results are not yet introduced and doing this each time for all the individual proteins would disconnect the flow of the manuscript.

      44) Line 503-506: is it wise to generate more drugs that target a pathway that is already highly susceptible to mutations? The authors should add a statement explaining how this might be avoided.

      The only protein for which mutations do not have a large fitness cost is K13 (see also our preprint on fitness cost of ubp1 mutation (Behrens et al., 2023) and even with K13 the level of resistance seems to be limited by amino acid deprivation when endocytosis is reduced (Mesén-Ramírez et al., 2021). We therefore do not think that this pathway is particularly prone for mutations. Further, the number of commercial drugs targeting the "endproduct" of endocytosis (hemoglobin digestion and detoxification of heme) highlight it as the most prominent vulnerability for drug-based intervention if we go by number of commercially available drugs acting on things associated with a single process.

      45) Throughout, scale bars are stated in the figure legends at the end of the legend. This is a slightly confusing format. The authors should consider stating the scale bar for each sub-legend where a fluorescence image is taken.

      Done.

      ** Referees cross-commenting**

      After reading reviewer 2 and 3's comments, I think there are significant overlaps in the key points raised in terms of questions about fusion proteins and their potential partial mis-localisation, better descripton of results and target selection. Overall I think we agree that the work has potential, but in its current form does not represent a major advance. It would be immensely helpful if the manuscript would be carefully edited for a better flow and linear description of results.

      We now rearranged the manuscript for better flow but would like to highlight that the many requests for smaller experimental issues (and "better description of results") worked somewhat in the opposite way of a more linear description. We hope the rearranged version acceptably balances these two issues. The issues raised in regards to target selection and potential partial mis-localisation are addressed in our responses mainly to this reviewer. Please also see comments on systems used at the end of the rebuttal.

      Reviewer #1 (Significance (Required)):

      The authors set out to test whether other proteins that are in the vicinity of K13 are involved in mediating ART resistance and endocytosis. This is an interesting question. However, other than MCA2 which was already known to be involved in mediating ART resistance (and was not tested for its involvement in endocytosis), none of their candidate proteins seem to be involved in mediating both these functions. The authors show that the other proteins tested appear important for parasite growth, with KIC12 and MyoF involved in mediating endocytosis. While these findings are novel, the KS approach used by the authors casts some doubt over the findings, and would mean that these findings would have to be re-tested with a more reliable approach, such as the GlmS system or generating a conditional knockout using the DiCre system. Despite not advancing our understanding of ART resistance, or identifying further players involved in this process, this manuscripts provides two candidates that are involved in mediating endocytosis and a further candidate that appears to be important for parasite growth. Further work on these proteins will be required to understand their exact roles. As stated above, there is currently limited interest for these results (limited to researchers working on endocytosis in apicomplexan parasites and possibly the wider endocytosis field from an evolutionary perspective), however with further work, this could increase the impact and interest of this work substantially.

      The authors do not describe any novel methods/approaches within this work.

      In the significance statement the reviewer indicates that other systems would have been more reliable for the work here. This is addressed in our response above and in a detailed considerations on the properties of conditional inactivation systems at the end of the rebuttal. The systems used in this work were not only chosen because they permit rapid targeting of many different proteins, but because they have merits that are beneficial for our assays. In fact many of the functional assays in this manuscript are difficult or impossible to carry with the suggested conditional inactivation systems (please note that we have extensive experience with the systems considered preferable:

      • DiCre (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021; Wichers et al., 2022; Kimmel et al., 2023)

      • glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023)).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In a previous publication the Spielmann lab identified the molecular mechanism of ART resistance in P. falciparum by connecting reduced levels of the protein K13 to decreased endocytosis (uptake of hemoglobin from the RBC cytosol), which results in reduced ART susceptibility. Using quantitative BioID the authors further identified proteins belonging to a K13 compartment, highlighting an unusual endocytosis mechanism.

      In the present manuscript the authors follow up on this work and closely examine ten more proteins of the K13/Eps15-related "proxiome". They successfully link MCA2 to ART resistance in vitro, while the proteins MyoF and KIC12 are involved in endocytosis but do not confer in vitro ART resistance when impaired. They further characterize one candidate (KIC11) that partially colocalizes with K13 in trophozoites but to a lesser degree in schizonts. Growth assays suggest an important function for KIC11 in late stages of the intraerythrocytic developmental cycle. Five analyzed proteins however do not colocalize with the K13 compartment, while a sixth was refractory to endogenous tagging.

      Using AlphaFold predictions of the KIC protein structures the author identify domains in most constituents of the K13 compartment, highlighting vesicle trafficking-related features that were not identified on primary sequence level before.

      The combination of functional data together with structure predictions leads them to propose a refinement of the K13 compartment as being divided into proteins participating in endocytosis and proteins that have an unknown function.

      We thank the reviewer for the assessment of the manuscript and the constructive comments.

      Major comments:

      1) -Table 1 is missing

      We apologise for this mistake; Table 1 is now included.

      2) -Lines 117-123: Given the total list of uncharacterized candidates encompasses 13 proteins, can the author gives the reason why only the top 10 and not all 13 were characterized in this study?

      A similar point has been raised by Reviewer 1 in major comment #12, please see our response there for an explanation why we chose which targets.

      3) -Line 174: 20% of observed MCA2 foci show no overlap with K13 and 21% only partially overlap, can the author confirm that the observed MCA2 foci in schizonts are the ones that co-localize with K13. (Addition of a schizont stage image in Fig 1C would be sufficient).

      We now extended Figure 4C with images of MCA2-Y1344STOP-GFP+mCherryK13 parasites covering the schizont and merozoite stage, showing that the majority of the MCA2 foci in schizonts are also mCherry-K13 positive.

      4) -The localization and observed phenotype of KIC11 is interesting but unfortunately the authors do not explore it further. Does KIC11 localize with markers of e.g. the secretory organelles (micronemes or rhoptries) in schizonts and could therefore be involved in RBC invasion?

      While we intended to focus mainly on the endocytosis aspect of these proteins, we see the reviewer's point and now generated new cell lines enabling assessment of spatial association of KIC11 with markers for rhoptry (ARO), micronemes (AMA1), and inner membrane complex (IMC1c). This revealed that the KIC11-GFP signal in schizonts does not overlap with apical organelle markers and the signal does not resemble a typical apical localization. In addition, we assessed all three organelle markers after inactivating KIC11 by knock sideways which showed that KIC11 inactivation has no apparent effect on the appearance of these markers, suggesting no major alterations in schizont morphology in respect to apical markers. These results are now presented as Figure S3A and in line 304 of the results.

      5) Can the author distinguish if KIC11 is involved in RBC invasion or in establishment of the ring-stage parasite?

      In order to look into this, we performed egress/invasion assays, quantifying schizont and ring stage parasites in tightly synchronized parasites at two different time points (pre-egress: 38-42 hpi & post-egress: 46-50 hpi). This revealed a significant decrease in newly formed ring stage parasite per ruptured schizont in parasites with inactivated KIC11, while the egress efficacy remained unaffected. This indicated an invasion or very early ring stage development defect (new Figure 2H, Figure S3G). To further determine at which point exactly the phenotype occurs (ie during invasion or early after invasion) would require extensive experimentation that goes beyond the scope of this study (e.g. invasion assays using video microscopy with a representative number of parasites or sophisticated flow based quantification assays). We hope by excluding egress and gross changes of apical organelles as well as no indication for similar number of early rings (indicating it is invasion or a very early ring-establishment phenotype) will sufficiently narrow down the phenotype for labs interested in invasion to more definitely answer this question.

      Minor comments:

      1) Table S1: Please add the criterion for the order of proteins (abundance in "proxiome"?) in the table as a separate column. I would also suggest adding a new column that highlights the 10 proteins investigated in this study as I found the color-coding slightly confusing.

      Done as suggested: we now include the “average log2 Ratio normalized Kelch13” values from the four DiQ-BioID experiments performed with K13 in (Birnbaum et al., 2020), as well as the suggested column to highlight the investigated proteins. Please also see reviewer 1 major point # 12 for additional information on the selection criteria and how this was added to the manuscript.

      2) -154-155: There is a discrepancy between the text and Fig1C regarding the % of partial overlapping and non-overlapping foci.

      We thank the reviewer for pointing this out, this was corrected.

      3) -The y-axis label is missing in Fig 3E

      Done.

      4) -Fig 4I left graph, the superscript 2 is missing in μm2

      We thank the reviewer for pointing this out, this is now changed.

      5) -Did the author colocalize KIC11 in schizonts with other proteins found in the K13 compartment group of proteins not involved in endocytosis/ART resistance? This may help to further subgroup these proteins.

      This is an interesting point but would actually be technically challenging to do. For this we would need to generate a KIC11endo parasite line for each of these KICs and then do co-localisation in schizonts. However, the outcome of this likely would not be very clear. The reason for this is as follows. There are foci of KIC11 that do overlap with K13 in schizonts. One can expect that these foci show KIC11 at the K13 compartment and that the other KICs would overlap with KIC11 in these K13 foci in schizonts. Hence, we would also need to see K13 to find the non-K13 compartment KIC11 foci and see if these contained the KIC of interest. This is technically challenging because it would mean we would need a third fluorescent protein which is not that trivial to do. Due to the difficulty to do this and the large amount of work involved and the already considerable amount of data in this manuscript, we believe this will be better suited for a different study.

      6) -As a general comment: to make the beautiful IFAs more accessible to a broader readership, I would encourage the authors to switch the color-coding to green/magenta/blue or an equivalent color system or add grayscale images.

      This was done as suggested, all fluorescence images are now provided as greyscale images and the overlays are shown in magenta/green.

      Reviewer #2 (Significance (Required)):

      Characterizing the molecular components involved in Plasmodium endocytosis will not only reveal interesting biology in these highly adapted parasites, but will more importantly lead to a better understanding and potentially open new avenues for intervention of ART resistance. The here presented manuscript is a carefully executed follow-up on previous work done in Dr. Spielmann's lab focusing on the K13 compartment. The authors use established assays to characterize novel components and reveal three new players in endocytosis with one mediating ART resistance in vitro. The proposition that parts of the K13 compartment have a function other than endocytosis is interesting, but will have to await more data from future studies. Taken together this manuscript adds significantly to our understanding of endocytosis in P. falciparum.

      This work is of interest for cell and molecular biologists working on Apicomplexa, but especially for the Plasmodium community.

      We thank the reviewer for this positive assessment.

      I am a cell and molecular biologist working on Toxoplasma gondii

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors characterized 4 proteins from P. falciparum via cellular (co-)localization, endocytosis, parasite growth, and artemisinin resistance assays. These proteins have been identified as candidates for Kelch13 compartment and a possible role in endocytosis in their previously work with quantitative BioID for potential proximity to K13 and Eps15 (Birnbaum et al. 2020). In the current work, additional 6 proteins were not confirmed as being associated to the K13 compartment. This experimental work was complemented by an in-silico analysis of protein domains based on AlphaFold algorithm. For this protein structure evaluation all proteins were chosen, which were experimentally confirmed to be linked to the K13 compartment in the current publication and previous work. With the work 3 novel proteins linked to artemisinin resistance or endocytosis could be functionally described (KIC12, MCA2, and MyoF) and a number of hypotheses were generated.

      We thank the reviewer for the assessment of the manuscript and the constructive comments.

      Major comments:

      The quality of the presented work is solid, the experimental design is adequate, and methods are presented clearly. The publication contains a lot of results both presented in text and in the figures and it is not always straight forward for the reader to follow the descriptions due to many details presented and a lack of context for some of these experiments.

      We thank the reviewer for this overall positive assessment.

      We now reordered the results section in an attempt to increase the flow of the manuscript. We also made changes to improve the context for the results. Given the further (very valid) requests for data on schizonts and invasion, there was an increased danger for a less linear manuscript that we hope to have acceptably managed with the re-arrange.

      Specific suggestions for consideration by the authors to improve the manuscript. Abstract: 1) R 31: Mention how the 4 proteins were identified as candidates, you need to refer to previous work to clarify this

      To clarify this the sentence was changed to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."

      2) R38: "Second group of proteins" is confusing - different from the 4 mentioned above? Significance to endocytosis unclear. Please unify terminology in the manuscript, see also comment below on proxiome.

      We changed the wording to clarify the group issue in the abstract as follows line 34: "Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that canonical vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins, While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion.”

      3) Abstract can only be understood after reading the full publication

      We attempted to amend this by expanding the abstract, particularly the changes highlighted in the previous two points.

      Results: 4) Table 1 is missing from the submitted materials

      We apologise for this mistake. Table 1 is now included.

      5) Consider to shorten and stratify the result section to focus on the significant data

      We rearranged the results in an attempt to streamline this section and are now starting with MyoF in the revised manuscript. However, as highlighted by the requests from reviewer 1, many details need to be available to support our conclusions. For instance the fact that GFP-tagging partially inactivated MyoF asked for further data to support our conclusion (HA-tagged version, showing that the location of the GFP-tagged version was consistent with the HA-tagged version, showing to what extent the different constructs affected growth and correlated with number of vesicles and bloating, see new figure 1M) or that KIC12 has two locations. Overall, we are therefore hesitant to remove data or description from the result part.

      6) Unclear how the localization and functionalization assays might be impaired by the fusion proteins Significance of ART resistance assay is not clear, in presence of strong growth effects due to inactivation or truncation of genes/proteins

      As indicated also in the example given in the previous point (this reviewer #5), the use of different cell lines (GFP-tagged live cells and small epitope tag in IFA) for targets with an indication for an effect of the tagging confirm that the location we assigned is reasonable. In the case of MyoF, the HA-tagged line, the partial inactivation due to GFP and the further inactivation in the GFP-tagged line by knock sideways show plausible increase of phenotypes (vesicle accumulation and bloated FV assays). Thereby the GFP-tagged line can be seen as a partial inactivation line that further supports our conclusions and overall this paints a consistent picture of the function of this protein in endocytosis (see new Figure 1M better illustrating this). Please note that the difference in location shown by this line compared to the HA-tagged proteins is only small (see also reviewer 1 major point 23ff). See also general discussion on tags at the end of this rebuttal.

      Significance of ART resistance assay: The ‘ART resistance assay’ is done comparing +/- ART (DHA) in identical parasites (originating from the same culture and the same condition). Hence, any growth effects are cancelled out and effects in reducing ART susceptibility would - if at all - be underestimated (see more detailed response to point 28, reviewer 1 and controls in Birnbaum et al., 2020 where we tested an unrelated essential protein, unrelated chemical insult and rapalog on 3D7 and did not detect any effect on RSA survival).

      MCA 7) Stratify results, order by significance of findings, it appears to be described in chronological order, improve readability/flow, eg ART resistance if mentioned in r138, but only reported in r183ff

      We attempted to stratify, but then the reason for generating the partial MCA2 disruption parasite line becomes very arbitrary and would leave the reader wondering why we at all truncated the protein at two thirds of the protein. Hence, we do not see a way around this chronological reporting. However, this part is now not at the start of the experimental results section anymore, possibly making it overall a bit more palatable.

      MyoF 8) R195 to 197 - consider moving to discussion as it is distracting here

      This was shortened and additional information (asked for by reviewer 1, major point 22) to clarify that MyoF was previously called MyoC, was added (line 147): “The presence of MyosinF (MyoF; PF3D7_1329100 previously also MyoC), in the K13 proxiome could indicate an involvement of actin/myosin in endocytosis in malaria parasites. "

      9) Term proxiome is introduced above, but not used in result section - suggest to unify language, eg r195 uses "K13 compartment DiQ-BioIDs" instead, which is not very convenient for the reader

      We carefully reviewed this and made this more consistent.

      10) What is the enrichment factor? Please provide for this and the following proteins, eg in Table 1

      The enrichment factor is log2 enrichment over control and this is now provided in table S1 (see also detailed answer for Reviewer 1 major point 12).

      11) R225 to 243 - overall significance of the growth experiments with mislocaliser is not clear, consider removing from manuscript or explain relevance more clearly

      See also point 28, reviewer 1: This experiment is actually quite important. It shows that if we conditionally inactivate the GFP-tagged MyoF, the growth is further reduced, as stated in line 208. It might have been confusing that the mislocalisation is only partial, but this is equivalent to a partial knock down and hence is useful. This becomes even more relevant with the specific assays following in the next paragraph: while the tagging of MyoF already resulted in vesicles, conditional inactivation with KS generated even more vesicles, showing that the same phenotype was rapidly increased when MyoF was further inactivated by a different means and this also correlated with growth. Hence, this is actually a very consistent phenotype that despite some shortcomings of the tools available to analyse this protein (due to the partial inactivation by the GFP tag) in our eyes looks very convincing. We now added a graph showing the correlation of growth and phenotypes to illustrate this (Figure 1L).

      We also tried to make this clearer by changing line 200 to: Hence, conditional inactivation of MyoF further reduced growth despite the fact that the tag on MyoF already led to a substantial growth defect, indicating an important role for MyoF during asexual blood stage development.” And line 208 to:“ This was even more pronounced upon conditional inactivation of MyoF by KS (Figure 1H), suggesting this is due to a reduced function of MyoF.”

      12) KIC11/KIC12 Enrichment factor?

      The enrichment (’average log2 Ratio normalized Kelch13 from Birnbaum et al. 2020’) is 1.65 for KIC11 and 1.32 for KIC12, which is now also explicitly shown in column D of Table S1.

      ** Referees cross-commenting**

      I would like to applaud reviewer #1 for a great, very thorough review and lots of detailed suggestions. I agree with the conclusions mentioned in the significance evaluation from reviewer #1 and #2: the work presented does not contain novel methods and the scope is rather narrow with the current results. (I am working on clinical studies with novel antimalarial agents)

      Reviewer #3 (Significance (Required)):

      On the one hand side, the authors have wrapped up some of the remaining protein candidates of the K13 compartment and could verify 4 of 10 proteins. The work is of interest for the scientific community working on endocytosis and malaria drug resistance mechanisms. Overall, the conclusions and findings from the previous work, Birnbaum et al. 2020, could be confirmed and extended mainly using the methods previously described. On the other hand, the authors made use of progress in protein structure predictions and identified domains linking the K13 compartment proteins to putative functions. The overlaid protein folds of the newly identified domains in figure 5 look convincing, but I can't comment on the technical details or cut-off used for this in-silico analysis.

      Extended general remarks on the systems used for this work:

      Mainly reviewer 1 suggest (in the general comments and the significance statement) that other systems would have been better suited to use for this work, namely glmS and diCre and also has concerns about the large tag which is seconded by a comment of reviewer 3. In light of this we here provide some extended considerations on the properties for conditional systems and tagging in regards to the goals of this work.

      We would like to point out that we do have experience with the systems considered better-suited by the reviewer (one of the first authors has extensively used glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023) and our lab was one of the first to adopt the diCre system in P. falciparum parasites and we regularly us it (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Kimmel et al., 2023)). Clearly, these methods have a lot of strengths but there are a number of issues to be considered for the assays we use in this work (see the next section on conditional inactivation systems). In a nutshell, we believe diCre would give a more reliable readout of the absolute level of "essentiality" (i.e. importance for growth) but is unsuitable or at least difficult to use for the assays that reveal the function of our interest in this work. GlmS basically combines the drawbacks of diCre and knock sideways and hence for most targets is not expected to give a better readout of level of "essentiality" but is similarly difficult to use for our specific assays. The fact that both of these systems are possible to use without adding a tag to the target may be an advantage but without tag one loses some very important features that can be critical to understand the outcome with a given system (see considerations on the tag further below).

      Conditional inactivation systems:

      1. __ speed of inactivation:__ glms acts on mRNA and diCre on the gene level, which makes them slower than techniques acting directly on the protein such as DD or KS. With diCre, mRNA and protein is still left, even if the gene is very rapidly excised. For instance for Kelch13 it takes 3-4 days after excising the gene until protein levels have waned enough that this manifests in a reduced growth (Birnbaum et al., 2017). While in some instances diCre permits same cycle analyses if the protein has a very rapid turn-over (e.g. Rab5a, (Birnbaum et al., 2017)), control in a few hours is still difficult. For vesicle accumulation and bloated food vacuole assays, which are done over comparably short time frames and with specific stages, it is rather challenging to hit the correct time of induction to have all the cells at the correct stage with suitably (and uniformly, ie all cells) sufficiently reduced target protein levels during the assay time. Slow acting systems are also more prone to secondary effects. The more immediate the inactivation, the closer it is to the core of the affected function. With vesicle trafficking processes this is particularly relevant as all vesicle trafficking in a cell is interconnected and there are always recycling pathways that maintain the membrane and protein homeostasis of individual compartments. Particularly for endocytosis there seem to be compensatory capacities at least in other organisms (see e.g. (Chen and Schmid, 2020)). One reason why knock sideways was developed is that it permitted to avoid compensatory changes when vesicle adaptors are inactivated (Robinson et al., 2010).

      The comparably short time frame for malaria parasites to go through different stages during blood stage development also is an issue relevant for inactivation speed. The advantage of speed and the danger of obscured phenotypes is highlighted by our work on VPS45 which showed that in trophozoites this protein is involved in the transport of hemoglobin to the FV whereas in late stages it also has a role in secretory processes. Both of these functions we were able to specifically assess in the same growth cycle using KS to rapidly inactivate the protein (Bisio et al., 2020) but with a slower system would have been more complicated to dissect.

      Speed of effect with glmS: unless the KS does not work well, glmS is slower acting than KS (it does not target the already synthesised protein which can remain in the cell) and also often suffers from only partial inactivation, hence the benefit of using it here is unclear. The option to have an untagged protein is a plus, however it also is a minus, as assessing efficiency (particularly in live cells e.g. for bloated assays etc a fluorescent tag is the only direct option to assess inactivation of target) is critical to ensure the phenotype manifests at the stage of interest.

      lethality/absolute phenotypic effects are detrimental to some assays to study the functions we are interested in for this work: no RSA can be conducted, if the gene is lost and the parasites die. Again, with diCre, one could attempt to hit the point when the parasites have lost sufficient amounts of the target protein when they are placed under ART but then the parasites need to continue growing for ~3 days, which is not possible if the cKO is lethal except for very slowly turning over proteins. However, in that latter case, the parasites likely still had full functionality of the target protein at the beginning of the RSA, when the drug pulse happens and there would be no effect. Knock sideways solves these problems by permitting knock sideways inactivation only under ART (or with a few hours pre-incubation depending on the inactivation speed) to not yet affect growth in a severe manner but inhibiting the process the protein is involved in. It may be possible to use glmS for RSAs, but the slow speed would complicate it (it would not permit control of target protein levels in a matter of a few hours to inactivate the target protein and then re-install it).

      None-absolute inactivation is also a strength for some functional assays. While we really like using diCre, in the case of EXP1 it made it necessary to complement the exp1 cKO parasites with low levels of EXP1 to be able to do functional assays without killing the parasites (Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021). While the lethality issue does not apply to glmS (like knock sideways, it also can be tuned), it is unclear what would be gained over knock sideways. Knockdown levels with glmS vary from gene to gene and cannot be predicted, it is in most cases considerably slower than KS, it requires glucosamine which becomes toxic at higher concentrations and might introduce off target effects and tracking protein levels during the assay would equally need GFP tagging.

      Integration of properties of conditional systems

      Given the above discussed properties, several factors have to be considered to be able to use a system for a given assay. Stage-specific transcription is one example. For diCre a protein not expressed in e.g. rings permits to remove the gene and the protein is never made in that parasite development cycle. We exploited this for instance for two proteins only expressed from the trophozoite stage onwards (Kimmel et al., 2023). However, if lethal (absolute effect problem), this also means one can also only see the phenotype on onset of expression of the target (e.g. if in mitosis, the first nuclear division in case the protein is absolutely essential for the process). This is just one example of such issues. Expression timing, turnover of the protein and homogeneity of stage-specific loss of protein will all influence how clearly the phenotype can be determined. All this will decide the exact time of loss/inactivation of the target protein to levels generating a phenotype and ideally therefore can be monitored during an assay (see considerations on tagging).

      For these reasons vesicle accumulation or bloated food vacuole assays are difficult with slow systems as ideally the target should rapidly be inactivated at the trophozoite stage and the result monitored before the cells have moved to the schizont stage. For this a well responding knock sideways is ideal as the protein can be rapidly taken away (sometimes within seconds) to visualise the immediate, direct effect in the cell.

      As shown for KIC11, there is also no disadvantage of using KS for proteins with other assays or proteins that result in different phenotypes. It permits stage-specific same cycle inactivation without having to worry about the turnover of mRNA and protein (Fig. 2F,G). Thus, besides the advantages of knock sideways for endocytosis related assays and RSAs, we also see no disadvantage of using knock sideways for the functional study of KIC11 which has a role other than endocytosis. KS also permits to specifically target the K13 pool of KIC12, something impossible or very difficult to do with other systems. Hence, we are of the opinion that the system for inactivation was adequate for most of the proteins analysed in this manuscript.

      Large tag: we agree that GFP-tagging can be a disadvantage but in our opinion its benefits often outweigh the drawbacks because it permits easy and immediate (on individual cell level, if need be) monitoring of the presence/location of the target protein (e.g. after KS, but given the discrepancy of the timing between gene excision and protein loss, it might be even more important for techniques such as diCre). No fixing/permeabilisation (prone to artifacts, prevents immediate view of cells) to detect a target with specific antibodies or via a small tag is needed with GFP. Similarly, the use of Western blots to do this is time consuming and impractical if monitoring of left-over protein in the course of an assay such as a bloated food vacuole assay is needed.

      In many cases, adding GFP has no negative effect. In addition, if the bulky folded structure of GFP is tolerated, it usually also tolerates the 2 to 4 12kDa FKBP domains in our standard tag. We also typically add a linker. This approach has worked for a large number of different proteins, including many essential ones for which we would not otherwise have obtained the integration cell lines (Birnbaum et al., 2017; Jonscher et al., 2019; Hoeijmakers et al., 2019; Birnbaum et al., 2020; Kimmel et al., 2023; Sabitzki et al., 2023). Hence, whenever a cell line is obtained with it, this tag in most cases is not a disadvantage. Admittedly an exception in this is MyoF and to some extent maybe MCA2 (we would like to stress that in the case of MCA2 the reason for not being able to obtain the full length tagged cell line is unclear: the protein can be severely truncated to less than 3% of its amino acid sequence and a GFP-tag is tolerated on the version with 2/3s of the protein left, which gives no good reason why the full length was not obtained; a potential reason could be a dominant negative effect). However, we obtained the full length with a small tag detected by IFA for both, MyoF and MCA2 and the location of these agreed well with the GFP tagged versions, indicating that the GFP-tagged versions are useful to show the location of these proteins in live cells.

      There are also tricks to attempt monitoring the effect of e.g. diCre without tagging the target. For instance, if a fluorescent protein is connected to excision without actually being fused to the target (ie excision of the gene leads to its expression of e.g. GFP), which would avoid adding a tag to the target itself. However, the problem with this is that expression of GFP does only show excision, but mRNA producing the target protein and left over target protein may still be there in the cell. All in all, the GFP-tag on the target, while with some drawbacks, is still our preferred method to control to monitor the target protein in the cell (in principle permitting quantification of ablation efficiency on the individual cell level).

      Conclusion on these considerations for this manuscript

      Based on these considerations we do not see the immediate benefit of changing the system for the conclusions drawn from this study and are unsure if they are indeed better suited for this work as suggested. While a more exact readout of "essentiality" might be possible with the diCre system we are of the opinion this is less important than learning the function of a protein which - as outlined above - we believe to be considerably more difficult with diCre and even more so with glmS considering our target functions. The same applies to target specific cellular pools of a protein as done here for KIC12. Clearly MyoF is one example where the employed systems shows limitations, but with the new Figure part showing consistency in phenotype with degree of inactivation (importantly with two different forms of inactivation) and the clarification that the location of the GFP-tagged and HA-tagged versions are actually quite similar in location, we do not think employing an extra system is warranted for the conclusions of this work. Admittedly, the apparent lack of need in ring stags might give an opening to attack MyoF using diCre (by excision before its major expression peak), but depending on lethality this might preclude extended analyses (possibly vesicle assays, for sure not RSAs).

      In the end the question is, if our approach provides the function of target analysed in this work and based on the data in our manuscript and the arguments in the rebuttal, we are reasonably confident that this is the case. It is not very likely the other mentioned techniques would result in a different conclusion on the function of the here studied proteins. In fact, we expect other commonly used techniques to be less suitable for the key assays in this work.

      References used in our responses to the reviewers’ comments:

      Behrens, H.M., Schmidt, S., Peigney, D., Sabitzki, R., Henshall, I., May, J., et al. (2023) Impact of different mutations on Kelch13 protein levels, ART resistance and fitness cost in Plasmodium falciparum parasites. bioRxiv 2022.05.13.491767.

      Behrens, H.M., Schmidt, S., and Spielmann, T. (2021) The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev med.21848.

      Behrens, H.M., and Spielmann, T. (2023) Identification of domains in Plasmodium falciparum proteins of unknown function using DALI search on Alphafold predictions. bioRxiv 2023.06.05.543710.

      Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E., et al. (2017) A genetic system to study Plasmodium falciparum protein function. Nat Methods 14: 450–456.

      Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W.A.M., Flemming, S., et al. (2020) A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science (80- ) 367: 51–59.

      Bisio, H., Chaabene, R. Ben, Sabitzki, R., Maco, B., Baptiste Marq, J., Gilberger, T.W., et al. (2020) The zip code of vesicle trafficking in apicomplexa: Sec1/munc18 and snare proteins. MBio 11: 1–21.

      Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., et al. (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49: D344–D354.

      Borrmann, S., Straimer, J., Mwai, L., Abdi, A., Rippert, A., Okombo, J., et al. (2013) Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep 3.

      Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRisi, J.L. (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1: e5.

      Burnette, W.N. (1981) “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203.

      Casella, J.F., Flanagan, M.D., and Lin, S. (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293: 302–305.

      Cerqueira, G.C., Cheeseman, I.H., Schaffner, S.F., Nair, S., McDew-White, M., Phyo, A.P., et al. (2017) Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18: 78.

      Chen, Z., and Schmid, S.L. (2020) Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol 219.

      Dell’Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., and Bonifacino, J.S. (2000) GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149: 81–93.

      Demas, A.R., Sharma, A.I., Wong, W., Early, A.M., Redmond, S., Bopp, S., et al. (2018) Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci 201812317.

      Henrici, R.C., Edwards, R.L., Zoltner, M., Schalkwyk, D.A. van, Hart, M.N., Mohring, F., et al. (2020a) The plasmodium falciparum artemisinin susceptibility-associated ap-2 adaptin μ subunit is clathrin independent and essential for schizont maturation. MBio 11.

      Henrici, R.C., Schalkwyk, D.A. van, and Sutherland, C.J. (2020b) Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin in Vitro. Antimicrob Agents Chemother 64.

      Henriques, G., Hallett, R.L., Beshir, K.B., Gadalla, N.B., Johnson, R.E., Burrow, R., et al. (2014) Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J Infect Dis 210: 2001–2008.

      Heredero-Bermejo, I., Varberg, J.M., Charvat, R., Jacobs, K., Garbuz, T., Sullivan, W.J., and Arrizabalaga, G. (2019) TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 111: 46–64.

      Hirst, J., Lui, W.W.Y., Bright, N.A., Totty, N., Seaman, M.N.J., and Robinson, M.S. (2000) A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-golgi network and the vacuole/lysosome. J Cell Biol 149: 67–79.

      Hirst, J., and Robinson, M.S. (1998) Clathrin and adaptors. Biochim Biophys Acta - Mol Cell Res 1404: 173–193.

      Hoeijmakers, W.A.M., Miao, J., Schmidt, S., Toenhake, C.G., Shrestha, S., Venhuizen, J., et al. (2019) Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 47: 11574–11588.

      Jonscher, E., Flemming, S., Schmitt, M., Sabitzki, R., Reichard, N., Birnbaum, J., et al. (2019) PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites. Cell Host Microbe 25: 166-173.e5.

      Kimmel, J., Schmitt, M., Sinner, A., Jansen, P.W.T.C., Mainye, S., Ramón-Zamorano, G., et al. (2023) Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst 14: 9-23.e7.

      Koreny, L., Mercado-Saavedra, B.N., Klinger, C.M., Barylyuk, K., Butterworth, S., Hirst, J., et al. (2023) Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 14: 2167.

      Kumari, V., Singh, A.P., Singh, J., Sharma, R., Akhter, M., Mishra, P.K., et al. (2018) Biochemical characterization of unusual cysteine protease of P. falciparum, metacaspase-2 (MCA-2). Mol Biochem Parasitol 220: 28–41.

      Lazarus, M.D., Schneider, T.G., and Taraschi, T.F. (2008) A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 121: 1937–1949.

      Lopez-Hernandez, F.J., Ortiz, M.A., Bayon, Y., and Piedrafita, F.J. (2003) Z-FA-fmk inhibits effector caspases but not initiator caspases 8 and 10, and demonstrates that novel anticancer retinoid-related molecules induce apoptosis via the intrinsic pathway. Mol Cancer Ther 2: 255–263.

      Lord, S.J., Velle, K.B., Mullins, R.D., and Fritz-Laylin, L.K. (2020) SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol 219.

      MalariaGEN, Ahouidi, A., Ali, M., Almagro-Garcia, J., Amambua-Ngwa, A., Amaratunga, C., et al. (2021) An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome open Res 6: 42.

      Marti, M., Good, R.T., Rug, M., Knuepfer, E., and Cowman, A.F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306: 1930–3.

      Mesén-Ramírez, P., Bergmann, B., Elhabiri, M., Zhu, L., Thien, H. von, Castro-Peña, C., et al. (2021) The parasitophorous vacuole nutrient pore is critical for drug access in malaria parasites and modulates the fitness cost of artemisinin resistance. Cell Host Microbe 0: 283.

      Mesén-Ramírez, P., Bergmann, B., Tran, T.T., Garten, M., Stäcker, J., Naranjo-Prado, I., et al. (2019) EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 17: e3000473.

      Mukherjee, A., Crochetière, M.-È., Sergerie, A., Amiar, S., Thompson, L.A., Ebrahimzadeh, Z., et al. (2022) A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. MBio 13.

      Otto, T.D., Wilinski, D., Assefa, S., Keane, T.M., Sarry, L.R., Böhme, U., et al. (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76: 12–24.

      Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010) Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria. Dev Cell 18: 324–331.

      Sabitzki, R., Schmitt, M., Flemming, S., Jonscher, E., Hoehn, K., Froehlke, U., and Spielmann, T. (2023) Identification of a Rabenosyn-5 like protein and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. bioRxiv 2023.04.05.535711.

      Simwela, N. V., Hughes, K.R., Roberts, A.B., Rennie, M.T., Barrett, M.P., and Waters, A.P. (2020) Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in plasmodium berghei. Antimicrob Agents Chemother 64.

      Spielmann, T., Gras, S., Sabitzki, R., and Meissner, M. (2020) Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 36: 520–532.

      Subudhi, A.K., O’Donnell, A.J., Ramaprasad, A., Abkallo, H.M., Kaushik, A., Ansari, H.R., et al. (2020) Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun 11.

      Traub, L.M., Downs, M.A., Westrich, J.L., and Fremont, D.H. (1999) Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc Natl Acad Sci U S A 96: 8907–8912.

      Wagner, M.P., Formaglio, P., Gorgette, O., Dziekan, J.M., Huon, C., Berneburg, I., et al. (2022) Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 39: 110923.

      Wall, R.J., Zeeshan, M., Katris, N.J., Limenitakis, R., Rea, E., Stock, J., et al. (2019) Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 21.

      Wan, W., Dong, H., Lai, D.-H., Yang, J., He, K., Tang, X., et al. (2023) The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat Commun 14: 977.

      Wichers-Misterek, J.S., Binder, A.M., Mesén-Ramírez, P., Dorner, L.P., Safavi, S., Fuchs, G., et al. (2023) A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. MBio .

      Wichers, J.S., Gelder, C. van, Fuchs, G., Ruge, J.M., Pietsch, E., Ferreira, J.L., et al. (2021a) Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. mSphere 6.

      Wichers, J.S., Mesén-Ramírez, P., Fuchs, G., Yu-Strzelczyk, J., Stäcker, J., Thien, H. von, et al. (2022) PMRT1, a Plasmodium -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio 13.

      Wichers, J.S., Scholz, J.A.M., Strauss, J., Witt, S., Lill, A., Ehnold, L.-I., et al. (2019) Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. MBio 10: e01500-19.

      Wichers, J.S., Tonkin-Hill, G., Thye, T., Krumkamp, R., Kreuels, B., Strauss, J., et al. (2021b) Common virulence gene expression in adult first-time infected malaria patients and severe cases. Elife 10.

      Wichers, J.S., Wunderlich, J., Heincke, D., Pazicky, S., Strauss, J., Schmitt, M., et al. (2021c) Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 23: e13341.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      With the emergence and spread of resistance to Artemisinin (ART), a key component of current frontline malaria combination therapies, there is a growing effort to understand the mechanisms that lead to ART resistance. Previous work has shown that ART resistant parasites harbour mutations in the Kelch13 protein, which in turn leads to reduced endocytosis of host haemoglobin. The digestion of haemoglobin is thought to be critical for the activation of the artemisinin endoperoxide bridge, leading to the production of free radicals and parasite death. However, the mechanisms by which the parasites endocytose host cell haemoglobin remain poorly understood.

      Previous work by the authors identified several proteins in the proximity of K13 using proximity-based labelling (BioID) (Birnbaum et al. 2020). The authors then went on to characterise several of these proteins, showing that when proteins including EPS15, AP2mu, UBP1 and KIC7 are disrupted, this leads to ART resistance and defects in endocytosis leading to the hypothesis that these two processes are inextricably linked.

      In this manuscript, Schmidt et al. set themselves the task of characterising more K13 component candidates identified in their previous work (Birnbaum et al. 2020) that were not previously validated or characterised. They chose 10 candidates and investigated their localisations, and colocalisation with K13, and their involvement in endocytosis and in vitro ART resistance, 2 processes mediated by K13 and some members of the K13 compartments

      The authors show that of their 10 candidates, only 4 can be co-localised with K13. Then, using a combination of targeted gene disruption (TGD) as well as knock sideways (KS), they characterised these 4 proteins found in the K13 compartment. They show that MyoF and KIC12 are involved in endocytosis and are important for parasite growth, however their disruption does not lead to a change in ART sensitivity. The authors also confirm the findings of their previous publication (Birnbaum et al. 2020), using a slightly different TGD, that MCA2 is involved in ART resistance, however they did not check whether its disruption impacts haemoglobin uptake. They also show that KIC11 is not involved in mediating haemoglobin uptake or ART resistance. To finish, the authors used AlphaFold to identify new domains in the proteins of the K13 compartment. This led them to the conclusion that vesicle trafficking domains are enriched in proteins of the K13 compartment involved in endocytosis and in vitro ART resistance.

      The majority of the experiments conducted by the authors are performed to a good standard in biological and technical replicates, with the correct controls. Their findings provide confirmation that their 4 candidate genes seem to be important for parasite growth, and show that some of their candidates are involved in endocytosis. While the KD and KS approaches employed by the authors to study their candidate genes each have their own advantages and can be excellent tools for studying a large sets or genes, this manuscript highlights the many limitations of these approaches. For example, the large tag used for the KS approach can mislocalise proteins or disrupt their function (as is the case for MyoF), resulting in spurious results, or indeed the inability to generate the tagged line (as is the case for MCA2). The KS approach also makes the results of a protein with a dual localisation, like KIC12, extremely difficult to interpret.

      Moreover, the manuscript is disjointed at times, with the authors choosing to conduct certain experiments for only a subset of genes, but not for others. For example, considering that the aim of this paper was to identify more proteins involved in ART resistance and endocytosis, it is confusing why the authors do not perform the endocytosis assays for all their selected proteins, and why they do not do this for the proteins they identify in their domain search. There is significant room for improvement for this manuscript, and a generally interesting question. But in it's current format, other than confirming that MCA2 is involved in ART resistance (which was already known from the Birnbaum paper), the authors do not further expand our understanding of the link between ART resistance and endocytosis in this manuscript.

      Major Comments

      line 31: please change defined to characterised - defined suggests that novel proteins were identified in this study, which is not the case.

      line 37: please change 'second' to "another". As explained further below, the authors identified 3 classes of proteins (confer ART resistance + involved in HCCU, involved in HCCU only, or involved in neither).

      Line 40: You define KIC11 as essential but according to your data some parasites are still alive and replicating 2 cycles after induction of the knock sideways. Please consider changing "essential" to "important for asexual parasite growth"

      Line 40: please change 'second group' to 'this group'

      line 41: state here that despite it being essential, it is unknown what it is involved in.

      Line 50: the authors should state here that there is actually a reversal in this trend over the last few years.

      Line 54: please separate out the references for each of the two statements made in this line (a: that ART resistance is widespread in SEA, and b: that ART resistance is now in Africa) Reference 14 also seems to reference ART resistance in Amazonia - which is not covered by the statement made by the authors (in which case the authors should state ART is now present in Africa and South America). The authors should also reference PMID: 34279219 for their statement that ART resistance is now found in Africa (albeit a different mutation to the one found in SEA).

      Line 65: it is also worth mentioning here that there are other mutations in proteins other than K13, such as AP2mu and UBP1 (PMID: 24994911;24270944) that can lead to ART resistance.

      Line 80, 86: ref 43 is misused. Reference 43 refers to Maurer's clefts trafficking which takes place in the erythrocyte cytosol and is not involved in haemoglobin uptake as far as I know. Please replace ref 43 with one showing the role of actin in haemoglobin uptake.

      Line 98: the authors state here that they 'identified' further candidates from the K13 proxiome. This suggests that they identified new proteins in this paper, when in fact the list was already generated in ref 26. All they did was characterise proteins from that list that were not previously characterised. The authors should therefore remove identified from this statement.

      Line 107-108: it is not clear from this sentence why these proteins were left out of the initial analysis in Ref 26. A sentence here explaining this would be valuable for the reader.

      Line 117-123: The authors say that PF3D7_0204300, PF3D7_1117900 and PF3D7_1016200 were not studied because they were not in the top 10 hits. However, the current organisation of Supplementary Table 1 shows all 3 proteins among the top 10 hits (MyoF, KIC12, UIS14 and 0907200 being after them). I think the authors should reorganise their table. It is also unclear according to what the proteins in the table are ranked. Could the authors indicate the metric used for the ranking?

      Line 129-141: Can the authors be clearer with their explanations of the identification of mutation Y1344Stop? One dataset (ref 61) shows that 52% of African parasites have a mutation in MCA2 in position 1344 leading to a STOP codon. But another dataset (ref 62) shows that the next base is also mutated, reverting the stop codon. That should have been seen in the first dataset as well. Could the authors please clarify.

      Line 147: the authors say that MCA2 is expressed throughout the intraerythrocytic cycle as shown by live cell imaging. In Birnbaum et al 2020 fig 4I, the authors show that MCA2 is mainly expressed between 4 and 16hpi. But in Figure 1B of this manuscript there is a clear multiplication of MCA2 signal between trophozoite and schizont. How do the authors explain this discrepancy? Could expression of the truncated MCA2 be different than the full length? This cannot be assessed as expression and localisation of the full-length HA tag MCA2 is not shown in Schizonts. MCA2 expression seems also different for the MCA2TGD-GFP with no expression in rings.

      Line 158: would it not have been more useful for the authors to have episomally expressed MCA2-3xHA in their MCA2Y1344STOP-GFPENDO line to make sure that the truncated protein is indeed going to the correct compartment? The experiments done by the authors suggests that the MCA2Y1344STOP goes to the right location but does not really confirm it.

      Line 191: it is stated that MCA2 confers resistance independently of the MCA domain, however in both the MCA2-TGD and MCA2Y1344STOP-GFPENDO parasites, the MCA domain is deleted, and for both parasites, there is resistance (albeit to a lower level in the MCA2Y1344STOP-GFPENDO line). Therefore, how can the authors state that the ART resistance is independent of the MCA domain? This statement should be that resistance is dependent on the loss of the MCA domain.

      Line 192: Why did the authors not check if MCA2 is involved in endocytosis? They state later on in the manuscript that they did not do endocytosis assays with TGD lines, however if the authors include the correct controls, this could be easily done. It would also be really interesting to see whether endocytosis gets progressively worse going from WT to MCA2Y1344STOP to MAC2TGD. This experiment (as well as doing endocytosis assays for KIC4 and KIC5 TGD lines) would drastically increase the impact of this study. These experiments would not take more than 3 weeks to perform, and would not require the generation of new lines.

      The authors should consider re-organising the MCA2 section, first showing that the 3xHA tagged line colocalises with K13, then performing the new truncation.

      Line 197: Once again ref 43 is not correct to illustrate that actin/myosin is involved in endocytosis

      Line 202: the authors state that MyoF localises near the food vacuole from ring stage/trophs onwards. However, how can this statement be made in schizonts based on these images (Fig. 2A), where it doesn't look like MyoF is anywhere near the FV? This statement can only be made for schizonts if co-localised with a FV marker (which is done in Fig. 2B), however, based on the number of MyoF foci, it appears that this was not done for schizonts. Please either remove the statement that MyoF is near the food vacuole from trophs onwards (because it is only seen near the FV up until trophs) or show the data in Fig. 2B of schizonts to substantiate these claims.

      Line 204-206: what does this statement bring to the paper? Is it to show that it is the real localisation of MyoF because 2 tag cell line show the same localisation? I don't think this is needed, especially as later in the manuscript an HA-tag MyoF line is used and show similar localisation.

      Line 212: The overlap of K13 with MyoF in Fig 2C 3rd panel (1st trophozoite panel) is not obvious, especially as the MyoF signal seems inexistant. I would advise the authors to replace with a better image. Also, why are there no images of schizonts shown in Figure 2C?

      Line 217: the spatial association of MyoF with K13 is very different when it is tagged with GFP and when it is tagged with 3xHA. The way the authors word it here, it seems that there is agreement with the two datasets, when this is not in fact the case (59% overlap for MyoF-GFP and only 16% overlap with MyoF-3xHA). These data suggest that the GFP and the multiple FKBP tags are doing something to the protein and therefore maybe the ensuing results using this line should not be trusted or be taken with a pinch of salt.

      Line 219: the authors state here that they could not detect MyoF-GFP in rings, when in Figure 2C they show MyoF-GFP in rings, and also show that they could detect MyoF in Sup Fig. 3B with the 3xHA tagged line. Is this a labelling mistake in Figure 2C? If the authors could indeed not see MoyF-GFP in rings, this statement should have been made when Figure 2A was presented, and not so late in the manuscript, which causes confusion. Line 237: Showing a DNA marker (DAPI, Hoescht) for Figure 2E, and subsequent figures using mislocalisation to the nucleus, would help the reader assess efficiency of the mislocalisation.

      Line 254-256: authors should show the results of the bloating assay for parental 3D7 parasites (+ and - rapalog) to see whether the MyoF line - rapalog has increased baseline bloating. This applies to all subsequent FV bloating assays.

      Line 254-257: The authors say that because fewer parasites show a bloated food vacuole upon inactivation of MyoF it means that less hemoglobin reached the food vacuole. I understand the authors statement, however, shouldn't they look at the size of the food vacuole, instead of the number of parasites with bloated FV, to make such a statement? This has been done for KIC12 so why not doing it for MyoF?

      Line 259-261: these results would be difficult to interpret namely because the authors have dying parasites, which is exacerbated with the protein being knocked sideways. The authors should mention the pitfalls their knock sideways and tagging design here.<br /> Line 260-261: RSA is an assay relying on measuring parasite growth 1 cycle after a challenge with ART for 6 hours.

      Line 261-263: the authors sate that MyoF has a function in endocytosis but at a different step compared to K13 compartment proteins. I am not sure what they mean here. Can this be clarified? Do the authors mean that it is involved in endocytosis but not in ART resistance? If so, this is a very difficult statement to make since the parasites are dying. Is there any evidence of point mutations in MyoF in the field?

      Line 298: the authors state that there is no growth defect in the first cycle when rapalog is added to the KIC11 line, however based on Figure 3D, there is evidently a 25% reduction in growth compared to - rapalog at day 1 post treatment, and a 60% reduction by day 2, which is still within the 1st growth cycle. The authors should either revise their statement or provide an explanation for these findings. The authors should also explain why their Giemsa data in Fig. 3E is not in accordance with their FACS data.

      Line 301: KIC11 could also be important very early for establishment of the ring stage for example for establishment of the PV. Also, was mislocalisation assessed in rapalog-treated parasites at 72 hours or in cycle 3?

      Line 311: the authors should change the sentence from 'not related to endocytosis' to 'not related to endocytosis or ART resistance'.

      Line 323-325: Authors say that a nuclear GFP signal can be observed in early schizonts for KIC12. According to the pictures provided in Figure 4A and Figure S5A it is not very obvious. Also faint cytoplasmic GFP signal could only be background as we can see that exposure is higher for schizont pictures

      Line 326-328: The authors say that kic12 transcriptional profile indicate mRNA levels peak (no s at peak) in merozoites. Should they show live cell imaging of merozoites then? Because from the Figure 4A schizont pictures where schizonts are almost fully segmented no signal can be observed. Line 347: The authors state that using the Lyn mislocaliser the nuclear pool of KIC12 is inactivated by mislocalisation to the PPM. This tends to suggest that only the nuclear pool of KIC12 is mislocalised. How is it possible that only the nuclear pool is mislocalised? Line 368-369: Effect was also only partial for MyoF. Why didn't you measure the same metrics for MyoF? Line 379: you don't know if all proteins acting later in endocytosis will have an increased number of vesicles as a phenotype

      Line 413-414: The authors state that no growth defect was observed upon KS of 1365800. Is growth alone enough to say that there is no impact on endocytosis?

      Line 432: in this section, the authors state that KIC4 and KIC5 seem to have domains that may suggest these proteins are involved in endocytosis, based on the alpha fold data that is publicly available. Considering the authors have TGD-SLI versions of these lines (Birnbaum et al. 2020) and have already confirmed in this previous publication that they confer resistance to ART; it would make sense to look at endocytosis for these genes. This would be a relatively simple and straightforward experiment, taking no longer than two to three weeks, and would require no additional reagents or line generation. Doing these experiments would add a lot more weight to this final section. The authors later state that KIC4 and 5 are TGD lines, so not the best for endocytosis assays. It is unclear why this would be difficult to do if an adequate control is contained in the experiment (such as parental 3D7). It explains why they did not perform the MCA2 endocytosis assays further up, but in my opinion, an attempt at doing these assays is important and would significantly increase the impact of this paper.

      Line 490-493: the authors state that the K13 compartment proteins fall in two groups, some that are involved in ART resistance AND endocytosis, and some that have different functions. However, in this manuscript the authors have demonstrated 3 flavours that K13 compartment proteins can come in: • Some that confer ART resistance and are involved in HCCU (MCA2) • Some that are involved in HCCU but not ART resistance (MyoF & KIC12) • Some that are involved in neither (KIC11) The authors should therefore revise this statement.

      Line 508: the authors state that they expanded the repertoire of K13 compartments, when in fact they functionally analysed them - they did not do another BioID to identify more candidates.

      Line 570-572: has anyone ever tested whether CytoD or JAS treatment in rings, is sufficient to mediate ART resistance? Something similar to what was done in PMID 21709259 with protease inhibitors. If not this would be a pretty interesting experiment for the authors to do that could shed more light on the MyoF data. It would take maybe 2 weeks to do and not require the generation of any new lines. This would clarify whether other Myosins other than MyoF are involved in endocytosis, as is suggested by previous publications (PMID: 17944961).

      Line 608: inhibitors targeting the metacaspase domain of MCA2 may inadvertently inactivate other essential parts of the protein. They authors should acknowledge this possibility in the text.

      Line 624-625: the authors state that MyoF is 'lowly expressed in rings' - indeed this is the case in their MyoF-2xFKBP-GFP-2xFKBP line which the authors established has defects due to the tag, but it appears from their MyoF-3xHA tagged line that it is expressed in rings. The authors should therefore revise their statement, and be careful of making claims based on their defective line and using fluorescence imaging as their only metric. If they do want to make the statement that it is not there in rings, they should also do a western blot, which is much more sensitive since it amplifies the signal compared to an image of one parasite.

      Line 635: arguably this is the 3rd variety and not the 2nd (the authors already mentioned 2 types - ones that are involved in HCCU AND ART and those involved in HCCU only). See comment for line 490-493 above.

      Line 785: Bloated food vacuole assay/E64 hemoglobin uptake assay method specify that a concentration of 33mM E64protease inhibitor was used. However, in reference 44, cited in the manuscript, a concentration of 33µM E64 was used. Please confirmed if this is just a typo or if 1000x E64 concentration was used which renders the experiment invalid.

      Line 788: it is unclear from this section what is considered a bloated food vacuole - is there an area above which the FV is considered bloated? Do the authors do these measurements manually or use an addon in FIJI/ImageJ? What is the cutoff for if a FV is bloated? Please clarify. Additionally, for the representative images + rapalog for Figures 2H and 4H, it would be useful to see where the authors delineate the FV (add a white circle showing what is actually measured).

      Line 863-864: this sentence seems to be out of place.

      Line 875: the authors state that there is a light blue wedge, when the circle consists of grey and black wedges. Please revise this.

      Line 1059-1061: it is unclear whether the individual growth curves are different clones or whether they are just the same experiment repeated? If it is the latter, then why are they not combined, as is traditionally done?

      Line 919-924: the authors mention a blue and red line, but there is only a black line in figure 3D. Moreover, the experiment of using the LYN mislocaliser was only done for KIC12 according to the manuscript. Additionally, the y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis there are several days. In the text it says there is no growth defect until the second cycle, but from this graph it appears the growth defect is evident as early as 1 day post rapalog treatment. Can the authors please clarify and correct the issues pointed out.

      Figure 1 panel B & C: the label of the figure where the signal from MCA2Y1344STOP-GFP is shown with the DAPI signal overlayed is deceptive since it suggests that this is the signal of full length MCA2. Please change the label of this panel from MAC2/DAPI to MCA2Y1344STOP/DAPI. The same is true for Panel C for the image labeled MCA2/K13 - please change this to MCA2Y1344STOP/K13.

      Figure 2B: what stages are these parasites? Please state this in the figure. Based on the MyoF pattern, it looks like rings in the upper panel and trophs in the bottom pannel. Why were schizonts not shown?

      Figure 2D&F: it is not very meaningful when growth assays are shown as a final bar after 4 days of growth. It is much more useful and informative to see a growth curve instead (as is shown in the supplementary), since it shows if the defect is apparent in the first growth cycle or later. With the way the data is currently shown, this is not apparent. I would advise the authors to switch the graph in 2F out of a combined graph of all the biological replicates growth curves for S3D - showing error bars.

      Figure 3: why were the calculation of FV area, parasite area and FV/parasite area only done for KIC12 and not done for MyoF? It would be interesting to see if any of these values are different for MyoF - whether the parasites are smaller in area and therefore FV smaller. Please present them Figure 2. Images should be already available and would not require further experiments to be done, only the analysis.

      Figure 3B: why is there no spatial association assessment for KIC11 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins.

      Figure 3D: The y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis the experiment takes place over several days. Is this a typo in the y axis? Additionally, the authors state in line 287-290 that the growth defect upon addition of rapalog is only seen in the second cycle, but from this graph it appears the growth defect is already evident 1 day post rapalog addition. The figure legend also does not make sense for this figure since it mentions a blue and a red line, when there is only a black line present. The legend also mentions the LYN mislocaliser which was used for KIC12 not KIC 11 (see above).

      Figure 3E: the colour for Control and Rapalog 4 hpi are very similar and very hard to discern. Please choose an alternative colour or add a pattern to one of the samples. The y axis is also missing a label. Is this supposed to be parasitemia (%)?

      Figure 4A: the ring shown in this figure does not appear to be a ring (it is far too large and appears to have multiple nuclei?). Do the authors have any other representative images to show instead?

      Figure 4B: why is there no spatial association assessment for KIC12 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins. This should be done for the different life cycle stages considering the changing localisation of KIC12.

      Figures 4C&E: it is extremely important to show the DNA stain in both these samples considering that a portion of KIC12 is in the nucleus! Please add the DAPI signal for these figures (as for all other figures!).

      Figure 4E: this figure should be presented before 4D (considering the line being presented in 4E is used in an experiment in 4D). The authors should switch the order of these two.

      It is unclear why in many of the fluorescence images the authors do not show the DAPI signal - particularly when colocalising with K13 and when doing the knock sideways experiments. Please add these images to the figures - I would assume they have already been taken, so would simply involved adding the images to the panel.

      Throughout the manuscript, there is no western blot confirming the correct size of their modified proteins. This should be provided.

      None of the figures are appropriate for individuals with colour blindness, limiting their accessibility to the paper. Please change the colour schemes for all fluorescent images using magenta/green or an alternative colour combination appropriate for colourblind individuals.

      Minor Comments

      line 29: remove 'are'.

      Line 29: the text says "HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins are among the few proteins so far functionally linked to this process." The sentence should be: 'HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process."

      line 44: remove 'the'

      Line 48: consider mentioning here that malaria is caused by the parasite Plasmodium - otherwise the first mention of parasite in line 52 is confusing for the non-specialist reader.

      Line 49: estimated malaria-related death and case numbers are from the 2021 WHO World malaria report. You cite the 2020 WHO World malaria report.

      Line 53: please insert the word 'have' between now and also.

      Line 54: please change 'was linked' to is linked

      Line 72: I would specify that free heme is toxic to the parasite. Especially as you mention that hemozoin is nontoxic. Sentence would be "where digestion results in the generation of free heme, toxic to the parasite, which is further converted into nontoxic hemozoin"

      Line 90: authors should either say "in previous works" or "in a previous work"

      Line 91: "We designated these proteins as K13 interaction candidates (KICs)"

      Line 95: please change 'rate' to number

      Line 109: Please include a coma before (ii).

      Line 112: as shown by Rudlaff et al in the paper you are citing, PPP8 is actually associated with the basal complex. You can say that "(ii) were either linked or had been shown to localise to the inner membrane complex (IMC) or the basal complex (PF3D7...).

      Line 114: Protein PF3D7_1141300 is called APR1 in the manuscript but ARP1 in Supplementary Table 1. Please correct.

      Line 131: please define SNP - this is the first use of the acronym.

      Line 133-134: South-East Asia instead of "South Asia"

      Line 135: please explain what TGD is - it is referred to over and over again in the manuscript without ever being explained.

      Line 145: change 'Western blot' to western blot - only Southern blot is capitalised since it is named after an individual, while the other techniques are not.

      Line 152: add "the" between 'and spatial'

      Line 158: please define SLI as selected linked integration, since it is the first use of the acronym.

      Line 178: introduce a coma after protein. Sentence should be "Proliferation assays with the MCAY1344STOP-GFPendo parasites which express a larger portion of this protein, yet still lacking the MCA domain (Figure 1), indicated no growth ...

      Line 195: the authors could mention that MyoF was previously called MyoC in the Birnbaum 2020 paper. I wanted to check back in the Birnbaum 2020 paper and could not find MyoF

      Line 200: "Expression and localisation of the fusion protein was analysed by fluorescent microscopy". Why expression was not analysed also by western Blot same as for MCA2?

      Line 204: I could not find any mention of MyoF (Pf3D7_1329100) in reference 65. Please remove reference 65 if not correct. Also reference 66 looks at Plasmodium chabaudii transcriptomes so I would specify that "This expression pattern is in agreement with the transcriptional profile of its Plasmodium chabaudii orthologue"

      Line 208: Please indicate a reference for P40 being a marker of the food vacuole

      Line 220-224: The authors should consider changing to " Taken together these results show that MyoF is in foci that are mainly close to K13 and, at times, overlapping, indicating that MyoF is found in a regular close spatial association with the K13 compartment."

      Line 255: In Figure 2H, and subsequent figures showing bloated FV assay, I would delineate the food vacuole with dashed line as in Birnbaum et al. 2020 to help the reader understanding where the food vacuole is.

      Line 265-266: Here the title says that KIC11 is a K13 compartment associated protein, but the title of Figure 3 says KIC11 is a K13 compartment protein. I noticed that you make the difference between K13 compartment protein et K13 compartment associated protein for MyoF for example which is not clearly associated with the K13 compartment. Which one is it for KIC11?

      Line 309-310: indicate a reference for your statement "which is in contrast to previously characterised essential K13 compartment proteins".

      Line 377: Figure 4I, please correct 1st panel Y axis legend

      Line 404: replace "dispensability" with dispensable

      Line 416: can the authors provide any speculation as to why they observed these proteins as hits in the BioID experiments?

      Line 451: Where the "97% of proteins containing these domains also contain an Adaptin_N domain and function in vesicle adaptor complexes as subunit " come from. Do you have a reference?

      Line 465-467: the same could be said for KIC4 as it also has a VHS domain.

      Line 477-479: Can be rephrased to "However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 could be demonstrated, suggesting a limited role for PF3D7_1365800 in endocytosis. Or something like that. Makes it clearer.

      Line 535: Have AP-2 or AP-2 been shown to be at the K13 compartment?

      Line 569: reference 43 is wrong

      Line 746: typo "ot" instead of or.

      Line 801: method for Domain Identification using AlphaFold specify that RMSDs of under 5Å over more than 60 amino acids are listed in the results. However, there is a typo in Figure 5B for KIC5 where it says "RMSD 4.0 Å over 8 aa". Please correct.

      Line 856: In Figure 1E, please use the same Y axis legend as in Figure 2D "relative growth at day 4 [%] compared with 3D7"

      Figure S1: Some PCR gels check for integration are presented as 5', 3' and ori whereas other gels are presented as ori, 5' and 3'. This is confusing. Figure S1: Why was the expression of only MCA2 was verified by Western blot? What about the other proteins?

      Line 493: Considering KIC11 was not involved in HCCU or ART resistance it might be worth mentioning in this section that it is of note that there are no domains detected that would be involved in endocytosis.

      Line 503-506: is it wise to generate more drugs that target a pathway that is already highly susceptible to mutations? The authors should add a statement explaining how this might be avoided.

      Throughout, scale bars are stated in the figure legends at the end of the legend. This is a slightly confusing format. The authors should consider stating the scale bar for each sub-legend where a fluorescence image is taken.

      Referees cross-commenting

      After reading reviewer 2 and 3's comments, I think there are significant overlaps in the key points raised in terms of questions about fusion proteins and their potential partial mis-localisation, better descripton of results and target selection. Overall I think we agree that the work has potential, but in its current form does not represent a major advance. It would be immensely helpful if the manuscript would be carefully edited for a better flow and linear description of results.

      Significance

      The authors set out to test whether other proteins that are in the vicinity of K13 are involved in mediating ART resistance and endocytosis. This is an interesting question. However, other than MCA2 which was already known to be involved in mediating ART resistance (and was not tested for its involvement in endocytosis), none of their candidate proteins seem to be involved in mediating both these functions. The authors show that the other proteins tested appear important for parasite growth, with KIC12 and MyoF involved in mediating endocytosis. While these findings are novel, the KS approach used by the authors casts some doubt over the findings, and would mean that these findings would have to be re-tested with a more reliable approach, such as the GlmS system or generating a conditional knockout using the DiCre system. Despite not advancing our understanding of ART resistance, or identifying further players involved in this process, this manuscripts provides two candidates that are involved in mediating endocytosis and a further candidate that appears to be important for parasite growth. Further work on these proteins will be required to understand their exact roles. As stated above, there is currently limited interest for these results (limited to researchers working on endocytosis in apicomplexan parasites and possibly the wider endocytosis field from an evolutionary perspective), however with further work, this could increase the impact and interest of this work substantially.

      The authors do not describe any novel methods/approaches within this work.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank all four reviewers for their helpful and constructive comments. We have gone through each and every comment and proposed how we would address each point raised by the reviewers. We are confident our proposed revisions are feasible within a reasonable and expected time frame. Some of the comments regarding minor typo/aesthetics and extra references have already been addressed in the transferred manuscript. The changes are highlighted in yellow in the transferred manuscript.

      2. Description of the planned revisions

      Reviewer #1

      Major points:

      1. The presented work itself (Figures 1-4) does not need significant adjustments prior to publication, in my view, with only a few points to address. However, the work in Figure 5- doesn't really support the claims the authors make on its own, and would require some additional experiments or at the very least discussion of the caveats to its current form.

      We thank the reviewer for these comments and will follow the reviewer’s suggestion by discussing the caveats regarding the interpretation of Figure 5. We will also add to the discussion to suggest future research approaches beyond the scope of this manuscript that would address the functional importance of localised mRNA translation. We will briefly mention in the discussion methods such as the quantification of the mRNA foci and the disruption of the mRNA localisation signals to disrupt localised translation and the use of techniques such as Sun-Tag (Tanenbaum et al, 2014) and FLARIM (Richer et al, 2021) to visualise local translation directly.

      Tanenbaum et al, 2014 DOI: 10.1016/j.cell.2014.09.039

      Richer et al, 2021 DOI: 10.1101/2021.08.13.456301

      1. Localized glia transcripts, are they "glial/CNS/PNS" significant or are they similar to other known datasets of protrusion transcriptomes? The authors compared their 4801 "total" localized to a local transcriptome dataset from the Chekulaeva lab finding that a significant fraction are localized in both. As the authors note, this is in good agreement with a recent paper from the Talifarro lab showing conservation of localization of mRNAs across different cell types. What the authors haven't done here, is further test this by looking at other non-neuronal projection transcriptomic datasets (for example Mardakheh Developmental Cell 2015, among others). If the predicted glia-localized processes are similar to non-neuronal processes transcriptomes, this would further strengthen this claim and rule out some level of CNS/PNS derived linage driving the similarities between glia and neuronal localized transcripts.

      This is a good point and we thank the review for pointing out this interesting cancer data set. We will do as the reviewer suggests and intersect our data with Mardakheh Dev Cell 2015 to test the further generality of localisation in neurons and glia, in other cell types. Specifically, we plan to intersect both glial (this study) and neuronal (von Kuegelgen & Chekulaeva, 2020) dataset with protrusive breast cancer cells (Mardakeh et al, 2015).

      von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590

      Mardakeh et al, 2015 DOI: 10.1016/j.devcel.2015.10.005

      1. The presentation/discussion around Figure 3 is a bit weaker than other parts of the manuscript, and it doesn't really contribute to the story in its current form. Notably there is no discussion about the significance of glia in neurological disorders until the very end of the manuscript (page 21), meaning when its first brought up.. it just sits there as a one off side point. The authors might consider strengthening/tightening up the discussion here, if they really want to keep it as a solo main figure rather than integrating it somewhere else/putting it into supplemental. In my view, Figures 2 & 3 should be merged into something a bit more streamlined.

      This is a good point. We plan to strengthen the presentation of Figure 3 and discussion of the significance of glia in neurological disorders by adding a description of the Figure in the Results section and highlighting the significance of glia in nervous system disorders in the Discussion section.

      1. Why aren't there more examples of different mRNAs in Figure 4? Seems a waste to kick them all to supplemental.

      We agree that it could be helpful to show different expression patterns in the main figure. To address this point we will add Pdi (Fig. S4D), which shows mRNA expression in both the glia and the surrounding muscle cell. This pattern is in contrast to Gs2, which is highly specific to glial cells. We will also note that although pdi mRNA is present in both the glia and muscle, Pdi protein is only abundant in the glia, suggesting that translation of pdi mRNA to protein is regulated in a cell-specific manner.

      1. The plasticity experiments, while creative, I think need to be approached far more cautiously in their interpretation. Given that the siRNAs will completely deplete these mRNAs- it really needs to be stressed any/all of the effects seen could just be the result of "defective" or "altered" states in this glial population- which has spill over effects on plasticity in at the NMJ. Without directly visualizing if these mRNAs are locally translated in these processes and assessing if their translation is modulated by their plasticity paradigm, all these experiments can say is that these RNAs are needed in glia to modulate ghost bouton formation in axons. This represents the weakest part of this manuscript, and the part that I feel does not actually backup the claims currently being made. Without any experiments to A. quantify how much of these transcripts are localized vs in the cell body of these glia, B. visualize/quantify the translation of these mRNAs during baseline and during plasticity; the authors cannot use these data to claim that localized mRNAs are required for synaptic plasticity.

      We are grateful to the reviewer for pointing out that we were not precise enough in defining our interpretation of the structural plasticity assay. We did not intend to claim that our results show that local translation of these transcripts is necessary for plasticity, only that these transcripts are localized and are required in the glia for plasticity in the adjacent neuron (in which the transcript levels are not disrupted in the experiment). Definitively proving that these transcripts are required locally and translated in response to synaptic activity would require genetic/chemical perturbations and imaging assays that would require a year or more to complete, so are beyond the scope of this manuscript. To address this point, we will clarify that the results do not show that localized transcripts are required, only that the transcripts are required somewhere specifically in the glial cell (without affecting the neuron level), and we can indeed show in an independent experiment that there are localized transcripts.

      Reviewer #2

      Major points:

      1. The authors analyse the 1700 shortlisted genes for Gene Ontology and associations with austism spectrum disorder, leading to interesting results. However, it is not clear to what extent the enrichments they observe are driven by their presumptive localization or if the associations are driven to a significant extent by the presence of these genes in the selected cell types in the Fly Cell Atlas. One way to address this would be to perform the GO and SFARI analysis on genes that are expressed in the same cells in the Fly Cell Atlas but were not shortlisted from the mammalian cell datasets - the results could then be compared to those obtained with the 1700 localized transcripts.

      This is a fair point raised by the reviewer as genes involved in neurological disease such as Autism Spectrum Disorder may be enriched in CNS/PNS cell types. We will follow the reviewer’s suggestion to perform GO and SFARI gene enrichment analysis in genes that were not shortlisted for presumptive glial localisation.

      1. Although the authors attempt to justify its inclusion, I'm not convinced why it was important to use the whole cell transcriptome of perisynaptic Schwann cells as part of the selection process for localizing transcripts. Including this dataset may reduce the power of the pipeline by including mRNAs that are not localized to protrusions. How many of the shortlisted 1700 genes, and how many of the 11 glial localized mRNAs in Table 5, would be lost if the whole cell transcriptome were excluded. More generally, what is the distribution of the 11 validated localizing transcripts in each dataset in Table 4? This information might be valuable for determining which dataset(s), if any, has the best predictive power in this context.

      We thank the reviewer for raising this point, which we will address with further analysis and adding to the discussion. We propose to address the criticism by running our analysis pipeline without the inclusion of the dataset using Perisynaptic Schwann Cells (PSCs) and then intersect with the PSCs-expressed genes, since their functional similarity with polarised Drosophila glial cells is highly relevant. We also agree with the reviewer that it would be a useful control for us to assess the ‘predictive power’ of each glial dataset by calculating their contribution to the shortlisted 1,700 glial localised transcripts and to the 11 experimentally validated transcripts via in situ hybridisation. To address this point, we plan to add this information in the revised manuscript.

      1. Did the authors check if any of the RNAi constructs are reducing levels of the target mRNA or protein? Doing so would strengthen the confidence in these important results significantly. In any case, the authors should also mention the caveat of potential off-target effects of RNAi.

      We thank the reviewer for their useful comment and agree that the extent to which the RNAi expression reduces the levels of mRNA is not specifically known. We will add a FISH experiment on lac, pdi and gs2 RNAi showing very strong reduction in mRNA levels. We will also add an explanation of the caveats of the use of the RNAi system to the discussion.

      1. Methods: what is the justification for assuming that if the RNAi cross caused embryonic or larval lethality then the 'next most suitable' RNAi line is reporting on a phenotype specific to the gene. If the authors want to claim the effect is associated with different degrees of knockdown they should show this experimentally. An alternative explanation is that the line used for phenotypic analysis in glia is associated with an off-target effect.

      We thank the reviewer for this comment. We agree that off target effects cannot in principle be completely ruled out without considerable additional experimental analysis beyond the scope of this manuscript. To address the criticism we will remove the expression data of the lines that cause lethality and revise the discussion to explain that the level of knockdown in each line is unknown, and would require further experimental exploration.

      Minor points:

      1. It would be helpful to have in the Introduction (rather than the Results, as is currently the case) an operational definition of mRNA localization in the context of the study. And is it known whether or not localization in protrusions is the norm in mammalian glia or the Drosophila larval glia? I ask because it may be that almost all mRNAs diffuse into the protrusion, so this is not a selective process. One interesting approach to test this idea might be to test if the 1700 shortlisted transcripts have a significant underrepresentation of 'housekeeping' functions.

      We thank the reviewer for this excellent suggestion. To address the comment, we will move our explanation of the operational definition of mRNA localization to the Introduction. We will also perform enrichment analysis of housekeeping genes within 1,700 shortlisted transcripts compared to the transcriptome background, as the reviewer suggested.

      Reviewer #3

      Major points:

      1. The authors have pooled data from different studies across different type of glial cells performed from in vitro to in vivo. While pooling datasets may reveal common transcripts enriched in processes, this may not be the best approach considering these are completely different types of glial cells with distinct function in neuronal physiology.

      We thank the reviewer for highlighting the need for us to further justify why we pooled datasets. We will revise the manuscript to better emphasise that the overarching goal of our study was to try to discern a common set of localised transcripts shared between the cells. The problem with analysing and comparing individual data sets is that much of the variation may be due to differences in the methods used and amount of material, rather than differences in the type of cells used. We will revise the discussion to make this point and plan to explain that our approach corresponds well with a previous publication pooling localised mRNA datasets in neurons (von Kugelgen & Chekulaeva 2021).

      von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590

      1. It is important to note the limitations of the study. For example, DeSeq2 is biased for highly expressed transcripts. How robust was the prediction for low abundance transcripts?

      The presented 1,700 transcripts were shortlisted based on their presence and expression level (TPM) in glial protrusions rather than their relative enrichment. Nevertheless, the reviewer makes a valid criticism of our use of DESeq2, where we compared enriched transcripts in glial and neuronal protrusions in Figure 1D. To address this point we will discuss this caveat in the relevant section.

      The issue raised regarding low abundance transcript prediction raises an important question: does the likelihood of localisation to cell extremities correlate with mRNA abundance? We have already partially addressed this point, since our analysis of the fraction of localised transcripts per expression level quantiles shows only limited correlation. To address this comment, we will add these results in the revised manuscript as a supplementary figure.

      1. The authors identify 1,700 transcripts that they classify as "predicted to be present" in the projections of the Drosophila PNS glia. This was based on the comparison to all the mammalian glial transcripts. Since the authors have access to a transcriptomic study from Perisynaptic Schwann cells (PSCs), the nonmyelinating glia associated with the NMJ isolated from mice; it would be more convincing to then validate the extent of overlap between Drosophila peripheral glial with the mammalian PSCs. This may reveal conserved features of localized transcripts in the PNS, particularly associated with the NMJ function.

      Thank you for the valuable suggestion. A similar point was also raised by [Reviewer #2 - Major point 2] to re-run our pipeline excluding the PSCs dataset and intersect with the PSC transcriptome post-hoc. Please see the above section for our detailed response.

      1. Fig 2: What is the extent of overlap between the translating fractions versus the localized fraction? It will be informative to perform the functional annotation of the translating glial transcripts as identified from Fig 1D.

      This is an interesting question. To address this point, we plan to: (i) compare transcripts that are translated vs. localised in glial protrusions, and (ii) perform functional annotation enrichment analysis on the translated fraction of genes.

      1. "We conclude predicted group of 1,700 are highly likely to be peripherally localized in Drosophila cytoplasmic glial projections". To validate their predictions, the authors test some of these candidates in only one glial cell type. It might be worthy to extend this for other differentially expressed genes localized in another glial type as well.

      The presented in vivo analyses made use of the repo-GAL4 driver, which is active in all glial subtypes, including subperineurial, perineurial and wrapping glia that make distal projection to the larval neuromuscular junction. We agree that subtype-specific analysis would be highly informative, but we believe this is outside the scope of the current work where we aimed to identify conserved localised transcriptomes across all glial subtypes. Nevertheless, to address the comment, we plan to further clarify our use of pan-glial repo-GAL4 driver in the Results and Method section of the revised manuscript.

      1. Figure 5: The authors perform KD of candidate transcripts to test the effect on synapse formation. However, these are KD with RNAi that spans across the entire cell. To make the claim about the importance of "target" RNA localization in glia stronger, ideally, they should disrupt the enrichment specifically in the glial protusions and test the impact on bouton formation. Do these three RNAs have any putative localization elements?

      We agree with the review, that we would ideally test the effect of disruption of mRNA localization (and therefore localised translation). However, we feel these experiments are beyond the scope of this current study, as they will require a long road of defining localisation signals that are small enough to disrupt without affecting other functions. To address this comment we will revise the Discussion section to mention those difficulties explicitly, and clarify the limitations of the approach used in our study for greater transparency.

      Reviewer #4

      Major points:

      1. The authors use FISH to validate the glial expression of their target genes, though these experiments are not quantified, and no controls are shown. The authors should provide a supplemental figure with "no probe" controls, and/or validate the specificity of the probe via glial knockdown of the target gene (see point 2). Furthermore, these data should be quantified (e.g. number of puncta colocalized with NMJ glia membrans).

      Thank you for requesting further information regarding the YFP smFISH probes. We have validated the specificity and sensitivity of the YFP probe in our recent publication (Titlow et al, 2023, Figure 1 and S1). Specifically, we demonstrated the lack of YFP probe signal from wild-type untagged biosamples and showed colocalization of YFP spots with additional probes targeting the endogenous exon of the transcript. Nevertheless, we will address this comment by adding control image panels of smFISH in wild-type (OrR) neuromuscular junction preparations.

      Titlow et al, 2023 DOI: 10.1083/jcb.202205129

      1. For the most part, the authors only use one RNAi line for their functional studies, and they only show data for one line, even if multiple were used. To rule out potential false negatives, the authors should leverage their FISH probes to show the efficacy of their knockdowns in glia. This would serve the dual purpose of validating the new probes (see point 1).

      Thank you for the suggestion. This point was also raised by [Reviewer #2 - Major point 3]. Please see above for our detailed response.

      1. In Figure 5 E, given the severe reduction in size in the stimulated Pdi KD animals, the authors should show images of the unstimulated nerve as well. Do the nerve terminals actually shrink in size in these animals following stimulation, rather than expand? The NMJ looks substantially smaller than a normal L3 NMJ, though their quantification of neurite size in F suggests they're normal until stimulation.

      We share the same interpretation of the data with the reviewer that the neurite area is reduced post-potassium stimulation in pdi knockdown animals. We will follow the reviewer’s suggestion and add an image showing unstimulated neuromuscular junctions.

      Minor points:

      1. The authors claim that there is an enrichment of ASD-related genes in their final list of ~1400 genes that are enriched in glial processes. It is well-appreciated that synaptically-localized mRNAs are generally linked to ASDs. Can the authors comment on whether the transcripts localized to glial processes are even more linked to ASDs and neurological disorders than transcripts known to be localized to neuronal processes?

      This is an interesting point. To address the comment, we will add a comparison of the degree of enrichment of ASD-related genes in neurite vs. glial protrusions in the revised manuscript.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      1. The use of blue/green or blue/green/magenta is difficult to resolve in some places. Swapping blue for cyan would greatly aid in visualizing their data.

      This comment is much appreciated. We have swapped blue for cyan in Figures 4 and S4. We have also changed Figure S1 to increase contrast and visibility as per reviewer’s comment.

      1. Make the colouring/formatting of the tables more consistent, its distracting when its constantly changing (also there is no need for a blue background.. just use a basic white table).

      This comment is much appreciated. We have applied a consistent colour palette to the Tables without background colourings and made the formatting uniform.

      Reviewer #2

      1. Introduction: 'Asymmetric mRNA localization is likely to be as important in glia, as it is in neurons,...'. Remove commas

      Thank you for pointing this mistake out. We have made the corresponding edits.

      Reviewer #3

      1. RNA localization in oligodendrocytes has been well studied and characterized. The authors should cite and discuss those papers (PMID: 18442491; PMID: 9281585).

      We thank the reviewer for this useful suggestion. We have added these references to the paper.

      Reviewer #4

      1. In Figure 5D, the authors should include a label to indicate that these images are from an unstimulated condition.

      We thank the reviewer for pointing this out. We have added the label as requested.

      1. The authors are missing a number of key citations for studies that have explored the functional significance of mRNA trafficking in glia, and those that have validated activity-dependent translation:

      - https://pubmed.ncbi.nlm.nih.gov/18490510/

      -https://pubmed.ncbi.nlm.nih.gov/7691830/

      -https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001053

      -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450274/

      -https://pubmed.ncbi.nlm.nih.gov/36261025**_/

      _**

      We thank the reviewer for the comment. We have added these references to the text.

    1. Finding the engramSheena A. Josselyn1–4, Stefan Köhler5,6 and Paul W. Frankland1–4Abstract | Many attempts have been made to localize the physical trace of a memory, orengram, in the brain. However, until recently, engrams have remained largely elusive. In thisReview, we develop four defining criteria that enable us to critically assess the recentprogress that has been made towards finding the engram. Recent ‘capture’ studies use novelapproaches to tag populations of neurons that are active during memory encoding, therebyallowing these engram-associated neurons to be manipulated at later times. We proposethat findings from these capture studies represent considerable progress in allowing us toobserve, erase and express the engram

      A 2015 neuroscience paper that gives 4 criteria for what an [[engram]] is, and argues that recent (at the time) developments in certain laboratory mice experiments suggested that engrams do exist.

    1. XMI describes solutions to the above issues by specifying EBNF production rules to create XML documents and Schemas that share objects consistently.
    1. Reviewer #2 (Public Review):

      In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.

      The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

    1. Author Response

      Reviewer #2 (Public Review):

      This paper addresses the topic of how T cells migrate in different tissues. The authors provide experimental evidence that T cell migration in the lung is more confined than in lymph nodes and gut villi. While prior studies have started to define the way T cells migrate during normal and pathological conditions, there is still a lot to learn about the factors that control this process. Thus, the topic is significant and timely. The authors use previously acquired data with two-photon microscopy from murine tissues. They compare multiple motility parameters of T cells in lymph nodes, gut villi, and inflamed lungs. Experiments demonstrate that T cells in the lung have a particular mode of migration characterized by low speeds, back-and-forth motions, and confinement.

      Strengths:

      Overall, this is a very well-performed study. The data presented is of excellent quality and, for the most part, supports the authors' conclusions. The imaging techniques used to track T cells in various organs and the mouse models implemented are very relevant and robust. The functional analysis of the different migration features of T cells is compelling and should be of use to the community. The conclusion that T cells use different migration modes depending on the organ appears novel. This is considered of major significance.

      We appreciate these comments by the reviewer that the study is relevant, robust, and timely.

      Weaknesses:

      The main weakness of the manuscript is that the study remains descriptive and comparative. It is important to analyze and describe different migration modes depending on the organ. Still, it would have been desirable for the authors to provide information on the reason for such differences. One of the striking observations is the back-and-forth motion of T cells in the lung. Searching for mechanisms underlying this unique mode of displacement would strengthen the quality of the study.

      We agree that the next step is to determine the underlying cells, signals, and structures that determine motility differences between tissues. However, we believe that a detailed study is beyond the scope of this manuscript, which is the first to directly compare the types of motility that should be studied in individual tissues that distinguish T cell motility in individual tissues such as villi and lung.

      Reviewer #3 (Public Review):

      The ability of T cells to move through a variety of complex and disparate tissue environments is fundamental to their success in surveying and responding to infectious challenges. A better understanding of the molecular cues that regulate T cell motility in tissues is needed in order to inform therapeutic targeting of T cell migration. Contributions that are intrinsic and extrinsic to the T cells themselves have been shown to shape the pattern of T cell movement. This study uses advanced quantitative image analysis tools to dissect differences in T cell motility in different tissue locations, to better define how the tissue environment shapes the pattern of motility and scope of tissue explored. The combination of different quantitative measures of motion enables the extensive characterization of CD8 T cell motility in the lymph node, lung, and villi of the small intestine. However, there are too many variables with respect to the CD8 T cell populations used for analysis to be able to gain new insight into the impact of the tissue microenvironment itself.

      The use of these advanced quantitative imaging analysis tools has the potential to significantly expand our analysis capabilities of T cell movement within and across tissues. The strength of the paper is the comprehensive analysis of multiple motility parameters designed with T cell function in mind. Specifically, with respect to the need for T cells to search a tissue area to identify antigen-bearing cells for T cell activation and identify cellular targets for the delivery of anti-microbial effector functions. The inclusion of an analysis of the "patrolled volume per time" is seen as a particularly useful advance to compare T cell behaviors across tissues.

      However, with the current data sets, it is difficult to draw definitive conclusions on the impact of the tissue environment on how T cell move, given the considerable variability in the CD8 T cells themselves. Extended experimentation would be needed to fully support their key claims. In particular:

      1) The authors have separated out naïve and activated CD8 T cells for their analysis, but this is a marked over-simplification. There are too many variables within these groups to be able to distinguish between differences in the T cell populations versus differences in the tissue environment. Variables include:

      a) T cells pre-activated in vitro before in vivo transfer (LPS-lung) versus transfer of naïve T cells for activation in vivo (Flu-lung, LCMV-villi)

      b) Polyclonal CD8 T cells (naïve, LPS-lung, Flu-lung) versus monoclonal (P14) CD8 T cells (LCMV-villi)

      c) Presence of cognate-antigen (Flu-lung, LCMV-villi) versus absence of antigen (LPS-lung)

      d) Cell numbers, 104 polyclonal naïve for Flu-lung versus 5 x 104 monoclonal (P14 T cells) for LCMV-villi)

      e) Intravital imaging (LCMV-villi) versus tissue explants (Flu-lung)

      The reviewer is absolutely correct that many factors differ, and we have added details about these potential differences. However, we can conclude that there are similarities in motility despite tissue and T cell activation differences, particularly between naive T cells in LN and d8 activated CD8 T cells in the gut villi. We report that the most significant differences between T cell motility parameters are in activated CD8 T cells in the lung compared to those in other tissues, regardless of antigen specificity. These lead us to suggest that the specific motility differences we see in T cells in the lung are likely to be the result of a combination of factors which we hypothesize are likely to be due to molecular changes in both the T cells (chemokine receptors) and the tissue (cell types, chemokines, and structural components). Future work will include defining specific differences that lead to changes in motility.

      The authors do present data that suggest similarities of motility patterns within the same tissue occur despite variabilities in the CD8 T cell source, for example, the MSD is not significantly different in the two lung groups despite differences in the way the CD8 T cells were activated. However, these similarities are lost when other parameters are analyzed suggesting additional variability independent of the tissue itself.

      In addition to the MSD (Fig 3), we also include parameters commonly analyzed including cell- based speed (Fig 2A). Regardless of the type of T cell, the median cell-based speeds range from 4.3 um/min to 6.5 um/min. Meandering ratio is also commonly used to analyze motility dynamics and naive T cells (0.70) and activated T cells in villi (0.63) also show similar meandering ratios (Fig 5).

      2) Controlled experiments are needed, where the input CD8 T cell population is kept constant and the target tissue differs, to substantiate any of the current conclusions. This could be done by using a single source and/or specificity of CD8 T cells (e.g., P14 or OT-I TCR transgenics, or polyclonal in vitro activated CD8 T cells) transferred into mice where the tissue providing the antigen or inflammation source is varied (lung with pOVA-flu versus small intestine with pOVA-LCMV for example).

      Alternatively, activated polyclonal CD8 T cells could be analyzed in the LPS-lung draining LN as well as in the LPS-lung to make a direct comparison between the tissues (LN versus lung) using CD8 T cells of the same activation status.

      The experimental systems cannot be directly compared except in some circumstances. For example, we included LPS-induced lung injury because we wanted to directly compare non-antigen specific with antigen specific activated T cells in the lung. We have compared motility of OTI Tg T cells responses in the lung with non-OTI Tg T cells and found similar motility and effector characteristics [15]. We have not repeated the additional controls requested here as OVA is a model antigen and commonly used as a tag to simply track CD8 T cell effector responses. There is vast literature showing similar responses between OVA-specific versus antigen specific CD8 T cell responses in multiple tissues, with OTI Tg T cells analyzed as “normal CD8 T cells”. Thus, while it is possible that imaging OTIs in multiple tissues could confirm that the type of T cells is “more similar” in each tissue, we do not believe adding this analysis would add to the overall conclusions of the manuscript as there is no data to suggest that OTIs would behave differently in different tissues. Adding in vitro activated CD8 T cells imaged in activated lymph nodes would add more variables (activated lymph node versus naive lymph node) which we do not believe would shed new light on our primary finding which is that the lung appears to induce specific types of T cell behavior compared to the naive lymph node and the gut.

      3) Differences in the micro-anatomical regions of the tissues studied may also contribute to tissue differences in movement patterns between the lung and the small intestine. The region of the small intestine imaged was specifically focused on the villi, close to the gut epithelium. Details of the location within the lung where images were taken are missing, therefore the motility differences between the lung and small intestine could reflect differences in the micro-anatomical position of the CD8 T cells within the tissue (proximal to epithelium versus parenchymal), rather than differences between the tissues themselves.

      The reviewer is absolutely correct and we have added greater discussion of this in both the Introduction and Discussion.

      Overall, the authors have developed a quantitative multi-parameter approach to the study of T-cell motility in different tissues. Application of these analytical tools to the study of T-cell behavior in different tissue locations has the potential to reveal tissue and/or T-cell-specific patterns of movement that may help to identify molecular requirements for context-specific dynamic T-cell behavior. Their quantitative approach reveals small but statistically significant differences in particular motility parameters, the functional significance of which will require further study. The careful design of experiments to reduce as many variables as possible will be needed to increase the impact of the work and ensure new insights into this important aspect of T-cell function.

    1. immer diese hirntoten pseudoprobleme... wir sind mitten drin im "krieg von reich gegen arm" (warren buffett), und wir verschwenden unsere hirne auf einen sogenannten "infokrieg", der aber nur provokation und ablenkung ist, während vater staat im hintergrund weiter unsere kinder fickt (sklavenmoral, staatsreligion, deutungshoheit). stell dir vor, deine herrscher verbannen dich aus der spitze der pyramide, und deine schwächliche antwort ist "okay, dann schau ich den ganzen tag die pyramide von unten an"...

    1. Nẹp bán nguyệt nhôm là một nẹp bán nguyệt được làm từ chất liệu nhôm thích hợp lắp đặt những nơi cần sự hài hòa với nội thất mà những loại bán nguyệt nhựa hay nẹp bán nguyệt vân gỗ không đáp ứng được.
    1. Der "Demokratische Widerstand" taucht inzwischen auch im Verfassungsschutzbericht auf. Darin steht, dass die dahinterstehende "Kommunikationsstelle Demokratischer Widerstand" (KDW) eine Vielzahl an öffentlichen Veranstaltungen durchführe und im Internet Verschwörungserzählungen und demokratiefeindliche Propaganda verbreite. Sie habe sich zum maßgeblichen Akteur des Spektrums der "verfassungsschutzrelevanten Staatsdelegitimierung" in Berlin entwickelt.

      nein.

      "demokratiefeindlich" ist unsere regierung, die das volk belügt und dem volk wahlfreiheiten wegnimmt. um diese sklaverei als "demokratie" zu bezeichnen, muss man dumm oder böse sein.

      "delegitimierend" ist unsere regierung. wer jeden tag A sagt und B macht, der verdient keine legitimität, und muss sich umso mehr auf eine "legalität" berufen, die er sich selbst ausgestellt hat. fuck the system!

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.

      A few major comments that the authors may want to address to further improve the work:

      We thank the reviewer for their efforts and constructive comments, which have guided our revisions.

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

      While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.

      Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

      We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).

      Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

      We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.

      Reviewer #1 (Recommendations For The Authors):

      1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.

      Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.

      2) Fig. 5b, a blot missing for the mCherry group?

      Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.

      3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.

      This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.

      4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.

      Thanks for pointing these out. These issues have been corrected in the manuscript.

      5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.

      Thanks – corrected.

      Reviewer #2 (Recommendations For The Authors):

      Major Points

      1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.

      We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.

      Author response table 1.

      Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison

      *No significant similarities found (>0.05).

      2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.

      The reviewer’s point is well taken and is addressed in point #1 above.

      3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.

      We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.

      Author response image1.

      4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.

      We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.

      5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?

      Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.

      Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.

      These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.

      Author response image 2.

      6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?

      The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.

      7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.

      This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.

      8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.

      We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.

      9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.

      Thanks – corrected.

      10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.

      We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.

      11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.

      To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.

      12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.

      We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.

      Author response image 3.

      13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?

      We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.

      Minor Points

      1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?

      With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.

      2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.

      Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.

      3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.

      We thank the reviewer for this comment, and the error has been corrected in the manuscript.

      4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".

      Thanks – corrected.

      5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".

      Thanks – corrected.

      6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".

      Thanks – corrected.

      7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.

      Thanks – corrected.

      8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.

      Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.

      9) Line 717 - "following" is misspelt.

      Thanks – corrected.

      10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.

      Thanks – corrected.

      11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".

      Thanks – corrected.

      12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".

      Thanks – corrected.

      13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?

      Thanks – corrected.

      14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?

      Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.

      15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".

      Thanks – corrected.

      16) In Fig. 5c, "Chromatin remodelers" is misspelt.

      Thanks – corrected.

      17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.

      Thanks – corrected.

      Reviewer #3 (Recommendations For The Authors):

      Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).

      Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.

      Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?

      Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.

      Minor points:

      line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.

      Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).

      line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")

      We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.

    2. Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, and thus provide a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      The central question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function ("sub-functionalization") on activation mediated by C3 and/or C5, it could similarly be argued that the different repeats are indeed expected to display different activation potentials, chromatin opening, cofactor recruitment, due to, simply, the differences in their sequences. The argument for an active attenuating function would have been strengthened, for example, by the finding of repressor recruitment by C1/C2/C4 (and not just less of everything). The possible biological relevance of these repeats thus remains to be established.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study presents an important finding on human m6A methyltransferase complex (including METTL3, METTL14 and WTAP). The evidence supporting the claims of the authors is convincing, although the model and assays need to be further modified. The work will be of interest to biologists working on RNA epigenetics and cancer biology.

      In mammals, a large methyltransferase complex (including METTL3, METTL14 and WTAP) deposits m6A across the transcriptome, and METTL3 serves as its catalytic core component. In this manuscript, the authors identified two cleaved forms of METTL3 and described the function of METTL3a (residues 239-580) in breast tumorigenesis. METTL3a mediates the assembly of METTL3-METTL14-WTAP complex, the global m6A deposition and breast cancer progression. Furthermore, the METTL3a-mTOR axis was uncovered to mediate the METTL3 cleavage, providing potential therapeutic target for breast cancer. This study is properly performed and the findings are very interesting; however, some problems with the model and assays need to be modified. It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.

      We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.

      Reviewer #2 (Public Review):

      In this study, Yan et al. report that a cleaved form of METTL3 (termed METTL3a) plays an essential role in regulating the assembly of the METTL3-METTL14-WTAP complex. Depletion of METTL3a leads to reduced m6A level on TMEM127, an mTOR repressor, and subsequently decreased breast cancer cell proliferation. Mechanistically, METTL3a is generated via 26S proteasome in an mTOR-dependent manner.

      The manuscript follows a smooth, logical flow from one result to the next, and most of the results are clearly presented. Specifically, the molecular interaction assays are welldesigned. If true, this model represents a significant addition to the current understanding of m6A-methyltransferase complex formation.

      A few minor issues detailed below should be addressed to make the paper even more robust. The specific comments are contained below.

      1) The existence of METTL3a and METTL3b.<br /> In this study, the author found the cleaved form of METTL3 in breast cancer patient tissues and breast cancer cell lines. Is it a specific event that only occurs in breast cancer? The author may examine the METTL3a in other cell lines if it is a common rule.

      We thank reviewer for point this out. We discovered the cleaved form of METTL3 in breast cancer, and we further examined this cleaved METTL3 in other cell lines such as lung cancer cell lines, renal cancer cell lines, HCT116 and MEF (new Supplementary Figures 1A-1C), these data suggest that it is a common rule. Therefore, we speculate that METTL3a may be ubiquitiously expressed. We have added this part in the revised manuscript, please see Line 118-120.

      2) Generation of METTL3a and METTL3b.

      1) Figure 1 shows that METTL3a and METTL3b were generated from the C-terminal of full-length METTL3. Because the sequence of METTL3a is involved in the sequences of METTL3b, can METTL3b be further cleaved to produce METTL3a?

      Although the sequence of METTL3a is involved in the sequences of METTL3b, overexpression of METTL3b in T47D, MDA-MB-231 and 293T cells did not show METTL3a expression in these cells (please see Figures 3A, 3C, 3G), suggesting that METTL3b can not be further cleaved to produce METTL3a, and the METTL3 cleavage may require its N-terminal region. We have added this in the discussion, please see Line 358 to 360.

      2) Based on current data, the generation of METTL3a and METTL3b are separated. Are there any factors that affect the cleavage ratio between METTL3a and METTL3b?

      We thank for reviewer’s excellent question. In this study, we show that both METTL3a and METTLb are produced through proteasomal cleavage, and both of them are positively regulated by the mTOR pathway. On the other hand, we indeed observed the differential cleavage ratios between METTL3a and METTL3b across different cell lines. For example, METTL3a/METTLb ratio was greater than 1 in MDA-MB-231 cells (see Figure 7C), less than 1 in T47D and 293T cell lines (see Figure 7A and 7B), and equal to 1 in MEF cells (see Figure 7O). Based on these results, we speculate that there may be some factors that control the cleavage ratio between METTL3a and METTL3b, which warrants further investigation. We have added this in the discussion, please see Line 374 to 379.

      3) In Figure 2G, the author shows the result that incubation of the Δ198+Δ238 METTL3 protein with T47D cell lysates cannot produce the METTL3a and METTL3b variants. The author may also show the results that Δ198 METTL3 protein or Δ238 METTL3 protein incubates with T47D cell lysates, respectively.

      Following the reviewer’s suggestion, we had performed in vitro cleavage assays by incubation of METTL3-Δ238 or METTL3-Δ198 with T47D cell lysates, and had incorporated this result in the revised manuscript. Please see our new Supplementary Figure 3A.

      4) As well as many results published in previous studies, the in vitro methylation assay shows that WT METTL3 is capable of methylating RNA probe (figure 2H). The main point of this study is that METTL3a is required for the METTL3-METTL14 assembly. However, the absence of METTL3a in the in vitro system did not inhibit METTL3METTL14 methylation activity. Moreover, the presence of METTL3a even resulted in a weak m6A level.

      The main point of this study is that METTL3a is required for the METTL3WTAP interaction, but dispensable for the METTL3-METTL14 assembly (see Figure 4A-4B). In this in vitro methylation assays, METTL3 and METTL14 is capable of methylating RNA probe in the absent of WTAP. In this condition, we found that METTL3 WT as well as its different variants (METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a) except the catalytically dead mutant METTL3 APPA showed methylation activity in vitro.

      5) In Figure 4A, the author suggests that WTAP cannot be immunoprecipitated with METTL3a and 3b because WTAP interacted with the N-terminal of METTL3. If this assay is performed in WT cells, the endogenous full-length METTL3 may help to form the complex. In this case, WTAP is supposed to be co-immunoprecipitated.

      We thank reviewer for point this out. METTL3 interacts with WTAP through its N-terminal (1-33aa) (1). Consistently, we find that the two cleaved forms METTL3a and METTL3b which lack the N-terminal region are not able to bind with WTAP. In Figure 4A, we overexpressed METTL3 WT as well as its different variants METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a respectively in WT cells, and compared the binding ability with WTAP or METTL14 across these overexpressed METTL3 variants. We acknowledge that the exogenous METTL3a and METTL3b interact with endogenous full-length METTL3, and the endogenous full-length METTL3 may help them to form the complex with WTAP. But in fact, the exogenous expression levels of METTL3a and METTL3b are much higher than that of endogenous full-length METTL3 (see Figure 3A and 3C). In this case, METTL3a or METTL3b predominantly interacts with itself, METTL3, METTL14 or other potential interacting proteins through its C-terminal region, this may greatly dilute the condition for the interaction between WTAP and endogenous full-length METTL3. Moreover, in Figure 4A, the comparison is among overexpressed METTL3 variants, the week indirect interactions through much lower expression levels of endogenous protein are probably not comparable to those direct interactions between overexpressed METTL3 variants and WTAP.

      Reference:

      1) Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., Feederle, R., Bruckmann, A., and Meister, G. (2018). Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. Rna 24, 499-512

      Reviewer #1 (Recommendations For The Authors):

      Major points:

      1) It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982-994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.

      We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.

      2) The in vitro methylation activity was detected by the m6A antibody, which has limited linear range. The MTase-Glo{trade mark, serif} Methyltransferase Assay is a SAMdependent enzyme assay with wide applications (Please refer to the references below).

      Could this assay be performed by authors?

      Wilkinson AW et al. Nature 565(7739), 372-376 (2019).

      Yu D et al. Nucleic Acids Res 49(20),11629-11642 (2021).

      Yan X et al. Cell Res 32(12), 1124-1127 (2022).

      Chen J et al. Nat Commun 13(1), 3257 (2022).

      Thanks for reviewer’s good suggestion. We had performed the in vitro methylation assay by using MTase-Glo kit, and the data is consistent with the dot blot results. Please see the new Figure 2H-J.

      3) When expressed alone in mammalian cell lines, METTL14 is unstable and is easily contaminated with endogenous METTL3 during purification (Yang W et al. Nat Cell Biol 16(2), p.191-8 (2014), Fig 1e). In Fig 2I, Co-expressing METTL3 and METTL14 maybe a good choice.

      We thank for reviewer’s good suggestion. In fact, we co-expressed METTL3 and METTL14 in this in vitro methylation assay in Fig 2I (new Figure 2J in the revised version), METTL3-Flag or its mutant with Flag tag and METTL14-Flag were co-transfected into 293T cells, and co-purified by using Flag M2 magnetic beads from the cell lysates. We have added these details in the indicated method section, please see Line 574-585.

      Other minor points:

      1) In Fig 5D, the protein domain information of METTL3 and relevant references need to be added (Su S et al. Cell Res 32(11), 982-994 (2022), Fig 6g; Yan X et al. Cell Res 32(12), 1124-1127 (2022), Fig 1a).

      We have added these references in the revised manuscript.

      2) In Fig 5, would METTL3b contribute to the METTL3-METTL3 interaction?

      Our data showed that METTL3a but not METTL3b is responsible for the METTL3-WTAP interaction, breast cancer cell proliferation and the m6A modification. Then, we investigated the mechanism of how METTL3a regulates the METTL3-WTAP interaction, and found that METTL3a is essential for METTL3-METTL3 interaction, which is a prerequisite step for WTAP recruitment in MTC complex. In this case, we speculate that METTL3b is not required for the METTL3-METTL3 interaction. Indeed, through Co-IP assays,we found that METTL3b has no effect on the METTL3-METTL3 interaction (new supplementary Figure 4D), which is consistent with our above data showing that METTL3b is dispensable for the METTL3-WTAP interaction. We have added this comment in Page 6, Line 226 to 228.

      3) In Fig 3F, the color in the legend and figure is inconsistent.

      We have corrected the inconsistent color in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      1) In Figure 5D, the construction details of METTL3-HA and Flag should have been included in the method section. Are these tag sequences in the N-terminal of METTL3 protein?

      These tags are all in the C-terminal of METTL3. We have added the construction details of these plasmids in the method section. Please see Line 434.

      2) In Figure 7A, the labels of the inhibitors are overlapped with the figures.

      We have corrected the labels of the inhibitors in Figure 7A in the revised manuscript.

    1. Der 15. Juli wurde in der EU zum ersten Mal als Tag des Gedenkens an die Opfer der Klimakrise begangen. EU Vizepräsident Franz Timmermanns begründet in einem Gastkommentar, warum Klimapolitik energischer betrieben werden muss als bisher. Es wird deutlich dass die Finanzierung von weitergehenden Klimaschutz- und Klimaanpassungsmaßnahmen ein entscheidendes Konfliktthema auf EU-Ebene sein wird. Ab dem kommenden Frühjahr wird sich die EU an einer regelmäßigen Bewertung der Klimarisiken orientieren . https://www.derstandard.at/story/3000000178734/jetzt-handeln-um-das-klimachaos-zu-begrenzen

    1. Author Response

      Reviewer #1 (Public Review):

      This paper investigates whether bistable rhodopsins can be used to manipulate GPCR signalling in zebrafish. As a first step, the authors compared the performance of bistable rhodopsins fused with a flag tag or with a fluorescent protein tag (TagCFP). Constructs were compared by expressing in HEK cells followed by calcium imaging with aequorin or cAMP monitoring with GloSensor. This showed that the protein with a smaller flag tag performed better. Then, a series of transgenic zebrafish lines were made, in which tagged rhodopsins were expressed in reticulospinal neurons or cardiomyocytes.

      The data indicate that bistable rhodopsin can be used to manipulate Gq and Gi/o signalling in zebrafish. The Gq-coupled SpiRh1 was effective in manipulating reticulospinal neurons, as indicated by analysis of tail movements and calcium imaging of the neurons. Gi/o signalling could be manipulated by Opn3 from mosquitoes, TMT from pufferfish, and parapinopsin from lamprey, as shown by their effects on the heartbeat. Lamprey parapinopsin has the interesting property that it can be turned on and off by different wavelengths of light, and this was used to stop and restart the heart. Finally, the authors show that the cardiac effects are mediated by an inward-rectifier K+ channel, through the use of pharmacological inhibitors.

      A strength of this paper is the testing of a range of bistable rhodopsins, with a total of 10 proteins tested. This provides a good resource for future experiments. A weakness is the failure to show that some experiments involved repeated sampling of the same animal. Figure 3 gives the impression that there are 48 independent datapoints. However, there are 8 animals, with 6 datapoints coming from each. Similarly, Figure 4 shows the data from 6 trials of 4 animals, not 24 independent animals. Repeated sampling should be reflected in the data presentation, and in the statistical analysis. Was there an effect of trial number, which is suggested in Figure 6?

      In response to the reviewer’s comments, we modified the graph to show the average data for individual animals in Figure 3A-E, Figure 3-supplement 2, Figure 4D-F, H, and Figure 4-supplement 2B. We also showed the effect of trial number (difference between trials 1 and 6) in Figure 3-supplement 1 and Figure 4-supplement 1. In addition, we also showed all data as source data. We believe that more accurate statistical analyses were conducted using data from each individual animal.

      Delta F/F refers to relative change, which should be (F-F0)/F0. This should be zero when t = 0. The values in Figure 3E, and 3F are ~ 1 when t = 0, however. Are these figures showing F/F0?

      The reviewer is correct. It is indeed F-F0/F0 (ΔF/F0). In Figure 3F (3E in the original manuscript), t=0 was the time when 470-495 nm light (for both stimulation of SpiRh1 and detection of GCaMP6s fluorescence) started to be applied. In the experiment in Figure 3G (3F in the original manuscript), 405 nm light was applied to activate SpiRh1[S186F] for 2 s and then 470-495 nm light was applied to detect GCaMP6s fluorescence. In other words, t=0 is the time when 405 nm light started to be applied.

      The authors' conclusions that the bistable rhodopsins are useful tools in the zebrafish system appear largely justified. This is consistent with findings from other organisms, including mouse (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097317/, https://www.sciencedirect.com/science/article/pii/S0896627321001616). The tools here are likely to find broad use by scientists who use the zebrafish as the experimental system for a variety of different areas.

      For the studies on LamPP and MosOpn3, we cited the references mentioned by the reviewer. We believe that our study substantiates that LampPP and MosOpn3, as well as other bistable rhodopsins, are valuable tools for zebrafish research, as pointed out by the reviewer.

      Reviewer #2 (Public Review):

      The presented study aims at deciphering the physiological function of GPCR signaling in excitable cells. To this end, the authors developed transgenic zebrafish models expressing a selection of Gq- and Gi/o-coupled bistable rhodopsins in either reticulospinal neurons or cardiomyocytes and elucidated behavioral responses (tail movements) or physiological responses (heartbeat) as well as intracellular Ca2+ dynamics following optical stimulation of rhodopsins.

      One of the major strengths of the presented study is the functional comparison of five Gq- and five Gi/o-coupled rhodopsins in two major classes of excitable cells, however; the selection of rhodopsins tested remains elusive. More importantly, it is not obvious why some of the effects of rhodopsin activation were assessed in both neurons and cardiomyocytes, while others were only tested in one of the two systems without further explanation. The main chosen experimental readouts (swimming/tail bending or cardiac contractions) have limited informative value regarding GPCR signaling, as they will only report the peak of the iceberg, namely whether movements are elicited or heartbeats inhibited. No analysis on subtle changes in heart rate and contraction force was included, but such modulation of cardiac activity (e.g. positive or negative chronotropic, inotropic, dromotropic, bathmotropic, and/or lusitropic responses) would represent better the physiological modulation of the heart via GPCR and down-stream signaling events. In line, the presented data only represents behavior at one light intensity tested, whereas a light titration of observed effects could provide more meaningful insight into both rhodopsin responses and signaling mechanisms. Also, the potential promiscuity of G protein activation of selected receptors has not been addressed, neither experimentally nor in the discussion part. As a result of the above-mentioned limitations, it is difficult to follow the logic of the study and especially to interconnect the data obtained in reticulospinal neurons (where activation of jumping spider rhodopsin elicited tail bending) to myocyte data (where three Gi-coupled rhodopsins suppressed cardiac activity). Moreover, as such, the study does not provide explanations on why a certain tool might evoke an effect in one system or the other, or not, which could be the main deliverable of such a comparative analysis.

      We are grateful for helpful and insightful comments from the reviewer. We believe that the presentation of experimental findings in the original manuscript may have led to a misunderstanding. We examined the effects of Gq and Gi/o-coupled bistable rhodopsins on both reticulospinal V2a neurons and cardiomyocytes. We observed noticeable effects of Gq rhodopsins on reticulospinal V2a neurons, but no significant effects on cardiomyocytes. Similarly, we found effects of Gi/o-coupled rhodopsins on cardiomyocytes, but no significant effects on reticulospinal V2a neurons. These discrepancies could be attributed to differences in the target cells and experimental conditions, suggesting the need for further optimization. We described the data on page 13, lines 16-22 and page 16, lines 9-10 in the Result section and Table 1, and discussed the relationship between the activity of bistable rhodopsins and their effects on target cells on page 21, lines 6-15 and page 24, line 19-page 25, line 2 in the Discussion section of the revised manuscript.

      In order to clarify the function of Gi/o-coupled rhodopsins on the heart in more detail, we conducted experiments in which we activated cardiomyocytes expressing bistable rhodopsins at various light intensities to observe the effects on heartbeats. We analyzed cardiac arrest rate, latency to cardiac arrest, and time to resumption of heartbeat. The results of these experiments are shown in Figure 4 and Figure 4-supplement 2, 3 in the revised manuscript. We described the data on page 15, line 16-page 16, line 1 in the revised manuscript, as follows.

      To analyze the photosensitivity of Gi/o-coupled rhodopsins, we applied light of various intensities for 1 s and examine their effect on HBs (Figure 4-supplement 2). Cardiac arrest was induced and sustained for over 20 s after stimulation of MosOpn3 with 0.05 mW/mm2 light for 1 s. Photoactivation of PufTMT and LamPP at lower light intensities (0.2 or 0.05 mW/mm2) resulted in cardiac arrest, but faster HB recovery than stimulation with 0.5 mW/mm2 light (Figure 4-supplement 2). The data indicate that the ability of MosOpn3 to suppress HBs is more photosensitive than PufTMT and LamPP in the zebrafish heart. We further examined atrial-ventricular (AV) conductivity by measuring the time difference between atrial and ventricular contractions before and after light stimulation when HBs had slightly recovered. There was no significant difference in AV conductivity before and after light stimulation (Figure 4-supplement 3).

      We performed experiments to the best of our ability with current technology regarding cardiac function. However, we hope that the reviewer is willing to acknowledge that there are certain limitations in conducting a detailed analysis of the zebrafish larval heart, since many experimental techniques, such as electrophysiological analysis, have not yet been fully or effectively established for this animal model.

      While the presented data is interesting, the graphical presentation and description of the data are insufficient. Most importantly, the current version of the text does not include a quantitative description of effects and statistical analyses (which are found in the figures and legends!). The lack of quantitative description also extends to both the introduction and discussion, which remain general without a specific dissection of observed effects.

      We have described quantitative data in the Result section.

      One major concern is the selective citation of own work. While single statements in both the introduction and discussion are supported by up to ten own papers, recent studies using rhodopsins for dissecting GPCR signaling in neurons are not sufficiently discussed and new data is not compared to published results by other teams. Moreover, relevant papers on cardiomyocytes (e.g. PMID: 35579776, 35365606, 34987414, 30894542) are not cited at all, despite the use of similar rhodopsins and/or optogenetic activation of the same signaling pathways. Taking into account these published studies may help to better understand the observed responses.

      We apologize for not citing important relevant papers in the original manuscript. We have now cited all four papers (Dai et la., 2022; Wagdi et al., 2022; Cokic et al., 2021; Makowka et al., 2019) mentioned by the reviewer, as well as a new paper describing the use of MosOpn3 and LamPP in C. elegans neurons (Koyanagi et al., 2022) in the Introduction section. We also discussed the differences between our findings and previously published data in the Discussion section.

      Additional comment: Data were obtained from larvae zebrafish. It would be useful to include a discussion on how GPCR signaling might be different in adult fish compared to larvae, and how to test whether the observed effects are more generally applicable.

      We discussed the differences between the hearts of zebrafish larvae and adults, and the differences in GPCR signaling, on page 27, lines 10-16, as follows. In this study, we used zebrafish larvae to study the role of GPCR signaling in cardiac function, and there are differences in heart structure and function between larvae and adult zebrafish. As a zebrafish grows, blood pressure increases and the heart becomes more complex with the development of valves and ventricular trabeculae. Therefore, GPCR signaling, which regulates heart structure and function, may differ between juvenile and adult fish. Optogenetic manipulation of the heart’s function in adult zebrafish using bistable opsins should clarify this issue.

    1. As described in the Double Bracket Note Link Syntax help article, you can specify a tag hierarchy when you're creating a new note by prefacing the note title with its hierarchy. For example [[recipes/pizza/BBQ Hawaiian Pizza]] will show as:

      Create a new note with tag hierarchy

    1. The other potentially useful suggestion is to insert your task into a New Note, and then later search for `group:untagged`, which will give you a list of all notes that haven't yet had a tag applied

      Use group untagged to filter no tag notes

    1. Reviewer #2 (Public Review):

      In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using N-terminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domain-specific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using tagged-isolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.

      1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.

      2. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?

      3. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?

      4. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.

      5. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.

      6. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.

      7. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.

      8. The investigators do not cite the AlphaFold prediction of full-length BRAF (AF-P15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.

      9. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?

      10. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.

      11. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).

      12. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pull-down experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.

      13. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.

      14. In Fig 3, error analysis is not provided for panel E.

      15. How was RAS GMPPNP loading verified?

    1. 要和原始上下文结合才便于理解。因此,理想的

      where is my tag

    1. Author Response

      Reviewer #2 (Public Review):

      The manuscript by Ma et al, "Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes" examines the contribution of two RNA-binding proteins on the exosomal loading of miR223. The authors conclude that YBX1 and YBAP1 work in tandem to traffic and load miR223 into the exosome. The manuscript is interesting and potentially impactful. It proposes the following scenario regarding the exosomal loading of miR223: (1) YBAP1 sequesters miR223 in the mitochondria, (2) YBAP1 then transfers miR223 to YBX1, and (3) YBX1 then delivers miR223 into the early endosome for eventual secretion within an exosome. While the authors propose plausible explanations for this phenomenon, they do not specifically test them and no mechanism by which miR223 is shuttled between YBAP1 and YBX1, and the exosome is shown. Thus, the paper is missing critical mechanistic experiments that could have readily tested the speculative conclusions that it makes.

      Comments:

      1) The major limitation of this paper is that it fails to explore the mechanism of any of the major changes it describes. For example, the authors propose that miR223 shuttles from mitochondrially localized YBAP1 to P-body-associated YBX1 to the exosome. This needs to be tested directly and could be easily addressed by showing a transfer of miR223 from YBAP1 to YBX1 to the exosome.

      Testing this idea using fluorescently labeled miR223 would indeed be an ideal experiment. However, miRNA imaging presents challenges. As reviewer 1 pointed out, and we have now confirmed, the atto-647 dye itself localizes to mitochondria. We will continue our efforts to identify a suitable fluorescent label for miR223in order to be in a position to evaluate the temporal relationship between mitochondrial and endosomal miR223.

      2) If YBAP1 retains miR223 in mitochondria, what is the trigger for YBAP1 to release it and pass it off to YBX1? The authors speculate in their discussion that sequestration of mito-miR223 plays a "role in some structural or regulatory process, perhaps essential for mitochondrial homeostasis, controlled by the selective extraction of unwanted miRNA into RNA granules and further by secretion in exosomes...". This is readily testable by altering mitochondria dynamics and/or integrity.

      A previous study has reported that YBAP1 can be released from mitochondria to the cytosol during HSV-1 infection (Song et al., 2021). However, due to restrictions, we are unable to conduct experiments using HSV to verify this condition. We attempted to induce mitochondrial stress by using different concentrations of CCCP, but we did not observe the release of YBAP1 from mitochondria after CCCP treatment. We speculate that not all mitochondrial stress conditions can trigger YBAP1 release. Investigating the mechanism of mito-miR223 release from mitochondria is one of our interests that we aim to explore in future studies.

      3) Much of the miRNA RT-PCR analysis is presented as a ratio of exosomal/cellular. This particular analysis assumes that cellular miRNA is unaffected by treatments. For example, Figure 1a shows that the presence of exosomal miR223 is significantly reduced when YBX1 is knocked out. This analysis does not consider the possibility that YBX1-KO alters (up or down-regulates) intracellular miR223 levels. Should that be the case, the ratiometric analysis is greatly skewed by intracellular miRNA changes. It would be better to not only show the intracellular levels of the miRs but also normalize the miRNA levels to the total amount of RNA isolated or an irrelevant/unchanged miRNA.

      Our previous publications demonstrated that miR223 levels are increased in YBX1-KO cells and decreased in exosomes derived from YBX1 KO cells. However, no significant changes were observed in miR190 levels (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.

      For the analysis of other miRNAs by RT-PCR, we assessed changes in intracellular and exosomal miRNA levels in the corresponding figures. In the qPCR analysis, miRNA levels were normalized to the total amount of RNA.

      4) In figure 1, the authors show that in YBX1-KO cells, miR223 levels are decreased in the exosome. They further suggest this is because YBX1 binds with high affinity to miR223. This binding is compared to miR190 which the authors state is not enriched in the exosome. However, no data showing that miR190 is not present in the exosome is shown. A figure showing the amount of cellular and exosomal miR223 and 190 should be shown together on the same graph.

      In previous publications we demonstrated that miR190 is not localized in exosomes and not significantly changed in YBX1 knockout (KO) cells and exosomes derived from YBX1 KO cells (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.

      5) Figure 2 Supplement 1 - As to determine the nucleotides responsible for interacting with YBX1, the authors made several mutations within the miR223 sequence. However, no explanation is given regarding the mutant sequences used or what the ratios mean. Mutant sequences need to be included. How do the authors conclude that UCAGU is important when the locations of the mutations are unclear? Also, the interpretation of this data would benefit from a binding affinity curve as shown in Fig 2C.

      The ratio is of labeled miR223/unlabeled miR223 (wt and mutant). All mutant sequences of miR223 have been included in Figure 2 supplement 1.

      6) While the binding of miR223mut to YBX1 is reduced, there is still significant binding. Does this mean that the 5nt binding motif is not exact? Do the authors know if there are multiple nucleotide possibilities at these positions that could facilitate binding? Perhaps confirming binding "in vivo" via RIP assay would further solidify the UCAGU motif as critical for binding to YBX1.

      The binding affinity of miR223mut with YBX1 is reduced approximately 27-fold compared to miR223. We speculate that the secondary structure of miR223 may contribute to the interaction with YBX1.

      Our EMSA data, in vitro packaging data, and exosome analysis reinforce the conclusion that UCAGU is critical for YBX1 binding. These findings suggest that the presence of the UCAGU motif in miR223 is crucial for its interaction with YBX1 and subsequent sorting into exosomes.

      7) Figures 2g, h - It would be nice to show that miR190mut also packages in the cell-free system. This would confirm that the sequence is responsible. Also, to confirm that the sorting of miR223 is YBX1-dependent, a cell-free reaction using cytosol and membranes from YBX1 KO cells is needed.

      Although we have not performed the suggested experiment, we purified exosomes from cells overexpressing miR190sort and observed an increase in the enrichment of miR190sort in exosomes compared to miR190. This finding confirmed that the UCAGU motif facilitates miRNA sorting into exosomes.

      Regarding the in vitro packaging assay, our previously published paper demonstrated that cytosol from YBX1 knockout (KO) cells significantly reduces the protection of miR223 from RNase digestion. We concluded that the sorting of miR223 into exosomes is dependent on YBX1 (Shurtleff et al., 2016).

      8) In Figure 3a, the authors show that miR223 is mitochondrially localized. Does the sequence of miR223 (WT or Mut) matter for localization? Does it matter for shuttling between YBAP1 and YBX1?

      The localization of miR223mut has not been tested in our current study. We plan to conduct these experiments in the future.

      9) Supplement 3c - Is it strange that miR190 is not localized to any particular compartment? Is miR190 present ubiquitously and equally among all intracellular compartments?

      Most mature miRNAs are predominantly localized in the cytoplasm. Although there is no specific subcellular localization reported for miR190 in the literature, our experimental findings indicate a relatively high expression of miR190 in 293T cells. It is likely that most of miR190 is localized in the cytosol. However, it is also possible that a small fraction of miR190 may associate with a membrane, which could explain its distribution in various subcellular structures. Importantly, we did not observe enrichment of miR190 in the mitochondria or exosomes.

      10) Figure 3h - Why would the miR223 levels increase if you remove mitochondria? Does CCCP also cause miR223 upregulation? I would have thought miR223 would just be mis-localized to the cytosol.

      We report that the levels of cytoplasmic miR223 increase following the removal of mitochondria using CCCP treatment. While we cannot rule out the possibility that upregulation of miR223 is directly caused by CCCP treatment, we suggest that miR223 becomes mis-localized to the cytosol upon mitochondrial removal. Our data suggests that mitochondria contribute to the secretion of miR223 into exosomes. When mitochondria are removed by mitophagy, cytosolic miR223 is not efficiently secreted, which provides an alternative explanation for the observed increase in miR223 level after mitochondrial removal.

      11) Figure 3i - What is the meaning of "Urd" in the figure label? This isn't mentioned anywhere.

      “Urd” represents Uridine. Uridine is now spelled out in figure 3i. The absence of mitochondria can impact the function of the mitochondrial enzyme dihydroorotate dehydrogenase, which plays a role in pyrimidine synthesis. To address this issue, one approach is to supplement the cell culture medium with Urd. A previous study demonstrated that primary fibroblasts showed positive responses when Urd was added to the cell culture medium, resulting in improved cell viability for extended periods of time (Correia-Melo et al., 2017).

      12) Figure 3j - The data is presented as a ratio of EV/cell. Again, this inaccurately represents the amount of miR223 in the EV. This issue is apparent when looking at Figures 3h and 3j. In 3h, CCCP causes an upregulation of intracellular miR223. As such, the presumed decrease in EV miR233 after CCCP (3j) could be an artifact due to increased levels of intracellular miR223. Both intracellular and EV levels of miRs need to be shown.

      Both the intracellular and exosomal levels of miR223 have been included in Figure 3j.

      13) In Figure 4, the authors show that when overexpressed, YBX1 will pulldown YBAP1. Can the authors comment as to why none of the earlier purifications show this finding (Figure 1 for example)? Even more curious is that when YBAP1 is purified, YBX1 does not co-purify (Figure 4 supplement 1a, b).

      In Figure 4a-b, human YBX1 fused with a Strep II tag was purified from 293T cells using Strep-Tactin® Sepharose® resin in a one-step purification process. Our data has shown that YBAP1 is expressed in 293T cells.

      In Figure 1 and Figure 4 Supplement 1a, human YBX1 or YBAP1 fused with His and MBP tags were purified from insect cells using a three-step purification process involving Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.

      One possibility is that human YBX1 or YBAP1 may not interact well with insect YBAP1 or YBX1, which could result in separate tagged forms of YBX1 or YBAP1 isolated from insect cells.

      Another possibility is that the expression levels of insect YBAP1 and YBX1 may be too low. Consequently, tagged forms YBX1 or YBAP1 expressed in insect cells may copurify with partners not readily detected by Coomassie blue stain. However, in Figure 4 Supplement 1b, human YBX1 fused with His and MBP tags was co-expressed with non-tagged human YBAP1, and both bands of YBX1 and YBAP1 were visible on the Coomassie blue gel after purification using Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.

      14) Figure 4f, g - The text associated with these figures is very confusing, as is the labeling for the input. Also, what is "miR223 Fold change" in this regard? Seeing as your IgG should not have IP'd anything, normalizing to IgG can amplify noise. As such, RIP assays are typically presented as % input or fold enrichment.

      The RIP assay results have been calculated and presented as a % input in Figure 4g.

      15) Figure 4h - The authors show binding between miR223 and YBAP1 however it is not clear how significant this binding is. There is more than a 30-fold difference in binding affinity between miR223 and YBX1 than between miR223 and YBAP1. Even more, when comparing the EMSAs and fraction bound from figures 1 and 2 to those of Figure 4h, the binding between miR223 and YBAP1 more closely resembles that of miR190 and YBX1, which the authors state is a non-binder of YBX1. The authors will need to reconcile these discrepancies.

      We agree that the binding of YBAP and YBX1 differ quite significantly in the affinity of their interaction with miR223. It is difficult to draw conclusions from a comparison of the affinities of YBX1 for miR190 and YBAP1 for miR223. Nonetheless, a quantitative difference in the interaction of YBAP1 with miR223 and miR190 is apparent (Fig. 4 h, I, j) and we observed no enrichment miR190 in isolated mitochondria (Fig. 3 supplement 1a) whereas YBAP1 selectively IP’d miR223 from isolated mitochondria (Fig. 4 f and g).

      16) Can the authors present the Kd values for EMSA data?

      The Kd values for the EMSA data have been added to the respective figures.

      17) Figure 5 - Does YBAP1-KO affect mitochondrial protein integrity or numbers?

      We generated stable cell lines expressing 3xHA-GFP-OMP25 in both 293T WT and YBAP1-KO cells, but we did not observe any alterations in mitochondrial morphology (Author response image 1).

      Author response image 1.

      Additionally, we performed a comparison of different mitochondrial markers using immunoblot in 293T WT cells and YBAP1-KO cells and did not observe any changes in these markers (data has been included in Figure 5b.).

      18) Figure 6a - Are the authors using YBAP1 as their mitochondrial marker? Please include TOM20 and/or 22.

      In Figure 4c and 4e, our data clearly demonstrate that the majority of YBAP1 is localized in the mitochondria.

      To further validate this localization, we performed immunofluorescence staining using antibodies against endogenous Tom20 and YBX1. The immunofluorescence images document YBX1 associated with mitochondria (Author response image 2 and new Fig 6a.).

      Author response image 2.

      19) Figure 6b - Rab5 is an early endosome marker and may not fully represent the organelles that become MVBs. Co-localization at this point does not suggest that associating proteins will be present in the exosome, and it is possible that the authors are looking at the precursor of a recycling endosome. Even more, exosome loading does not occur at the early endosome, but instead at the MVB. Perhaps looking at markers of the late endosome such as Rab7 or ideally markers of the MVB such as M6P or CD63 would help draw an association between YBX1, YBAP1, and the exosome. Also, If the authors want to make the claim that interactions at the early endosome leads to secretion as an exosome, the authors should show that isolated EVs from Rab5Q79L-expressing cells contain miR223.

      We have previously used overexpressed Rab5(Q79L) to monitor the localization of exosomal content, specifically CD63 and YBX1, in enlarged endosomes (Liu et al. 2021, Fig. 4A, B). These endosomes exhibit a mixture of early and late endocytic markers, including CD63. (Wegner et al., 2010). Hence, the presence of Rab5(Q79L)-positive enlarged endosomes does not solely indicate early endosomes.

      20) The mentioning of P-bodies is interesting but at no time is an association addressed. This is therefore an overly speculative conclusion. Either show an association or leave this out of the manuscript.

      In a previous paper we demonstrated that YBX1 puncta colocalize with P-body markers EDC4, Dcp1 and DDX6 (Liu et al., 2021).

      21) In lines 55-58, the authors make the comment "However, many of these studies used sedimentation at ~100,000 g to collect EVs, which may also collect RNP particles not enclosed within membranes which complicates the interpretation of these data." Do RNPs not dissolve when secreted? Can the authors give a reference for this statement?

      In a previous paper, we demonstrated that the RNP Ago2 does not dissolve in the conditioned medium and is not in vesicles but sediments to the bottom of a density gradient (Temoche-Diaz et al., 2019).

    1. Author Response

      eLife assessment:

      Trypanosoma brucei evades mammalian humoral immunity through the expression of different variant surface glycoprotein genes. In this fundamental paper, the authors extend previous observations that TbRAP1 both interacts with PIP5pase and binds PI(3,4,5)P3, indicating a role for PI(3,4,5)P3 binding and suggesting that antigen switching is signal dependent. While much of the evidence is compelling, one reviewer suggested that the work would benefit from further controls.

      We appreciate the evaluation of the work and agree that the findings substantially advance our understanding of antigenic variation. A detailed response to the public review is included below, which addresses and clarifies the issues raised by the reviewers, including those concerning controls. We also want to highlight the comment by Reviewer #3 “The methods used in the study are rigorous and well-controlled…. their results support the conclusions made in the manuscript.”. We hope this and our comments will help address the issue of controls in this eLife statement.

      Reviewer #1 (Public Review):

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host’s immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) have shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments’ DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulating the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch”. Therefore, the title should be revised.

      We appreciate the reviewer’s detailed evaluation of our work. There are a few general comments that we would like to clarify. We will break them into three points. All data included here are new and were not previously published.

      i) “RNAseq and ChIPseq analyses have been performed previously …(ref. 24).” Reference 24 is Cestari et al. 2019, Mol Cell Biol. We, or others, have not published ChIP-seq of RAP1 in T. brucei. Previous work showed ChIP-qPCR, which analyses specific loci. The ChIP-seq shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. As for the RNA-seq, this is also the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG silencing and switching is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. To improve clarity in the manuscript, we edited page 4, line 122, as follows: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”

      ii) “The in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al. (ref. 24) already.”. We published in reference 24 that RAP1-HA can bind agarose beads-conjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions.

      iii) “no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch””. We show here in vitro and in vivo data supporting the conclusion. We show that PI(3,4,5)P3 binds to the N-terminus of rRAP1-His with a calculated Kd of about 20 µM (Fig 4B-E, Table 1). In contrast, we show by EMSA and binding kinetics by microscale thermophoresis that rRAP1-His binds to 70 bp and telomeric repeats via protein regions encompassing the Myb (central) or Myb-L domains (C-terminal) but not the N-terminus containing the VHP domain (Fig 3C-G, and Fig S5). Using microscale thermophoresis, we also show that rRAP1-His binds to 70 bp and telomeric repeats with Kd of 10 and 24 nM, respectively (Fig 3 and Table 1). Notably, we show that 30 µM of PI(3,4,5)P3, but not PI(4,5,)P2 – used as a control – disrupts rRAP1-His binding to 70 bp and telomeric repeats, changing Kds to about 188 and 155 nM, respectively (Fig 5A-C). We also show that PI(3,4,5)P3 does not disrupt the binding of rRAP1-His fragments (Myb or MybL) without the N-terminus domain (Fig S5), implying binding of PI(3,4,5)P3 to RAP1 N-terminus is required for displacement of RAP1 DNA binding domains (Myb and MybL) from telomeric and 70 bp repeats, and that PI(3,4,5)P3 is not competing for Myb or Myb-L binding to DNA. Moreover, we show that RAP1-HA binding to 70 bp and telomeric repeats in vivo is displaced in T. brucei cells expressing catalytic inactive PIP5Pase (Fig 5D-G), which we show results in RAP1-HA binding about 100-fold more endogenous PI(3,4,5)P3 than in T. brucei expressing WT PIP5Pase (Fig 4F). The in vivo data agrees with the in vitro data. The data show a typical allosteric regulator system, in which binding of a ligand to one site of the protein, here PI(3,4,5)P3 binding to RAP1 N-terminus, affects other domains (RAP1 Myb and Myb-L domains) binding to DNA. To improve the clarity of the title, we will change it in the revised version to imply a direct role of PI(3,4,5)P3 regulation of RAP1 in the process. This will provide more specific information to the readers and addresses the concern of the reviewer related to the “allosteric switch”. The new title will be: PI(3,4,5)P3 allosteric regulation of RAP1 controls antigenic switching in trypanosomes

      There are serious concerns about many conclusions made by Touray et al., according to their experimental approaches:

      1) The authors have been studying RAP1’s chromatin association pattern by ChIPseq in cells expressing a C-terminal HA tagged RAP1. According to data from tryptag.org, RAP1 with an N-terminal or a C-terminal tag does not seem to have identical subcellular localization patterns, suggesting that adding tags at different positions of RAP1 may affect its function. It is therefore essential to validate that the C-terminally HA-tagged RAP1 still has its essential functions. However, this data is not available in the current study. RAP1 is essential. If RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. In addition, these cells should have the WT VSG expression pattern, and RAP1-HA should still interact with TRF. Without these validations, it is impossible to judge whether the ChIPseq data obtained on RAP1-HA reflect the true chromatin association profile of RAP1.

      Tryptag data show both N- and C-terminus RAP1 with nuclear localization in procyclic forms, although there are differences in signal intensities in the images (http://tryptag.org/?id=Tb927.11.370). It is important to note that Tryptag data is from procyclic forms, and DNA constructs are not validated for their integration in the correct locus. As for the RAP1-HA localization in bloodstream forms, we demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and RAP1-HA co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 in bloodstream forms with HA without disrupting its nuclear localization (Yang et al. 2009, Cell; Afrin et al. 2020, Science Advances). As for the experiment suggested by the reviewer, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric DNA repeats rather than direct protein-protein interactions.

      2) Touray et al. expressed and purified His6-tagged recombinant RAP1 fragments from E. coli and used these recombinant proteins for EMSA analysis: The His6 tag has been used for purifying various recombinant proteins. It is most likely that the His6 tag itself does not convey any DNA binding activities. However, using His6-tagged RAP1 fragments for EMSA analysis has a serious concern. It has been shown that His6-tagged human RAP1 protein can bind dsDNA, but hRAP1 without the His6 tag does not. It is possible that RAP1 proteins in combination with the His6 tag can exhibit certain unnatural DNA binding activities. To be rigorous, the authors need to remove the His6 tag from their recombinant proteins before the in vitro DNA binding analyses are performed. This is a standard procedure for many in vitro assays using recombinant proteins.

      We show in Fig 3C-G that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which indicates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding.

      As for the statement that human rRAP1-His has unspecific DNA binding properties, we could not find a reference to this statement; we cannot compare it without knowing the details of the experiment. Biochemical assays can result in unspecific binding depending on binding/buffer conditions. Also, humans and T. brucei RAP1 share only 15% of amino acid identity; unspecific binding to DNA could be specific to human RAP1.

      3) It is unclear why Nanopore sequencing was used for RNAseq and ChIPseq experiments. The greatest benefit of Nanopore sequencing is that it can sequence long reads, which usually helps with mapping, particularly at genome loci with repetitive sequences. This seems beneficial for RAP1 ChIPseq analysis as RAP1 is expected to bind telomere repeats. However, for ChIPseq, the chromatin needs to be fragmented. Larger DNA fragments from ChIPseq experiments will decrease the accuracy of the final calculated binding sites. Therefore, ChIPseq experiments are not supposed to have long reads to start with, so Nanopore sequencing does not seem to bring any advantage. In addition, compared to Illumina sequencing, Nanopore sequencing usually yields smaller numbers of reads, and the sequencing accuracy rate is lower. The Nanopore sequencing accuracy may be a serious concern in the current study. All telomeres have the perfect TTAGGG repeats, all VSG genes have a very similar 3’ UTR, and all 70 bp repeats have very similar sequences. In fact, the active and silent ESs have 90% sequence identity. Are sequence reads accurately mapped to different ESs? How is the sequencing and mapping quality controlled? Furthermore, it is unclear whether the read depth for RNAseq is deep enough.

      The mean sequence length for the ChIP-seq was about 500 bp (see Table S3), which helps to align reads to ESs and distinguish the different ESs, and it is a reasonable size range to define RAP1 binding sites. Although sequencing depths are usually higher in Illumina than in nanopore (all depending on the amount of sequencing), most Illumina short reads map to multiple genomic sequences, making it difficult to distinguish ESs. This is particularly important for RAP1 because it binds to repeats such as 70 bp and telomeric repeats. Mapping short reads to those regions would be virtually impossible; hence, our choice of nanopore sequencing. For RNA-seq, the ~500 bp read length help sequence alignment to the subtelomeric regions containing many VSG genes. The nanopore reads obtained here had an average sequencing score 12 (i.e., base call accuracy of 94%). Filtering reads with MAPQ ≥ 20 (99% probability of correct alignment) helped us to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq) or VSG sequences (RNA-seq). The details of the analysis and sequencing metrics (i.e., sequencing depth and read length) were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq” and Table S3, respectively.

      4) Many statements in the discussion section are speculations without any solid evidence. For example, lines 218 - 219 “likely due to RAP1 conformational changes”, no data have been shown to support this at all. In lines 224-226, the authors acknowledged that more experiments are necessary to validate their observations, so it is important for the authors to first validate their findings before they draw any solid conclusions. Importantly, RAP1 has been shown to help compact telomeric and subtelomeric chromatin a long time ago by Pandya et al. (2013. NAR 41:7673), who actually examined the chromatin structure by MNase digestion and FAIRE. The authors should acknowledge previous findings. In addition, the authors need to revise the discussion to clearly indicate what they “speculate” rather than make statements as if it is a solid conclusion.

      The statement “likely due to RAP1 conformational changes” in lines 218-219 (page 6) is part of the Discussion. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative.

      For lines 224-226 (page 6), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. Hence, future studies are necessary for this finding, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers. However, for the RAP1 binding to telomeric ES sites, e.g., 70 bp repeats and telomeric repeats (the focus of this work), we validated the binding by EMSA and by performing binding kinetics using microscale thermophoresis.

      We did not include Pandya et al. 2013 NAR because the authors demonstrated RAP1 compaction of chromatin to occur in procyclic forms only. Pandya et al. stated in their abstract: “no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells”. Hence, the suggested reference is not relevant to the context of our conclusions in bloodstream forms. Nevertheless, we have reviewed the Discussion to avoid broad speculations in the revised version of the manuscript.

      There are also minor concerns:

      1) In the PIP5Pase conditional knockout system, the WT or mutant PIP5Pase with a V5 tag is constitutively expressed from the tubulin array. What’s the relative expression level of this allele and the endogenous PIP5Pase? Without a clear knowledge of the mutant expression level, it is hard to conclude whether the mutant has any dominant negative effects or whether the mutant phenotype is simply due to a lower than WT PIP5pase expression level.

      The relative mRNA levels of the exclusive expression of PIP5Pase Mut compared to the WT is available in the Data S1, RNA-seq. The Mut allele’s relative expression level is 0.85-fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared RNA-seq reads counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We include a statement in the Methods, page 7, lines 265-268: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq reads counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”

      2) In EMSA analysis, what are the concentrations of the protein and the probe used in each reaction? The amount of protein used in the binding assay appears to be very high, and this can contribute to the observation that many complexes are stuck in the well. Better quality EMSA data need to be shown to support the authors’ claims.

      All concentrations were provided in the Methods section. See page 9 Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see page 9, Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show similar results (Fig 3 and 5, and Fig S5; microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.

      Reviewer #2 (Public Review):

      This manuscript by Touray, et al. provides a significant new twist to our understanding of how antigenic variation may be regulated in T. brucei. Key aspects of antigenic variation are the mutually exclusive expression of a single antigen per cell and the periodic switching from expression of one antigen isoform to another. In this manuscript, the authors show, as they have previously shown, that depletion of the nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) results in a loss of mutually exclusive VSG expression. Furthermore, using ChIP-seq, the authors show that the repressor/activator protein 1 (RAP1) binds to regions upstream and downstream of VSG genes located in transcriptionally repressed expression sites and that this binding is lost in the absence of a functional PIP5Pase. Importantly, the authors decided to further investigate this link between PIP5Pase and RAP1, a protein that has previously been implicated in antigenic variation in T. brucei, and found that inactivation of PIP5Pase results in the accumulation of PI(3,4,5)P3 bound to the RAP1 N-terminus and that this binding impairs the ability of RAP1 to bind DNA. Based on these observations, the authors suggest that the levels of PI(3,4,5)P3 may determine the cellular function of RAP1, either by binding upstream of VSG genes and repressing their function, or by not binding DNA and allowing the simultaneous expression of multiple VSG genes in a single parasite.

      While I find most of the data presented in this manuscript compelling, there are aspects of Figure 1 that are not clear to me. Based on Figure 1F, the authors claim that transient inactivation of PIP5Pase results in a switch from the expression of one VSG isoform to another. However, I am not exactly sure what the authors are showing in this panel, nor do the data in Figure 1F seem to be consistent with those shown in Figure 1C. Based on Figure 1F, a transient inactivation of PIP5Pase appears to result in an almost exclusive switch to a VSG located in BES12. However, based on Figure 1E, the VSG transcripts most commonly found after a transient inactivation of PIP5Pase are those from the previously active VSG (BES1) and VSGs located on chr 1 and 6 (I believe). The small font and the low resolution make it impossible to infer the location of the expressed VSG genes, nor to confirm that ALL VSG genes located in expression sites are activated, as the authors claim. Also, I was not able to access the raw ChIP-seq and RNA-seq reads. Thus, could not evaluate the quality of the sequencing data.

      We appreciate the reviewer’s comments and evaluation of our work. Fig 1E shows VSG-seq of a population after transient (24h) exclusive expression of the PIP5Pase mutant, followed by re-expression of the WT PIP5Pase allele for 60 hours (multiple VSGs are detected). As a control, it also shows VSG-seq in cells continuously expressing WT PIP5Pase (mostly VSG2, BES1 is detected). Fig 1F and Fig S1 show the sequencing of VSGs expressed by clones isolated (5-6 days of growth) after a temporary knockdown (24h) of PIP5Pase (tet -), followed by its re-expression. For comparison, no knockdown (tet +) was included. Fig 1F shows potential switchers in the population, the Fig 1E confirms VSG switching in clones.

      To clarify the difference between Fig 1E and 1F, we edited the manuscript on page 3, lines 103-110: “To verify PIP5Pase role in VSG switching, we knocked down PIP5Pase for 24h (Tet -), then restored its expression (Tet +) and isolated clones by limiting dilution and growth for 5-6 days. Analysis of isolated clones after temporary PIP5Pase knockdown (Tet -/+) confirmed VSG switching in 93 out of 94 (99%) of the analyzed clones (Fig 1F, Fig S1). The cells switched to express VSGs from silent ESs or subtelomeric regions, indicating switching by transcription or recombination mechanisms. Moreover, no switching was detected in 118 isolated clones from cells continuously expressing WT PIP5Pase (Tet +, Fig 1F).”. We also edited Fig 1F to indicate temporary knockdown (Tet -/+) vs no knockdown (Tet -). The modifications will be available in the resubmitted version of the manuscript.

      We agree that the heat map is difficult to read due to the amount of information. We will include in the revised version of the manuscript a table with the data in the supplementary information; the reader will be able to evaluate the data in detail.

      A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12. Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. However, the point of the clonal analysis is to validate the VSG switching after genetic perturbation of PIP5Pase.

      Fig 1C shows examples of ES derepression by RNA-seq after 24h exclusive expression of the mutant compared to WT PIP5Pase. The RNA-seq shows that all ESs are derepressed (Fig 1B). This can be visualized in the volcano plot (Fig 1B, BES and MES VSGs are labelled) and on the spreadsheet Data S1. Although all ESs are derepressed after PIP5Pase mutant expression, not all ESs are selected during switching, as observed in Fig 1E-F. This agrees with our previous observations in switching assays with proteins that control VSG switching (Cestari and Stuart, 2015, PNAS).

      As for metrics of sequencing and raw sequencing data. See Methods section, page 13, lines 483-485: “Sequencing information is available in Table S3 and fastq data is available in the Sequence Read Archive (SRA) with the BioProject identification PRJNA934938.” Table S3 has a summary of sequencing data. Metrics information such as sequencing quality and analysis can be found in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. The latter includes information about nanopore reads, i.e., mean Q-score of 12.

      Reviewer #3 (Public Review):

      In this manuscript, Touray et al investigate the mechanisms by which PIP5Pase and RAP1 control VSG expression in T. brucei and demonstrate an important role for this enzyme in a signalling pathway that likely plays a role in antigenic variation in T. brucei.

      The methods used in the study are rigorous and well-controlled. The authors convincingly demonstrate that RAP1 binds to PI(3,4,5)P3 through its N-terminus and that this binding regulates RAP1 binding to VSG expression sites, which in turn regulates VSG silencing. Overall their results support the conclusions made in the manuscript.

      There are a few small caveats that are worth noting. First, the analysis of VSG derepression and switching in Figure 1 relies on a genome that does not contain minichromosomal (MC) VSG sequences. This means that MC VSGs could theoretically be misassigned as coming from another genomic location in the absence of an MC reference. As the origin of the VSGs in these clones isn’t a major point in the paper, I do not think this is a major concern, but I would not over-interpret the particular details of switching outcomes in these experiments.

      The authors state that “our data imply that antigenic variation is not exclusively stochastic.” I am not sure this is true. While I also favor the idea that switching is not exclusively stochastic, evidence for a signaling pathway does not necessarily imply that antigenic variation is not stochastic. This pathway could be important solely for lifecycle-related control of VSG expression, rather than antigenic variation during infection. Nevertheless, these data are critical for establishing a potential pathway that could control antigenic variation and thus represent a fundamental discovery.

      Another aspect of this work that is perhaps important, but not discussed much by the authors, is the fact that signalling is extremely poorly understood in T. brucei. In Figure 1B, the RNA-seq data show many genes upregulated after expression of the Mut PIP5Pase (not just VSGs). The authors rightly avoid claiming that this pathway is exclusive to VSGs, but I wonder if these data could provide insight into the other biological processes that might be controlled by this signaling pathway in T. brucei.

      Overall, this is an excellent study that represents an important step forward in understanding how antigenic variation is controlled in T. brucei. The possibility that this process could be controlled via a signalling pathway has been speculated for a long time, and this study provides the first mechanistic evidence for that possibility.

      We thank the reviewer for the evaluation of our work. We agree that it is difficult to ensure the origin of all VSG genes not having minichromosome sequences; hence we did not emphasize this point in the manuscript. We used the 427-2018 reference genome assembled by PacBio and Hi-C (Muller et al. 2018, Nature), which we believe is the best assembly for the 427 strain, especially related to the VSG genes.

      We also agree that having signaling controlling switching in vitro does not mean the switching necessarily occurs by signaling in vivo. Nevertheless, stochastic switching is an accepted model; but it has not been proved, whereas we provide molecular evidence that signaling can cause switching. To express this reviewer’s suggestion, we edited the Discussion, page 7, line 250: from “our data imply that antigenic variation is not exclusively stochastic” to “our data suggest that antigenic variation is not exclusively stochastic”.

      Most of the RNA-seq data were VSGs genes/pseudogenes. Other genes upregulated included retrotransposons and DNA/RNA processing enzymes such as endonucleases and polymerases. We included in the Results, page 3, line 100: “Other genes upregulated include primarily retrotransposons, endonucleases, and polymerase proteins.”.

    2. Reviewer #1 (Public Review):

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) have shown that PIP5Pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5Pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5Pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5Pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5Pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulating the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch". Therefore, the title should be revised.

      There are serious concerns about many conclusions made by Touray et al., according to their experimental approaches:<br /> 1. The authors have been studying RAP1's chromatin association pattern by ChIPseq in cells expressing a C-terminal HA tagged RAP1. According to data from tryptag.org, RAP1 with an N-terminal or a C-terminal tag does not seem to have identical subcellular localization patterns, suggesting that adding tags at different positions of RAP1 may affect its function. It is therefore essential to validate that the C-terminally HA-tagged RAP1 still has its essential functions. However, this data is not available in the current study. RAP1 is essential. If RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. In addition, these cells should have the WT VSG expression pattern, and RAP1-HA should still interact with TRF. Without these validations, it is impossible to judge whether the ChIPseq data obtained on RAP1-HA reflect the true chromatin association profile of RAP1.

      2. Touray et al. expressed and purified His6-tagged recombinant RAP1 fragments from E. coli and used these recombinant proteins for EMSA analysis: The His6 tag has been used for purifying various recombinant proteins. It is most likely that the His6 tag itself does not convey any DNA binding activities. However, using His6-tagged RAP1 fragments for EMSA analysis has a serious concern. It has been shown that His6-tagged human RAP1 protein can bind dsDNA, but hRAP1 without the His6 tag does not. It is possible that RAP1 proteins in combination with the His6 tag can exhibit certain unnatural DNA binding activities. To be rigorous, the authors need to remove the His6 tag from their recombinant proteins before the in vitro DNA binding analyses are performed. This is a standard procedure for many in vitro assays using recombinant proteins.

      3. It is unclear why Nanopore sequencing was used for RNAseq and ChIPseq experiments. The greatest benefit of Nanopore sequencing is that it can sequence long reads, which usually helps with mapping, particularly at genome loci with repetitive sequences. This seems beneficial for RAP1 ChIPseq analysis as RAP1 is expected to bind telomere repeats. However, for ChIPseq, the chromatin needs to be fragmented. Larger DNA fragments from ChIPseq experiments will decrease the accuracy of the final calculated binding sites. Therefore, ChIPseq experiments are not supposed to have long reads to start with, so Nanopore sequencing does not seem to bring any advantage. In addition, compared to Illumina sequencing, Nanopore sequencing usually yields smaller numbers of reads, and the sequencing accuracy rate is lower. The Nanopore sequencing accuracy may be a serious concern in the current study. All telomeres have the perfect TTAGGG repeats, all VSG genes have a very similar 3' UTR, and all 70 bp repeats have very similar sequences. In fact, the active and silent ESs have 90% sequence identity. Are sequence reads accurately mapped to different ESs? How is the sequencing and mapping quality controlled? Furthermore, it is unclear whether the read depth for RNAseq is deep enough.

      4. Many statements in the discussion section are speculations without any solid evidence. For example, lines 218 - 219 "likely due to RAP1 conformational changes", no data have been shown to support this at all. In lines 224-226, the authors acknowledged that more experiments are necessary to validate their observations, so it is important for the authors to first validate their findings before they draw any solid conclusions. Importantly, RAP1 has been shown to help compact telomeric and subtelomeric chromatin a long time ago by Pandya et al. (2013. NAR 41:7673), who actually examined the chromatin structure by MNase digestion and FAIRE. The authors should acknowledge previous findings. In addition, the authors need to revise the discussion to clearly indicate what they "speculate" rather than make statements as if it is a solid conclusion.

      There are also minor concerns:

      1. In the PIP5Pase conditional knockout system, the WT or mutant PIP5Pase with a V5 tag is constitutively expressed from the tubulin array. What's the relative expression level of this allele and the endogenous PIP5Pase? Without a clear knowledge of the mutant expression level, it is hard to conclude whether the mutant has any dominant negative effects or whether the mutant phenotype is simply due to a lower than WT PIP5pase expression level.

      2. In EMSA analysis, what are the concentrations of the protein and the probe used in each reaction? The amount of protein used in the binding assay appears to be very high, and this can contribute to the observation that many complexes are stuck in the well. Better quality EMSA data need to be shown to support the authors' claims.

    1. Reviewer #1 (Public Review):

      In this paper, the authors developed an image analysis pipeline to automatically identify individual ‎neurons within a population of fluorescently tagged neurons. This application is optimized to deal with ‎multi-cell analysis and builds on a previous software version, developed by the same team, to resolve ‎individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and ‎several heuristics tailored for C. elegans anatomy, the method successfully identifies individual ‎neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can become ‎instrumental for a variety of research directions such as in-vivo single-cell gene expression analysis ‎and calcium-based neural activity studies.‎

      The analysis procedure depends on the availability of an accurate atlas that serves as a reference map ‎for neural positions. Thus, when imaging a new reporter line without fair prior knowledge of the ‎tagged cells, such an atlas may be very difficult to construct. Moreover, usage of available reference ‎atlases, constructed based on other databases, is not very helpful (as shown by the authors in Fig 3), ‎so for each new reporter line a de-novo atlas needs to be constructed.‎

      I have a few comments that may help to better understand the potential of the tool to become handy:

      ‎1) I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was performed on ‎a non-integrated reporter strain. As stated, for constructing the reference atlas, the authors used ‎worms in which they could identify the complete set of tagged neurons. But how sensitive is the ‎analysis when assaying worms with different levels of mosaicism? Are the results shown in the paper ‎stem from animals with a full neural set expression? Could the authors add results for which the ‎assayed worms show partial expression where only 80%, 70%, 50% of the cells population are ‎observed, and how this will affect identification accuracy? This may be important as many non-‎integrated reporter lines show high mosaic patterns and may therefore not be suitable for using this ‎analytic method. In that sense, could the authors describe the mosaic degree of their line used for ‎validating the method.‎<br /> ‎<br /> 2) For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted from? As it has ‎no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a), but in Fig 5c it is shown as if the ‎region of interest to extract fluorescence was nuclear. If fluorescence was indeed extracted from the ‎cytoplasm, then it will be helpful to include in the software and in the results description how this was ‎done, as a huge hurdle in dissecting such multi-cell images is avoiding crossreads between ‎adjacent/intersecting neurons.‎<br /> ‎<br /> 3) In the same matter: In the methods, it is specified that the strain expressing GCAMP was also used ‎in the gene expression analysis shown in Figure 5. But the calcium indicator may show transient ‎intensities depending on spontaneous neural activity during the imaging. This will introduce a ‎significant variability that may affect the expression correlation analysis as depicted in Figure 5.‎

    1. f Jurkat cells expressing PD-1 (myc tagged) and TIM-3 (3xFlag tagged) individually or together were incubated with or without 2 μg/ml exogenous Gal-9 followed by IP/western blotting with indicated antibodies.

      For Figure 3 experiments, not only is there a TIM3-GAL9-PD-1 extracellular triplet interaction going on but they show in figure 3F that there may be something intracellular between TIM3 and PD-1 despite an absence of GAL9 since in figure 3F, the FLAG tag was only on TIM3 so if TIM3 didn't interact with PD-1 without GAL9's help, there would be no PD-1 bands in 4th lane in the top most blot since the IP is only targeting TIM3. Since PD-1 is interacting with TIM3 somehow, PD-1 is present regardless.

    2. Lysates of Jurkat cells transduced with control lentivirus or PD-1 tagged at the C-terminus with 3× FLAG tag (PD-1.3F) were immunoprecipitated with anti-FLAG magnetic beads and the associated proteins were subjected to immunoblotting with Gal-9 or PD-1 antibodies. The three Gal-9 bands (L, M, S) represent different isoforms resulted from alternative pre-mRNA splicing.

      Lysate (top blot) should have all the galectin in all cells (control and PD-1.3F) but the middle blot is only IP of the PD-1 protein so if galectin9 did not bind to PD-1 protein, then there should theoretically only be PD-1 protein in the sample aka the bottom blot. However, since galectin 9 does bind to PD-1, there is present galectin 9 per the middle blot in the PD-1.3F sample.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      The rupture of single membrane-bound autophagic bodies is essential to release and catabolize contents of autophagosomes deposited in the vacuole. The phospholipase Atg15 has been thought to play an important role in this process. This study establishes methods to analyze phospholipase activity in isolated Saccharomyces cerevisiae vacuoles and elucidates the mechanisms that activate Atg15. Using an elegant cell-free assay the authors demonstrate that vacuolar extracts can cleave phosphatidyl ethanolamine in an Atg15 and Pep4/Prb-dependent manner. Atg15 is cleaved in the presence of Pep4/Prb, likely causing the release of Atg15 cytosolic domain in the vacuole. An Atg15 construct lacking the transmembrane anchor retains its lipase activity and when artificially targeted to vacuole using CPY tag localizes to autophagic bodies. The authors also establish the minimum construct of Atg15 that is sufficient to execute lipase function. The authors then isolate Atg15 from vacuolar extracts using a FLAG tag-based pulldown and show that the FLAG eluate is sufficient to cleave a range of phospholipids. Finally, using a protease-protection assay the authors show that Atg15 isolated using FLAG resin can cause disruption of isolated autophagic bodies.

      Major comments:

      1. Throughout the manuscript, TLC data and Ape1 maturation data are not quantified. The authors should include data on replicates and quantitation for all TLC and Ape1 processing data.
      2. The conclusion that Atg15 is the sole source of phospholipase activity is based on cleavage of NBD-PE alone. It is not clear why specifically PE was chosen to test lipase activity of Atg15. It is possible that Atg15 has a higher preference for PE as has been shown previously (Ramya and Rajsekaran 2016). Have the authors tested to see if other phospholipids can be cleaved by vacuolar lysates derived from Atg15 knockout cells? This should be investigated further before concluding that Atg15 is the sole source of all lipase activity in vacuolar extracts.
      3. Atg15 overexpressed and purified from Saccharomyces cerevisiae is shown to be sufficient to catalyze the cleavage of PE (among other phospholipids). How do the authors reconcile this finding with their observations on the requirement of Pep4 and Prb? This information should be included in the discussion.
      4. Regarding Figure 3 and movie EV3, especially the lower panel, the overlap of cherry-Atg8 (autophagic bodies) and CPY(1-50)-Atg15(DN35)-mNG is not very clear. There appear to be several CPY(1-50)-Atg15(DN35)-mNG rings that do not surround Atg8.
      5. a. Are these images from a single stack or represent the entire volume of the cell? This result could be better represented as a line profile and through a correlation analysis.
      6. b. The finding that CPY(1-50)-Atg15(DN35) binds autophagic bodies is interesting, but it should be demonstrated with native/wild type protein. This can be achieved by expressing lipase deficient Atg15-mNG in rapamycin-treated cells, which should have intact accumulated autophagic bodies.
      7. c. Atg15-mNG also localizes to a ring-like structure outside the vacuole. The authors should comment on the potential impact of this finding.
      8. The rationale for using detergent solubilized and FLAG-eluted Atg15 to test lipase activity with other phospholipids (LPC, PI, PC and PG) is not clear. Detergent solubilized and FLAG-eluted Atg15 is degraded (Figure4C). Does this mean that degraded forms of Atg15 exhibit broader lipase activity? The authors should test for breakdown of other phospholipids with whole vacuolar extracts or vacuolar pellet fraction that has intact membrane bound Atg15. If only degraded forms of Atg15 show broad phospholipid lipase activity, then this will be informative about regulation of Atg15 function.
      9. Figure6B: ProteinaseK is a broad-spectrum protease. It is unclear why it would specifically cleave GST-GFP and prApe1 to produce single bands (and not a smear) corresponding to free-GFP and dApe1. This result can be explained better.

      Minor comments:

      1. Fig1E legend states, "Each vacuolar lysates were added at a volume ratio of 1:5:25". It's not clear what this means or what this ratio is for. In general figure legends need to be more descriptive on how the experiment was performed.
      2. It's not clear what processed Atg15 (pcrAtg15) refers to in Figure4C. Is it indicating the smear around the 75kDa band? This should be explained clearly in the figure legend and the results section.

      Significance

      The phospholipase Atg15 is known to play a crucial role in the degradation of autophagic bodies within the vacuole. However, the regulatory mechanisms that prevent detrimental lipase activity of Atg15 have remained unclear. This study shows that proteolytic processing and membrane binding could activate Atg15, thereby providing important insights into the mechanism of Atg15 regulation.<br /> Using isolated autophagic bodies and vacuolar extract, the results here show direct disruption of autophagic bodies by Atg15. The cell-free assay to assess lipase activity can be further utilized to analyze vacuolar function. These finding will be of interest to a audience interested in various forms of autophagy and vacuolar degradation.

    1. When I tag a note with a new keyword like [[Productivity]], it then becomes a ghost note on the graph.

      This is the first time I've seen someone use the phrase "ghost note" to mean a future implied note which could be created by using wiki syntax [[*]] which in some systems like Obsidian or WikiMedia creates a (red) link which one could click on to create that note.

      via u/THX-Eleven38 at https://www.reddit.com/r/Zettelkasten/comments/14ox2tw/what_is_the_proper_way_to_create_a_moc_note_from/

  7. Jun 2023
    1. Author Response:

      Reviewer #1 (Public Review):

      The study investigates the nature of "trailblazer" cells in distinct tumor models, including luminal B (MMTV/PyMT) and triple negative (TNBC) tumors (C3-TAg). The authors note that the trail-blazer phenotypes in the TNBC model are more complex relative to the Luminal B model and represent distinct EMT programs associated with the expression of distinct EMT-TFs (Zeb1, Zeb2 and Fra-1). They demonstrated that of numerous EMT-TFs, Zeb1 and Fra-1 were required for increased cancer cell migration and invasion. They reveal that TGF-beta and EGF-mediated signaling are required for the diverse EMT states that are required for trailblazer cell activity and increased cell migration/invasion. TGF-beta signaling engaged Zeb 1 and Zeb2 while EGF sig-naling activated Fra-1. Indeed, inhibitors of either TGF-beta or EGF signaling could impair cell migration/invasion. While both pathways contributed to trailblazer phenotypes, EGF signaling was shown to interfere with certain TGF-beta induced transcriptional response, including the ex-pression of genes encoding extracellular matrix proteins.

      One concern was the heavy reliance of the C3-TAg as the sole TNBC model in which the dis-tinct trailblazer phenotypes were described. The data in Fig. 3 of the submission reveals that the phenotypes observed in the C3-TAg model could be recapitulated in a TNBC patient-derived xenograft model (PDX). Using this PDX, the authors were able to show vimentin expression in lung metastatic TNBC cells that were intravascular, those that had extravasated and clusters of cancer cells fully within the lung parenchyma. This was an important addition to the manuscript. The additional experiments to investigate the role of Zeb1 and Zeb1 more fully, beyond the focus on Fra-1 in the initial submission was an additional strength of the new submission. Additional clarifications to the discussion also clarified the concepts articulated in the study. The study em-ploys multiple breast cancer models, utilizes numerous in vitro and in vivo assessments of the trailblazer phenotypes, and the experimental design is rigorous and the interpretation of the data is sound. The manuscript will be of general interest to the research community.

      Thank you for the supportive comments. We are glad that the revisions addressed your prior concerns.

      Reviewer #2 (Public Review):

      This represents an important study that demonstrates a high degree of heterogeneity within trailblazer cells in clusters that participate in collective migration. Solid methods highlight this het-erogeneity and show that in TNBC cancers, trailblazer cells are defined by vimentin (and not Keratin 14) and are dependent on both TGFbeta and EGFR signaling. Additional, single cell stud-ies would further support this work.

      Thank you for the suggestion. Our current data establishes that trailblazer cells are heterogene-ous using FACS, immunostaining and functional studies of fresh tumor organoids and estab-lished tumor organoid lines. In addition, our RNA-seq experiments provided deep insight into the nature of gene expression changes that corresponded with the evolution of new trailblazer states. This discovery of trailblazer cell heterogeneity was one of multiple key new discoveries in this manuscript, along with revealing a Krt14-independent invasion mechanism, the regulation of trailblazer cells by Tgfβ and Egfr signaling and a new compromise mode of signal integration. We agree that our results support further investigation of the nature and function of basal-like breast cancer heterogeneity during the progression to metastasis. However, a comprehensive implementation of scRNA-seq is mostly likely required to further unravel new aspects of hetero-geneity that substantially advance upon the conclusions supported by our current data. Such an undertaking is beyond the scope of this investigation.

      We agree that scRNA-seq would be confirmatory of trailblazer cell heterogeneity that has been demonstrated with multiple approaches rather than a new discovery of heterogeneity.

      Strengths:

      The paper highlights that collective migration, and the nature of trailblazer cells can be highly heterogeneous. This is important as it suggests that the ability to move between states may su-persede a singular phenotype.

      The paper uses animal models and organoids and in several areas attempts to correlate find-ings to human tissues.

      The experiments are logically described.

      Reviewer #3 (Public Review):

      Cancer is a disease of many faces and in particular, the ability of cancers cells to change their phenotypes and cell behaviors - cancer cell plasticity - is a major contributor to cancer lethality and therapeutic challenge of treating this disease. In this study, Nasir, Pearson et al., investigate tumor cell plasticity through the lens of invasive heterogeneity, and in particular in models of tri-ple-negative breast cancer (TNBC), a subtype of breast cancer with particularly poor clinical prognosis and more limited treatment modalities. Using organoid models in a variety of matrix systems, microscopy, and signaling pathway inhibitors, they find that invading TNBC breast tu-mors, primarily in the C31-Tag genetically engineered mouse model of TNBC, are composed of heterogeneous invasive/"trailblazer" type tumor cells that in many cases express vimentin, a classical intermediate filament marker of epithelial-mesenchymal transition, and reduced keratin-14, another filament marker of basal epithelial cells associated with collective invasion in differ-ent breast cancer models. Supportive genetic and pharmacologic evidence is provided that gen-eration of these cells is TGF-beta signaling pathway driven, likely in vivo from the surrounding tumor microenvironment, in accord with published studies in this space. Another important as-pect of this study is the good transcriptional evidence for multiple migratory states showing dif-fering degrees of partial overlap with canonical EMT programs, dependent on TGF-beta, and suggestive but at present incomplete understanding of a parallel program involving Egfr/Fra-1 mediated effects on invasion. When taken in context with other recent studies (Grasset et al. Science Translational Medicine 2022), these data are broadly supportive of concept of targeting vimentin-dependent invasion programs in TNBC tumors.

      The core conclusions of this paper are generally supported by the data, but there are some conceptual and technical considerations that should be taken into account when interpreting this study. Specific comments:

      1) The contribution of the different vimentin-positive trailblazer cells to distant metastasis was not directly confirmed in vivo in this study. Given the limited proliferative potential of many fully EMT'd cells and in light of recent studies indicating that invasion can be uncoupled from meta-static potential, it seems important to directly test whether the different C31-tag isolates, varying in invasive potential in this study, produce metastases and if so do metastases abundance corre-late with the invasive potential in 3D culture. The collection of lungs at 34 days post injection de-scribed in methods is too short to evaluate metastatic frequency.

      We agree that it is important to determine the contribution of trailblazer cells towards metastatic dissemination. In this manuscript, we show that Vimentin expressing cells in a triple negative breast cancer (TNBC) PDX model disseminate to the lungs (Figure 3F). We have also shown that Vimentin expressing SUM159 breast cancer (BC) trailblazer cells spontaneously metasta-size to the lungs in previous publications (Fig. 2–figure supplement 1C) and (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Notably, the depletion of genes specifically expressed in trailblazer cells reduced spontaneous metastasis without significantly impinging on primary tumor growth (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Our new results in Figure 5D show that Tgfβ activates genes that define the trailblazer state in the metastatic SUM159 trailblazer cell model. Thus, features of the Tgfβ regulated trailblazer program in the C3-TAg cells is active in the SUM159 trailblazer model of spontaneous metastasis. In addition, commonly employed BC cell line metastasis models, such as MDAMB231 derivatives are highly mesenchymal (Fig. 2–figure supplement 1C) and (Kang et al, Cell, 2003, 10.1016/S1535-6108(03)00132-6 and Minn et al, Nature, 2005, 10.1038/nature03799, as examples).

      It is not technically feasible to establish a correlation between the relative invasion of The C3-TAg GEMM primary tumors and spontaneous metastasis. C3-TAg GEMM primary tumors de-velop rapidly and the mice must be euthanized prior to the detection of metastasis. This limitation of the model is mentioned in the Results section “Trailblazer cells are specified by Vimentin ex-pression in basal-like breast cancer patient tumors”. The aggressive primary tumor growth and limited spontaneous metastasis of the the C3-TAg model has also been previously reported by others (Green et al, Oncogene, 2000, 10.1038/sj.onc.1203280). Surgical resection of the original primary tumor is not feasible option to allow metastases to form since additional tumors develop in multiple mammary glands.

      In response to reviewer requests, we initiated the growth of orthotopic primary tumors from con-trol or Tgfβ treated 1339-org cells to address the relationship between induction of the trailblazer state and primary tumor cell dissemination. We had to euthanize the mice at day 34 (d34) be-cause tumors within both cohorts had reached the maximum permitted diameter of 2 cm. This will be indicated in the Methods section with revised text. We detected CTCs from the mice bearing control and Tgfβ treated 1339-org cell tumors. However, no micrometastases were de-tected, which is indicated in the text describing Figure 4–figure supplement 3A-B. Thus, per-forming surgical resection in new experiments would not be expected to allow the later detection of metastasis, as there did not appear to be DTCs in the lungs that could initiate colonization. In addition, we would have to resect the tumors prior to d34 to successfully and humanely remove the primary tumors, further reducing the odds of metastases developing. We will continue our work to identify an experimental balance that permits sufficient primary tumor growth to initiate spontaneous metastasis. However, the time scale of resolving this technical challenge is uncer-tain and we believe that our published analysis of trailblazer cell metastasis and new findings here showing the dissemination of Vimentin expressing cells in a PDX model addresses the question of whether Vimentin expressing trailblazer cells metastasize.

      We agree that certain cell states induced by EMT programs can limit the proliferative potential of tumor cells. As described in the Introduction, we previously found that the induction of a trailblaz-er state in a subset of breast cancer cell line models triggers a collateral cost in fitness that limits the ability of trailblazer cells to initiate tumor growth (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). The traits that distinguish trailblazer cells which are capable of tumor initiation and metastasis versus trailblazer cells with reduced fitness have begun to be delineated. Our prior report suggested that cells that were dependent on p63 for growth lost their proliferative capacity when converting to a trailblazer state (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). C3-TAg cells are not dependent on p63 for growth, which is indicated by the vast majority of the tumor cells lacking p63 expression in primary tumors and primary tumor organoids (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014), similar to the metastatic SUM159 breast cancer cell line model. We were also able to derive clonal trailblazer cell lines that lacked detectable p63 expression from a C3-TAg tumor (Figure 2—figure supplement 1B) and grow organoids even when the limited extent of p63 expression was further reduced by Tgfβ (Figure 5C). Additionally, the persistent Tgfβ treated 1339-org cells, which were enriched for trailblazer cells and had reduced p63 expression, were capable of initiating primary tumor growth (Figure 4F). Together, these results indicate that C3-TAg trail-blazer cells are capable of initiating metastatic colonization. However, given the heterogeneity in trailblazer states that we discovered, it is possible that a subset of trailblazer cell states have re-duced proliferative capacity. Our analysis approach in this manuscript would not necessarily de-tect these low fitness trailblazer cells if they were a relatively small fraction of the total trailblazer population. We will clarify this point in the Discussion section in the revised manuscript. Our re-sults have begun to reveal mechanisms for the transcriptional regulation of trailblazer cell heter-ogeneity. We plan to continue delineating the regulatory programs conferring specific transcrip-tion state, defining approaches for the prospective isolation of distinct trailblazer subpopulations and determining trailblazer subpopulation specific biomarkers to understand the specific contri-bution of distinct trailblazer subpopulations towards metastasis. Given the scope of this analysis, it is not feasible to incorporate these future studies into this manuscript.

      2) The invasion of cancer cells is dependent on 3D matrix composition. In other studies, collec-tive cancer invasion is performed in exclusively collagen type 1 gels or in other instances entirely in 3D reconstituted basement membrane gel, e.g. lung cancer invasion studies. In this study, the authors use a mixture composed of both matrices. Given the invasion suppressive effects of matrigel, particularly for epithelial type cells, further studies would be important to determine whether the invasion phenotypes seen in this study are generalizable across matrix environ-ments.

      The invasion of C3-TAg and PyMT organoids embedded in a 100% pure reconstituted base-ment is shown in Fig. 1–figure supplement 1G. We will emphasize that trailblazer invasion was evaluated in multiple ECM compositions with revised text and figure graphic. We also provide images for the reviewer showing that C3-TAg organoids collectively invade in a pure Collagen I ECM. Importantly, these findings are consistent with our results showing that Vimentin express-ing cells are associated with basal-like mammary tumor cell invasion in the complex ECM of C3-TAg GEMM primary tumors (Figure 2G) and patient primary tumors (Figure 3D). Moreover, Vimentin expressing cells disseminated to the lungs in the TNBC PDX that we evaluated (Figure 3F).

      The ECM composition selected for experiments is dictated by the experimental question(s) being addressed. It is unlikely that mammary tumor cells would only ever collectively invade through an ECM that is either pure Collagen I or pure reconstituted basement membrane (BM). Indeed, it has been proposed that mixtures of Collagen I and BM proteins best reconstitute the complexity of primary tumor ECM (Hooper et al, Methods Enzymol, 2006, 10.1016/S0076-6879(06)06049-6). In line this observation, mixtures of Collagen I and BM proteins have been routinely used for the past 20 years to define mechanisms of 3D invasion; Xiang and Muthuswamy, Methods En-zymol, 2006, 10.1016/S0076-6879(06)06054-X; Calvo et al, Nat Cell Biol, 2013 10.1038/ncb2756; and Kato et al, eLife, 2023, 10.7554/eLife.76520, as examples).

      Consistent with the known complexity of the ECM in the tumor microenvironment (TME), we detect Collagen I and Collagen IV (a key component of experimental BM) in the TME of primary breast cancer tumor models (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Important-ly, we have found that a mixture of collagen I and experimentally derived BM proteins reliably reveals breast cancer trailblazer cell invasion mechanisms that promote the malignant progres-sion and metastasis of primary tumors and whose expression correlates with poor patient out-come (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014, as examples). Notably, the relative differences in trail-blazer and opportunist cell invasive phenotypes are not dictated by the ECM composition used in our 3D assays. We have previously tested the invasion of trailblazer and opportunist subpopula-tions in different ECM compositions using both spheroid vertical invasion assays (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Increasing collagen I concentration enhanced the rela-tive rate of trailblazer cell invasion, with trailblazer cells always showing a significantly enhanced invasion relative to opportunist cells.

      The relationship between trailblazer and opportunist cells that we have detected in primary tu-mors is recapitulated when using mixtures of Collagen I and BM proteins in our past publications and in this manuscript. The clonal opportunist cell lines derived from a C3-TAg tumor expressed high levels of the transcription factor p63 (Figure 2–figure supplement 1A-B). We previously showed that p63 restricts induction of a trailblazer state in human breast cancer trailblazer cell lines (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). Notably, we showed that p63 expressing C3-TAg cells were not able to initiate collective invasion in the same ECM composition used in our current manuscript. Moreover, p63 cells in primary C3-TAg tumors were noninvasive opportunist cells that were limited to trailing p63-low trailblazer cells when collective-ly invading in primary tumors and in organoids (Westcott et al, Cancer Res, 2020). We now show that p63 expressing opportunist cell lines are limited to invading behind primary C3-TAg trailblazer cells and trailblazer cell lines in our 3D invasion assays (Figure 1B and Figure 1–figure supplement 1D-E). Together, these results indicate that the ECM employed in our 3D assays reveals the mechanistic underpinnings of both trailblazer and opportunist cell invasion in primary tumors.

      With respect to lung cancer invasion, leader cells that we would classify as trailblazer cells have been isolated from 2 non-small cell lung cancer cell line spheroid models grown in pure reconsti-tuted BM extract (Konen et al, Nat Comm, 2017, 10.1038/ncomms15078). However, it unclear whether these cell line derived NSCLC trailblazer cells are more intrinsically invasive than non-trailblazer siblings in primary NCSCLC tumors or if the traits associated cell line NSCLC trail-blazer cells are required for metastasis. These tests have never been reported to the best of our knowledge. Similarly, it is not clear whether these NSCLC cell line derived trailblazer cells reflect features of primary NSLC primary tumor cells, as we are unaware of any such comparisons be-ing reported. Thus, there is no reason to consider pure reconstituted BM to be an equivalent or preferred experimental option to define trailblazer cell features. Nevertheless, as we mentioned before, our discovery approach identifies trailblazer cells that are intrinsically more invasive than opportunist siblings across multiple ECM conditions, including pure reconstituted BM and, im-portantly, in primary tumors.

      3) TGF-beta is well known to induce EMT. Although this study identifies potential transcriptional mediators of the invasion/trailblazer program, is this program reversible?

      We have previously shown the breast cancer trailblazer cells can convert to an opportunist state, demonstrating that trailblazer states are reversible (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). In this manuscript. we show that C3-TAg organoid lines derived in the Tgfbr1 inhibitor A83-01 have few if any cells with a trailblazer phenotype relative to C3-TAg pri-mary tumors, suggesting a reversion of the trailblazer state (Fig. 4C and Figure 4–figure sup-plement 2A-C). However, our results do not entirely rule out the possibility that only non-trailblazer cells grew to establish the organoid lines. Indeed, the problem of tracing phenotypic conversions when evaluating heterogeneous populations is a systemic challenge that extends beyond our analysis of trailblazer cells. Clearly defining the conversion rates for trailblazer cells will require multiple genetic markers to distinguish the different trailblazer states we have now identified, in addition to phenotypic and molecular analysis over multiple days, or possibly weeks. Thus, further definition of the rate of reversion of different trailblazer cells is worthy line of future investigation rather than a feasible objective of this study.

    2. Reviewer #1 (Public Review):

      The study investigates the nature of "trailblazer" cells in distinct tumor models, including luminal B (MMTV/PyMT) and triple negative (TNBC) tumors (C3-TAg). The authors note that the trailblazer phenotypes in the TNBC model are more complex relative to the Luminal B model and represent distinct EMT programs associated with the expression of distinct EMT-TFs (Zeb1, Zeb2 and Fra-1). They demonstrated that of numerous EMT-TFs, Zeb1 and Fra-1 were required for increased cancer cell migration and invasion. They reveal that TGF-beta and EGF-mediated signaling are required for the diverse EMT states that are required for trailblazer cell activity and increased cell migration/invasion. TGF-beta signaling engaged Zeb 1 and Zeb2 while EGF signaling activated Fra-1. Indeed, inhibitors of either TGF-beta or EGF signaling could impair cell migration/invasion. While both pathways contributed to trailblazer phenotypes, EGF signaling was shown to interfere with certain TGF-beta induced transcriptional response, including the expression of genes encoding extracellular matrix proteins.

      One concern was the heavy reliance of the C3-TAg as the sole TNBC model in which the distinct trailblazer phenotypes were described. The data in Fig. 3 of the submission reveals that the phenotypes observed in the C3-TAg model could be recapitulated in a TNBC patient-derived xenograft model (PDX). Using this PDX, the authors were able to show vimentin expression in lung metastatic TNBC cells that were intravascular, those that had extravasated and clusters of cancer cells fully within the lung parenchyma. This was an important addition to the manuscript. The additional experiments to investigate the role of Zeb1 and Zeb1 more fully, beyond the focus on Fra-1 in the initial submission was an additional strength of the new submission. Additional clarifications to the discussion also clarified the concepts articulated in the study. The study employs multiple breast cancer models, utilizes numerous in vitro and in vivo assessments of the trailblazer phenotypes, and the experimental design is rigorous and the interpretation of the data is sound. The manuscript will be of general interest to the research community.

    3. Reviewer #3 (Public Review):

      Cancer is a disease of many faces and in particular, the ability of cancers cells to change their phenotypes and cell behaviors - cancer cell plasticity - is a major contributor to cancer lethality and therapeutic challenge of treating this disease. In this study, Nasir, Pearson et al., investigate tumor cell plasticity through the lens of invasive heterogeneity, and in particular in models of triple-negative breast cancer (TNBC), a subtype of breast cancer with particularly poor clinical prognosis and more limited treatment modalities. Using organoid models in a variety of matrix systems, microscopy, and signaling pathway inhibitors, they find that invading TNBC breast tumors, primarily in the C31-Tag genetically engineered mouse model of TNBC, are composed of heterogeneous invasive/"trailblazer" type tumor cells that in many cases express vimentin, a classical intermediate filament marker of epithelial-mesenchymal transition, and reduced keratin-14, another filament marker of basal epithelial cells associated with collective invasion in different breast cancer models. Supportive genetic and pharmacologic evidence is provided that generation of these cells is TGF-beta signaling pathway driven, likely in vivo from the surrounding tumor microenvironment, in accord with published studies in this space. Another important aspect of this study is the good transcriptional evidence for multiple migratory states showing differing degrees of partial overlap with canonical EMT programs, dependent on TGF-beta, and suggestive but at present incomplete understanding of a parallel program involving Egfr/Fra-1 mediated effects on invasion. When taken in context with other recent studies (Grasset et al. Science Translational Medicine 2022), these data are broadly supportive of concept of targeting vimentin-dependent invasion programs in TNBC tumors.

      The core conclusions of this paper are generally supported by the data, but there are some conceptual and technical considerations that should be taken into account when interpreting this study. Specific comments:

      1) The contribution of the different vimentin-positive trailblazer cells to distant metastasis was not directly confirmed in vivo in this study. Given the limited proliferative potential of many fully EMT'd cells and in light of recent studies indicating that invasion can be uncoupled from metastatic potential, it seems important to directly test whether the different C31-tag isolates, varying in invasive potential in this study, produce metastases and if so do metastases abundance correlate with the invasive potential in 3D culture. The collection of lungs at 34 days post injection described in methods is too short to evaluate metastatic frequency.

      2) The invasion of cancer cells is dependent on 3D matrix composition. In other studies, collective cancer invasion is performed in exclusively collagen type 1 gels or in other instances entirely in 3D reconstituted basement membrane gel, e.g. lung cancer invasion studies. In this study, the authors use a mixture composed of both matrices. Given the invasion suppressive effects of matrigel, particularly for epithelial type cells, further studies would be important to determine whether the invasion phenotypes seen in this study are generalizable across matrix environments.

      3) TGF-beta is well known to induce EMT. Although this study identifies potential transcriptional mediators of the invasion/trailblazer program, is this program reversible?

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __Reviewer 1____: __

      1-Localization of ESYT1 and SYNJ2BP

      The claim of a localization at ER-mitochondria contacts relies on two type of assays. Light microscopy and subcellular fractionation. Concerning microscopy, while the staining pattern is obviously colocalizing with the ER (a control of specificity of staining using KO cells would nevertheless be desirable)

      the idea that ESYT1 foci "partially colocalized with mitochondria" is either trivial or unfounded

      Every cellular structure is "partially colocalized with mitochondria" simply by chance at the resolution of light microscopy

      If the meaning of the experiment is to show that ESYT1 'specifically' colocalizes with mitochondria, then this isn't shown by the data

      There is no quantification that the level of colocalization is more than expected by chance

      nor that it is higher than that of any other ER protein

      Moreover, the author's model implies that ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP. This is not tested.

      • To analyze and measure MERCs parameters and functions, we used a set of validated methods described in the following specialized review articles (Eisenberg-Bord, Shai et al. 2016, Scorrano, De Matteis et al. 2019).
      • To support and confirm the localization of ESYT1-SYNJ2BP complex at MERCs, we performed supplementary BioID analysis using ER target BirA*, OMM targeted BirA* and ER-mitochondria tether BirA* (Table S1, Figure S1 and Figure 1 A and B). These results confirmed the specificity of the interaction of the 2 partners. ESYT1 is not identified as a prey in OMM BioID and SYNJ2BP is not identified in ER BioID, on the other hand both partners are identified in the ER-mitochondria tether BioID.
      • To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria positive for ESYT1 (Figure 1E).
      • To demonstrate than ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP, we performed a quantitative analysis using confocal microscopy. Human control fibroblasts, KO SYNJ2BP fibroblasts and SYNJ2BP overexpressing fibroblasts were labelled with ESYT1, TOMM40 for mitochondria and CANX for ER. We measured the % of ESYT1 signal colocalizing with mitochondria in each condition (Figure 3C). Membranes (MAM) can be purified and are enriched for proteins that localize at ER-mitochondria contacts. This idea originated in the early 90's and since then, myriad of papers has been using MAM purification, and whole MAM proteomes have been determined. Yet the evidence that MAM-enriched proteins represent bona fide ER-mitochondria-contact-enriched proteins (as can nowadays be determined by microscopy techniques) remain scarce. Here, anyway, ESYT1 fractionation pattern is identical to that of PDI, a marker of general ER, with no indication of specific MAM accumulation.

      • To highlight the enrichment of ESYT1 in the MAM fraction, we quantified the ESYT1 signal in each fraction. Those results show a similar fractionation pattern than the MAM resident protein SIGMAR1 (Figure 1F). For SYNJ2BP, it is different as it is more enriched in the MAM than the general mitochondrial marker PRDX3. However, PRDX3 is a matrix protein, making it a poor comparison point, since SYNJ2BP is an OMM protein.

      • To confirm the partial enrichment of SYNJ2BP in the MAM fraction compared to another outer mitochondrial membrane protein, we added the signal of the well characterized OMM protein CARD19 (Rios, Zhou et al. 2022). Again, the model implies that ESYT1 and SYNJ2BP accumulation in the MAM should be dependent on each other. This is not tested.

      • As describe above, we demonstrated in Figure 3C than the accumulation of ESYT1 at mitochondria is, at least partially, dependent on the quantity of SYNJ2BP.

      • We moreover showed a reciprocal effect in Figure 3E. A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERCs formation is partially dependent of the presence of ESYT1. 2-ESYT1-SYNJ2BP interaction.

      The starting point of the paper is a BioID signal for SYNJ2BP when BioID is fused to ESYT1. One confirmation of the interaction comes in figure 4, using blue native gel electrophoresis and assessing comigration. Because BioID is promiscuous and comigration can be spurious, better evidence is needed to make this claim. This is exemplified by the fact that, although SYNJ2BP is found in a complex comigrating with RRBP1, according to the BN gel, this slow migrating complex isn't disturbed by RRBP1 knockdown, but is somewhat disturbed by ESYT1 knockdown. More than a change in abundance, a change in migration velocity when either protein is absent would be evidence that these comigrating bands represent the same complex.

      • We showed in Figure 4C that the presence of SYNJ2BP in a complex of a similar molecular weight that ESYT1 (410KDa) is totally dependent of the presence of ESYT1, suggesting an interaction of the 2 proteins.
      • To confirm this interaction, in figure 4A we analyzed on BN cells overexpressing SYNJ2BP together with a 3xFlag tagged version of ESYT1. As a result of the addition of the Flag tag, the complex positive for ESYT1 shifted to a higher molecular weight. The complex positive for SYNJ2BP shifted to a similar the molecular weight, demonstrating the interaction and dependence of the 2 partners. ESYT1-SYNJ2BP interaction needs to be tested by coimmunoprecipitation of endogenous proteins, yeast-2-hybrid, in vitro reconstitution or any other confirmatory methods.

      • To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein that we showed in Figure 1H to form complexes similar to the endogenous protein. SYNJ2BP is found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Table S2) (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020). 3-Tethering by ESYT1- SYNJ2BP.

      This is assessed by light and electron microscopy. Absence of ESYT1 decreases several metrics for ER-mitochondria contacts (whether absence of SYNJ2BP has the same effect isn't tested).

      • Using PLA (proximity ligation assay) we demonstrated that the loss of SYNJ2BP leads to a decrease in MERCs (Figure 7 H and I), confirming previous studies (Ilacqua, Anastasia et al. 2022, Pourshafie, Masati et al. 2022). This interesting phenomenon could be due to many things, including but not limited to the possibility that "ESYT1 tethers ER to mitochondria".

      This statement and the respective subheading title are therefore clearly overreaching and should be either supported by evidence or removed.

      Indeed, absence of ESYT1 ER-PM tethering and lipid exchange could have knock-on effects on ER-mito contacts, therefore strong statements aren't supported.

      Moreover, the effect on ER-mitochondria contact metrics could be due to changes in ER-mitochondria contact indeed but may also reflect changes in ER and/or mitochondria abundance and/or distribution, which favour or disfavour their encounter. Abundance and distribution of both organelles are not controlled for.

      • The mitochondrial phenotypes caused by the loss of ESYT1 are all rescued by the introduction of an artificial mitochondrial-ER tether, demonstrating that they are due to loss of the tethering function of ESYT1. Finally, the authors repeat a finding that SYNJ2BP overexpression induces artificial ER-mitochondria tethering. Again, according to the model, this should be, at least in part, due to interaction with ESYT1. Whether ESYT1 is required for this tethering enhancement isn't tested.

      • As described above, we demonstrated in Figure 3C that the accumulation of ESYT1 at mitochondria is, at least partially, dependent on the quantity of SYNJ2BP.

      • We moreover showed a reciprocal effect in Figure 3F. A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERC formation is partially dependent of the presence of ESYT1. 4-Phenotypes of ESYT1/SYNJ2BP KD or KO.

      The study goes in details to show that downregulation of either protein yields physiological phenotypes consistent with decreased ER-mitochondria tethering. These phenotypes include calcium import into mitochondria and mitochondrial lipid composition.

      Figure 5 shows that histamine-evoked ER-calcium release cause an increase in mitochondrial calcium, and this increase is reduced in absence of ESYT1, without detectable change in the abundance of the main known players of this calcium import. This is rescued by an artificial ER-mitochondria tether. However, Figure 5D shows that the increase in calcium concentration in the cytosol upon histamine-evoked ER calcium release is equally impaired by ESYT1 deletion, contrary to expectation. Indeed, if the impairment of mitochondrial calcium import was due to improper ER-mitochondria tethering in ESYT1 mutant cells, one would expect more calcium to leak into the cytosol, not less.

      The remaining explanation is that ESYT1 knockout desensitizes the cells to histamine, by affecting GPCR signalling at the PM, something unexplored here.

      In any case, a decreased calcium discharge by the ER upon histamine treatment, explains the decreased uptake by mitochondria.

      The authors argue that ER calcium release is unaffected by ESYT1 KO, but crucially use thapsigargin instead of histamine to show it. Thus, the most likely interpretation of the data is that ESYT1 KO affects histamine signalling and histamine-evoked calcium release upstream of ER-mitochondria contacts.

      • Silencing ESYT1 impairs SOCE efficiency in Jurkat cells (Woo, Sun et al. 2020), but not in HeLa cells (Giordano, Saheki et al. 2013, Woo, Sun et al. 2020). Analysis of the role of ESYT1 in HeLa cells prevents confounding effects due to the loss of ESYT1 at ER-PM. In this model, knock-down of ESYT1 led to a decrease of mitochondrial Ca2+ uptake from the ER upon histamine stimulation, as monitored by genetically encoded Ca2+ indicator targeted to mitochondrial matrix (Figure 5A and B). ESYT1 silencing in HeLa cells did not impact ER Ca2+ store measured by the ER-targeted R-GECO Ca2+ probe (Figure 5C and D). The expression of the artificial mitochondria-ER tether was able to rescue mitochondrial Ca2+ defects observed in ESYT1 silenced cells (Figure 5B), confirming that the observed anomalies are specifically due to MERC defects.
      • In contrast loss of ESYT1 impaired SOCE efficiency in fibroblasts (Figure 6 A and B). This phenotype was fully rescued by re-expression of ESYT1-Myc but not the artificial tether. We therefore investigated the influence of ESYT1 loss on cytosolic Ca2+ concentration following ATP (Figure 6F to H) or histamine stimulation (Figure S3 D to F), both of which showed a reduced cytosolic Ca2+ concentration and uptake in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Measurment of cytosolic Ca2+ after tharpsigargin treatment in Ca2+-fee media, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER, showed that ESYT1 KO does not influence the total ER Ca2+ pool (Figure 6K and L). However, ER-Ca2+ release capacity upon histamine stimulation (Figure 6I and J) is decreased in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Loss of ESYT1 decreased the Ca2+ uptake capacities of mitochondria after activation with histamine (Figure S3 A to C) or ATP (Figure 6 C to E). This phenotype was rescued by re-expression of ESYT1-Myc and also the engineered ER-mitochondria tether. Thus, despite the ER-Ca2+ release defect observed after ESYT1 loss, the artificial tether fully rescued the mitochondrial phenotype.
      • These results highlight the distinct and dual roles of ESYT1 in Ca2+ regulation at the ER-PM and at MERCs. The data with SYNJ2BP deletion are more compatible with decreased ER-mito contacts, as no decreased in cytosolic calcium is observed. This is compatible with the previously proposed role of SYNJ2BP in ER-mitochondria tethering, but the difference with ESYT1 rather argue that both proteins affect calcium signaling by different means, meaning they act in different pathways.

      • We explain the different results concerning cytosolic calcium by the fact that ESYT1 is a bi-localized protein with dual functions on cellular calcium. Implicated both in SOCE at ER-PM and in mitochondrial calcium uptake at MERCs. On the other hand, SYNJ2BP is only present at MERCs and its loss do not influence PM-ER signaling or ER-Ca2+ release. Finally, the study delves into mitochondrial lipids to "investigated the role of the SMP-domain containing protein ESYT1 in lipid transfer from ER to mitochondria". In reality, it is not ER-mitochondria lipid transport that is under scrutiny, but general lipid homeostasis, and changes in ER-PM lipids could have knock-on effects on mitochondrial lipids without the need to invoke disruptions in ER-mitochondria transfer activity.

      • The fact that the artificial tether, which specifically rescue MERCs, fully rescue the lipid phenotype argue for a direct loss of MERCs tethering function when ESYT1 is missing. The changes observed are interesting but could be due to anything. Surprisingly, PCA analysis shows that the rescue of the knockout by the ESYT1 gene clusters with the rescue by the artificial tether, and not with the wildtype. This indicates that overexpressing either ESYT1 or a tether cause similar lipidomic changes. These could be due, for instance, to ER stress caused by protein overexpression, and not to a rescue.

      • In order to verify if the overexpression of ESYT1 or the artificial tether induces ER stress, we performed a WB analysis to compare markers of ER stress in control fibroblasts, KO ESYT1 fibroblasts, KO ESYT1 fibroblasts overexpressing ESYT1-Myc or the tether (Figure S4C). This showed no changes in the levels of several different markers of ER stress or cell death. __Reviewer 2____: __

      1) the interaction between those proteins is direct,

      2) if SYNJ2BP is necessary and sufficient to localize E-Syt1 at MERC, and

      3) if MERCs extension induced by SYNJ2BP is dependent on E-Syt1.

      Those points are important to investigate because SYNJ2BP has already been shown to induce MERCs by interacting with the ER protein RRBP1. In addition, some experiments need to be better quantified.

      Major comments: E-syt1/SYNJ2BP in MERCs formation: the authors provide several convincing lines of evidence that both proteins are in the same complex (proximity labelling, localization in the same complex in BN-PAGE, localization in MAM) but it is not clear in which extent the direct interaction between both proteins regulates ER-mitochondria tethering. 1- Pull down experiments or BiFC strategy could be performed to show the direct interaction between both proteins.

      • We showed in Figure 4C that the presence of SYNJ2BP in a complex of a similar molecular weight to that ESYT1 (410KDa) is totally dependent of the presence of ESYT1, suggesting an interaction of the 2 proteins.
      • To confirm this interaction, in figure 4A we analyzed on BN cells overexpressing SYNJ2BP together with a 3xFlag tagged version of ESYT1. As a result of the addition of the Flag tag, the complex positive for ESYT1 shifted to a higher molecular weight. Significantly, the complex positive for SYNJ2BP shifted to a similar the molecular weight, demonstrating the interaction and dependence of the 2 protein partners.
      • To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein (Table S2). SYNJ2BP was found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020). 2- SYNJ2BP OE has already been demonstrated to increase MERCs and this being dependent on the ER binding partners RRBP1 (10.7554/eLife.24463). Therefore, it would be of interest to perform OE of SYNJ2BP in KO Esyt1 to address the question of whether ESyt1 is also required to increase MERCs.

      • A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERCs formation is partially dependent of the presence of ESYT1 (Figure 3F). 3- The authors show that Esyt1 punctate size increases when SYNJ2BP is OE (Fig3C), but this can be indirectly linked to the increase of MERCs in the OE line. Thus, it could be interesting to test if the number/shape of E-syt1 punctate located close to mitochondria decreases in KO SYNJ2B. This could really show the dependence of SYNJ2BP for E-syt1 function at MERCs.

      • To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria colocalizing with ESYT1 (Figure 1E).

      • To demonstrate than ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP, we performed a quantitative analysis using confocal microscopy. Human control fibroblasts, KO SYNJ2BP fibroblasts and SYNJ2BP overexpressing fibroblasts were labelled with ESYT1, TOMM40 for mitochondria and CANX for ER. We measured the % of ESYT1 signal colocalizing with mitochondria in each condition (Figure 3C). Lipid analyses: the results of MS on isolated mitochondria clearly show that mitochondrial lipid homeostasis is affected on KO-Syt1 and rescued by expression of Syt1-Myc and artificial mitochondria-ER tether. However, p.15, the authors wrote "The loss of ESYT1 resulted in a decrease of the three main mitochondrial lipid categories CL, PE and PI, which was accompanied by an increase in PC ». As the results are expressed in mol%, this interpretation can be distorted by the fact that mathematically, if the content of one lipid decreases, the content of others will increase. I would suggest to express the results in lipid quantity (nmol)/mg of mitochondria proteins instead of mol%. This will clarify the role of E-Syt1 on mitochondrial lipid homeostasis and which lipid increase and decrease.

      • We changed the sentence in the text as suggested. Also it could be of high interest to have the lipid composition of the whole cells to reinforce the direct involvement of E-Syt1 in mitochondrial lipid homeostasis and verify that the disruption of mitochondrial lipid homeostasis is not linked to a general perturbation of lipid metabolism as this protein acts at different MCSs.

      • This is beyond the scope of the project and we would argue that the results of such an experiment would be difficult to interpret. To better understand the impact of Esyt1 of mitochondria morphology, the author could analyze the mitochondria morphology (size, shape, cristae) on their EM images of crt, KO and OE lines. Indeed, on OE (Fig3A), the mitochondria look bigger and with a different shape compared to crt.

      • As we do not observe obvious differences in mitochondrial morphology between control, KO and OE fibroblasts we do not think that quantitative analysis would add to the understanding of the effect of ESYT1 on mitochondrial function. Also, they performed a lot of BN-PAGE. Is it possible to check whether the mitochondrial respiratory chain super-complexes are affected on Esyt1 KO line compared to crt?

      • We decided to remove the data on the metabolic consequences of ESYT1 loss since it was too preliminary and required deeper investigations, focusing instead on the effect of ESYT1 loss on calcium homeostasis. Quantifications: some western blots needs to be quantified (Fig 5K, 6J, S3E);

      • We did not observe obvious differences in the protein levels so we think that quantitation would not add significantly to the understanding of the differences in calcium dynamics that we report. Fig1A: Can the author provide a higher magnification of the triple labeling and perform quantification about the proportion of E-Syt1 punctate located close to mitochondria?

      • We added higher magnification of the same area in all channels and arrows that point to the foci of ESYT1 colocalizing with both ER and mitochondria (Figure 1D).

      • To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria colocalizing with ESYT1 (Figure 1E). Minor comments:

      • Fig1E + text: according to the legend, the BN-PAGE has been performed on Heavy membrane fraction. Why the authors speak about complexes at MAM in the text of the corresponding figure? Is-it the MAM or the heavy fraction (MAM + mito + ER...)? If BN have been performed from heavy membranes, it is not a real proof that E-syt1 is in MAMs.

      • Heavy membranes have been used in this experiment. The text and conclusions have been changed accordingly.

      • On fig3C (panel crt): it seems like SYNJ2BP dots are not co-localizaed with mito. Is this protein targeted to another organelle beside mitochondria?

      • It is not described that SYNJ2BP would be targeted to another organelle beside mitochondria. It is possible that those dots outside of mitochondria could be non-specific signals from the antibody we used.

      • Fig4A: can the author provide a control of protein loading (membrane staining as example) to confirm the decrease of E-Syt1 in siSYNJ2BP?

      • As we performed this experiment only once we have removed the statement suggesting a decrease in ESYT1 protein in response to the siSYNJ2BP.

      • Fig5E/F: it is not clear to me why the expression of E-Syt1 in the KO is not able to complement the KO phenotype for cytosolic Ca++. Can the authors comment this?

      • We performed further analysis using ATP to trigger calcium release from the ER (figure 6 F to H). In those conditions, expression of ESYT1 in the KO is able to complement the KO phenotype for cytosolic Ca2+. __Reviewer 3____: __

      Main points 1. Confirming the MERC localization of ESYT1 should include some more of tethering factors as demonstrated interactors (some are mentioned above) and should not be limited to lipid homeostasis.

      • As shown in Figure 1B, VAPB, PDZD8 and BCAP31 are found as preys in the ESYT1 bioID analysis. Those proteins have been described as MERC tethers, their loss leading to mitochondrial calcium defects. To support and confirm the specificity of ESYT1-SYNJ2BP complex at MERCs, we performed a supplementary BioID analysis using ER targeted BirA* and OMM targeted BirA* (Table S1, Figure S1 and Figure 1 A and B). These results confirmed the specificity of the interaction of the 2 partners. ESYT1 is not identified as a prey in OMM BioID and SYNJ2BP is not identified in ER BioID. Additional ER-mitochondria tether BirA* analyses showed that tether-BirA* identified both ESYT1 and SYNJ2BP as a prey at MERCs, confirming the localisation of this interaction. Interestingly, a large majority of the known MERCs tethers VAPB-PTPIP51, MFN2, ITPRs, BCAP31 are also found as preys in the tether-BirA* (Figure 1B), confirming the quality of these data.
      • To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein. SYNJ2BP is found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Table S2) (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020).

      The fact that in ESYT1 KO cells both mitochondrial calcium transfer and cytosolic calcium accumulation are accompanied by decreased ER-cepia1ER signal decay upon histamine addition suggest that the main reason for ER-mitochondria calcium transfer defects are due to impaired SOCE. Calcium-free medium and histamine are used to show that ESYT1 does not affect ER calcium content. However, if it affects SOCE, then the absence of extracellular calcium would abolish such an effect; moreover, histamine does not test for leak effects. As additional information, the authors should investigate whether ER calcium content is affected by the presence of extracellular calcium in the ko scenario using thapsigargin. The authors should inhibit SOCE to test whether this mechanism is affected in ESYT1 KO and could account for observed signal differences. Excluding SOCE is critical, since any change in calcium entry from the outside would potentially negate a role of ESYT1 in mitochondrial calcium uptake.

      • Silencing ESYT1 impairs SOCE efficiency in Jurkat cells (Woo, Sun et al. 2020), but not in HeLa cells (Giordano, Saheki et al. 2013, Woo, Sun et al. 2020). Analysis of the role of ESYT1 in HeLa cells prevents confounding effects due to the loss of ESYT1 at ER-PM. In this model, knock-down of ESYT1 led to a decrease of mitochondrial Ca2+ uptake from the ER upon histamine stimulation, as monitored by genetically encoded Ca2+ indicator targeted to mitochondrial matrix (Figure 5A and B). ESYT1 silencing in HeLa cells did not impact ER Ca2+ store measured by the ER-targeted R-GECO Ca2+ probe (Figure 5C and D). The expression of the artificial mitochondria-ER tether was able to rescue mitochondrial Ca2+ defects observed in ESYT1 silenced cells (Figure 5B), confirming that the observed anomalies are specifically due to MERC defects.
      • In contrast loss of ESYT1 impaired SOCE efficiency in fibroblasts (Figure 6 A and B). This phenotype was fully rescued by re-expression of ESYT1-Myc but not the artificial tether. We therefore investigated the influence of ESYT1 loss on cytosolic Ca2+ concentration following ATP (Figure 6F to H) or histamine stimulation (Figure S3 D to F), both of which showed a reduced cytosolic Ca2+ concentration and uptake in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Measurment of cytosolic Ca2+ after tharpsigargin treatment in Ca2+-fee media, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER, showed that ESYT1 KO does not influence the total ER Ca2+ pool (Figure 6K and L). However, ER-Ca2+ release capacity upon histamine stimulation (Figure 6I and J) is decreased in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Loss of ESYT1 decreased the Ca2+ uptake capacities of mitochondria after activation with histamine (Figure S3 A to C) or ATP (Figure 6 C to E). This phenotype was rescued by re-expression of ESYT1-Myc and also the engineered ER-mitochondria tether. Thus, despite the ER-Ca2+ release defect observed after ESYT1 loss, the artificial tether fully rescued the mitochondrial phenotype.
      • These results highlight the distinct and dual roles of ESYT1 in Ca2+ regulation at the ER-PM and at MERCs.

      The authors claim that ER-Geco measurements show that no change of ER calcium was observed. However, they use thapsigargin treatment and then get a peak, when the signal should show a decrease due to leak. This suggests they did not use ER-Geco in Figure S3C. What was measured and what does it mean?

      • We used R-GECO (not ER-GECO) which measures the cytosolic calcium.
      • We measured total ER Ca2+ store using the cytosolic-targeted R-GECO Ca2+ probe upon thapsigarin treatment, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER (Figure 5C and D) and observed no difference in our different conditions.

      The findings on growth in galactose medium are intriguing but are not accompanied by respirometry to confirm mitochondria are compromised upon ESYT1 KO.

      • We decided to remove the data on the metabolic consequences of ESYT1 loss since it was to preliminary and required deeper investigations, focusing instead on the effect of ESYT1 loss on calcium homeostasis

      Minor points: 1. The authors mention they measure mitochondrial uptake of "exogenous" calcium by applying histamine. They should specify that these measures transferred calcium from the ER rather than uptake of calcium from the exterior (directly at the plasma membrane).

      • The text was clarified as suggested.

      • Expression levels of IP3Rs are not very indicative of any change of their activity. The authors should discuss how ESYT1 could affect their PTMs.

      • A large numer of post translational modifications are known to regulate IP3R activity (Hamada and Mikoshiba 2020), and it is possible that the loss of ESYT1 could interfere with these modifications, but an exploration of this issue is beyond the scope of this study. The text was clarified as suggested. Eisenberg-Bord, M., N. Shai, M. Schuldiner and M. Bohnert (2016). "A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites." Dev Cell 39(4): 395-409.

      Gallo, A., L. Danglot, F. Giordano, B. Hewlett, T. Binz, C. Vannier and T. Galli (2020). "Role of the Sec22b-E-Syt complex in neurite growth and ramification." J Cell Sci 133(18).

      Giordano, F., Y. Saheki, O. Idevall-Hagren, S. F. Colombo, M. Pirruccello, I. Milosevic, E. O. Gracheva, S. N. Bagriantsev, N. Borgese and P. De Camilli (2013). "PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins." Cell 153(7): 1494-1509.

      Hamada, K. and K. Mikoshiba (2020). "IP(3) Receptor Plasticity Underlying Diverse Functions." Annu Rev Physiol 82: 151-176.

      Ilacqua, N., I. Anastasia, D. Aloshyn, R. Ghandehari-Alavijeh, E. A. Peluso, M. C. Brearley-Sholto, L. V. Pellegrini, A. Raimondi, T. Q. de Aguiar Vallim and L. Pellegrini (2022). "Expression of Synj2bp in mouse liver regulates the extent of wrappER-mitochondria contact to maintain hepatic lipid homeostasis." Biol Direct 17(1): 37.

      Pourshafie, N., E. Masati, A. Lopez, E. Bunker, A. Snyder, N. A. Edwards, A. M. Winkelsas, K. H. Fischbeck and C. Grunseich (2022). "Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease." Neurobiol Dis: 105832.

      Rios, K. E., M. Zhou, N. M. Lott, C. R. Beauregard, D. P. McDaniel, T. P. Conrads and B. C. Schaefer (2022). "CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology." Cells 11(7).

      Scorrano, L., M. A. De Matteis, S. Emr, F. Giordano, G. Hajnoczky, B. Kornmann, L. L. Lackner, T. P. Levine, L. Pellegrini, K. Reinisch, R. Rizzuto, T. Simmen, H. Stenmark, C. Ungermann and M. Schuldiner (2019). "Coming together to define membrane contact sites." Nat Commun 10(1): 1287.

      Woo, J. S., Z. Sun, S. Srikanth and Y. Gwack (2020). "The short isoform of extended synaptotagmin-2 controls Ca(2+) dynamics in T cells via interaction with STIM1." Sci Rep 10(1): 14433.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We are grateful to both reviewers for reviewing our manuscript, and for providing very helpful feedback as to how we can improve this work. We have now implemented nearly all of the changes as recommended, and provide responses to these points below.

      In terms of novelty, while recent pre-prints and publications have suggested that the application of multi-omics analysis improves GRN inference, there has yet to be a systematic comparison of linear and non-linear machine learning methods for GRN prediction from single cell multi-omic data. here are many computational and statistical challenges to such a study, and we therefore believe that others in the field will be especially interested in our systematic comparison of network inference methods, especially given the increased interest and utility of multi-omic data.

      In addition, we report the first comprehensive inference of GRNs in early human embryo development. This is a particularly challenging to study developmental context given genetic variation, limitations of sample size due to the precious nature of the material and regulatory constraints. We anticipate that the methodology we developed and datasets we generated will be informative for computational, developmental and stem cell biologists.

      We have uploaded all the network predictions on FigShare and these can be accessed using the following link: https://doi.org/10.6084/m9.figshare.21968813. In addition, we anticipate that the computational and statistical codes and pipelines we developed (available on https://github.com/galanisl/early_hs_embryo_GRNs) will be applied to other cellular and developmental contexts, especially in challenging contexts such as human development, non-typical model organisms and in clinically relevant samples.

      Reviewer 1

      Major comments

      - The proposed strategy (i.e. combining gene expression-based regulatory inference with cis-*regulatory evidence) have been well developed (and implemented) by multiple published works like SCENIC and CellOracle, which is also properly acknowledged by the authors in the discussion section too. This leads to a serious concern on the major methodological contribution of this work. *

      We would like to note that our study is the first to comprehensively evaluate machine learning linear or non-linear gene regulatory network prediction strategies from single-cell transcriptional datasets combined with available multi-omic data. We also apply these methods to a challenging to study context of human early embryogenesis. There are specific methodological challenges arising in this context that other published work has not yet addressed. In particular, the precious nature of the source material means that sample sizes are limited, unlike the contexts where SCENIC and CellOracle were applied. Notably, the numbers of cells available for downstream analysis is typically several orders of magnitude fewer than when scRNA-seq data are collected from adult human tissue or from cell culture. This restriction on sample sizes places corresponding restrictions on statistical power, and is therefore likely to mean that different statistical network inference methodologies are optimal in specific contexts. Furthermore, the inclusion of multi-omic data from complementary platforms (such as ATAC-seq data) becomes even more important in this context to mitigate the effect of reduced sample sizes. These issues are very important for choice of gene regulatory network inference methodology in relation to studies of human embryo development, and ours is the first study to address these issues directly in any context. We have further clarified the novelty of our work in the manuscript in the abstract, introduction and discussion sections.

      - Most of the compared network reconstruction methods involve hyper-parameters setup (e.g., *sparsity regularization weights of the regression methods). The authors did not discuss how these hyper-parameters were chosen. *

      For sparse regression, the hyperparameter controlling sparsity was set by cross-validation (CV), using the internal CV function of the R package. All default settings for GENIE3 were used. This information has now been added to the manuscript (in the Methods section), along with a description of the implementation of the mutual information method we use.

      - For the real-world blastocyst data, the network prediction methods were compared in terms of their reproducibility across validation folds (Fig. 3, Fig. S4-6). However, reproducibility does not necessarily imply accuracy. In fact, statistical learning methods are generally subject to the bias-variance tradeoff, where lower variance (i.e., higher reproducibility) could imply higher bias in model prediction. While there is a lack of gold-standard ground truth to evaluate network accuracy in real biological systems, silver-standards like the ranking of known regulatory interactions in the predictions could be employed as an indirect estimate.

      We thank the reviewer for the opportunity to clarify this point. We would like to avoid any misunderstanding of the reproducibility statistic R, as follows. A higher value of R indicates that the fitted model would generalise well to new data; i.e., R=1 indicates that the model is robust (stable) to perturbations of the data-set. We note that this is not the same as analysing the residual variance of the data after model fitting and related over-fitting (i.e., bias-variance trade-off). The variance that is referred to when discussing bias-variance trade-off is the mean-squared error (of data compared to model), which is not the same as what is assessed by reproducibility statistic R . Specifically, R is a Bayesian estimate of the posterior probability of observing a gene regulation given the data. R is calculated by taking a random sample of the data, doing the network inference again, checking if each gene regulation still appears in the GRN, and then recording (as the R statistic) the average fraction of inclusions over many repetitions. So when we have R close to 1, this indicates that our model predictions generalise well to new data, which is the opposite of what is suggested in this comment. In summary, the accuracy quantified by the reproducibility statistic R relates to the stability of the model predictions to perturbation of the data. We thank the reviewer for the helpful comment to draw our attention to this point, and have now clarified this point in the manuscript on page 6 line 252.

      - The gene set enrichment results were reported only on EPI and TE cell types (Fig. 4C and Fig. *S12), due to the reason that CA data is only available for TE and ICM. However, many of the other results presented in Fig. 3-6 did include the PE cell type albeit using the same CA data. It is not particularly convincing why the cell type inclusion standard for gene set enrichment is different from the other results. *

      We thank the reviewer for noting this and would like to clarify that we restricted the analysis to the EPI and TE, because similar lists of gene-sets were not available for primitive endoderm, where it is currently unclear which pathways are most relevant to this cell type. This has now been clarified in the manuscript on page 8, line 337.

      - The authors cited TF binding in cis-regulatory regions as supporting evidence of several MICA-inferred regulatory interactions (e.g., NANOG -> ZNF343). However, the same cis-regulatory *evidence has already been used in the CA filtering step. All interactions passing CA filtering should in principle have TF-binding support. It would be more convincing if the authors provided other types of evidence as independent support, such as genetic associations like eQTL, experimental perturbations like gene knockdown/knockout, etc. *

      We appreciate the reviewer’s point. We address this by describing published ChIP-seq validation in human pluripotent stem cells which is widely used as a proxy for the study of the epiblast. We feel that the ChIP-seq validation in this context is an appropriate independent validation to support the MICA-inferred cis regulatory interactions predicted from the human embryo datasets we analysed. Our inferences from ATAC-seq data cannot identify TF-DNA binding directly. ChIP-seq data is a widely accepted independent methods to support the inferred interactions from ATAC-seq data.

      We agree that knockdown/knockout would provide further evidence suggesting gene regulation, and indeed these are experiments we would like to conduct systematically in the future, but such perturbations are difficult to achieve at genome-wide scale, especially with very restricted quantities of human embryo material. Notably, these studies would not be evidence of direct regulation and the gold-standard in our opinion is to perturb the cis regulatory region to demonstrate its functional importance in gene regulation. These are important experiments to conduct systematically in the future. We also note that assessing quantitative trait loci in the context of human pre-implantation embryos is extremely challenging due to the restricted sample sizes and genetic variance in the samples collected.

      *- Many of the MICA-inferred regulatory interactions do not exhibit Spearman correlation (Fig. 5, Fig. S17), which could probably be explained by the ability of mutual information to capture complex non-monotonic dependencies. It would be interesting to provide further investigation on these "uncorrelated" edges, which may help demonstrate the superiority of mutual information over Spearman correlation. *

      This has been added as a new Fig.S18.

      - The authors conducted immunostaining experiments to validate the MICA-inferred regulatory *interaction between TFAP2C and JUND. While the identified protein co-localization is a step further than RNA co-expression, it is still correlation rather than causality. Additional evidence like the effect of knockout/knockdown perturbations would be more convincing. *

      We agree with Reviewer 1 that experimental perturbations of TFAP2C and JUND to determine what consequence this has for interactions between these proteins would be informative. However due to the complexity of such an investigation in human embryos, we feel that this is beyond the scope of the current study. One option is to conduct the perturbations in human pluripotent stem cells, however it is unclear if the GRN in this context reflects the same interactions as human embryos and is a distinct question to address in the future. Moreover, while knockdown/knockout studies would be suggestive of up-stream regulation, it will not address the question of whether this is a direct or indirect effect without systematic further analysis including transcription factor-DNA binding (such as CUT&RUN, CUT&Tag or ChIP-seq) analysis as well as perturbations of the putative cis regulatory regions. These are all exciting future experiments and our study provides us and others with hypotheses to functionally test in the future. These are future directions and we have clarified this in the discussion section on page 16, line 576.

      __Minor comments __

      • *The γ symbols in AP-2γ are not correctly rendered. *

      We note that this applies only to the way AP-2γ appears on the Review Commons website, and we are trying to fix this issue. We hope this transformation after the manuscript upload will not apply to a subsequent transfer to a journal.

      • The UMAP figures (Fig. 4A, Fig. S7) are of low resolution compared to other figures.

      We thank the reviewer for noting this. These figures have now been added as vector graphics files to overcome this issue.

      • As the authors are focused on studying the blastocyst regulatory network, the inferred regulatory interactions should be provided as supplementary data.

      We have included all of the inferred gene regulatory interactions as a supplementary folder for the MICA predictions using FigShare: doi.org/10.6084/m9.figshare.21968813. We have included code to reproduce the inferred gene regulatory interactions for the other methods which we compared to MICA. Because this includes 100,000 regulatory interactions per method, we feel that it would be impractical to include the alternative inferred interaction as supplementary data.

      Reviewer 2

      Minor comments

      *- In the abstract, it would be adequate to already mention which normalisation method works the best. *

      This has now been added to the abstract and we appreciate this suggestion.

      *- In Fig. 1: *

      * Describe what are squares and circles

      This information has been included in the figure 1 legend.

      ** In the GRNs refined by keeping CA-predicted regulations only, mention that this are Cis interactions *

      We have modified the figure 1 legend and the text on page 5, line 224 to clarify that these are putative cis-regulatory interactions.

      * The ATAC seq shows KRT8, GATA3, RELB motifs, while the rest of the figure is very general. Maybe make the ATAC-seq peaks panel also as a sketch and relate it to the square/circles graphs on the right hand side to showcase how the filtering of the network is performed.

      We appreciate this suggestion and modified figure 1 accordingly.

      ** The caption says Five GRN inference approaches, while abstract and text say 4. If is clear after reading that the 5th is a random approach. However, it was a surprise at first. *

      We have modified the figure 1 legend to clarify that we also compared random prediction in addition to the 4 GRN inference approaches.

      *- How the Simulation study was performed is not understandable for non experts as it is described in the Methods section. This is an important approach in general, and I think the audience would benefit if the authors add a full section about it in their supplementary data. *

      Further details have now been added to the subsection ‘simulation study’ in the Methods section.

      *- Fig. 2: *

      ** As it is, it is hard to tell the difference between GRN inference methods for a given sample size and number of regulators. Could the authors add a comparative panel for this (maybe some scatter plots would be enough)? MI by itself looks worse here? *

      We thank the reviewer for this helpful suggestion. This comparative plot has now been included in figure 2 and indicates that MI is on par with the other GRN inference methods using simulation RNA-seq data.

      *- When mentioning "samples" (e.g. last paragraph of section 1 in results), do the authors refer to "cells"? *

      We appreciate the reviewer pointing this out and have amended the text throughout to state that these are cells.

      *- What about normalisation effects in the simulated data? *

      With regards to the simulated data, normalisation effects are not relevant as we are generating data that are idealised and therefore not subject to unwanted sources of variation such as read depth. However, in future work, this could be investigated with an expanded simulation study and we appreciate the reviewer’s suggestion.

      *- Figure S7 should be cited in the first paragraph of section 2 in results. *

      This has now been cited.

      *Could the authors add a panel to indicate whether the data is SMART-seq2 or 10X. *

      We thank the reviewer for the suggestion to clarify this, which we think is an important point. We have included a statement that all data used was generated using the SMART-seq2 sequencing technique in the figure legend. The choice of sequencing method/depth of sequencing will likely impact on the choice of GRN inference method and we have also clarified this in the discussion section on page 13, line 516.

      *- In the association of inferred GRNs to human blastocyst cell lineages, the authors find the GRN edges predicted that overlap between the 4 inference methods in each cell type. Do they, therefore, recommend to always use more than one GRN inference method? *

      Identifying overlapping inferences by comparing more than one GRN inference method may be a strategy to identify network edges with more confidence due to the agreement between several inference methodologies. However, this strategy may also miss some edges which can only be detected by one method and not another. We have included a statement in the discussion section to clarify this point on page 15, line 571.

      - If the CA data used was only generated for the TE and ICM only, how do the authors use it to perform MICA on PE?

      We appreciate that this is confusing and have since revised the manuscript on page 5, line 223 to state that the inner cell mass (ICM), comprises EPI (epiblast) and PE (primitive endoderm) cells. It may be that we miss putative cis-regulatory interactions if the ICM CA data does not reflect developmentally progressed PE and EPI cells and we have noted this caveat in the discussion section on page 15, line 561.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      1) It is interesting MxDnaK1 seems to prefer cytosolic proteins while Mx-DnaK2 prefers inner membrane proteins. The domain-swapping experiments seem to suggest that the NBD is important for this difference. How NBD is important is not addressed. Is it due to ATP hydrolysis, NBD-SBD interaction, or co-chaperone interactions?

      Answer: Thanks for your comments. We speculate that the co-chaperone interaction might be the key factor contributing to substrate differences. According to the working principle of Hsp70, its functional diversity is largely determined by substrate differences. Co-chaperones, such as JDPs, play a crucial role in this process as they possess the ability to bind substrates and facilitate their targeted delivery. Therefore, much of the functional diversity of the HSP70s is driven by a diverse class of JDPs 1,2. We found that NBD played important roles in cochaperone recognition of MxDnaKs. Additionally, it is generally accepted that the efficiency of ATP hydrolysis does not significantly impact the substrate recognition of Hsp70. Furthermore, if the NBD-SBD interaction is crucial, the substitution of either the NBD or SBDβ domain might result in similar cell phenotypes, as both alterations disrupt the original NBD-SBDβ interaction. We believe the DnaK proteins and their cochaperones both determine the substrate spectrums. We made corresponding modifications in the revised manuscript. (Page22; Line 488-494 in the marked-up manuscript)

      2) About the interactome analysis, since apyrase was added to remove ATP, it's surprising multiple Hsp40s were found in their analysis. Hsp70-Hsp40 interaction is known to require ATP. This may suggest some of the proteins found in their interactome analysis are artifacts. The authors should perform negative controls for their interactome analysis, such as using a control antibody for their CO-IP and analyze any non-specific binding to their resin.

      In addition, since JDPs were pull-down, is it possible some of the substrates identified are actually substrates for JDPs, not binding directly to DnaKs?

      Answer: This is an interesting question. As you correctly noted, the interaction between Hsp70 and Hsp40 requires ATP. In our experiment, we used apyrase to remove ATP in order to promote tight binding of substrate by DnaK. This methodology was initially described by Calloni, G. et al in 20123, and the authors also identified the co-chaperone protein DnaJ, but with a concentration higher than 77% of the interactors. In our opinions, the incomplete removal of ATP could be the underlying cause of this phenomenon.

      We apologize for the undetailed description in Methods. Actually, we implemented negative controls for each MxDnaK in order to eliminate the potential non-specific interactions with Protein A/G beads or antibodies. Specifically, we conducted a CO-IP experiment without the presence of antibodies to assess any non-specific binding to the Protein A/G beads. To further investigate non-specific binding to the antibodies of MxDnaK2 and MxDnaK1, we utilized the mxdnak2-deleted mutant (strain YL2216) and the MxDnaK1 swapping strain with the MxDnaK2 SBDα (strain YL2204), respectively. As the SBDα of MxDnaK1 was employed as antigen to generate antibodies, and YL2204 can’t be recognized by anti-MxDnaK1 (Figure S5). We believe these controls allowed us to evaluate and exclude the non-specific interactions in our CO-IP. We have improved our description in methods. (Page 27; Line 596-607)

      While one of the main functions of JDPs is to interact with unfolded substrates and facilitate their delivery to Hsp70, there may still be substrates that do not directly bind to Hsp70. It’s thus possible that some of the substrates identified only bind to JDPs. We made corresponding modifications in the revised manuscript. (Page 14; Line 290-292)

      3) For Figure S7, the pull-down assay used His6-tagged JDPs. Ni resin is known to bind Hsp70s non-specifically. It's not surprising DnaK showed up in all the pull-down lanes, especially considering how much DnaK was over-expressed. For some pull-down lanes, the amount of DnaK is much more than that of JDPs, further indicating artifact. The author should include negative controls such as JDPs without His6-tag or any irrelevant protein with His6 tag.

      Answer: Thanks for your suggestion. As you and another reviewer pointed out, there were some flaws in the experimental design of the pulldown assay. These include the non-specific binding of Hsp70 proteins to nickel resin, the absence of a negative control without a tag, and the inappropriate selection of the MBP tag. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between DnaK and JDP (Figure S9). While our manuscript employed nLuc to confirm protein dimerization, it is worth noting that nLuc assay was originally devised for investigating protein interactions 4.

      4) For the proposed dimer formation in Fig. 4C, there are multiple bands above the monomer bands. What are these forms? It seems the majority of the Cys residues that could form disulfide bonds are in the NBD of MxDnaK2 since constructs with MxDnaK2-NBD form some sort of high-MW bands above the monomer. Does MxDnaK1-NBD also contain Cys at the analogous positions? The fact that MxDnaK1 didn't show disulfide-bonded bands doesn't mean it doesn't form dimer. It depends on where the Cys residues are.

      It's nice the authors did Fig. 4D. However, the authors should include a positive control to show how strong the signal is for a true interaction before interpreting their results.

      Answer: Thank you very much for your comments. In at least three independent experiments, we consistently observed two unidentified bands within the molecular weight range of 70-100 kDa during the purification process of His6-MxDnaK2. These bands appeared to be intermediate in size between the monomeric and dimeric forms of His6-MxDnaK2, and disappeared upon DTT treatment. the unidentified band compositions have been confirmed by LC/MS. The upper band included MxDnaK2 (65.3 kDa) and anti-FlhDC factor of E. coli (WP_001300634.1, 27 kDa). In the lower band, we detected the presence of MxDnaK2 and the 50S ribosomal protein L28 of E. coli (WP_000091955.1, 9 kDa). Based on these findings, we conclude that these two additional bands are the result of the interaction between His6-MxDnaK2 and these two E. coli proteins. The related explanations have been added in the legend of Figure 5. (Page 42; Line 938-942)

      We analyzed the presence of Cys in MxDnaK1 and MxDnaK2. The NBD region of MxDnaK2 contains two Cys, located at positions 15 and 319. MxDnaK1-NBD contain a Cys at position of 316, which is the analogous position of 319-Cys of MxDnaK2. The analogous position of 15-Cys of MxDnaK2 is a Val in MxDnaK1, which might be an important factor contributing to the inability of MxDnaK1 to form oligomers.

      Thanks for your suggestion to add the positive control. We re-performed the nLuc assays including a positive control(αSyn). According to the working principle of the nLuc assay, the amount of fluorescent substrate is limited. Therefore, even for proteins that interact with each other, the fluorescence value gradually decreases and reaches a plateau, similar to the negative control. This gradual decline in fluorescence is a significant indicator of protein interaction. In Figure 4D (Figure 5D in the revision version), we only presented the results of the first 20 minutes of detection. The complete two-hour detection results have been added in the supplementary figure (Figure S14).

      5) line 48: "human HSC70 and HSP70 are 85% identical, and the phenotypes of their knockout mutants are different, which is consistent with their largely nonoverlapping substrates" The authors completely ignored that the promoters of HSC70 and HSP70 are very different.

      Answer: This is our carelessness. Yes, HSC70 and HSP70 exhibit distinct expression patterns, which play important roles in their functional diversity. We modified the sentence in the new version (Page 5; Line 58)

      6) Line 69: "The two PRK00290 proteins, not the other Myxococcus Hsp70s, could alternatively compensate the functions of EcDnaK (DnaK of E. coli) for growth." Please add references for this statement.

      Answer: Added, thanks.

      7) line 191: What's the mechanism for DnaK's role in oxidative stress? Is the disulfide bond formation in Fig. 4 related? Does disulfide-bond change the activity of DnaK?

      Answer: Thanks for your pertinent comments. Honestly, we have no idea about the mechanism for MxDnaK2's role in oxidative stress. In our previous studies, we determined that the deletion of mxdnaK2 resulted in a longer lag phase after H2O2 treatment. Here, our aim was to investigate the impact of region swapping on the cellular function of MxDnaK2. In other bacteria, the critical role that DnaK plays in resistance to oxidative stress stems from the pleotropic functions of this chaperone. By shortening the dwelling time that proteins spend in the unfolded state, the DnaK/DnaJ chaperone system minimizes the risk of metal-catalyzed carbonylation of the side chains of proline, lysine, arginine, and threonine residues, but none of them linked to the dimerization characteristic of DnaK 5-7.

      8) Fig. S9 seems redundant.

      Answer: Deleted, thanks.

      9) line 263, "but the NBD exchange was almost equal to the deletion of the gene with respect to phenotypes." But, the mutant has >50% activity in Fig. 3F.

      Answer: We apologize for the confusing description. The “phenotypes” here indicates “cell phenotypes”. What we really tried to say with this sentence is that the NBD swapping strain of either MxDnaK1 or MxDnaK2 presented identical cell phenotypes with the gene-deleted strain. As we have already provided a detailed description of this result earlier, now we consider this sentence to be redundant and have therefore deleted it. (Page 17; Line 355-356)

      10) line 221-226: the logic is not quite clear.

      Answer: We apologize for the confusing description. In M. xanthus DK1622, MxDnaK1 is essential for cell survival, and an insertion of a second copy of mxdnaK1 in the genome is required for deletion of the in-situ gene. Thus, To verify whether the NBD region is required for the essentiality of MxDnaK1, we performed the region swapping of the in situ MxDnaK1 gene in the att::mxdnaK1 mutant (a DK1622 mutant containing a second copy of mxdnaK1 at attB site), and successfully obtained the MxDnaK1 mutant swapped with the MxDnaK2 NBD region. The experiment indicated that the NBD of MxDnaK1 is essential for the cellular functions of the chaperone. We have added the information and modified the sentences in the manuscript. (Page 15; Line 308-319)

      Minor concerns:

      Please check spelling. There are some typos such as "HPPES" in the Methods.

      Answer: Corrected. Many thanks.

      My areas of expertise are protein biochemistry, genetics, and structural biology on heat shock proteins.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Major comments:

      The manuscript is very nice and interesting, although some of the authors' conclusions are perhaps not well supported by their data. For example:

      1) In the pulldown experiments the lack of interaction between 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 should be shown in order to support the conclusion made in line 197-198,

      Answer: This is our carelessness. As you and another reviewer pointed out, there are some flaws in the experimental design of the pulldown assay. These include the non-specific binding of Hsp70 proteins to nickel resin, the absence of a negative control without a tag, and the inappropriate selection of the MBP tag. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between DnaK and JDP (including 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 interaction) (Figure S9). While our manuscript employed nLuc to confirm protein dimerization, it is worth noting that nLuc assay was originally devised for investigating protein interactions 4.

      2) The only evidence that the NBD of MxDnaK1 is essential for bacterial growth is that this mutation couldn´t be obtained in M. xanthus. However, it could be purified in E. coli. Could the authors do some experiments with the M. xanthus strain without the chromosomal MxDnaK1 and then introduce a plasmid with the mutated gene?

      Answer: We apologize for the confusing description. Actually, we determined the NBD is essential not only from the mutation couldn’t be obtained. In M. xanthus DK1622, MxDnaK1 is essential for cell survival, and in-situ deletion of the gene could be obtained after an insertion of a second copy of mxdnaK1 in the genome at the attB site. To verify whether the NBD region is required for the essentiality of MxDnaK1, we performed the region swapping of the in situ MxDnaK1 gene in the att::_mxdnaK_1 mutant (a DK1622 mutant containing a second copy of _mxdnaK_1), and successfully obtained the MxDnaK1 mutant swapped with the MxDnaK2 NBD region. The experiment indicated that the NBD of MxDnaK1 is essential for the cellular functions of the chaperone. We have added the information and modified the sentences in the manuscript. (Page 15; Line 308-319)

      3) All the experiments with purified proteins were done with MxDnaKs bearing His-tags. It doesn't say explicitly its position, but as they employed a pET28A it is likely that the tag is at the N-terminus, which is close to the linker region. As this tag might interfere, it should be removed for the experiments, or at least a control done with the tag removed.

      Answer: We apologize for the lack of detailed description. As you pointed out, the His-tags are located at the N-terminus of DnaKs. The full lengths of MxDnaK1 and MxDnaK2 are 638 and 607 amino acids. The linker regions are located at amino acid positions 381-386 for MxDnaK1 and 387-392 for MxDnaK2. Therefore, we believe that the His-tag is not close to the linker regions. We have included the information in new manuscript. (Page 24; Line 544-546)

      The purified His6-DnaK proteins were employed for holdase activity assays and in vitro dimerization assays. Several previous studies have utilized the same holdase activity assay method with His-tagged DnaK 8,9. We suggested that the His-tag did not interfere with the holdase activity of DnaK. To exclude the influence of His-tag on oligomerization, we conducted a control with the tag removed in the in vitro dimerization assay and the result show no difference (Figure S13).

      4) The authors state that MxDnaK dimerized in vitro with the NBD, and to disrupt the dimer they used 100 mM DTT, which is a very high concentration. As the protein has the His-tag, it should be removed to corroborate that it is not interfering with the dimerization.

      Answer: Thanks for your suggestion. As mentioned above, to exclude the influence of the His-tag on oligomerization, we conducted a control with the tag removed in the in vitro dimerization assay and the result show no difference (Figure S13).

      5) Why were the pulldown experiments done with MBP-MxDnaKs? Can you show a negative control between the MBP and the JDPs to rule out this interaction? It will be more suitable to do the pulldown assays with the purified MxDnaK´s without the His-tags (and the His-tags JDP that were employed).

      Answer: Thanks for your suggestion. As mentioned above, there are some flaws in the experimental design of the pulldown assay. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between MxDnaKs and JDPs (Figure S9).

      Minor comments:

      • E. coli´s DnaK is only essential in heat shock conditions and for lambda phage cycle. If MxDnaK1 is similar to this Hsp70, why the substitution of its NBD for the NBD MxDnaK2 would be lethal for bacterial growth?

      Answer: Thanks for the comments. As you correctly point out, DnaK is nonessential in E. coli. But in some other bacteria, DnaK also plays an essential role in cell growth for different reasons 10-12. In our previous studies, we determined that MxDnaK1 is essential in M. xanthus DK1622, and the MxDnaK2 is nonessential. In this study, we performed region swapping and found that only the NBD of MxDnaK1 was unreplaceable. In our opinions, the result indicated that NBD play important roles in the functional diversity between MxDnaK1 and MxDnaK2.

      • I think that the writing should be revised and in the supporting information the captions of the figures should include more information.

      Answer: Thanks a lot for the suggestion. We revised the manuscript and added more information in the legends of supplementary figures.

      Reviewer #2 (Significance):

      -General assessment: This is a nice piece of work which would benefit from revision to address the comments above. The authors showed the roles and differences between two DnaK in the same organism. They track these differences to the subdomains of the MxDnaK´s and co-chaperones. It will be interesting for future works to explore more deeply the co-chaperones and their interactions.

      -Advance: I think that this manuscript fills a gap regarding the role of DnaK duplicated in bacterial strains. -Audience: I would say that the audience is broad and includes scientists interested in protein folding and chaperones, as well as myxobacteria.

      1. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20, 665-680, doi:10.1038/s41580-019-0133-3 (2019).
      2. Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11, 579-592, doi:10.1038/nrm2941 (2010).
      3. Calloni, G. et al. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1, 251-264, doi:10.1016/j.celrep.2011.12.007 (2012).
      4. Dixon, A. S. et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem Biol 11, 400-408, doi:10.1021/acschembio.5b00753 (2016).
      5. Fredriksson, A., Ballesteros, M., Dukan, S. & Nystrom, T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187, 4207-4213, doi:10.1128/JB.187.12.4207-4213.2005 (2005).
      6. Santra, M., Dill, K. A. & de Graff, A. M. R. How Do Chaperones Protect a Cell's Proteins from Oxidative Damage? Cell Syst 6, 743-751 e743, doi:10.1016/j.cels.2018.05.001 (2018).
      7. Fredriksson, A., Ballesteros, M., Dukan, S. & Nystrom, T. Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol Microbiol 59, 350-359, doi:10.1111/j.1365-2958.2005.04947.x (2006).
      8. Chang, L., Thompson, A. D., Ung, P., Carlson, H. A. & Gestwicki, J. E. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 285, 21282-21291, doi:10.1074/jbc.M110.124149 (2010).
      9. Thompson, A. D., Bernard, S. M., Skiniotis, G. & Gestwicki, J. E. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17, 313-327, doi:10.1007/s12192-011-0307-1 (2012).
      10. Shonhai, A., Boshoff, A. & Blatch, G. L. The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16, 1803-1818, doi:10.1110/ps.072918107 (2007).
      11. Vermeersch, L. et al. On the duration of the microbial lag phase. Curr Genet 65, 721-727, doi:10.1007/s00294-019-00938-2 (2019).
      12. Burkholder, W. F. et al. Mutations in the C-terminal fragment of DnaK affecting peptide binding. Proc Natl Acad Sci U S A 93, 10632-10637, doi:10.1073/pnas.93.20.10632 (1996).
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary: This manuscript describes interesting studies of two paralogues of the E. coli Hsp70, DnaK, from of M. xanthus: MxDnaK1 and MxDnaK2. MxDnaK1 is similar to E. coli DnaK in terms of heat shock response, subcellular localization, etc. while MxDnaK2 is involved with membrane proteins and does not participate in the heat shock response. The interactome of the Mx DnaK´s are larger than that of E. coli DnaK, and their subcellular localization is also different. Regarding the differences between M. xanthus DnaK´s, MxDnaK2 prefers proteins with a higher hydrophobicity score, consistent with its role associated with membrane proteins. The phenotype of diverse mutants with domain swapping showed that the substitution of the NBD of MxDnaK2 for the NBD of MxDnaK1 led to similar phenotypes as the deletion of MxDnaK2 in terms of sporulation and S motility. Consistently, the interactomes of these variants were reduced in number of substrates in comparison with the wild type enzymes. No obvious effect was observed when the SBD´s subdomains were swept. Both MxDnaK interact with JDPs and NEF cochaperones. However, MxDnaK2 interacts only with one of the NEFs, and it depends on the NBD, and has one specific JDP, whichdepends on the beta-subdomain of the SBD (no information provided regarding NBD). MxDnaK1 interacts with both NEFs and has two specific JDPs, which also seems to depend on the beta subdomain of the SBD. Finally, a phylogenetic analysis reveals that the duplication of the dnak gene in Mx is correlated with the complexity of the proteome.

      Major comments:

      • The manuscript is very nice and interesting, although some of the authors' conclusions are perhaps not well supported by their data. For example: 1) In the pulldown experiments the lack of interaction between 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 should be shown in order to support the conclusion made in line 197-198, 2) The only evidence that the NBD of MxDnaK1 is essential for bacterial growth is that this mutation couldn´t be obtained in M. xanthus. However, it could be purified in E. coli. Could the authors do some experiments with the M. xanthus strain without the chromosomal MxDnaK1 and then introduce a plasmid with the mutated gene?
      • All the experiments with purified proteins were done with MxDnaKs bearing His-tags. It doesn't say explicitly its position, but as they employed a pET28A it is likely that the tag is at the N-terminus, which is close to the linker region. As this tag might interfere, it should be removed for the experiments, or at least a control done with the tag removed.
      • The authors state that MxDnaK dimerized in vitro with the NBD, and to disrupt the dimer they used 100 mM DTT, which is a very high concentration. As the protein has the His-tag, it should be removed to corroborate that it is not interfering with the dimerization.
      • Why were the pulldown experiments done with MBP-MxDnaKs? Can you show a negative control between the MBP and the JDPs to rule out this interaction? It will be more suitable to do the pulldown assays with the purified MxDnaK´s without the His-tags (and the His-tags JDP that were employed).

      Minor comments:

      • E. coli´s DnaK is only essential in heat shock conditions and for lambda phage cycle. If MxDnaK1 is similar to this Hsp70, why the substitution of its NBD for the NBD MxDnaK2 would be lethal for bacterial growth?
      • I think that the writing should be revised and in the supporting information the captions of the figures should include more information.

      Significance

      General assessment: This is a nice piece of work which would benefit from revision to address the comments above. The authors showed the roles and differences between two DnaK in the same organism. They track these differences to the subdomains of the MxDnaK´s and co-chaperones. It will be interesting for future works to explore more deeply the co-chaperones and their interactions.

      Advance: I think that this manuscript fills a gap regarding the role of DnaK duplicated in bacterial strains.

      Audience: I would say that the audience is broad and includes scientists interested in protein folding and chaperones, as well as myxobacteria.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, Pan et al. characterized two Hsp70 DnaKs from Myxococcus xanthus DK1622. Through determining interactomes, the authors defined the differences and similarities between these two DnaKs in interacting with co-chaperones and substrates. Using domain-swapping, the authors analyzed the domain requirements for their functions. Lastly, their bioinformatics analyses seem to suggest the presence of these two DnaKs (i.e., DnaK duplication) is due to the increase of proteomic complexity. Overall, the results are interesting although not surprising. As the authors pointed out, many organisms have multiple Hsp70s with different but overlapping functions. Although multiple experimental approaches were used, the manuscript is generally descriptive without revealing any major mechanistic insights.

      1. It is interesting MxDnaK1 seems to prefer cytosolic proteins while Mx-DnaK2 prefers inner membrane proteins. The domain-swapping experiments seem to suggest that the NBD is important for this difference. How NBD is important is not addressed. Is it due to ATP hydrolysis, NBD-SBD interaction, or co-chaperone interactions?
      2. About the interactome analysis, since apyrase was added to remove ATP, it's surprising multiple Hsp40s were found in their analysis. Hsp70-Hsp40 interaction is known to require ATP. This may suggest some of the proteins found in their interactome analysis are artifacts. The authors should perform negative controls for their interactome analysis, such as using a control antibody for their CO-IP and analyze any non-specific binding to their resin.<br /> In addition, since JDPs were pull-down, is it possible some of the substrates identified are actually substrates for JDPs, not binding directly to DnaKs?
      3. For Figure S7, the pull-down assay used His6-tagged JDPs. Ni resin is known to bind Hsp70s non-specifically. It's not surprising DnaK showed up in all the pull-down lanes, especially considering how much DnaK was over-expressed. For some pull-down lanes, the amount of DnaK is much more than that of JDPs, further indicating artifact. The author should include negative controls such as JDPs without His6-tag or any irrelevant protein with His6 tag.
      4. For the proposed dimer formation in Fig. 4C, there are multiple bands above the monomer bands. What are these forms? It seems the majority of the Cys residues that could form disulfide bonds are in the NBD of MxDnaK2 since constructs with MxDnaK2-NBD form some sort of high-MW bands above the monomer. Does MxDnaK1-NBD also contain Cys at the analogous positions? The fact that MxDnaK1 didn't show disulfide-bonded bands doesn't mean it doesn't form dimer. It depends on where the Cys residues are.<br /> It's nice the authors did Fig. 4D. However, the authors should include a positive control to show how strong the signal is for a true interaction before interpreting their results.
      5. line 48: "human HSC70 and HSP70 are 85% identical, and the phenotypes of their knockout mutants are different, which is consistent with their largely nonoverlapping substrates." The authors completely ignored that the promoters of HSC70 and HSP70 are very different.
      6. Line 69: "The two PRK00290 proteins, not the other Myxococcus Hsp70s, could alternatively compensate the functions of EcDnaK (DnaK of E. coli) for growth." Please add references for this statement.
      7. line 191: What's the mechanism for DnaK's role in oxidative stress? Is the disulfide bond formation in Fig. 4 related? Does disulfide-bond change the activity of DnaK?
      8. Fig. S9 seems redundant.
      9. line 263, "but the NBD exchange was almost equal to the deletion of the gene with respect to phenotypes." But, the mutant has >50% activity in Fig. 3F.
      10. line 221-226: the logic is not quite clear.

      Minor concerns:

      Please check spelling. There are some typos such as "HPPES" in the Methods.

      Significance

      In this study, Pan et al. characterized two Hsp70 DnaKs from Myxococcus xanthus DK1622. Through determining interactomes, the authors defined the differences and similarities between these two DnaKs in interacting with co-chaperones and substrates. Using domain-swapping, the authors analyzed the domain requirements for their functions. Lastly, their bioinformatics analyses seem to suggest the presence of these two DnaKs (i.e., DnaK duplication) is due to the increase of proteomic complexity. Overall, the results are interesting although not surprising. As the authors pointed out, many organisms have multiple Hsp70s with different but overlapping functions. Although multiple experimental approaches were used, the manuscript is generally descriptive without revealing any major mechanistic insights.

      My areas of expertise are protein biochemistry, genetics, and structural biology on heat shock proteins.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The expression and localization of Foxc2 strongly suggest that its role is mainly confined to As undifferentiated spermatogonia (uSPGs). Lineage tracing demonstrated that all germ cells were derived from the FOXC2+ uSPGs. Specific ablation of the FOXC2+ uSPGs led to the depletion of all uSPG populations. Full spermatogenesis can be achieved through the transplantation of Foxc2+ uSPGs. Male germ cell-specific ablation of Foxc2 caused Sertoli-only testes in mice. CUT&Tag sequencing revealed that FOXC2 regulates the factors that inhibit the mitotic cell cycle, consistent with its potential role in maintaining a quiescent state in As spermatogonia. These data made the authors conclude that the FOXC2+ uSPG may be the true SSCs, essential for maintaining spermatogenesis. The conclusion is largely supported by the data presented, but two concerns should be addressed: 1) terminology used is confusing: primitive SSCs, primitive uSPGs, transit amplifying SSCs... 2) the GFP+ cells used for germ cell transplantation should be better controlled using THY1+ cells.

      Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:

      1> Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript. In general, ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript.

      2> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      Reviewer #2 (Public Review):

      The authors found FOXC2 is mainly expressed in As of mouse undifferentiated spermatogonia (uSPG). About 60% of As uSPG were FOXC2+ MKI67-, indicating that FOXC2 uSPG were quiescent. Similar spermatogonia (ZBTB16+ FOXC2+ MKI67-) were also found in human testis.

      The lineage tracing experiment using Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice demonstrated that all germ cells were derived from the FOXC2+ uSPG. Furthermore, specific ablation of the FOXC2+ uSPGs using Foxc2iCreERT2/+;Rosa26LSL-DTA/+ mice resulted in the depletion of all uSPG population. In the regenerative condition created by busulfan injection, all FOXC2+ uSPG survived and began to proliferate at around 30 days after busulfan injection. The survived FOXC2+ uSPGs generated all germ cells eventually. To examine the role of FOXC2 in the adult testis, spermatogenesis of Foxc2f/-;Ddx4Cre/+ mice was analyzed. From a 2-month-old, the degenerative seminiferous tubules were increased and became Sertoli cell-only seminiferous tubules, indicating FOXC2 is required to maintain normal spermatogenesis in adult testes. To get insight into the role of FOXC2 in the uSPG, CUT&Tag sequencing was performed in sorted FOXC2+ uSPG from Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice 3 days after TAM diet feeding. The results showed some unique biological processes, including negative regulation of the mitotic cell cycle, were enriched, suggesting the FOXC2 maintains a quiescent state in spermatogonia.

      Lineage tracing experiments using transgenic mice of the TAM-inducing system was well-designed and demonstrated interesting results. Based on all data presented, the authors concluded that the FOXC2+ uSPG are primitive SSCs, an indispensable subpopulation to maintain adult spermatogenesis.

      The conclusion of the mouse study is mostly supported by the data presented, but to accept some of the authors' claims needs additional information and explanation. Several terminologies define cell populations used in the paper may mislead readers.

      1) "primitive spermatogonial stem cell (SSC)" is confusing. SSCs are considered the most immature subpopulation of uSPG. Thus, primitive uSPGs are likely SSCs. The naming, primitive SSCs, and transit-amplifying SSCs (Figure 7K) are weird. In general, the transit-amplifying cell is progenitor, not stem cell. In human and even mouse, there are several models for the classification of uSPG and SSCs, such as reserved stem cells and active stem cells. The area is highly controversial. The authors' definition of stem cells and progenitor cells should be clarified rigorously and should compare to existing models.

      Thanks for your good comments. Considering that our results showed that FOXC2+ SSCs are in a quiescent state and that Mechanistically FOXC2 maintained the quiescent state of SSCs by promoting the expression of negative regulators of cell cycle, we have replaced ‘primitive SSCs’ with ‘quiescent SSCs’ in the revised manuscript. We agree with the reviewer that ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript. Further,from our point of view, the FOXC2+Ki67+ SSCs could be regarded as active stem cells, and the FOXC2+Ki67- SSCs could be regarded as reserved stem cells, although further research evidence is still needed to confirm this.

      2) scRNA seq data analysis and an image of FOXC2+ ZBTB16+ MKI67- cells by fluorescent immunohistochemistry are not sufficient to conclude that they are human primitive SSCs as described in the Abstract. The identity of human SSCs is controversial. Although Adark spermatogonia are a candidate population of human SSCs, the molecular profile of the Adark spermatogonia seems to be heterogeneous. None of the molecular profiles was defined by a specific cell cycle phase. Thus, more rigorous analysis is required to demonstrate the identity of FOXC2+ ZBTB16+ MKI67- cells and Adark spermatogonia.

      We agree with the reviewer that the identity of human SSCs remain elusive even though Adark population demonstrates certain characteristics of SSCs. To acknowledge this notion, we have revised our conclusion as such that only suggests FOXC2+ZBTB16+MKI67- represents a quiescent state of human SSCs.

      3) FACS-sorted GFP+ cells and MACS-THY1 cells were used for functional transplantation assay to evaluate SSC activity. In general, the purity of MACS is significantly lower than that of FACS. Therefore, FACS-sorted THY1 cells must be used for the comparative analysis. As uSPGs in adult testes express THY1, the percentage of GFP+ cells in THY1+ cells determined by flow cytometry is important information to support the transplantation data.

      Thanks for your good comments. According to your suggestions, we have addressed your concerns as follows:

      1> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      2> We performed FACS analysis to determine the proportion of GFP+ cells in FACS-sorted THY1+ cells from Rosa26LSL-T/G/LSL-T/G or Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice at day 3 post TAM induction, and the result showed that GFP+ cells account for approximately 20.9±0.21% of THY1+ cells, See Author response image 1.

      Author response image 1.

      4) The lineage tracing experiments of FOXC2+-SSCs in Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G showed ~95% of spermatogenic cells and 100% progeny were derived from the FOXC2+ (GFP+) spermatogonia (Figure 2I, J) at month 4 post-TAM induction, although FOXC2+ uSPG were quiescent and a very small subpopulation (~ 60% of As, ~0.03% in all cells). This means that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did not contribute to spermatogenesis at all eventually. This is a striking result. There is a possibility that FOXC2CRE expresses more widely in the uSPG population although immunohistochemistry could not detect them.

      Thanks for your good comments. From our lineage tracing results, over 95% of the spermatogenic cells are derived from the FOXC2+ SSCs in the testes of 4-month-old mice, which means that FOXC2+ SSCs maintain a long-term stable spermatogenesis. In addition, previous studies have shown that only a portion of As spermatogonia belong to SSCs with complete self-renewal ability (PMID: 28087628, PMID: 25133429), which is consistent with our findings. Therefore, we speculate that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did contribute to spermatogenesis but cannot maintain a long-term spermatogenesis due to limited self-renewal ability.

      5) The CUT&Tag_FOXC2 analysis on the FACS-sorted FOXC2+ showed functional enrichment in biological processes such as DNA repair and mitotic cell cycle regulation (Figure 7D). The cells sorted were induced Cre recombinase expression by TAM diet and cut the tdTomato cassette out. DNA repair process and negative regulation of the mitotic cell cycle could be induced by the Cre/lox recombination process. The cells analyzed were not FOXC2+ uSPG in a normal physiological state.

      We do appreciate the reviewer’s concern on the possibility of the functions enriched in the analysis as referred might be derived from Cre/lox recombination. However, we think it is unlikely that the Cre/lox recombination process, supposed to be rather local and specific, can trigger such a systemic and robust response by the DNA damage and cell cycle regulatory pathways. The reasons are as follows: First, as far as we are aware, there has been sufficient data to support this suggested scenario. Second, we did not observe any alteration in either the SSC behaviors or spermatogenesis in general upon the TAM-induced genomic changes, suggesting the impact from the Cre/lox recombination on DNA damage or cell cycle was not significant. Third, no factors associated with the DNA repair process were revealed in the differential analysis of single-cell transcriptomes of FOXC2-WT and FOXC2-KO.

      6) Wei et al (Stem Cells Dev 27, 624-636) have published that FOXC2 is expressed predominately in As and Apr spermatogonia and requires self-renewal of mouse SSCs; however, the authors did not mention this study in Introduction, but referred shortly this at the end of Discussion. Their finding should be referred to and evaluated in advance in the Introduction.

      Thanks for your good comments. According to your suggestion, we have revised the introduction to refer this latest parallel work on FOXC2. We are happy to see that our discoveries are converged to the important role of FOXC2 in regulating SSCs in adult mammals.  

      Reviewer #3 (Public Review):

      By popular single-cell RNA-seq, the authors identified FOXC2 as an undifferentiated spermatogonia-specific expressed gene. The FOXC2+-SSCs can sufficiently initiate and sustain spermatogenesis, the ablation of this subgroup results in the depletion of the uSPG pool. The authors provide further evidence to show that this gene is essential for SSCs maintenance by negatively regulating the cell cycle in adult mice, thus well-established FOXC2 as a key regulator of SSCs quiescent state.

      The experiments are well-designed and conducted, the overall conclusions are convincing. This work will be of interest to stem cell and reproductive biologists.

      Thanks for the positive feedback.  

      Reviewer #1 (Recommendations for the Authors):

      The authors should address the following concerns:

      1) The most primitive uSPGs should be the true SSCs. The term "primitive SSCs" is very confusing.

      2) In addition to FACS-sorted GFP+ cells, FACS-sorted THY1+ cells should also be used for transplantation.

      Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:

      1) Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript.

      2) The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      Reviewer #3 (Recommendations for the Authors):

      The experiments are well-designed and conducted, the overall conclusions are convincing. The only concerns are the writing, especially the introduction which was not well-rationalized. Sounds the three subtypes and three models for SSCs' self-renew are irrelevant to the major points of this manuscript. I don't think you need to talk too much about the markers of SSCs. Instead, I suggest you provide more background about the quiescent or activation states of the SSCs. In addition to that, as a nuclear-localized protein, it cannot be used to flow cytometric sorting, I don't think it should be emphasized as a marker. You identified a key transcription factor for maintaining the quiescent state of the primitive SSCs, that's quite important!

      Appreciate the positive feedback and constructive suggestions on the writing. We have substantially revised our manuscript to include the relevant advances and understanding from the field as well as highlight the importance of FOXC2 in regulating the quiescent state of SSCs.

    2. Reviewer #1 (Public Review):

      The expression and localization of Foxc2 strongly suggest that its role is mainly confined to As undifferentiated spermatogonia (uSPGs). Lineage tracing demonstrated that all germ cells were derived from the FOXC2+ uSPGs. Specific ablation of the FOXC2+ uSPGs led to the depletion of all uSPG populations. Full spermatogenesis can be achieved through the transplantation of Foxc2+ uSPGs. Male germ cell-specific ablation of Foxc2 caused Sertoli-only testes in mice. CUT&Tag sequencing revealed that FOXC2 regulates the factors that inhibit the mitotic cell cycle, consistent with its potential role in maintaining a quiescent state in As spermatogonia. These data made the authors conclude that the FOXC2+ uSPG may be the true SSCs, essential for maintaining spermatogenesis. The conclusion is supported by the data presented.

    3. Reviewer #2 (Public Review):

      The authors found FOXC2 is mainly expressed in As of mouse undifferentiated spermatogonia (uSPG). About 60% of As uSPG were FOXC2+ MKI67-, indicating that FOXC2 uSPG were quiescent. Similar spermatogonia (ZBTB16+ FOXC2+ MKI67-) were also found in human testis.

      The lineage tracing experiment using Foxc2CRE/+;R26T/Gf/f mice demonstrated that all germ cells were derived from the FOXC2+ uSPG. Furthermore, specific ablation of the FOXC2+ uSPGs using Foxc2Cre/+;R26DTA/+ mice resulted in the depletion of all uSPG population. In the regenerative condition created by busulfan injection, all FOXC2+ uSPG survived and began to proliferate at around 30 days after busulfan injection. The survived FOXC2+ uSPGs generated all germ cells eventually. To examine the role of FOXC2 in the adult testis, spermatogenesis of Foxc2f/-;Ddx4-cre mice was analyzed. From a 2-month-old, the degenerative seminiferous tubules were increased and became Sertoli cell-only seminiferous tubules, indicating FOXC2 is required to maintain normal spermatogenesis in adult testes. To get insight into the role of FOXC2 in the uSPG, CUT&Tag sequencing was performed in sorted FOXC2+ uSPG from Foxc2CRE/+;R26T/Gf/f mice 3 days after TAM diet feeding. The results showed some unique biological processes, including negative regulation of the mitotic cell cycle, were enriched, suggesting the FOXC2 maintains a quiescent state in spermatogonia.

      Lineage tracing experiments using transgenic mice of the TAM-inducing system was well-designed and demonstrated interesting results. Based on all data presented, the authors concluded that the FOXC2+ uSPG are primitive SSCs, an indispensable subpopulation to maintain adult spermatogenesis. The conclusion of the mouse study is supported by the data presented.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #4

      Evidence, reproducibility and clarity

      Summary

      The authors in this manuscript create in vitro degron models of DNMT1 as tools to investigate the roles and functions of DNA methylation in molecular and cellular processes. Degron models can directly target the tagged protein of interest leading to its degradation. When it comes to DNMT1, this system can bypass the use DNMT inhibitors, like DAC and GSK3685032 that can have secondary cytotoxic effects. More specifically, the authors create DNMT1 degron tagged models of two cell lines (DLD-1 and RPE1), as well as a DNMT1 degron tagged model of a DNMT3BKO DLD-1 cell line. These systems allowed the authors to investigate the passive demethylation occurring over consecutive cell divisions, and particularly the role of DNMT1 and DNMT3B and their cooperativity in maintaining DNA methylation levels and how this differs among different genomic regions. The authors characterise the cell fitness of the models they established when DNMT1 is degraded, and methylation levels are lost, and observe a reduction of fitness due to G1 arrest. Finally, the authors show that the loss of DNA methylation observed in these cells leads to reduced levels of heterochromatin (H3K9me3) as well as changes in chromatin and nuclear compartmentalization. Overall, the authors, show an appealing in vitro model that can directly target DNMT1, allowing for more delicate experiments that address the impact of DNA methylation levels in somatic cells, to de-convolute their exact roles from other epigenetic marks and cellular processes that are often correlated with.

      Major comments

      • The auxin degron system relies on the ectopic expression of OsTir1, which is described in materials and methods under 'Plasmids and Cell line generation'. However, OsTir1 expression is never addressed during the manuscript. Quantification of OsTir1 expression levels across the different cell lines is very important in order to more comprehensively characterise this system. This is especially when considering one of the key points of the authors is to establish these new in vitro models as a new tool to study DNA methylation dynamics in the field.
      • The degron system requires an endogenous tag of the protein of interest. Specifically in this work, a tag including the mNGreen and the AID sequence are incorporated at the N-terminus of DNMT1. It is unlikely that there is major interference of the tag to protein function as the tagged cells for DLD-1 and RPE1 are both viable and demonstrate high methylation levels. However, the authors do not consider or discuss that the tag might interfere with the function of the protein at all. It would be useful if the authors compared the tagged cell lines (untreated) with wildtype controls for their methylation levels and/or DNMT1 expression and/or DNMT1 localisation with imaging. These experiments would better substantiate the use of untreated cells as 'wildtype' equivalents and contribute to the better characterisation of these systems as in vitro models.

      Furthermore, DNMT1 can have different transcripts that begin from different sites. Do the authors consider whether the tag is included in all/most isoforms of DNMT1, or if there are any expressed without it? - The authors observe that DNMT1 is important for maintaining methylation levels as well as proper cell proliferation. They also observe that DNMT1 depletion does not lead to complete lethality as previously observed (Rhee et al., 2000 Nature, Chen et al., 2007 Nature Genetics). They hypothesise that this might be due to non-specific toxic effects (from CRE) and suggest that the degron system is better suited to bypass such toxicity effects. While this might be true and degron systems do provide a direct and acute protein depletion without non-specific toxicity, the authors do not discuss the implications p53 activity might have on the lack of lethality they observe. Omitting the role of p53 in hypomethylation models and drawing conclusions about toxicity effects between different systems can be misleading and should be corrected. Specifically, it has been shown that hypomethylation triggers p53 dependent apoptosis (Jackson-Grusby et al., 2001 Nature Genetics). The authors do acknowledge the difference in p53 activity when comparing between DLD-1 and RPE-1 DNMT1 depleted cells. The reduced proliferation of RPE-1 cells would suggest that irrespective to the degron system, viability depends on tolerance of each cell line to hypomethylation (whether this is p53 dependent or not). DLD-1 cells seem to have a single nucleotide variant in p53 (p.Ser241Phe (c.722C>T)) (Liu et al., 2006 PNAS), that could potentially explain their viability upon hypomethylation, although further work is required to conclusively suggest such interaction. Furthermore, DNA methylation levels and chromatin organisation of RPE-1 NADNMT1 cells are not characterised in the manuscript and is unclear why. - Figure 1D, 1E: The authors provide a Western blot of DNMT (1/3A/3B) across the established cell lines. While some effects like the degradation of DNMT1 based on the degron system or the KO of DNMT3B are convincing (and work well to validate the cell lines), the observation about upregulation of DNMT3B when DNMT1 is degraded, or levels of DNMT1 after wash out, are not as convincing when only showing one blot. This is especially when considering that the DNMTs might have cell cycle expression differences. Additional replicas of the western blot and quantification of bands across replicas, or qPCR to show upregulation of DNMT transcripts, or imaging (like figure S1E), would help make the claim of DNMT3B upregulation and DNMT1 recovery more convincing. - The authors show that during wash out (after stopping the IAA treatment), DNMT1 levels can recover slightly and show the methylation levels of specific sites (figure 2B). However, the authors do not make any characterisation of the global levels of methylation levels and their potential recovery (?) after wash out. This could be either done by imaging (like in figure 1F and 1G) or dot blot (like figure S2A) or mass-spec.

      The authors note that recovery of DNMT1 after wash out is to a lesser extent in the NADNMT1/DNMT3B-/- background. The authors do not speculate why would this be. Past reports of degron tagged proteins show that after treatment endogenous protein levels can recover. Does this hint towards a viability issue of the line due to excessive hypomethylation? While difficult to prove it would be useful to speculate why this effect occurs. - The authors employ DNAme arrays to assess the DNA methylation loss after degradation of DNMT1 and study where in the genome this occurs. Specifically, the authors look on differentially methylated probes between treated/non treated samples and demonstrate their abundance over different genomic regions (figure 2E and S2 H, I, J, K). However, this way of visualising the data is a bit difficult to interpret as differences can be small. Furthermore, number of probes across the genome is not uniformly distributed, so it would be useful to include these numbers. It would be helpful if authors can provide genome browser snapshots with methylation levels and accompanying histone marks (from available data, Rokavec et al., 2017?) like done in figure 4F, S4B and S5C to show representative regions that showcase their observations. Coverage of the EPIC array will mean that these tracks will not have high coverage and thus gaps, and ideally one would need whole genome bisulfite data, however hopefully some snapshots can demonstrate locus specific changes better.

      Considering the function of DNMT1 in remethylating the DNA after replication, one would assume that methylation is lost equally across the genome as a simplistic model. Of course, there are many reasons like secondary functions of DNMT1, DNMT3A/3B and TET activity etc that could alter this and provide biases over regions of the genome. The authors discuss this and note most probes show such loss (106,647 of 178,529). It would be useful for the authors to better describe where the rest of the probes (that do not lose the expected methylation, annotated as 'late') are located and speculate what mechanisms might be involved. This is partly addressed in figures S2H and J, but it is not immediately clear what distinguishes late regions from early. Genome tracks with methylation levels and histone tracks as mentioned above could provide examples of regions.

      The authors briefly discuss the role of DNMT1 and DNMT3B in methylating specific regions and their cooperativity as well as the underexplored de novo activity of DNMT1. Based on their findings, can the authors draw any new mechanistic conclusions/observations about the activity of DNMT1 and/or DNMT3B and how it is directed? Are there any sequence signatures or histone mark profiles that could explain the hypomethylation or remethylation (after wash out) of specific loci? - The authors observe that 70% of DMPs display an increased methylation in the DNMT3BKO cell line compares to NADNMT1. The authors speculate that this is due to an 'uncontrolled activity' of DNMT1 in the absence of DNMT3B. The increased levels observed could be a clonal effect when generating the KO line. While including additional clonal lines can be a significant amount of work, the authors should acknowledge the effects of clonality in their findings when comparing between the cell lines used (that do not relate to the IAA treatments). - In figures 3D and S3D, the authors compare the viability between IAA treated cells as well as DAC and GSK3685032 and observe increased toxicity/lethality in the case of DAC and GSK3685032. It would be helpful for the authors to discuss the dosage and concentration they used for each drug and why. In order to compare the viability of cells between treatment of different drugs, one would expect dosages that lead to equivalent extents of hypomethylation. - The authors show in figure 3 that the cell lines used have major cell cycle defects, with pronounce G1 arrest, when treated with IAA. Then the authors proceed to perform HiC in treated and untreated sample in figure 4. Can cell cycle differences be cofounding in chromatin compartments and thus affect the data observed in HiC? - For figure 4F and G the authors note a global reduction of H3K9me3 levels after treatment. It would be helpful if the authors include assessment of global levels of H3K9me3 (for e.g. by WB) or ChIP qPCR on loci of interest or specify the use of spike-in in methods, as alterations in global levels of a mark can lead to skewed normalisation/quantifications between samples. Alternatively, comparing the peaks/domains of a mark (and whether they are conserved across cell lines) but not directly compare levels can provide a safer interpretation of the data. - For figures 4F and S5C different days of treatment are provided, with HiC and H3K9me3 being done after 10d of IAA and CpG methylation after 4d of IAA. It is not explained why this discrepancy in days of treatment has occurred, which can be misleading as 10d treated cells should have lower methylation levels from 4d treated cells.

      Minor comments:

      • Typo in introduction: germiline
      • Introduction has some sentences that might need rewording. For example: 'Somatic DNAme domains are erased right after fertilization to establish a totipotent germiline epigenotype, deposited de novo during early development and undergo massive re-shaping during differentiation, lineage specification, and in response to external cues; then, they are maintained and inherited through cell divisions'. It would be good if this is broken into smaller sections as it is hard to follow.
      • Introduction does not include the degron technologies and their advancement in the last couple of years. Considering the main point of the paper is to establish an in vitro tool to study DNA methylation based on degrons, it would be helpful to include some information about the technology in the introduction.
      • Introduction does not include HiC technologies and the different compartments (A/B, and further subcategories) that the genome can be divided in by them. As the authors then proceed to use HiC data and perform such genome compartmentalisation, it would be helpful if this is addressed briefly at the introduction.
      • The authors do not mention the DNMT3BKO strategy they employed. Specifically, the exact strategy should be listed under 'Plasmids and Cell line generation'. A genotyping PCR at supplementary (like figure S1B) could be added. A schematic like Supplementary Figure S1A would also be helpful, but not necessary.
      • The duration and concentration of DAC and GSK368503 are not always indicated in figure legends.
      • Figure 1C. Homozygous intensity of GFP is much more heterogeneous than the heterozygous levels. It would be interesting if authors could speculate why this is.
      • Figure S1D, S1E: Quantification of imaging experiments is shown, however there is no representative images of the staining performed. Incorporate an example image of each staining would be helpful to accompany the quantifications.
      • Typo: 106,647 ("early") of 178,529 probes
      • Figure 2D: DNA methylation levels in somatic cell lines usually have a bimodal distribution with highly and lowly methylated regions, thus the representation of the data with a boxplot can be misleading.
      • Figure 3E: The no. of colonies after IAA removal (from figure 3D) is not included, as suggested from the text.
      • Figure S3E: Aneuploidy will be dependent on number of cell divisions so it would be helpful if authors specified how long after treatment the experiment was performed.
      • Figure S4B typo: On top track blue compartment is annotated as DLD1-H, while I think it should be DLD1-B2/B3?
      • It would be helpful if the authors include an example image of how the segmentation and quantifications for figure 4A and 4B-C were performed as a supplementary figure, demonstrating the area they consider as periphery.
      • Figure 3B-C have no error bars and figure legend mentions N>15643 cells per condition. It would be helpful if the number of cells per condition is included in the legend and error bars are included in the figure.
      • The authors note that there must be a cooperative effect of DNMT1 and DNMT3B in maintaining DNA methylation and that they observe a strong additive effect in cell survival in double DNMT1/3B depleted cells. These observations have already been observed in the past in HCT116 cells, so it would be useful to cite these papers along with their observations. For e.g. Rhee et al., 2002 Nature, Cai et al., 2017 Genome Research
      • A degron tagged DNMT1 in HCT116 cells has already been shown at Onoda et al 2022 bioRxiv that would be good to reference. While the authors in this preprint do not perform any characterisation of methylation levels of the tagged line as in this work, it provides a similar in vitro model that is helpful to include.
      • The effects of extensive hypomethylation due to the lack of DNMT activity and its effect in 3D genome integrity has also been shown in the best and would be helpful to mention. For e.g. Du et al., 2021 Cell Reports

      Significance

      The authors in this work generate and characterise an untransformed (DLD-1) and cancer (RPE-1) cell line model of DNMT1 with a degron tag, as well as DNMT3BKO line of DLD-1 with the degron tagged DNMT1. These in vitro degron models allow for acute deletion of DNMT1 and induced hypomethylation and can be valuable tools to study the effect of DNA methylation in other epigenetic marks and cellular processes. The authors demonstrate the role of DNMT1 and DNMT3B and their cooperativity in maintaining DNA methylation levels in these cells, as previously demonstrated in similar somatic cell models. They also characterise the fitness of these cell lines after DNMT1 degradation and note their viability over DAC and GSK3685032 treatments that can have secondary cytotoxic effects. However, the viability of the cells and the reasons of observed lethality in some systems is underexplored, with the extent of hypomethylation in each system not specified. Finally, the authors show that DNMT1 and DNMT3B impact heterochromatin and the loss of DNA methylation leads to changes in chromatin compartmentalization (with HiC), which have been observed before. While the DNA methylation levels and chromatin organisation of DLD-1 cells was investigated, the authors do not provide any characterisation of these in RPE-1 cells. Furthermore, it appears that RPE-1 cells show more pronounced cell cycle defects and reduced viability hinting towards p53 dependent apoptosis due to loss of methylation, something which is not extensively explored. These observations suggest that the viability of the DLD-1 cells is 'DLD-1 specific'/p53 dependent and not due to the degron system overall. Nevertheless, these in vitro tools will be highly valuable in the epigenetics and specifically DNA methylation fields and their more comprehensive characterisation and will be of high significance.

      My field of expertise lies within DNA methylation mechanisms and have limited expertise in HiC experiments.

    1. Tag endings are somewhat related to turnarounds in their basic harmonic structure, butplay different roles in tunes and complete performances. A tag ending occurs at the veryend of a tune, repeats a chord sequence (which in the course of subsequent repetitionsbecomes harmonically transformed), and has an indeterminate duration. Only the finalrepetition of the tag ending progression is harmonically closed with a clear confirmationof the tonic. Its basic role in the performance is to provide a satisfactory, coda-like endingwith a final improvisational flair. As Miles Davis demonstrated on his many recordings,tag endings may take on a life of their own—especially with Herbie Hancock, Ron Carter,and Tony Williams in the rhythm section—and frequently exceeded the length of his solos.2Tag endings and turnarounds often share similar chord progressions: the only differencebetween the Imaj7–vi7–ii7–V7 and the iii7–vi7–ii7–V7 is that the former begins on the tonicand the latter on the mediant chord. These two chords, Imaj7 and iii7, are said to befunctionally equivalent and are frequently used to substitute for one another. Figure 13.6illustrates a iii7–vi7–ii7–V7 tag ending progression realized with Model II of keyboardplaying. Each measure displaces the Charleston rhythm by a half beat.Each of these chords can be further substituted by a secondary dominant 7th and,subsequently, by a TR/X7. Since a tag ending progression is usually four bars long, wecan demonstrate the use of two harmonic techniques that will double the rate of harmonicrhythm in each measure. The technique of dominant saturation combines two dominant7th chords, diatonic or chromatic and its TR/X 7 (or vice versa) next to each other. Theuse of ii7–V7 diminution technique expands any dominant 7th chord into a local ii 7–V7
    2. The terms “turnaround” and “tag ending” are generic labels that do not indicate a partic-ular chord sequence; rather, they suggest the specific formal function of these progressions.In jazz, there is a certain subset of harmonic progressions whose names suggest specificchord successions. When jazz musicians use the term “Lady Bird” progression,for instance, it connotes a particular chromatic turnaround from Tadd Dameron’s tuneof the same title recorded in 1947. Figure 13.9 illustrates the chord structure of thatprogression using Model VI of harmonic realization
    1. The description of the lnverrary office space infuriated Coler. The surroundings were nice, he says, but by no means luxurious: "It's in a pretty place and it's on water, but it's adass B office space.•10 Nonetheless, the luxwy tag stuck.

      This used as an example of the media using it's power to further influence the public.

    1. Reviewer #2 (Public Review):

      The authors combine the use of fluorogenic tools with fluorescence bioimaging to visualize how changes in the folding states of the RBPs TDP-43, FUS and TAF15 affect their subcellular localization and recruitment inside nuclear bodies, as well as protein fate. While the development of SNAP-tag substrates coupled with confocal microscopy in living cells (including FLIM) to monitor changes in protein folding states represents an important conceptual and technical advance for the field, I am not convinced that the authors fully achieved their aim. The authors cannot conclude on protein fate only based on the experiments performed here. Showing a correlation between a decrease in TDP-43 levels upon Hsp70 inhibition and colocalization at nuclear bodies with Hsp70 and DNAJA2 is not supporting their conclusion about protein degradation. A number of additional control experiments are needed to support their claims.

      Yet, the optimization of these methods has unlimited potential since it may provide new ways to visualize and monitor a large variety of fundamental intracellular processes, including protein aggregation and fate.

    2. Reviewer #3 (Public Review):

      This manuscript presents a novel fluorescence toolkit designed for investigating the folding states of RNA-binding proteins (RBPs) and their association with molecular chaperones during liquid-liquid phase separation (LLPS) in the formation of nuclear bodies under stress. The strategy is to use SNAP-tag technology including cell lines stably expressing three model proteins fused with SNAP tag and a series of environmentally sensitive fluorophores that can selectively label on the SNAP proteins. The changes in the microenvironment such as microviscosity and micropolarity can be well characterized by these fluorophores to reflect the conformational states of the RBPs.

      The strength of this method is that the SNAP protein is smaller than classic fluorescent proteins like GFP and thus its impact on the conformation and behavior of the targeted proteins is much smaller. The experiment is carefully designed and well thought-out. Overall, this work is of very high quality.

      This method can thus be adapted by other protein systems to study the LLPS process and thus I believe it will be of great interest to cell biologists and biophysicists.

    1. Die französische Regierung legt einen Plan für Energieeinsparungen im Sommer vor, wobei sie sich vor allem auf freiwillige Maßnahmen der Unternehmen verlässt. Dazu gehört der Appell, dass die Angestellten nicht schneller als 110 Stundenkilometer fahren und an einem Tag in der Woche nur Tele gearbeitet wird. Ein ähnlicher Plan hatte den Gas- und Stromverbrauch im Winter um ca 12% gesenkt.https://www.liberation.fr/environnement/baisser-la-clim-rouler-moins-vite-teletravailler-le-plan-de-sobriete-energetique-se-met-a-lheure-dete-20230620_VCYQUBX7UFEB5O77AXVI4DLTW4/

    1. Have you ever: Been disappointed, surprised or hurt by a library etc. that had a bug that could have been fixed with inheritance and few lines of code, but due to private / final methods and classes were forced to wait for an official patch that might never come? I have. Wanted to use a library for a slightly different use case than was imagined by the authors but were unable to do so because of private / final methods and classes? I have.
    2. Been disappointed, surprised or hurt by a library etc. that was overly permissive in it's extensibility? I have not.
    1. Background Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic data sets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multi-modal data sets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., ChIP-seq, ATAC-seq, or DNase-seq) and RNA-seq data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results.Results We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multi-modal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE data sets for cell lines K562 and MCF-7, including twelve histone modification ChIP-seq as well as ATAC-seq and DNase-seq datasets, where we observe and discuss assay-specific differences.Conclusion TF-Prioritizer accepts ATAC-seq, DNase-seq, or ChIP-seq and RNA-seq data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giad026), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Roza Berhanu Lemma

      In this manuscript, Hoffmann and Trummer et al. reported a new automated pipeline that utilizes existing methods, namely (1) DESeq2 to perform differential gene expression between sample groups, (2) TEPIC, a method that links CREs to genes using a biophysical model TRAP and (3) DYNAMITE, which provides an aggregate score for TF-target genes that determine the contribution of TFs to condition specific changes between sample groups. Finally, the pipeline utilizes Mann-Whitney U test to prioritize TFs among a background distribution and a ChIP-seq specific TF distribution, which allows the identification of TFs with roles in condition-specific gene regulation. Their pipeline allows large-scale processing of data and returns a feature-rich and user-friendly interactive report.

      The authors demonstrated how to use TF-prioritizer using public datasets for mouse mammary gland development study and performed independent validation using datasets from ChIP-Atlas. They were able to capture both known TFs with previously reported roles in mammary gland development/lactation and new TFs that may have a role in these processes. The work is very well thought and executed but to keep the quality of the work even higher, the authors should address the following points.

      Major:

      1. Although their validation nicely portrays the potential application of their pipeline in answering biological questions, my fear is for this not to be an isolated case. Therefore, the authors should test their pipeline using another example dataset and convince their readers. A suggestion could be, to run TF-Prioritizer on one of deeply profiled cell lines (e.g. K562, MCF-7, etc) to investigate TF prioritizations for e.g during differentiation (change of cell fate) and see if lineage determining TFs are prioritized in such cases. This may potentially highlight the versatility and robustness of TF-prioritizer. This is also important as your readers are not (certainly not all of them) from the mammary gland development field. As such, dedicating a large portion of your discussion about this process is too much. If you manage to highlight the versatility of your pipeline by capturing more than one specific developmental process will do the paper a great favor by highlighting the different ways TF-Prioritizer can be used, which in turn may attract more users to utilize your pipeline.

      2. I have an issue on how the 'Results and Discussion' section is organized. The authors dedicated separate subtopics for each TFs they prioritized and made literature review of their role in mammary gland development and lactation. My recommendation is to instead have one subtopic and discuss these TFs paragraph by paragraph in a concise manner. A more concrete way to reorganize this will be to separate these into two subtopics, (1) Known TFs with role in mammary gland development/lactation (2) Novel TFs with predicted role in mammary gland development/lactation. To make these reorganization easier/smooth, cutdown details of what you observe in the figures (e.g. p16, line 22-27 and p17, line 1-3), discuss the main message and put the detailed text about the figures in the Figure captions

      .3. All figures and tables should have more information in the caption including those in 'supplementary Material'Minor:1. p7 line 9, how often do one find these combinations of data types (modalities) in different conditions, cell types or models being studied. Could some of the HMs be replaced with other data modalities e.g ATAC-seq, DHS data or data from other chromosome profiling methods? Could the pipeline be adapted to incorporate Cut and tag/cut and run or is it specific to only ChIP-seq data. Authors should try to discuss whether this is possible or not.2. P13 line 3, the authors discuss that "ChIP-Atlas provides more than 362,121 datasets for six model organisms…". Could TF-Priotitizer be easily adapted to other databases/resources, which ChIP-Atlas do not cover (e.g. for other organisms) that the community might be interested in?3. p14 line 2 "... expressed gene for this analysis but focus on affinities only". Why this is the case is not argued/discussed. This and other choice of parameters would be nice if they are discussed under a separate subtopic to easily inform future readers/users of TF-Priotitizer

      1. Figures should be cited in chronological order. Adjust the text or reorder the figures

      2. When the authors discuss the evaluation of the prioritized TFs in separate sections, they often start with "In Figure Xa) …" and "Figure Yc) shows that …", etc, such kind of texts best fit as Figure captions instead of in the 'Results and Discussion'.

      3. p21 line 16, "We predicted that several Rho GTPase-associated genes are regulated by the predicted TFs" This sentence sounds a bit circular, you may rephrase as follows 'We propose that our predicted TFs regulate several Rho GTPase-associated genes

      '7. Figure 3 and 4 have the same general message/purpose and look redundant. This is reflected in the phrase '...(black arrows) as they are already known to be crucial in either mammary gland development or lactation.' and 'In the heatmaps, we can observe a clear separation of these target genes between the time points X and Y…'. I suggest the authors choose one of them as a main figure and place the other in Supplementary Material.

      1. On Fig.3,4 captions the authors should indicate what the black boxes represent. One can guess what they are from your main text but the captions could profit from a bit more detailed explanation. You should at-least describe some of the things that needs to be highlighted from the figures to easily guide your readers
    1. Deutsch spense la sigaretta, Goldner svegliò Sivadjan

      Proper names. These are the first three of eleven or twelve (depending on how you count them) proper names of prisoners in the chapter (i.e. not including Dante and Ulisse). Levi uses them to create a vivid, peopled scene, to underline the mix of nationalities in the camp, and to bear witness to his fellow prisoners, many now dead. Later in the chapter, ‘Primo’ appears as a proper name for one of only three times in the whole book.

      (For other names in this sequence, see, for example, also here, here, or here, or click on the 'names' tag to see linked comments).*

      RG

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      […] This novel system could serve as a powerful tool for loss-of-function experiments that are often used to validate a drug target. Not only this tool can be applied in exogenous systems (like EGFRdel19 and KRASG12R in this paper), the authors successfully demonstrated that ARTi can also be used in endogenous systems by CRISPR knocking in the ARTi target sites to the 3'UTR of the gene of interest (like STAG2 in this paper).

      We thank the referee for highlighting the novelty and potential of the ARTi system.

      ARTi enables specific, efficient, and inducible suppression of these genes of interest, and can potentially improve therapeutic target validations. However, the system cannot be easily generalized as there are some limitations in this system:

      • The authors claimed in the introduction sections that CRISPR/Cas9-based methods are associated with off-target effects, however, the author's system requires the use CRISPR/Cas9 to knock out a given endogenous genes or to knock-in ARTi target sites to the 3' UTR of the gene of interest. Though the authors used a transient CRISPR/Cas9 system to minimize the potential off-target effects, the advantages of ARTi over CRISPR are likely less than claimed.

      We thank the reviewer for raising these very valid concerns about potential off-target effects related to the CRISPR/Cas9-based gene knockout or engineering of endogenous ARTi target sites. In contrast to conventional RNAi- and CRISPR-based approaches, such off-target effects can be investigated prior to loss-of-function experiments through comparison between parental and engineered cells, which in the absence of CRISPR-induced off-target events are expected to be identical. Subsequent ARTi experiments provide full control over RNAi-induced off-target activities through comparison of target-site engineered and parental cells. However, we agree that undetected CRISPR/Cas9-induced off-target events cannot be ruled out in a definitive way, which we have pointed out in our revised manuscript.

      • Instead of generating gene-specific loss-of-function triggers for every new candidate gene, the authors identified a universal and potent ARTi to ensure standardized and controllable knockdown efficiency. It seems this would save time and effort in validating each lost-of-function siRNAs/sgRNAs for each gene. However, users will still have to design and validate the best sgRNA to knock out endogenous genes or to knock in ARTi target sites by CRISPR/Cas9. The latter is by no-means trivial. Users will need to design and clone an expression construct for their cDNA replacement construct of interest, which will still be challenging for big proteins.

      We fully agree that the required design of gene-specific sgRNAs and subsequent CRISPR-engineering steps are by no means trivial. However, we believe that decisive advantages of the method, in particular the robustness of LOF perturbations and additional means for controlling off-target activities, can make ARTi an investment that pays off. In our experience, much time can be lost in the search for effective LOF reagents, and even when these are found, questions about off-target activity remain. While ARTi overcomes many of these challenges by providing a standardized experimental workflow, we do not propose to replace all other LOF approaches by this method. Instead, we would position ARTi as a unique orthogonal approach for the stringent validation and in-depth characterization of candidate target genes, as we have highlighted in our revised discussion.

      • The approach of knocking-out an endogenous gene followed by replacement of a regulatable gene can also be achieved using regulated degrons, and by tet-regulated promoters included in the gene replacement cassette. The authors should include a discussion of the merits of these approaches compared with ARTi.

      We thank the reviewer for pointing out these alternative LOF methods. We had already included a brief discussion of chemical-genetic LOF methods based on degron tags. While we certainly share the current excitement about degron technologies, they inevitably require changes to the coding sequence of target proteins, which can alter their regulation and function in ways that are hard to control for. In our revised discussion, we have added a brief comparison to conventional tet-regulatable expression systems, which unlike ARTi require the use of ectopic tet-responsive promoters. Overall, we would position ARTi as an orthogonal tool that enables inducible and reversible LOF perturbations without changing the coding sequence and the endogenous transcriptional control of candidate target genes.

      Reviewer #2 (Public Review):

      […] The ARTi system is based on expression of a transgene with an artificial RNAi target site in the 3'-UTR as well as a TET-inducible miR-E-based shRNAi. Using this system, the authors convincingly show that they can target strong oncogenes such as EGFRdel19 or KRasG12 as well as synthetic lethal interactions (STAG1/2) in various human cancer cell lines in vivo and in vitro.

      The system is very innovative, likely easy to be established and used by the scientific community and thus very meaningful.

      We thank the reviewer for her/his enthusiasm about ARTi.

      Reviewer #1 (Recommendations For The Authors):

      • The authors claimed that ARTi enables specific, efficient, inducible, and reversible suppression of any gene of interest. However, there are no experiments supporting the reversible suppression of their gene of interest. Data are required to support this statement.

      We thank the reviewer for pointing this out. The statement about the reversibility ARTi-mediated effects was based on a rich body of literature that has demonstrated the reversibility of Tet-shRNAmir-induced LOF perturbations and associated phenotypes. As ARTi employs the same Tet-shRNAmir expression vectors, we have no reason to believe that this feature would be lost. However, since we have not demonstrated this in our study, we have removed this statement in our revised manuscript.

      • In Figure 1E, the authors did make the point by including trametinib treated samples as positive controls. However, the trametinib treated samples also made the transcriptome changes in the ARTi groups hard to read. I wonder what the PCA analysis will look like if the authors exclude the trametinib treated groups.

      In Figure 1E, we used PCA as a common and easy-to-digest visualization tool to showcase the neutrality of ARTi shRNAmirs. Given the complete absence of significantly deregulated genes for all three ARTi shRNAmirs (Figure 1F), we believe that a PCA analysis of just these samples would merely represent experimental noise and not yield additional insights.

      • This universal and potent ARTi should ensure standardized and controllable knockdown efficiency, however, the knockdown efficiency for KRASG12R is not as potent as that for EGFRdel19. The authors should discuss the differences.

      We thank the reviewer for pointing this out. The exact level of knockdown on the protein level is hard to determine due to detection limits of the used method. The differences in the extent to mRNA knockdown could be attributable to cleavage efficiencies due to potential secondary structures in the respective mRNAs. We suspect that the KRASG12R transgene expresses at higher levels, compared to EGFRdel19. We might therefore still be looking at the same overall magnitude of knockdown. As we did not perform a detailed analysis of the respective knockdown levels, we do not feel comfortable in stating differences in knockdown levels and therefore do not think that addressing potential differences are justified.

      • It is interesting to see that, unlike other cancer types, tumor burdens did not decrease after inducing knockdown of STAG1 in STAG2 knockout HCT116 lines in Figure 2L. Have the authors examined senescence markers in this set of mice?

      We have not investigated these markers and thank the reviewer for this suggestion. More detailed analyses of the phenotype are planned.

      • Have the authors carefully examined the transcriptome changes induced or if not across all targets at least in the case of ARTi knock into the 3'UTR of STAG1?

      We thank the reviewer for this suggestion. This would indeed be interesting to conduct for STAG1/2, especially for genes with an integration of the ARTi into the 3’UTR. The reason why we did not perform this analysis with our cell lines is that we used a construct that also adds an AID tag to STAG1 (STAG1_AID_V5_P2A_Blasti_STOP_ARTi), as outlined in the methods section. After the engineering, STAG1 carries the ARTi sequence in the 3’UTR but is also fused to AID::V5. In addition a P2A::Blasticidin_resistance Protein is made from the same transcript. We chose to use this complex strategy with the aim of comparing AID mediated degradation with ARTi-mediated knockdown. Unfortunately, the AID-based approach did not work, and we were not able to observe a reduction in protein levels. We however observed lower expression of STAG1 in the engineered versus the parental cells, likely caused by the tag, and consequently did not conduct gene expression analyses, as we would not be able to assess if transcriptome changes could be solely ascribed to the changes in the 3’UTR. The knockdown levels are hence only analyzed on the protein level.

      Reviewer #2 (Recommendations For The Authors):

      This is a fantastic paper, easy to read and provides a very meaningful new and innovative approach for drug target validation. I think the manuscript could be further improved by adding a section to the discussion outlining other approaches that could be used to solve the same problem. For example, Bill Kaelin came up with a strategy of expressing shRNA- or sgRNA-resistant and rtTA- or tTA-regulated cDNAs of essential gene-of-interest followed by sh/sgRNA-mediated ablation of the endogenous gene (e.g.PMID: 28082722), which is conceptually quite similar to the ARTi approach. Similarly, people have used conditional degron tags such as AID tags, dTags, HALOTags, IHZF3 degrons or SMASh either knocked into the endogenous locus or as rescue transgene. Comparing and contrasting the pros and cons of these methods to the ARTi-based approach would be certainly beneficial to the readers.

      We thank the referee for pointing out these alternative LOF methods. We certainly share the current excitement about various degron tags and are applying them in our own research. In our view, a major downside of these strategies is that they inevitably require changes to the coding sequence of target proteins, which can alter their regulation and function in ways that are hard to predict and control for. We had briefly mentioned this distinguishing feature in our discussion. The strategy proposed by Bill Kaelin, i.e. rescue of the the endogenous gene through Tet-regulated expression of sh/sgRNA-resistant cDNAs, indeed shares many features of the ARTi system, but requires expression of the candidate target from an ectopic promoter element. In contrast, ARTi enables similar perturbations of candidate genes without altering their endogenous transcriptional regulations – a feature that we have highlighted in our revised discussion.

      All my other comments outlined below should be considered minor and are not essential.

      1, Suppl Fig.1 C: Please explain what the red star means. How can the knock-out be more than 100%. Please specify what the controls are. Why does shRNA660 exhibit no knockdown at all?

      The red star indicates ARTi-shRNAmirs that were selected for further characterization. Depicted GFP knockdown levels are normalized to the performance of shRen.713, a well-characterized potent control shRNA targeting Renilla Luciferase. Values of more than 100% mean that the respective shRNA exceeded effects of shRNA.713. shRNA.660 served as a neutral control – its target site was not included in the reporter construct. We thank the reviewer for bringing up these points, which we have clarified in the legend.

      2, x-axis label in Suppl Fig. 1D is missing

      We thank the referee for spotting this and have added this information to the figure and its legend.

      3, I would argue that ARTi6634 also has a slight effect in MV4-11 similar to its effect to RN2. Maybe add that to the text.

      We thank the reviewer and have added this observation to our revised text.

      4, Suppl. Figure Legend 1F - specify which cell line was used (HT-1080 presumably)

      We apologize for this mistake and now have indicated the cell line in the legend.

      5, Fig. 2A and E, it might be nice to add the dsRED fusion to the schematics so that the reader sees the difference between the endogenous and the endogenous. One could then also change the color to red instead of blue.

      We thank the reviewer for this suggestion and adapted the figure accordingly.

      6, Fig. 2B - In the third lane, there appears to be a residual band of the endogenous EGFR despite the fact that it should be KO. Is this a EGFR wt lysate with EGFR::dsRED::ARTi overexpression and as such a type in the legend or is this a non-complete KO? It might be beneficial to label the legend with EGFR::dsRED::ARTi instead of EGFR::ARTi have one arrow depicting EGFR and one additional arrow showing the EGFR::dsRED fusion (as in Fig. 1F).

      We thank the reviewer for this insightful comment. We interpret the WB signal in lane three as potential cleavage/degradation products of the transgene as all signal disappears upon ARTi-mediated knockdown. Due to space reasons, we would prefer to keep the label as it is. The exact nature of the transgene is stated in the text and in the methods section.

      7, Suppl Fig. 2d: It is interesting that there is such a huge upregulation of DUSP6 in cells that express EGFR::ARTi compared to parental? The figure legend states: expression levels of DUSP6 in parental and engineered PC-9 cells. I assume the first box (EGFR::ARTi -/ dox -) is the parental line? Is there really a 5x upregulation of DUSP6 upon overexpression of EGFR::ARTi compared to parental (despite the fact that the endogenous EGFR::ARTi is expressed to similar levels compared to the endogenous EGFR)? Please clarify a little better which of the cells are parental and which are EGFR KO and which are transduced with EGFR::ARTi. Might suffice to just explain in the supplmental figure legend that expression of the exogenous EGFR::ARTi in EGFR KO cells leads to increased expression of ERK targets such as DUSP6 and EPHA2 etc.

      We thank the reviewer for this comment. We ascribe the increased expression of DUSP6 to the forced expression of the oncogenic variant of EGFR (EGFRdel19) while only a subset of EGFR genes in PC-9 cells is mutated and the rest is wild-type. Therefore, the net-output of EGFR signaling would be higher, even if the EGFR protein levels were exactly the same, as the EGFR gene is only present in the oncogenic form in the engineered cells but a mixture of mutant and wild-type proteins would make up the EGFR pool in the parental cells. The figure legend was changed accordingly, highlighting that DUSP6 is a MAPK downstream gene.

      8, Suppl Fig. 2e: Similar to my comment #7. Expression of endogenous EGFR is lost upon KO of EGFR, but cylcinD1 expression as well as expression of other ERK target genes increases upon loss of the endogenous EGFR gene with concomitant expression of EGFR::ARTi . It is nice to see that most of those genes are down-regulated upon DOX treatment. However, CyclinD1 is strongly up-regulated - any idea why? Might be nice to comment on this in the supplemental material to make it easy for the reader to interpret the data.

      We agree with the reviewer that the direct MAPK target genes follow the expected pattern of strong downregulation. We have not studied the expression of CCND1 in detail and therefore cannot comment on the mechanistic basis of this observation.

      9, Fig. 2F - might be nice to provide some densitometry data to quantify the effect of ARTi-mediated KRasG12R knock-down.

      We thank the reviewer for this suggestion and apologize that this data is not available for this study. We will include densitometry data in upcoming studies involving ARTi. As the observed knockdown was almost complete and hence readily observable by eye, we did not measure the effects using densitometry. In addition, we would like to mention that the sensor assay contains a quantitative analysis of the knockdown levels.

      10, Fig. 2I, it might be nice to add the V5 tag to the schematic and mention the V5 tag in the text: ... and homozygously inserted ARTi target sites into the 3'-UTR as well as a V5 tag to the endogenous STAG1 alleles (Fig. 2i)

      We thank the reviewer for the suggestion and explained the exact makeup of the construct better in the main text. We would however like to keep the figure as simple as possible and put the focus on the endogenous engineering here.

      11, Fig. 2J - might be nice to provide some densitometry data to quantify the effect of ARTi-mediated STAT1::V5 knock-down.

      We thank the reviewer for this suggestion and apologize that this data is not available for this study. We will include densitometry data in upcoming studies involving ARTi. As the observed knockdown was almost complete and hence readily observable by eye, we did not measure the effects using densitometry. In addition, we would like to mention that the sensor assay contains a quantitative analysis of the knockdown levels.

      12, Suppl. Fig 4B: the authors write: 'Western blotting confirmed ... the homozygous insertion of the targeting cassette into the STAG1 locus, ...' . I think the WB nicely shows insertion of the V5 tag into the STAG1 locus, but it I think WB cannot show homozygous insertion. The fact that in Suppl Fig 1B STAG1 expression is (almost) completely ablated, is a good indication, but in Fig. 2J, there is still about 50% expression. As such, proofing homozygous insertion by PCR/Sanger sequencing or densitometry over several experiments or just rephrasing the text a little might be beneficial.

      We agree with the reviewer and have adapted the respective passage in the main text.

      Competing interests statement: A patent application related to the design and use of the ARTi system entitled ‘Methods and molecules for RNA interference (RNAi)’ has been submitted by T.H., M.H., J.Z. and R.N. to the European Patent Office (application EP21217407.2).

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reply to Public Reviews:

      Reply to Reviewer #1:

      This is a carefully performed and well-documented study to indicate that the FUS protein interacts with the GGGGCC repeat sequence in Drosophila fly models, and the mechanism appears to include modulating the repeat structure and mitigating RAN translation. They suggest FUS, as well as a number of other G-quadruplex binding RNA proteins, are RNA chaperones, meaning they can alter the structure of the expanded repeat sequence to modulate its biological activities.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are very happy to see the reviewer for highly appreciating our manuscript.

      1. Overall this is a nicely done study with nice quantitation. It remains somewhat unclear from the data and discussions in exactly what way the authors mean that FUS is an RNA chaperone: is FUS changing the structure of the repeat or does FUS binding prevent it from folding into alternative in vivo structure?

      Response: We appreciate the reviewer’s constructive comments. Indeed, we showed that FUS changes the higher-order structures of GGGGCC [G4C2] repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation in vivo. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #2:

      Fuijino et al. provide interesting data describing the RNA-binding protein, FUS, for its ability to bind the RNA produced from the hexanucleotide repeat expansion of GGGGCC (G4C2). This binding correlates with reductions in the production of toxic dipeptides and reductions in toxic phenotypes seen in (G4C2)30+ expressing Drosophila. Both FUS and G4C2 repeats of >25 are associated with ALS/FTD spectrum disorders. Thus, these data are important for increasing our understanding of potential interactions between multiple disease genes. However, further validation of some aspects of the provided data is needed, especially the expression data.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript and also for her/his important comments that helped to strengthen our manuscript.

      Some points to consider when reading the work:

      1. The broadly expressed GMR-GAL4 driver leads to variable tissue loss in different genotypes, potentially confounding downstream analyses dependent on viable tissue/mRNA levels.

      Response: We thank the reviewer for this constructive comment. In the RT-qPCR experiments (Figures 1E, 3C, 4G, 6D and Figure 1—figure supplement 1C), the amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue, to avoid potential confounding derived from the difference in tissue viability between genotypes, as the reviewer pointed out. To clarify this process, we have made the following change to the revised manuscript.

      (1) On page 30, line 548-550, the sentence “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts in the same sample” was changed to “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue to avoid potential confounding derived from the difference in tissue viability between genotypes”.

      2. The relationship between FUS and foci formation is unclear and should be interpreted carefully.

      Response: We appreciate the reviewer’s important comment. We apologize for the lack of clarity. We showed the relationship between FUS and RNA foci formation in our C9-ALS/FTD fly, that is, FUS suppresses RNA foci formation (Figures 3A and 3B), and knockdown of endogenous caz, a Drosophila homologue of FUS, enhanced it conversely (Figures 4E and 4F). We consider that FUS suppresses RNA foci formation through altering RNA structures and preventing aggregation of misfolded G4C2 repeat RNA as an RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #3:

      In this manuscript Fujino and colleagues used C9-ALS/FTD fly models to demonstrate that FUS modulates the structure of (G4C2) repeat RNA as an RNA chaperone, and regulates RAN translation, resulting in the suppression of neurodegeneration in C9-ALS/FTD. They also confirmed that FUS preferentially binds to and modulates the G-quadruplex structure of (G4C2) repeat RNA, followed by the suppression of RAN translation. The potential significance of these findings is high since C9ORF72 repeat expansion is the most common genetic cause of ALS/FTD, especially in Caucasian populations and the DPR proteins have been considered the major cause of the neurodegenerations.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are grateful to the reviewer for the insightful comments, which were very helpful for us to improve the manuscript.

      1. While the effect of RBP as an RNA chaperone on (G4C2) repeat expansion is supposed to be dose-dependent according to (G4C2)n RNA expression, the first experiment of the screening for RBPs in C9-ALS/FTD flies lacks this concept. It is uncertain if the RBPs of the groups "suppression (weak)" and "no effect" were less or no ability of RNA chaperone or if the expression of the RBP was not sufficient, and if the RBPs of the group "enhancement" exacerbated the toxicity derived from (G4C2)89 RNA or the expression of the RBP was excessive. The optimal dose of any RBPs that bind to (G4C2) repeats may be able to neutralize the toxicity without the reduction of (G4C2)n RNA.

      Response: We appreciate the reviewer’s constructive comments. We employed the site-directed transgenesis for the establishment of RBP fly lines, to ensure the equivalent expression levels of the inserted transgenes. We also evaluated the toxic effects of overexpressed RBPs themselves by crossbreeding with control EGFP flies, showing in Figure 1A. To clarify them, we have made the following changes to the revised manuscript.

      (1) On page 8, line 166-168, the sentence “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and their different roles in RNA metabolism.” was changed to “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and the different toxicity of overexpressed RBPs themselves.”.

      (2) On page 29, line 519-522, the sentence “By employing site-specific transgenesis using the pUASTattB vector, each transgene was inserted into the same locus of the genome, and was expected to be expressed at the equivalent levels.” was added.

      2. In relation to issue 1, the rescue effect of FUS on the fly expressing (G4C2)89 (FUS-4) in Figure 4-figure supplement 1 seems weaker than the other flies expressing both FUS and (G4C2)89 in Figure 1 and Figure 1-figure supplement 2. The expression level of both FUS protein and (G4C2)89 RNA in each line is important from the viewpoint of therapeutic strategy for C9-ALS/FTD.

      Response: We appreciate the reviewer’s important comment. The FUS-4 transgene is expected to be expressed at the equivalent level to the FUS-3 transgene, since they are inserted into the same locus of the genome by the site-directed transgenesis. Thus, we suppose that the weaker suppressive effect of FUS-4 coexpression on G4C2 repeat-induced eye degeneration can be attributed to the C-terminal FLAG tag that is fused to FUS protein expressed in FUS-4 fly line. Since the caz fly expresses caz protein also fused to FLAG tag at the C-terminus, we used this FUS-4 fly line to directly compare the effect of caz on G4C2 repeat-induced toxicity to that of FUS.

      3. While hallmarks of C9ORF72 are the presence of DPRs and the repeat-containing RNA foci, the loss of function of C9ORF72 is also considered to somehow contribute to neurodegeneration. It is unclear if FUS reduces not only the DPRs but also the protein expression of C9ORF72 itself.

      Response: We thank the reviewer for this comment. We agree that not only DPRs, but also toxic repeat RNA and the loss-of-function of C9ORF72 jointly contribute to the pathomechanisms of C9-ALS/FTD. Since Drosophila has no homolog corresponding to the human C9orf72 gene, the effect of FUS on C9orf72 expression cannot be assessed. Our fly models are useful for evaluating gain-of-toxic pathomechanisms such as RNA foci formation and RAN translation, and the association between FUS and loss-of function of C9ORF72 is beyond the scope of this study.

      4. In Figure 5E-F, it cannot be distinguished whether FUS binds to GGGGCC repeats or the 5' flanking region. The same experiment should be done by using FUS-RRMmut to elucidate whether FUS binding is the major mechanism for this translational control. Authors should show that FUS binding to long GGGGCC repeats is important for RAN translation.

      Response: We would like to thank the reviewer for these insightful comments. Following the reviewer’s suggestion, we perform in vitro translation assay again using FUS-RRMmut, which loses the binding ability to G4C2 repeat RNA as evident by the filter binding assay (Figure 5A), instead of BSA. The results are shown in the figures of Western blot analysis below. The addition of FUS to the translation system suppressed the expression levels of GA-Myc efficiently, whereas that of FUS-RRMmut did not. FUS decreased the expression level of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity. These results suggest that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA.

      Unfortunately, RAN translation from short G4C2 repeat RNA was not investigated in our translation system, although the previous study reported the low efficacy of RAN translation from short G4C2 repeat RNA (Green et al., 2017).

      Author response image 1.

      (A) Western blot analysis of the GA-Myc protein in the samples from in vitro translation.

      (B) Quantification of the GA-Myc protein levels.

      We have made the following changes to the revised manuscript.

      (1) Figure 5F was replaced to new Figures 5F and 5G.

      (2) On page 14-15, line 326-330, the sentence “Notably, the addition of FUS to this system decreased the expression level of GA-Myc in a dose-dependent manner, whereas the addition of the control bovine serum albumin (BSA) did not (Figure 5F).” was changed to “Notably, upon the addition to this translation system, FUS suppressed RAN translation efficiently, whereas FUS-RRMmut did not. FUS decreased the expression levels of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity (Figure 5F and 5G).”.

      (3) On page 15, line 330-332, the sentence “Taken together, these results indicate that FUS suppresses RAN translation from G4C2 repeat RNA in vitro as an RNA chaperone.” was changed to “Taken together, these results indicate that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA as an RNA chaperone.”.

      (4) On page 37, line 720-723, the sentence “For preparation of the FUS protein, the human FUS (WT) gene flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS.” was changed to “For preparation of the FUS proteins, the human FUS (WT) and FUS-RRMmut genes flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS and pUAST- FUS-RRMmut, respectively.”.

      (5) On page 41, line 816-819, the sentence “FUS or BSA at each concentration (10, 100, and 1,000 nM) was added for translation in the lysate.” was changed to “FUS or FUS-RRMmut at each concentration (10, 100, 200, 400, and 1,000 nM) was preincubated with mRNA for 10 min to facilitate the interaction between FUS protein and G4C2 repeat RNA, and added for translation in the lysate.”.

      5. It is not possible to conclude, as the authors have, that G-quadruplex-targeting RBPs are generally important for RAN translation (Figure 6), without showing whether RBPs that do not affect (G4C2)89 RNA levels lead to decreased DPR protein level or RNA foci.

      Response: We appreciate the reviewer’s critical comment. Following the suggestion by the reviewer, we evaluate the effect of these G-quadruplex-targeting RBPs on RAN translation. We additionally performed immunohistochemistry of the eye imaginal discs of fly larvae expressing (G4C2)89 and these G-quadruplex-targeting RBPs. As shown in the figures of immunohistochemistry below, we found that coexpression of EWSR1, DDX3X, DDX5, and DDX17 significantly decreased the number of poly(GA) aggregates. The results suggest that these G-quadruplex-targeting RBPs regulate RAN translation as well as FUS.

      Author response image 2.

      (A) Immunohistochemistry of poly(GA) in the eye imaginal discs of fly larvae expressing (G4C2)89 and the indicated G-quadruplex-targeting RBPs.

      (B) Quantification of the number of poly(GA) aggregates.

      We have made the following changes to the revised manuscript.

      (1) Figures 6E and 6F were added.

      (2) On page 6-7, line 135-137, the sentence “In addition, other G-quadruplex-targeting RBPs also suppressed G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.” was changed to “In addition, other G-quadruplex-targeting RBPs also suppressed RAN translation and G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.”.

      (3) On page 15, line 344-346, the sentence “As expected, these RBPs also decreased the number of poly(GA) aggregates in the eye imaginal discs (Figures 6E and 6F).” was added.

      (4) On page 15, line 346-347, the sentence “Their effects on G4C2 repeat-induced toxicity and repeat RNA expression were consistent with those of FUS.” was changed to “Their effects on G4C2 repeat-induced toxicity, repeat RNA expression, and RAN translation were consistent with those of FUS.”

      (5) On page 16, line 355-357, the sentence “Thus, some G-quadruplex-targeting RBPs regulate G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.” was changed to “Thus, some G-quadruplex-targeting RBPs regulate RAN translation and G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.”

      (6) On page 19, line 417-421, the sentence “We further found that G-quadruplex-targeting RNA helicases, including DDX3X, DDX5, and DDX17, which are known to bind to G4C2 repeat RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Mori et al., 2013a; Xu et al., 2013), also alleviate G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.” was changed to “We further found that G-quadruplex-targeting RNA helicases, … ,also suppress RAN translation and G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.”.

      Reply to Recommendations For The Authors:

      1) It is not clear from the start that the flies they generated with the repeat have an artificial vs human intronic sequence ahead of the repeat. It would be nice if they presented somewhere the entire sequence of the insert. The reason being that it seems they also tested flies with the human intronic sequence, and the effect may not be as strong (line 234). In any case, in the future, with a new understanding of RAN translation, it would be nice to compare different transgenes, and so as much transparency as possible would be helpful regarding sequences. Can they include these data?

      Response: We thank the editors and reviewers for this comment. We apologize for the lack of clarity. We used artificially synthesized G4C2 repeat sequences when generating constructs for (G4C2)n transgenic flies, so these constructs do not contain human intronic sequence ahead of the G4C2 repeat in the C9orf72 gene, as explained in the Materials and Methods section. To clarify the difference between our C9-ALS/FTD fly models and LDS-(G4C2)44GR-GFP fly model (Goodman et al., 2019), we have made the following change to the revised manuscript.

      (1) Schema of the LDS-(G4C2)44GR-GFP construct was presented in Figure 3—figure supplement 1.

      Furthermore, to maintain transparency of the study, we have provided the entire sequence of the insert as the following source file.

      (2) The artificial sequences inserted in the pUAST vector for generation of the (G4C2)n flies were presented in Figure 1—figure supplement 1—source data 1.

      2) It is really nice how they quantitated everything and showed individual data points.

      Response: We thank the editors and reviewers for appreciating our data analysis method. All individual data points and statistical analyses are summarized in source data files.

      3) So when they call FUS an RNA chaperone, are they simply meaning it is changing the structure of the repeat, or could it just be interacting with the repeat to coat the repeat and prevent it from folding into whatever in vivo structures? Can they speculate on why some RNA chaperones lead to presumed decay of the repeat and others do not? Can they discuss these points in the discussion? Detailed mechanistic understanding of RNA chaperones that ultimately promote decay of the repeat might be of highly significant therapeutic benefit.

      Response: We appreciate these critical comments. Indeed, we showed that FUS changes the higher-order structures of G4C2 repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Besides these RNA chaperones, we observed the expression of IGF2BP1, hnRNPA2B1, DHX9, and DHX36 decreased G4C2 repeat RNA expression levels. In addition, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). We speculate these RBPs could be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA. To clarify these interpretations, we revised the manuscript as follows.

      (3) On page 18, line 392-398, the sentences “Similarly, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). Interestingly, these RBPs have been reported to be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA.” was added.

      4) What is the level of the G4C2 repeat when they knock down caz? Is it possible that knockdown impacts the expression level of the repeat? Can they show this (or did they and I miss it)?

      Response: We thank the editors and reviewers for this comment. The expression levels of G4C2 repeat RNA in (G4C2)89 flies were not altered by the knockdown of caz, as shown in Figure 4G.

      5) A puzzling point is that FUS is supposed to be nuclear, so where is FUS in the brain in their lines? They suggest it modulates RAN translation, and presumably, that is in the cytoplasm. Is FUS when overexpressed now in part in the cytoplasm? Is the repeat dragging it into the cytoplasm? Can they address this in the discussion? If FUS is never found in vivo in the cytoplasm, then it raises the point that the impact they find of FUS on RAN translation might not reflect an in vivo situation with normal levels of FUS.

      Response: We appreciate these important comments. We agree with the editors and reviewers that FUS is mainly localized in the nucleus. However, FUS is known as a nucleocytoplasmic shuttling RBP that can transport RNA into the cytoplasm. Indeed, FUS is reported to facilitate transport of actin-stabilizing protein mRNAs to function in the cytoplasm (Fujii et al., 2005). Thus, we consider that FUS binds to G4C2 repeat RNA in the cytoplasm and suppresses RAN translation in this study.

      6) When they are using 2 copies of the driver and repeat, are they also using 2 copies of FUS? These are quite high levels of transgenes.

      Response: We thank the editors and reviewers for this comment. We used only 1 copy of FUS when using 2 copies of GMR-Gal4 driver. Full genotypes of the fly lines used in all experiments are described in Supplementary file 1.

      7) In Figure5-S1, FUS colocalizing with (G4C2)RNA is not clear. High-magnification images are recommended.

      Response: We appreciate this constructive comment on the figure. Following the suggestion, high-magnification images are added in Figure 5—figure supplement 1.

      8) I also suggest that the last sentence of the Discussion be revised as follows: Thus, our findings contribute not only to the elucidation of C9-ALS/FTD, but also to the elucidation of the repeat-associated pathogenic mechanisms underlying a broader range of neurodegenerative and neuropsychiatric disorders than previously thought, and it will advance the development of potential therapies for these diseases.

      Response: We appreciate this recommendation. We have made the following change based on the suggested sentence.

      (1) On page 20-21, line 455-459, “Thus, our findings contribute not only towards the elucidation of repeat-associated pathogenic mechanisms underlying a wider range of neuropsychiatric diseases than previously thought, but also towards the development of potential therapies for these diseases.” was changed to “Thus, our findings contribute to the elucidation of the repeat-associated pathogenic mechanisms underlying not only C9-ALS/FTD, but also a broader range of neuromuscular and neuropsychiatric diseases than previously thought, and will advance the development of potential therapies for these diseases.”.

      Authors’ comment on previous eLife assessment:

      We thank the editors and reviewers for appreciating our study. We mainly evaluated the function of human FUS protein on RAN translation and G4C2 repeat-induced toxicity using Drosophila expressing human FUS in vivo, and the recombinant human FUS protein in vitro. To validate that FUS functions as an endogenous regulator of RAN translation, we additionally evaluated the function of Drosophila caz protein as well. We are afraid that the first sentence of the eLife assessment, that is, “This important study demonstrates that the Drosophila FUS protein, the human homolog of which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …” is somewhat misleading. We would be happy if you modify this sentence like “This important study demonstrates that the human FUS protein, which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …”.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the reviewers

      Manuscript number: RC-2023-01932

      Corresponding author(s): Dennis KAPPEI

      We would like to thank all reviewers for their recognition of our approach and the quality of our work as well as their constructive criticism.

      Reviewer #1

      Reviewer #1: The manuscript by Yong et. al. describes a comparison of various chromatin immunoprecipitation-mass spectrometric (ChIP-MS) methods targeting human telomeres in a variety of systems. By comparing antibody-based methods, crosslinkers, dCas9 and sgRNA targeted methods, KO cells and various controls, they provide a useful perspective for readers interested in similar experiments to explore protein-DNA interactions in a locus-specific manner.

      Response: We would like to thank the reviewer for the feedback and the appreciation of our work.

      Reviewer #1: While interesting, I found it somewhat difficult to extract a clear comparison of the methods from the text. It was also difficult to compare as data and findings from each method was discussed in its own context. Perhaps it is not in their interest to single out a specific method and it is indeed true that there are caveats with each of the methods.

      Response: Across our manuscript we have established one single workflow, for which we present some technical comparisons (e.g. using single or double cross-linking in Fig. 2a/b), technical recommendations such as the use of loss-of-function controls (e.g. Fig. 1c v. Fig. 2a and Extended Data Fig. 3g vs. 3i) and an application to unique loci using dCas9 (Fig. 3f). Based on the suggestions below, we believe that we will improve the clarity of communicating our approach.

      Reviewer #1: I think the manuscript would be of interest but I believe that there are remaining questions that need to be addressed before publication. In particular, I found it difficult to reconcile the discrepancy in protein IDs between most experiments vs. the WT/KO experiment in Fig 2. The authors make a big deal about the importance of the KO control but I think the fewer proteins identified there may be experiment-specific and not general to the KO system. I ask that this be investigated more carefully by the authors in their revisions.

      Response: We thank the reviewer for highlighting this point. We do not think that the ChIP-MS comparison between U2OS WT and ZBTB48 KO clones (Fig. 2a) has experiment-specific caveats. Instead the KO controls as well as the dTAGV-1 degron system for MYB ChIP-MS (Extended Data Fig. 3) reveal antibody-specific off-targets, which are indeed false-positives. Please see below for further details.

      Reviewer #1: Ln 57: What is "standard double cross-linking ChIP reactions" in this context? Is it the two different crosslinkers? The two proteins? The reciprocal IPs of one protein, and blotting for another? It's not clear here or from Extended Fig 1A. Upon further reading, it seems to pertain to the two crosslinkers - if so, the authors should briefly describe their workflow to help readers.

      Response: As the reviewer correctly concludes, we indeed intended to highlight the use of two separate crosslinkers (formaldehyde/FA and DSP). This combination is important as illustrated in the side-by-side comparison of Fig. 2a and Fig. 2d. Here, we performed ZBTB48 ChIP-MS in five U2OS WT and five U2OS ZBTB48 KO clones. While in both experiments the bait protein ZBTB48 was abundantly enriched in the samples that were fixed with formaldehyde we lose about half of the telomeric proteins that are known to directly bind to telomeric DNA independent of ZBTB48 and all of their interaction partners. For instance, while the FA+DSP reaction in Fig. 2a enriched all six shelterin complex members, the FA only reaction in Fig. 2d only enriches TERF2. These data suggest that the use of a second cross-linker helps to stabilise protein complexes on chromatin fragments. This is a critical message of our manuscript as ChIP-MS only truly lives up its name if we can enrich proteins that genuinely sit on the same chromatin fragment without protein interactions to the bait protein. We will expand on this in both the text and our schematics in Fig. 1a and 3a to make this clearer for the readers.

      Reviewer #1: Ln 95: It is surprising and quite unclear to me why it is that the WT ZBTB48 U2OS pulldown in Fig 1B shows 83 hits for the WT vs Ig control experiment but 27 hits for the WT vs KO condition in Fig 2A. The two WT experiments have the same design and reagents, shouldn't they be as close as technical replicates and provide very similar hits?

      The authors seem to make the claim that most of the 'extra' proteins in WT vs Ig are abundant and false positives, but if this is so, shouldn't they bind non-specifically to the beads and be enriched equally in Ig control and ZBTB48 WT IPs?

      Response: We again thank the reviewer for raising this point and the need to explain in more detail why we interpret the difference between 83 hits (anti-ZBTB48 antibody vs. IgG; Fig. 1c) and 27 hits (anti-ZBTB48 antibody used in both U2OS WT and ZBTB48 KO cells; Fig. 2a) primarily as false-positives. The KO controls in Fig. 2a allow to keep the ZBTB48 antibody as a constant variable while instead comparing the presence (WT) or absence (KO) of the bait protein. Hence, proteins that were enriched in the IgG comparison in Fig. 1c but that are lost in the WT vs. KO comparison in Fig. 2a are likely directly (or indirectly) recognised by the ZBTB48 antibody, akin to off-targets to this particular reagent. In a Western blot this would be equivalent to seeing multiple bands at different molecular weights with only the band belonging to the protein-of-interest disappearing in KO cells. To illustrate this we would like to refer to Extended Data Fig. 2, in which we have replotted the exact same data from Fig. 2a. However, in addition we have here highlighted proteins that were enriched in the IgG comparison in Fig. 1c. 46 proteins (in pink) are indeed quantified in the WT vs. KO comparison, but these proteins are found below the cut-offs (and most of them with very poor fold changes and p-values). In contrast to the other several hundred proteins common between both experiments that can be considered common background non-specifically bound to the protein G beads, these 46 proteins represent antibody-specific false-positives.

      The above consideration is not unique to ChIP-MS as illustrated by the Western blot example. We also do not claim novelty on the experimental logic, e.g. pre-CRISPR in 2006 Selbach and Mann demonstrated the usefulness of RNAi controls in immunoprecipitations (IPs) (PMID: 17072306). However, our data suggests that ChIP-MS is particularly vulnerable to this type of false-positives given that the approach requires (double-)cross-linking to sufficiently stabilise true-positives on the same chromatin fragment.

      To supplement the WT vs. ZBTB48 KO comparison, we had included a second experiment in the manuscript that illustrates the same point in even more dramatic fashion. First, KO controls are very clean in principle, but they themselves might come with caveats if e.g. the expression levels between WT and KO samples differ greatly. This might create a situation that the reviewer hinted to, i.e. differential expression of abundant proteins that would proportionally to their expression levels stick to the beads, resulting in “fold enrichments”. The resulting false positives could e.g. be controlled by matched expression proteomes. For ZBTB48 we have previously measured this (PMID: 28500257) and demonstrated that only a small number of genes are differentially expressed (~10) and hence we can interpret the WT vs. ZBTB48 KO comparison quite cleanly. However, for other classes of proteins such as transcription factors that regulate a large number of genes, E3 ligases etc. this might present a more serious concern. Therefore, we extended our loss-of-function comparison to such a transcription factor, MYB, by using the dTAGV-1 degron system. Importantly, the MYB antibody has been used in previous work for ChIP-seq applications (e.g. PMID: 25394790). Here, instead of 186 hits in the MYB vs. IgG comparison using the same MYB antibody in control-treated and dTAGV-1-treated cells (upon 30 min of treatment only) we only detect 9 hits. Again, similar to the WT vs. ZBTB48 KO comparison, 180 proteins are quantified in the DMSO vs. dTAGV-1 comparison, but these proteins fall below the cut-offs (Extended Data Fig. 3g vs. 3i). Again, we believe that this quite drastically illustrates how vulnerable ChIP-MS data is to large numbers of false-positives. This is not only a technical consideration as such datasets are frequently used in downstream pathway/gene set enrichment analyses etc. Such large false discovery rates would obviously lead to error-carry-forward and additional (unintended) misinterpretations. We will carefully expand our textual description across the manuscript to make these points much clearer. In addition, we will move the previous Extended Data Fig. 3 into the main manuscript to more clearly highlight this important point.

      Reviewer #1: Volcano plots in Figs 1, 2, and Suppl. Tables etc: Are the plotted points the mean of 5 replicates? Was each run normalized between the replicates in each group, for e.g. by median normalization of the log2 MS intensities? This does not appear to be the case upon inspection of the Suppl Tables. Given the variability in pulldown efficiency, gel digest and peptide recovery, this would certainly be necessary.

      Response: All volcano plots are indeed based on 4-5 biological replicates (most stringently in the WT vs. KO comparisons in Fig. 2 based on each 5 independent WT and ZBTB48 KO single cell clones). The x-axis of each volcano plot represents the ratio of mean MS1-based intensities between both experimental conditions in log2 scale. However, precisely to account for the variation that the reviewer highlighted we did not base our analysis on raw MS1 intensities but we used the MaxLFQ algorithm (PMID: 24942700) as part of the MaxQuant analysis software (PMID: 19029910) for genuine label-free quantitation across experimental conditions and replicates. In this context, we would also like to refer to a related comment by reviewer #2 based on which we will now addd concordance information for each replicate (heatmaps for Pearson correlations and PCA plots). We will improve this both in the text and methods section accordingly.

      Reviewer #1: Ln 125: The authors make the claim that the ChIP-MS experiments are inherently noisy, with examples from WT cells, dTAG system and IgG controls. This is likely the case, yet their experiments with WT vs KO cells do not identify as many proteins overall. I find this inconsistency somewhat unclear and does not seem to match the claim of ChIP-MS experiments and crosslinking adding to non-specificity. Can the authors add the total number of identified proteins in each volcano plot, for easier reference?

      Response: The number of identified proteins does not vary majorly between matched IgG and loss-of-function comparisons and for instance the single cross-linking (FA only) experiment in Fig. 2c has the largest number of quantified proteins among all ZBTB48 IPs. But we will of course add the requested information to all plots.

      Reviewer #1: I think the manuscript is interest as it provides important benchmarks for ChIP-proteomics experiments. I believe that there are remaining questions that need to be addressed before publication. In particular, I found it difficult to reconcile the discrepancy in protein IDs between most experiments vs. the WT/KO experiment in Fig 2. The authors make a big deal about the importance of the KO control but I think the fewer proteins identified there may be experiment-specific and not general to the KO system. I ask that this be investigated more carefully by the authors in their revisions.

      Response: We would like to thank the reviewer for recognising our work as a source for important benchmarks for ChIP-MS experiments. We hope that with a more detailed description and discussion the highlighted aspects will be more clearly communicated. We originally conceived our manuscript as a short report and now realised that some of the information became too condensed and might therefore benefit from more extensive explanations.

      Reviewer #2

      Reviewer #2: Summary: In this manuscript, Yong and colleagues have introduced a optimized technique for studying actors on chromatin in specific regions with a localized approach thanks to revisited ChIP-mass spectrometry (MS) with label-free quantitative (LFQ). The authors exhibited the utility of their approach by demonstrating its effectiveness at telomeres from cell culture (human U2OS cells) to tissue samples (liver, mouse embryonic stem cells). As a proof of concept, this technique was tested by the authors with proteins from complex shelterin specific to telomeres (TERF2 and ZBTB48), transcription factors (MYB), and through dCas9-driven locus-specific enrichment. Notably, the authors created a U2OS dCas9-GFP clone and then introduced sgRNAs to target either telomeric DNA (sgTELO) or an unrelated control (sgGAL4). The cells expressing sgTELO exhibited a significant localization of telomeres and an enriched amount of telomeric DNA in ChIP with dCas9. They also found the proteins previously identified as known to be enriched at telomeres (for example, the 6 shelterin members).

      Moreover, the authors illustrated the importance of double crosslinking (formaldehyde (FA) and dithiobis(succinimidyl propionate) (DSP) in ChIP-MS. Their data demonstrated also that ChIP-MS is inclined towards false-positives, possibly owing to its inherent cross-linking. However, by utilizing loss-of-function conditions specific to the bait, it can be tightly managed.

      • Can you show the concordance between biological replicates for each ChIP with LFQ? (heatmap of Pearson correlation and PCA plot). This will confirm the robustness of the use of LFQ.

      Response: We will add the requested concordance data for all volcano plots both in the form of heatmaps of Pearson correlation and PCA plots. Across our datasets, the replicates from the same experimental condition clearly cluster with each other and replicates have high concordance values of >0.9. As expected replicates for the target/bait samples have slightly higher concordance values compared to the negative controls (IgG or loss-of-function samples). We thank the reviewer for this suggestion as the new Extended Data panel will strengthen the illustration of our robust LFQ data.

      Reviewer #2: You say that your technique is " a simple, robust ChIP-MS workflow based on comparably low input quantities » (line 139). What would be really interesting for a technical paper would be: a schematic and a table illustrating the differences between your method and the previously published methods (amount of material, timeline,...) to really highlight the novelty in your optimized techniques.

      Response: We will add a comparison table with previous publications using ChIP-MS and for reference include some complementary approaches as requested by reviewer #3. On this note, we would like to stress that we are not “only” intending to use less material and to have an easy-to-adopt protocol. A cornerstone of our manuscript is to apply rigorous expectations to ChIP-MS experiments, in particular the ability to enrich proteins that independently bind to the same chromatin fragments as the bait protein (regardless of whether this is an endogenous protein or a exogenous, targeted bait such as dCas9). Otherwise, such experiments risk to be regular protein IPs under cross-linking conditions, which as illustrated by our loss-of-function comparisons are prone to yield particularly large fractions of false-positives.

      Reviewer #2: It would be interesting to perform the dCas9 ChIP experiment in telomeric regions with and without LFQ. Since the novelty lies in this parameter, at no time does the paper show that LFQ really allows to have as many or more proteins identified but in a simpler way and with less material. A table allowing to compare with and without LFQ would be interesting.

      Response: We do not fully understand what the suggestion “without LFQ” refers to exactly. We assume that this reviewer might suggest to use a different quantitative mass spectrometry approach other than LFQ, e.g. SILAC labelling, TMT labelling etc. Please note that we do not claim that LFQ quantification is per se superior to the various quantification methods that had been developed and widely used across the proteomics community especially before instrument setups and analysis pipelines were stable enough for label-free quantification (a name that is strongly owed to this historic order of development). However, a central goal of our workflow is to make robust and rigorous ChIP-MS accessible to the myriad of laboratories using ChIP-qPCR/-seq and that may not be extensively specialised in mass spectrometry. Both metabolic and isobaric labelling come not only at a higher cost but also present an experimental hurdle to non-specialists compared to performing biological replicates without any labelling, essentially the same way as for any ChIP-qPCR etc. experiment. We will further elaborate on these points in the manuscript to more clearly convey these notions.

      In general, with the right effort different quantitative methods should and will likely yield qualitatively similar results. However, comparisons between LFQ approaches (MaxLFQ, iBAQ,…) and labelling approaches (SILAC, TMT, iTRAQ) have already been better explored and verbalised elsewhere (e.g. PMID: 31814417 & 29535314). Therefore, we believe that this will add relatively little value to our manuscript.

      Reviewer #2: Put a sentence to explain "label free quantification". For a reader who is not at all familiar with this technique, it would be interesting to explain it and to quote the advantages compared to PLEX.

      Response: Thanks for highlighting this. In line with the point above as well as a similar comment by reviewer #1 we will improve this both in the main text and manuscript to clearly explain the terminology, the MaxLFQ algorithm (PMID: 24942700) used and to highlight the advantages compared to labelling approaches.

      Reviewer #2: what does the ranking on the right of each volcano plot represent (figure 1 b-e, figure 2a,d,e for example)? top of the most enriched proteins in the mentioned categories? Not very clear when we look on the volcano plot. it must be specified in the legend.

      Response: The numbering these panels is meant to link protein names to the data points on the volcano plots. The order of hits is ranked based on strongest fold enrichment, i.e. from right to center. We will clarify this in the figure legends.

      Reviewer #2: General assessment/Advance: The authors explain in their article that the ChIP exploiting the sequence specificity of nuclease-dead Cas9 (dCas9) to target specific chromatin loci by directly enriching for dCas9 was already published. Here, the novelty of this study lies in the use of LFQ mass spectrometry to optimize the technique and make it easier to handle. Some comparisons with previous papers or data generated by the lab will be interesting to really show the improvement and the advantage to use LFQ and therefore, to highlight better the novelty of the study.

      Response: We thank the reviewer for this assessment and as mentioned above we will include such a comparison table. dCas9 has been used previously in a ChIP-MS approach termed CAPTURE (PMID: 28841410). While this is clearly a landmark paper that illustrated the dCas9 enrichment concept across multiple omics applications (i.e. not limited to proteomics) in their application to telomeres, the authors enriched only 3 out of the 6 shelterin proteins with quite moderate fold enrichments (POT1: 0.99, TERF2: 2.13, TERF2IP: 1.06; in log2 scale). Based on this alone, POT1 and TERF2IP would not have qualified for our cut-off criteria. In addition, while the authors had performed three replicates, detection is only reported in 1-2 out of 3 replicates. While it is difficult to reconstruct statistical values based on the publicly accessible data, it is therefore unlikely that even these 3 proteins would have robustly be considered hits in our datasets. Similarly, using recombinant dCas9 with a sgRNA targeting telomeres that was in vitro reconstituted with sonicated chromatin extracts from 500 million HeLa cells (CLASP; PMID: 29507191) the authors identified only up to 3 shelterin subunits (TERF2, TERF2IP and TPP1/ACD) based on 1 unique peptide each only. For comparison, in our dCas9 ChIP-MS dataset all 6 shelterin subunits are identified with 9-19 unique peptides, contributing to our robust quantification. Even when considering cell line-specific differences (HeLa cells have shorter telomeres and hence provide less biochemical material for enrichment per cell), these comparisons illustrate that prior attempts struggled to robustly replicate even the most abundant telomeric complex members.

      Based on these findings, others had suggested that dCas9 “might exclude some relevant proteins from telomeres in vivo” (PMID: 32152500), implying that dCas9 ChIP-MS might inherently not be feasible including at repetitive regions such as telomeres. Therefore, we believe that our dCas9 ChIP-MS data is a proof-of-concept that the method has the genuine ability to robustly enrich key proteins at individual loci. In concordance with the comment above we will include a comparison table with previous papers and expand on these points in the discussion.

      Reviewer #2: By presenting this technical paper, the authors allow laboratories across different fields to use this technique to gain insights into protein enrichment in specific chromatin regions such as the promoter of a gene of interest or a particular open region in ATACseq in a easier way and with less materials. This paper holds value in enabling researchers to answer many pertinent questions in various fields.

      Response: We again thank the reviewer for this encouraging assessment and we do indeed hope that this manuscript makes a contribution to a much wider use of ChIP-MS approaches as a promising complement to existing genome-wide epigenetics analyses.

      Reviewer #3

      Reviewer #3: Strengths of the study:

      The study is well-structured and provides a robust workflow for the application of ChIP-MS to investigate chromatin composition in various contexts.

      The use of telomeres as a model locus for testing the developed ChIP-MS approach is appropriate due to its well-characterized protein composition.

      The comparison of WT vs KO lines for ZBTB48 is a rigorous way to control for false-positives, providing more confidence in the results.

      The direct comparison of double vs only FA-crosslinking provides valuable insights into the benefit of additional protein-protein crosslinking in ChIP-MS workflows.

      Response: We thank the reviewer for this assessment and we agree that the above are several of the key features of our manuscript.

      Reviewer #3: Areas for improvement: The novelty of the method is more than questionable as both ChIP-MS coupled to LFQ and dCas9 usage for locus-specific proteomics have been previously reported. The fact that the authors directly pulldown dCas9 instead of using a dCas9-fused biotin ligase and subsequent streptavidin pulldown is only a very minor change to previous methods (not even improvement). It would be more accurate for the authors to present their study as an optimization and rigorous validation of existing techniques rather than a novel approach.

      Response: While we appreciate where the reviewer is coming from, it occurs to us that most of the reviewer’s comments equate ChIP approaches with other complementary methods, in particular proximity labelling. The latter is indeed a powerful experimental strategy and in fact we are ourselves avid users. As highlighted to reviewer #1 as well, our manuscript was originally conceived as a shorter report and based on the feedback we will now expand our discussion to more broadly incorporate related approaches.

      However, we would like to stress that dCas9 ChIP-MS and dCas9-biotin ligase fusions are not the same thing and this is not a minor tweak to an existing protocol. While both approaches have converging aims – to identify proteins that associate with individual genomic loci – the experimental workflows differ fundamentally. Biotin ligases use a “tag and run” approach by promiscuously leaving a biotin tag on encountered proteins. Subsequently, cellular proteins are extracted and in fact proteins can even be denatured prior to enrichment with streptavidin beads. While this is an in vivo workflow that (depending on the biotin ligase used) may provide sensitivity advantages, it does not retain complex information. The latter is inherently part of ChIP workflows due to the use of cross-linkers. One obvious future application would be to maintain (= not to reverse as we have done here) the crosslink during the mass spectrometry sample preparation in order to read out cross-linked peptides to gain insights into interactions and structural features. We will now more clearly incorporate such notions into our discussion.

      In addition, we would like to stress that while this reviewer focuses primarily on the dCas9 aspect of our manuscript, we believe that our general ChIP-MS workflow including the combination with label-free quantitation is useful and important already by itself as e.g. recognised by both reviewers #1 and #2.

      Reviewer #3: The authors should more thoroughly discuss previous works using ChIP-MS and dCas9 for locus-specific proteomics. This would give readers a better understanding of how the current work builds on and improves these earlier methods. For a paper that aims on presenting an optimized ChIP-MS workflow it is crucial to showcase in which use cases it outperforms previously published methods.

      E.g., compare locus-specific dCas9 ChIP-MS to CasID (doi.org/10.1080/19491034.2016.1239000) and C-Berst (doi.org/10.1038/s41592- 018-0006-2); how does your method perform in comparison to these?

      Response: Again, while we will now incorporate more extensively comparisons with previous ChIP-MS publications (and the few prior manuscripts that included dCas9) as well as related techniques, we would like to stress that dCas9 ChIP-MS is not the same approach as CasID and C-BERST, which rely on dCas9 fusions to BirA* and APEX2, respectively. dCas9-APEX2 strategies were also published by two additional groups as CASPEX (back-to-back with the C-BERST manuscript; PMID: 29735997) and CAPLOCUS (PMID: 30805613). All of these methods target specific loci with dCas9 and promiscuously biotinylate proteins that are in proximity to the dCas9-biotin ligase fusion protein. As described above, while the application of the BioID principle (PMID: 22412018) to chromatin regions has converging aims with the dCas9 ChIP-MS part of our manuscript, they do not test the same. ChIP carries chromatin complexes through the entire workflow while the CasID approaches are independent of that. This is the same scenario if we were to compare IP-MS reactions (such as the ChIP-MS reactions presented here for endogenous proteins) and BioID-type experiments for proximity partners of the same bait proteins.

      Reviewer #3: Compare likewise the described protein interactomes to previously published interactomes.

      Response: We will add comparisons in form of Venn diagrams with previously published interactomes. However, we would like to stress that a key aspect of our manuscript is the smaller yet rigorous hit lists based on e.g. loss-of-function controls, higher stringencies and specificity. Simply comparing final interactomes remains reductionist relative to the importance of other variables such as experimental design, number of replicates, data analysis etc.

      Reviewer #3: The authors use sgGAL4 as a control for the telomeric targeting of dCas9. The IF results (Fig3b) show that sgGAL4 barely localizes to the nucleus with very faint signals. It would be helpful to use a control with homogenous nuclear localization of dCas9 to further strengthen the author's conclusions.

      Response: dCas9-EGFP in the presence of sgGAL4 localises diffusely to the nucleus as expected. We have here used a very widely used non-targeting sgRNA control that has been originally used for imaging purposes (PMID: 24360272) and has since been used in a variety of studies (e.g. PMID: 26082495, 32540968, 28427715) including a previous dCas9 ChIP-MS attempt (PMID: 28841410). In addition, to the diffuse nuclear, non-telomeric localisation we provide complementary validation of clean enrichment of telomeric DNA specifically in the sgTELO samples. Therefore, we do not see how other non-targeting sgRNAs would provide for better controls or improve our data.

      Reviewer #3: The extrapolation of results from the use of telomeres as a proof-of-concept to other loci is not a given considering the highly repetitive structure of telomeric DNA. The authors should either be more cautious about generalizing the results to other loci or demonstrate that their method can also capture locus-specific interactomes at non-repetitive regions.

      Response: We agree that the adoption of any locus-specific approach to single genomic loci is a steep additional hurdle and warrants rigorous data on well characterised loci with very clear positive controls. We will expand on these challenges in our discussion. However, we would like to stress that we did not make any such statement in our original manuscript apart from simply referring to our telomeric experiment as proof-of-concept evidence that locus-specific approaches are feasible by ChIP.

      Reviewer #3: What are concrete biological insights from this optimized ChIP-MS workflow that previous methods failed to show?

      Response: We explicitly used telomeres as an extensively studied locus with clear positive controls that at the same time allows us to evaluate likely false positives. As such the intention of the manuscript was not to yield concrete biological insights but to develop a new methodological workflow.

      As also highlighted in a response to reviewer #2, based on other prior attempts to enrich telomers in ChIP-like approaches with dCas9 (PMID: 28841410 & 29507191), it had been suggested that dCas9 “might exclude some relevant proteins from telomeres in vivo” (PMID: 32152500), implying that dCas9 ChIP-MS might inherently not be feasible including at repetitive regions such as telomeres. Therefore, recapitulating the set of well-described telomeric proteins was no trivial feat and our ChIP-MS workflow (both targeted and applied to individual proteins) represents a well-validated method to in the future systematically interrogate changes in chromatin composition. As one example at telomeres, this may include chromatin changes upon the induction of telomeric fusions or general DNA damage.

      Reviewer #3: For instance, the authors could compare their mouse and human TERF2 interactomes and discuss similarities and differences between both species.

      Response: We thank the reviewer for this suggestion, but the comparison between mouse and human TERF2 interactomes is not suitable across the datasets that we generated. U2OS is a human osteosarcoma cell line that relies on the Alternative Lengthening of Telomeres (ALT) pathway while our mouse data is based on embryonic stem cells (mESCs) and mouse liver tissue. Even the latter, in contrast to adult human tissue, expresses telomerase. We can certainly still pinpoint (as already done in our original manuscript) individual differences among known factors, e.g. the fact that proteins such as NR2C2 are more abundantly found at ALT telomeres (PMID: 19135898, 23229897, 25723166) vs. the detection of the CST complex as telomerase terminator (PMID: 22763445) in the mouse samples. However, the TERF2 datasets contain hundreds of proteins as “hits” above our cut-offs and a key message of our manuscript is that the majority of them are likely false positives. Here, differences are likely extending to expression differences between U2OS cells, mESCs and liver samples. So while appealing in theory, this cross data set comparison would remain rather superficial and error prone at this point. As a biology focused follow-up study, this would need to be rigorously conceived based on an appropriate choice of human and murine cell line models. In addition, this would likely require the generation of FKBP12-TERF2 knock-in fusion clones to allow for rapid depletion of TERF2 for a clean loss-of-function control since sustained loss of TERF2 leads to chromosomal fusions and eventually cell death in most cell types.

      Reviewer #3: The authors should also describe which interaction partners are novel and try to validate some of these using orthogonal methods.

      Response: We will now highlight more explicitly two proteins, POGZ and UBTF, that are most robustly and reproducibly enriched on telomeric chromatin across datasets, including the U2OS WT vs. ZBTB48 KO comparison (Fig. 2a). However, we would like to abstain from a molecular characterization at this point. As mentioned above, the discovery of novel telomeric proteins is not the focus of this manuscript, which is primarily dedicated to method development. In addition, these type of validations in methods papers are often limited to a few assays (e.g. can 1 or 2 proteins be enriched by ChIP? Do you see some localisation by IF? etc.). However, our research group has a history of publishing in-depth mechanistic papers on the characterisation of novel telomeric proteins (e.g. PMID: 23685356, 28500257, 20639181, doi.org/10.1101/2022.11.30.518500). Therefore, a genuine validation of such factors would require functional insights and clearly warrants independent follow-up work.

      Reviewer #3: Human Terf2 ChIP-MS (Fig1A) seems to be much more specific than the mouse counterpart (Fig1D) (32 TERF2 interactors out of 176 hits in human vs 12 TERF2 interactors out of 500 hits in mouse). Could the authors explain this notable difference?

      Response: As eluded to above, Fig. 1A and 1D cannot be directly compared, starting with the difference in complexity in the input material – cell line vs. tissue. For comparison, the Terf2 ChIP-MS data from mouse embryonic stem cells tallies up to 19 out of 169 hits, which is much closer to the U2OS results. Again, we deem the majority of hits from the TERF2 ChIP-MS data to be false-positives and the more complex input material from mouse livers likely accounts for the difference in these numbers.

      Reviewer #3: The authors used much higher cell numbers than previously published ChIP-MS experiments; while this is understandable for dCas9-based pulldowns, the cell number is expected to be down-scalable for the other IPs (TERF2, ZBTB48, MYB). Since this work primarily describes an optimized Chip-MS workflow, the authors should show that they can reasonably downscale to at least 15 Mio cells per replicate; one way of achieving this could be through digesting on the beads and not in-gel.

      Response: As we will illustrate in the comparison table that was also requested by reviewer 2, our approach does not use higher cell numbers than previous ChIP-MS approaches – quite the contrary. In addition, we would like to highlight that while we state 50 million cells in Fig. 1a, we only inject 50% of our samples for MS analysis to retain a back-up sample in case of technical issues with the instruments. In other words, our workflow is already effectively based on 25 million cells and thereby pretty close to the requested 15 million cells while simultaneously requiring substantially less reagents.

      Importantly, our examples are based on rather lowly expressed bait proteins such as ZBTB48 (not detected within DDA-based proteomes of ~10,000 proteins in U2OS cells). While the workflow can be applied across proteins, exact input numbers might vary depending on the bait protein, e.g. histones and its modifications would likely require less for the same absolute sample enrichment. For instance, PMID 25990348 and 25755260 performed ChIP-MS on common histone modifications but still used 300-800 million cells per replicate. Considering that we worked on substantially less abundant proteins, we here present a workflow with comparably low input samples.

      Reviewer #3: It is not clear from the text or figure what the authors are trying to show in Fig2c. They should either explain this further or take the figure out.

      Response: We are trying to illustrate the following: As in any IP reaction the bait protein is the most enriched protein with very high relative intensities, e.g. TERF2 in the TERF2 ChIP-MS data. Direct protein interaction partners – here the other shelterin members – follow at about 1 order of magnitude lower signal intensities. In contrast, proteins that are enriched via an interaction with the same DNA molecule (i.e. that do not physically interact with the bait protein) such as NR2C2, HMBOX1 and ZBTB48 further trail by at least 1 more order of magnitude. These are information that are not easily visualised within the volcano plots and mainly “buried” within the Supplementary Tables. However, these relative intensities displayed in Fig. 2c clearly illustrate the dynamic range challenge that ChIP-MS poses for proteins that independently bind to the same chromatin fragment. We have now modified our text to make this point more clear.

      Reviewer #3: Was there any benefit in using a Q Exactive HF vs timsTOF flex?

      Response: Yes, measuring the same samples (e.g. the 50% backup mentioned above) on both instruments enriches more telomeric proteins/shelterin proteins in e.g. the dCas9 ChIP-MS data set on the timsTOF fleX. However, given the difference in age of these instruments/technologies between a Q Exactive HF and a timsTOF fleX (in the context of these experiments the equivalent of a timsTOF Pro 2), this is not a fair comparison beyond concluding that a more recent instrument like the timsTOF fleX achieves better coverage and is more sensitive with otherwise comparable measurement parameters. As we did not have the opportunity to run matched samples on e.g. an Exploris 480, we would not want to make claims across vendors. As stated in the discussion we are expecting that even newer generation of mass spectrometers, such as the very recently released Orbitrap Astral or timsTOF Ultra would further improve the sensitivity and/or allow to reduce the amount of input material. Therefore, the main conclusion is that improvements in the mass spec generations improve proteomics data quality and our samples are no exception, i.e. this is not specifically pertinent to our approach.

      Reviewer #3: How did the authors analyze the PTM data? This is not described in the methods section. In addition, it would be important to validate the novel PTMs described for NR2C2.

      Response: We apologise for the oversight and we will add the description of PTMs as variable modifications during our MaxQuant search in the methods section. The originally deposited datasets already include this and we had simply missed this in our methods text.

      While we are not 100% sure to understand the request for validation correctly, we would like to point out that the PTMs on NR2C2 have been previously reported in several high-throughput datasets and for S19 in functional work on NR2C2 (PMID: 16887930). However, the relevance in our data set is as follows: While the PTMs on TERF2 as the bait protein could occur both on telomere-bound TERF2 as well as on nucleoplasmic TERF2, NR2C2 is only enriched in the TERF2 ChIP-MS reactions due to its direct interaction with telomeric DNA. The co-detection of its modifications therefore implies that at least some of the telomere-bound NR2C2 carries these modifications. We showcase this example as an additional angle of how such ChIP-MS datasets can be analysed.

      While the robust, MS2-based detection of these modified peptides in our data set and several other publicly available datasets provides strong evidence that these modifications are genuine, further functional validation would involve rather labour-intensive experiments and resource generation (e.g. phospho-site specific antibodies). We hope that the reviewer agrees with us that this would require an independent follow-up study and that this goes beyond the scope of our current manuscript.

      Reviewer #3: For this kind of methods paper one would expect to see the shearing results of the ChIP-MS experiments since variations in DNA shearing can impact the detection of false-positives in the ChIP-MS experiments

      Response: We will include agarose gel pictures of our sonicates, which we indeed routinely quality controlled prior to ChIP experiments as stated in our methods description.

      Reviewer #3: Overall, the current state of the manuscript neither provides direct evidence that the "optimized" ChIP-MS workflow is better in certain aspects/use cases than previously published methods nor does it provide novel biological insights. At the current state it even cannot be considered as a validation of previously published methods since it does not discuss them.

      Response: We politely disagree with this conclusion. Again, as mentioned above we are under the impression that this reviewer somehow equates our entire manuscript to a comparison with dCas9-biotin ligase fusions.

      Instead, we here provide a workflow for ChIP-MS that incorporates label-free quantification as the experimentally easiest, most intuitive quantification method for non-mass spectrometry experts. This offers a particularly low barrier to entry aimed at making ChIP-MS more widely accessible as a complement to commonly used ChIP-seq applications. Furthermore, we showcase that as a gold standard ChIP-MS – to truly live up to its name – should have the ability to enrich proteins independently binding to the same chromatin fragment. We demonstrated that double cross-linking is critical for these assays and in return illustrate how rigorous loss-of-function controls (both KOs and degron systems) can mitigate prevalent false-positives that are exacerbated due to the cross-linking. Finally, we applied this workflow to different types of endogenous proteins (transcription factors, telomeric proteins) in cell lines and tissue and extend our work to dCas9 ChIP-MS as a targeted method.

    1. Author Response:

      The following is the authors' response to the original reviews.

      We were pleased with the overall enthusiastic comments of the reviewers:

      • Reviewer #1: “This manuscript by Mahlandt, et al. presents a significant advance in the manipulation of endothelial barriers with spatiotemporal precision”

      • Reviewer #2: “The immediate and repeatable responses of barrier integrity changes upon light-on and light-off switches are fascinating and impressive.”

      • Reviewer #3: “, these molecular tools will be of broad interest to cell biologists interested in this family of GTPases.”

      We thank the reviewers for their fair and constructive comments that helped us to improve the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1) This paper is likely to attract a diverse audience. However, the order of data presented in this manuscript can be confusing or challenging to follow for the naive reader. This is because the tool characterization is split into two parts: before the barrier strength assay (selection of optogenetic platform and tool expression) and after (characterization of cell morphology with global and local optogenetic stimulation). Reorganizing the results such that the barrier strength results follows from an understanding of individual cell responses to stimulation may improve the ability of this readership to understand the factors at play in the changes in barrier strength observed when opto-RhoGEFs are activated.

      We appreciate this idea, and we initially structured the paper in the proposed order and then decided, that we wanted to put more focus on the barrier strength results by already presenting them in the second figure. Therefore, we prefer to keep this order of figures.

      2) While the description of the selection of iLID as the study's optogenetic platform is clear, a better job could be done motivating the need for engineering new optogenetic tools for the control of GEF recruitment. Given that iLID-based tools for GEFs of RhoA, Rac1, and Cdc42 already exist, some of which are cited in the introduction, more information on why these tools were not used would be helpful-were these tools tested in endothelial cells and found lacking.

      The original system has the domain structure DHPH-tagRFP-SspB. But we wanted to work with a SspB-FP-GEF construct, which would allow easy exchange of the FP and the DHPH domain. This modular approach allowed us to generate and compare the mCherry, iRFP647 and HaloTag version. We don’t want to claim that we engineered an entirely new optogenetic tool but rather optimized an existing one with different tags. To make this more clear we added : ‘The membrane tag of the original iLID was changed to an optimized anchor. In addition, we modified the sequence of the domains to SspB, tag, GEF to simplify the exchange of GEF and genetically encoded tag. A set of plasmids with different fluorescent tags was created for more flexibility in co-imaging.’

      3) Comment on the reason behind using DHPH vs. DH domains for each GEF is needed.

      We have previously found (and this is supported by biochemical analysis of GEF activity) that the selected domains provide the best activity. We will add reference and the following to the text: ‘Their catalytic active DHPH domains were used for ITSN1 and TIAM1 (Reinhard et al., 2019).  In case of p63 the DH domain only was used, because the PH domain of p63 inhibits the GEF activity (Van Unen et al., 2015) (Fig. 1E).

      4) Since multiple Rho GTPases (e.g., RhoA, RhoB, RhoC) exist and Rho is used as the name of the GTPase family, please use RhoA where applicable for clarity.

      Since the RhoGEFp63 will activate RhoA/B/C we would rather not refer to RhoA only. We will clarify this in the text: ‘Three GEFs were selected, ITSN1, TIAM1 and RhoGEFp63, which are known to specifically activate respectively Cdc42, Rac and Rho and their isoforms.’

      5) A brief comment on the use of HeLa cells for protein engineering and characterization (versus the endothelial cells motivated in the introduction) may be helpful.

      We added the following to the text: ‘HeLa cells were used for the tool optimization because of easier handling and  higher transfection rate in comparison to endothelial cells.

      Minor suggestions:

      In figure 1C, line sections showing intensity profiles before and after protein dimerization might further emphasize the change in biosensor localization.

      We are not a fan of intensity profiles as the profile depends strongly on the position of the line and it basically turns a 2D image in 1D data, for a single image. So, we prefer to stick to the quantification as shown in panel 1B (which shows data from multiple cells).

      Reviewer #2 (Recommendations For The Authors):

      1)The study has analyzed the effects of light-induced activation of the three optogenetic constructs in endothelial cells on their barrier function (electrical resistance) at high cell density and correlated the findings with the cellular overlap-producing effects on endothelial cells cultured at sparse cell density. It should be tried to show these effects at a cell density where these light-induced effects increase electrical resistance. Lifeact with different chromophores in adjacent cells might be useful.

      We had attempted to measure the overlap in a monolayer by taking advantage of the Halotag and the variety of dyes available by staining one pool of cells red with JF 552 nm and the other far red with the JF 635 nm dye. However, the cells need at least 24 h to form a monolayer and by then they had exchanged the dye and red and far red pool could not be distinguished any longer.

      Therefore, we used the Lck-mTq2-iLID construct, which already marks the plasma membrane of the cells. We created a mosaic monolayer of cells expressing mScarlet-CaaX and cells expressing Lck-mTq2-iLID + SspB-HaloTag-TIAM(DHPH). We observed and increase in the overlap between cells under this condition. The results have been added to figure 4 - figure supplement 2I&J. To the text we added:

      'Additionally, cell-cell membrane overlap increased about 20 %, up on photo-activation of OptoTIAM, in a mosaic expression monolayer (figure 4 - figure supplement 2I,J, Animation 22)‘

      2) The authors correctly state that some reports have shown that S1P can increase endothelial barrier function in VE-cadherin independent ways and these are related to Rac and Cdc42. This was also shown for Tie-2 in vitro and even in vitro in the absence of VE-cadherin and should also be mentioned.

      We added the following to the text: ‘Not only S1P promotes endothelial barrier independent from VE-cadherin, also Tie2 can increase barrier resistance in the absence of VE-cadherin (Frye et al. 2015).

      Since a blocking antibody against VE-cadherin was used, a negative control antibody should be tested which also binds to endothelial cells.

      To visualize the cell-cell junctions in the experiment shown in Supplemental Fig 3.1, we added a non-blocking VE-cadherin antibody that is directly labeled with ALEXA 647 and shows normal junction morphology. These experiments already give an indication that the live labeling antibody of VE-cadherin does not disturb the junction morphology. However, when we added the blocking antibody against VE-cadherin, known to interfere with the trans-interactions of VE-cadherin, a rapid disruption of the junctions is observed.

      Additionally, previous work has shown, that VE-cadherin labeling antibody does not interfere with junction dynamics and function (see Figure 2.A, Kroon et al. 2014 ‘Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow’, jove.). We have added the figures below, showing that addition of the control IgG and VE-cadherin 55-7H1 Abs at the timepoint where the dotted line is, did not interfere with the resistance whereas the blocking Ab drastically reduced resistance. We have added this reference to the results. ‘Previous work has shown the specific blocking effect of this antibody in comparison to the VE-cadherin (55-7H1) labeling antibody (Kroon et al., 2014).’

      Author response image 1.

      Reviewer #3 (Recommendations For The Authors):

      Additional comments for the authors:

      1) The introduction is very long and would benefit from a more concise emphasis on the information required to put the work and results in context and understand their importance.

      Comment: we appreciate the comment of the reviewer. However, we wish to introduce the topic and the tools thoroughly and therefore we chose to keep the introduction as it is.

      2) The N-terminal membrane-binding domain does not homogeneously translocate to the plasma membrane, since lck is a raft-associated kinase. Please comment on this.

      In our hands, the Lck is among the most selective and efficient tags for plasma membrane localization (https://doi.org/10.1101/160374). We do observe homogeneous translocation, but our resolution is limited to ~200 nm and so we cannot exclude that the Lck concentrates in structures smaller than 200 nm. Given the robust performance of the lck-based iLID anchor in the optogenetics experiments, we think that the Lck anchor is a good choice.

      3) Figure 1D is not very clear. What does 25 or 36% change mean? If iLID tg is conjugated to these sequences, its cytosolic localization should be reduced versus iLID alone. Is this what the graph wants to express? If so, please, label properly the ordinate axis in the graph (% of non-tagged iLID values?)

      The graph is representing the recruitment efficiency of SspB to the plasma membrane for the two different membrane tags, targeting iLID to the plasma membrane. The recruitment efficiency was measured by the depletion of SspB-mScarlet intensity in the cytosol, up on light activation, and represented as a change in percentage.

      We added the following to the title of the graph_: SspB recruitment efficiency for Plasma Membrane tagged iLID._

      4) Supplemental figures in the main text. Fig S1D in the text refers to data in Fig S1E and Fig S1E is supposed to be Fig S1F? (page 11).

      That is correct. The mistakes have been corrected (and this is now renamed to figure 1 - figure supplement 1E and 1F).

      5) Figure 3. Contribution of VE-cadherin. Other junctional complexes, such as tight junctions may also intervene. However, these results would also suggest that cell-substrate adhesion rather than cell-cell junctions may modulate the barrier properties, as it has been previously demonstrated for example by imatinib-mediated activation of Rac1 (Aman et al. Circulation 2012). The ECIS system used to measure TEER in the quantitative barrier function assays can modulate these measurements and discriminate between paracellular permeability (Rb) and cell-substrate adhesion (alpha). Please, provide whether the optogenetic modulation of these GTPases does indeed regulate Rb or alpha.

      The measured impedance is made up of two components: capacitance and resistance. At relatively high AC frequencies (> 32,000 Hz) more current capacitively couples directly through the plasma membranes. At relatively low frequencies (≤ 4000 Hz), the current flows in the solution channels under and between adjacent endothelial cells’ (https://www.biophysics.com/whatIsECIS.php).

      Therefore, the high frequency impedance is representing cell-substrate adhesion whereas the low frequency responds more strongly to changes in cell-cell junction connections.

      We only measured at 4000 Hz, representing the paracellular permeability. We chose a single frequency to maximize time resolution.

      We have added this extra comment to the legend of the figure: ‘(B) Resistance of a monolayer of BOECs stably expressing Lck-mTurquoise2-iLID, solely as a control (grey), and either SspB-HaloTag-TIAM1(DHPH)(purple)/ ITSN1(DHPH) (blue) or p63RhoGEF(DH) (green) measured with ECIS at 4000 Hz, representing paracellular permeability, every 10 s.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      This manuscript shows the involvement of both the proteasome and autophagy pathways in the turnover and therefore regulation of ARF7, an auxin-responsive factor involved in lateral root formation. The authors bring crucial information for the understanding of how autophagy is involved in auxin-signaling.

      Major comments:

      The key conclusions appear overall convincing yet this reviewer would strongly advise to take into account the following remarks for a clearer and more convincing line of inquiry. This reviewer also believes that the additional experiments could be performed relatively fast apart for the point 9) where the establishment of a homozygous line could take 6 months or more.

      1. Figure 1 & Figure EV1: The nature of the loading control should be stated as it appears to be a specific protein detected by immunoblotting. Furthermore, if the authors wish to make a stronger point as to whether ARF7 is degraded by the proteasome (considering the reserves mentioned in the Discussion section), I would recommend to perform the same assays as in Figure 1 but using an alternative proteasome inhibitor such as Bortezomib and to include a proteasome subunit KO mutant such as rpt2a-2.
      2. The statement "The experiment revealed that both NBR1 (Fig 2A) and ATG8a (Fig 2B), but not free YFP, co-immunoprecipitated with ARF7-Venus." Is false as the authors did not try to co-immunoprecipitate free YFP with ARF7-Venus, they used a free YFP expressing line as a negative control for their GFP-immunoprecipitation (IP). It should further be noted that although NBR1 is detected in their free YFP IP, ATG8 is at very low levels so it should be stated that they see an enrichment of ATG8 in their ARF7-Venus IP.
      3. Authors state "we were unable to detect ARF7-Venus in the input of both Co-IPs which can likely be explained by the fact that ARF7-Venus is under the control of its native promoter and thus lowly expressed.", yet putative degradation products (i.e. a smear) can be observed in the input of Figure 2A, similarly to the bands observed in both IP blots. It would be interesting to repeat these co-IPs with proteolysis inhibitors such as MG132 or Pepstatin & E64-d to pinpoint the proteolytic machinery at the origin of ARF7-Venus degradation in the IPs.
      4. Figure 2: The use of multicolor BiFC "mcBiFC" should be stated as such for an easier understanding of the reader. It would be helpful for the reader if the "GFP" signal resulting from the complementation would be highlights thanks to some arrows. Moreover, a western blot to verify the expression levels should be performed since every construct has an epitope tag as stated in Gehl et al. 2009.
      5. General remark: all drug/chemical treatments performed in this study use a "non-treated" negative control, yet it should be pointed out that the correct corresponding negative controls should have the solvent used to dissolve the respective drug/chemical in order to exclude any effect of the solvent or vehicle.
      6. Figure 4, Figure EV4: Considering the variability in size and staining of the Rubisco large-subunit in the 4 immunoblot panels, I would suggest blotting with another antibody such as anti-tubulin or anti-histone 3 as a loading control for a more convincing quantification. Moreover, the nature of the staining used to stain the Rubisco large-subunit should be stated. The authors also state "differences in ARF7 accumulation in atg5 compared to Col-0" yet no immunoblot is shown where both genotypes are present on the same membrane, in order to verify this statement.
      7. Figure 5: In regards to LR density measurements, I recommend reading "Quantitative Analysis of Lateral Root Development: Pitfalls and How to Avoid Them" by Dubrovsky & Forde (Plant Cell, 2012) for a more robust method of evaluating lateral root density.
      8. Discussion: The authors state that "autophagy blockage leads to increased ARF7 cytoplasmic condensates". To support this statement, I recommend crossing pARF7::gARF7-Venus into atg mutants and analysing the localization and the fluorescence intensity of ARF7-Venus in specific parts of the root, as well as performing immunoblotting in order to assess overall ARF7 accumulation in autophagy deficient genetic backgrounds.

      Minor comments

      1. The following statement: « In contrast, plants are able to tolerate disruption of autophagy activity without major penalties" holds true to A. thaliana of some other plants but it must be noted that in O. sativa, autophagy-deficiency may lead to male sterility, which should be considered a major penalty for evolutionary fitness. For review see Norizuki et al. 2020 (Front. Plant Sci.).
      2. Figure 2: The molecular weights appear to be potentially misannotated as free YFP aligns with the 35 kDa marks although it should appear around 27 kDa.
      3. Figure EV3: There are 2 merged image columns, the furthest one to the right appears to include a DIC or Trans image on top of both fluorescence channels. It would be more helpful for the reader if the DIC or Trans image was shown with the overlay of fluorescent channels in order to assess the effect of 10% 1,6-hexandiol on the plant tissue. Moreover, demonstrating the absence of tissue damage or cell-death after 1,6-hexandiol treatment would be a plus.
      4. There is a typo throughout the manuscript: ZT should be "Zeitgeber" not "zeitberg".

      Significance

      This manuscript has the quality of describing the proteolytic balance of ARF7 and thereby, the involvement of the autophagy pathway in regulating auxin-signaling components. This research adds on to the growing interest in how autophagy participates in developmental cues, and how hormonal signaling is regulated throughout the plant.

    1. Author Response

      Reviewer #1 (Public Review):

      Ichinose et al., utilize a mixture of cultured hippocampal neurons and non-neuronal cells to identify the role of the transmembrane protein teneurin-2 (TEN-2) in the formation of inhibitory synapses along the dendritic shaft. First, they identify distinct clusters of gephyrin that are either actin-rich, microtubule-rich or contain neither actin nor microtubules and find that TEN-2 is enriched in microtubule-rich gephyrin clusters. This leads the authors to hypothesize that TEN-2 recruits microtubules (MTs) through the plus end binding protein EB1 when successfully matched with a pre-synaptic partner, and perform a variety of experiments to test this hypothesis. The authors then extend this finding to state quite strongly throughout the paper, including in the title, that TEN-2 acts as a signpost for the unloading of cargo from motor proteins without providing any supporting evidence. They use previous work to justify this conclusion, but without actual experiments to back up the claim, it seems like a reach.

      The strength of the paper lies in the various lines of evidence that the authors employ to assess the role of TEN-2 in MT recruitment and synaptogenesis. They have also been very thorough in validating the expression and functionality of various knock-in constructs, knock-down vectors and antibodies that were generated during the study. However, there are some discrepancies in the findings that have not been addressed satisfactorily, as well as some instances where the data presented is not of sufficient quality to support the conclusions derived from them.

      Firstly, we would like to express our sincere appreciation to Reviewer #1 for providing valuable feedback. We have carefully considered Reviewer #1 suggestions and have made significant improvements to the manuscript in response. Additionally, we have conducted an additional experiment to address the missing aspects identified in the initial submission. Furthermore, we have refined the focus of our investigation by narrowing down the number of aspects we aimed to prove and instead increased the number of confirmatory experiments. Specifically, we decided to give up on two aspects: the relationship between kinesins and cargo, and the immobilization of TEN2 in synapses (i.e., extracellular binding of TEN2). Instead, we focused on emphasizing the role of TEN2 as a platform for exocytosis. These modifications have significantly enhanced the quality of our research.

      1) The emphasis placed on the clustering analysis presented in figure 1 and the two associated supplementary figures is puzzling, since the conclusion derived from the results presented would be that Neuroligin 2 (NLGN2) is the strongest candidate to test for a relationship to MT recruitment at inhibitory post synapses. Instead, the authors cite prior evidence to exclude NLGN2 from subsequent analysis and choose to focus on TEN2 instead.

      We fully agree on the importance of studying NLGN2, as highlighted in the DISCUSSION section (line 463-471). While the cluster analysis suggests a correlation between NLGN2 and microtubules, previous research has reported microtubule localization outside the NLGN2 region (Uchigashima et al., 2016). However, this interpretation is based on EM observations at a single time point, so it will be important to evaluate it over time. Conversely, we had believed that further investigations are needed to explore the potential interactions between TEN2 and microtubules, because of its relatively limited characterization (line 156-161).

      2) It is difficult to reach the same conclusion as the authors from the images and intensity plot shown on Figure 2 E and F. While there seems to be an obvious reduction in expression levels between the TEN2N-L and TEN2TM constructs, neither seem to co-localize with EB1.

      As Reviewer #1 pointed out, the previous plots on Figure 2 were of very poor quality. Due to the dynamics of microtubules, evaluating interactions using fixed cells has limitations. Therefore, we decided to shift to live-imaging. Firstly, we observed a tendency for EB3 comets to pause at inhibitory postsynapses (Figures 1D-H). This suggests the presence of a microtubule recruiter at inhibitory synapses. Next, in dendrites expressing TEN2N-L, the velocity of EB3 comets was significantly faster compared to dendrites expressing TEN2TM or TEN2N-L2mut (Figures 7A-E). This suggests that the dominant-negative effect of TEN2N-L inhibits the function of endogenous microtubule recruiters. Additionally, the interaction between TEN2 and EB1/3 has been confirmed by GST pull-down (Figure 6A). Based on these reasoning, we propose that TEN2 present in inhibitory synapses plays a role as a microtubule recruiter through its interaction with EB1/3.

      3) The authors mimic the activity of TEN-2 at the inhibitory post synapse in non-neuronal cells by immobilizing HA- tagged TEN constructs in COS-7 cells as a proxy for synaptic partner matching. Using this model, they find that by immobilizing TEN2N-L, which contains EB1 binding motifs, MTs are excluded from the cell periphery (Figure 3D). This contradicts their conclusion that MTs are recruited through EB1 by TEN-2 on synaptic partner matching. Later in the paper, when they use the same TEN2N-L construct as a dominant negative in neuronal cells, they find that MTs are recruited the membrane, even if TEN2N-L is not immobilized by synaptic partner matching (Figure 6C). Taken together, these findings call into question the sequence of events driven by TEN-2 during synaptogenesis.

      We believe that the differences in the results between the COS-7 and neuron experiments are influenced by variations in the intracellular protein composition and distribution between COS-7 cells and neurons. Therefore, we consider it inappropriate to directly apply the results from COS-7 to neurons. Additionally, we attempted to replicate the experiments in neurons; however, it is worth mentioning that the culture of neurons on antibodies led to a significant decrease in cell viability. As a result, we have decided to withdraw the experiment of immobilized TEN2 using antibodies.

      4) It is unclear how the authors could conclude that TEN-2 is at the semi-periphery (?) of inhibitory post synapses from the STORM data that is presented in the paper. Figure 4D and 4F show comparisons of Bassoon and TEN-2 localization vs TEN-2 and gephyrin, but the image quality is not sufficient to adequately portray a strong distinction in the distance of center of mass, which is also only depicted for the TEN2-Gephyrin pair and not the TEN2-Bassoon pair in Figure 4J.

      The quality limitations of attempting a three-color dSTORM of TEN2-bassoon-gephyrin were addressed by modifying it to a two-color dSTORM. To confirm this modification, a two-color STORM was performed using VGAT instead of Bassoon (Figure 3E). The statement that TEN2 localizes to half of the synapse is supported by the observation of TEN2-gephyrin in the postsynaptic area. This observation aligns with the localization of microtubules at the postsynapse as observed by electron microscopy (Gulley & Reese, 1981; Linsalata et al., 2014).

      5) The authors do not satisfactorily explain why gephyrin appears to have completely disappeared in the TEN2N-L condition (Figure 6A), instead of appearing uniformly distributed as one would expect if MTs are indiscriminately recruited to the membrane by the dominant negative construct that remains unanchored.

      As pointed out by Reviewer #1, it needed to be adequately proven, and we mistakenly conflated dominant-negative and gain-of-function effects. However, through the examination of live imaging of EB3, observation of the localization of gephyrin, and the additional investigation of GABAAR localization in neurons expressing partial domains of TEN2, we found that TEN2N-L functions as a dominant-negative, inhibiting the microtubule recruitment function of endogenous TEN2 (Figure 7). On the other hand, it does not exhibit a gain-of-function effect in inducing exocytosis of GABAAR because both gephyrin and GABAAR were found to be reduced in the neurons expressing TEN2N-L (Figure 7F-H). Therefore, we have corrected this point.

      6) In a similar critique to that of Figure 2E and F, the distinction that the authors wish to portray between the effect of TEN2TM and TEN2N-L constructs on EGFP-TEN-2 and MAP2 colocalization (Figure 6 E and F) appear to be driven by a difference in overall expression levels of EGFP-TEN2 rather that a true difference in localization of TEN-2 and MTs.

      Regarding the previous co-localization of TEN2 and microtubules after permeabilization with saponin, we have removed it from the analysis because it is not possible to perform accurate quantitative analysis in this case. We speculate that this is a combination of two factors: the variation in transfection efficiency and the inherent variability in permeabilization between neurons. Specifically, it is particularly challenging to standardize and quantify the variability in permeabilization. Instead, the current version proposes TEN2-MT interaction via EBs by live imaging of EB3 in neurons expressing each partial domain. As observed in COS-7 cells where EB was overexpressed, whether TEN2 engages in continuous binding with microtubules or if it is a transient interaction remains an interesting topic for future investigation. We have mentioned this in the DISCUSSION section as well (line 415-422).

      Reviewer #2 (Public Review):

      Maturation of inhibitory synapses requires multiple vital biological steps including, i) translocation of cargos containing GABAARs and scaffolds (e.g. gephyrin) through microtubules (MTs), ii) exocytosis of inhibitory synapse proteins from cargo followed by the incorporation to the plasma membrane for lateral diffusion, and iii) incorporation of proteins to inhibitory synaptic sites where gephyrin and GABAARs are associated with actin. A number of studies have elucidated the molecular mechanisms for GABAARs and gephyrin translocation in each step. However, the molecular mechanisms underlying the transition between steps, particularly from exocytosis to lateral diffusion of inhibitory proteins, still need to be elucidated. This manuscript successfully characterizes three stages of inhibitory synapses during maturation, cluster1: an initial stage that receptors are being brought in and out by the MT system; cluster2: lateral diffusion stage; cluster 3: matured postsynapses anchored by gephyrin and actin, by quantifying the abundance of MAP2 or Actin in inhibitory synapse labeled by gephyrin. Importantly, the authors' findings suggest that TEN2, a trans-synaptic adhesion molecule that has two EB1 binding motifs, plays an important role in the transition from clusters 1 to 2, and inhibitory synapse maturation. The imaging results are impressive and compelling, these data will provide new insights into the mechanisms of protein transport during synapse development. However, the present study contains several loose ends preventing convincing conclusions. Most importantly, (1) it remains more TEN2 domain characterization on inhibitory synapse maturation, (2) further validation of the HA knock-in TEN2 mouse model is required, and (3) it requires additional physiology data that complement the authors' findings.

      First we would like to thank Reviewer #2 very much for the efforts and numerous suggestions. While it is highly appealing to comprehensively explain the function of a single synapse organizer in a step-by-step manner during synapse formation, we believe that it requires the identification of changing binding partners at each step, which is currently a challenging task. Therefore, in this paper, we have focused solely on the interaction between TEN2 and microtubules. As a result, we have discovered that TEN2 provides a platform for the exocytosis of GABAR, and this process relies on the interaction between TEN2 and microtubules. The analysis of the immobilization of TEN2, which was included in the previous version, will be part of a future publication. We also plan to continue detailed analysis of other domains. Thus, issues remain regarding the analysis of TEN2, but in order to confirm what is happening in just specific one step, we have made significant revisions in this revised manuscript, including analysis in HA knock-in neurons and electrophysiological analysis. We would greatly appreciate it if Reviewer #2 would reconsider the revised manuscript.

      Reviewer #3 (Public Review):

      In this paper, Ichinose et al. examine mechanisms that contribute to building inhibitory synapses through differential protein release from microtubules. They find that tenurin-2 plays a role in this process in cultured hippocampal neurons via EB1 using a variety of genetic and imaging methods. Overall, the experiments are generally designed well, but it is unclear whether their findings offer a significant advance. The experimental logic flow and rational difficult for readers to follow in the manuscript's current form.

      Strengths:

      1) The experiments are generally well designed overall, and appropriate to the questions posed.

      2) Several experimental methods are combined to validate key results.

      3) Use of cutting-edge technologies (i.e. STORM imaging) to help answer key questions in the paper.

      We thank Reviewer #3 for reviewing our manuscript. We sincerely appreciate the valuable feedback. The previous version of the manuscript contained numerous claims, some of which were not thoroughly validated, making it prone to reader misinterpretation. Based on the results of additional experiments, we have revised the manuscript by focusing solely on the findings that were adequately confirmed, specifically highlighting the role of TEN2 in providing a platform for GABAAR exocytosis. We are grateful for your time and effort in revisiting the revised manuscript, and we believe it meets the necessary requirements.

      Weakness:

      1) Simplifying the text and story line would go a long way to ensure the study results are more effectively communicated. Additional specific suggestions are provided in the recommendations for the authors.

      Thank you for providing valuable suggestions. Based on the results of additional experiments, we have revised our claims accordingly.

      2) The introduction overall would benefit from simplification so that the reader is given only the information they need to know to understand the question at hand.

      We selected essential information from previous studies that we believe readers should be aware of before reading our manuscript.

      3) MT dynamics are important for paper results, but the background in the paper does not appropriately introduce this topic.

      We have provided some information in lines 57-64 of the INTRODUCTION section.

      4) It is a bit unclear from the abstract and introduction how the findings of this paper have significantly advanced the field or taught something fundamentally new about how inhibitory synapses are regulated.

      Thank you for your valuable feedback. In the new version, we have thoroughly examined and emphasized the significance of our research findings.

      5) Figure 1 - Line 109, it is obscure why "it was found appropriate" to divide the data into three clusters. This section would better justified by starting with cellular functions and then basing the clusters on these functions.

      As Reviewer #3 pointed out, we have revised the classification to be based on past knowledge rather than data-driven.

      6) The proteomic screen and candidate selection is not well justified and the logic steps for arriving at TEN2 are a bit weak. Again, less is more here.

      As Reviewer #3 mentioned, we have made revisions in the new version. We have not completely excluded NLGN2, but rather believe that further examination and consideration of NLGN2 are necessary going forward (lines 463-471).

      7) Fig. 2 - The authors should consider whether EB1 overexpression would have functional consequences that alter the results and colocalization.

      The previous Figure 2, which is now Figure 6, is intended to demonstrate protein-protein interactions rather than provide functional implications. It is likely that the original function of EB1, which should be located at the plus ends of MTs, is compromised by its presence in the MT lattice. As an alternative method to demonstrate protein-protein interactions, we have also conducted GST pull-down assays (Figure 6A). From these two experimental results, we infer that the intracellular domain of TEN2 interacts with EB1. However, we have not discussed the functional implications of the TEN2-EB1 complex based on these experimental findings. The function was discussed from the results performed in Figure 7.

      8) Fig. 3 - Is immobilization of COS cells using HA tag antibodies a relevant system for study of these questions?

      We agree with this suggestion regarding the replication of the experimental systems to neurons, as the results have been successful in COS-7 cells. However, when we attempted to culture neurons on antibody-coated cover glass, the survival rate was significantly reduced. We were unable to directly replicate these systems to neurons. Therefore, we have decided to withdraw this claim from the publication.

      9) Fig. 4 - The authors should confirm post-synaptic localization in vivo (brain).

      We agree with this suggestion. Currently, our research group does not have an effective immune-labeling method for synaptic protein in the brain. This is a future challenge that we should address.

      10) Figure 4D-E - The way the STORM results are presented is confusing. The authors state is shows that TEN2 is postsynaptic but before this say that the Abs are the same size as the synaptic cleft so that the results cannot be considered conclusive. This issue should be resolved.

      To improve the quality of our dSTORM experiments, we abandon three color dSTORM and instead focused on two color dSTORM to draw conclusions (Figure 3E). We utilized VGAT to detect presynaptic sites. VGAT is an inhibitory presynaptic-specific molecule that is present at the center of presynaptic terminals, eliminating concerns about the size of the antibodies used.

      11) Figure 5 -The authors should examine the levels of gephyrin relative to the levels of knockdown given the knockdown variability.

      Thank you for your suggestion. As shown in Figure 4D of the current version, we were able to simultaneously quantify the knockdown efficiency and synaptic density. We obtained results indicating a decrease in synaptic density associated with a decrease in TEN2 expression levels.

      12) Functional validation of a reduction in inhibition following TEN2 manipulation would elevate the paper.

      We conducted live imaging of EBs to measure the changes when introducing the partial domain of TEN2 (Figures 7A-E). By observing the decrease in synaptic density and the impaired MT recruitment function of endogenous TEN2 due to the dominant-negative effect of TEN2N-L, we concluded that the TEN2-MT interaction serves as the platform for GABAR exocytosis.

      13) Figure 6E - The expression levels of TEN2TM and TEN2NL are important to the outcome of these experiments. How did the authors ensure that the levels of two proteins were the same to begin with?

      As it was also mentioned by Reviewer #1, we reply with the same answer as follows: Regarding the previous co-localization of TEN2 and microtubules after permeabilization with saponin, we have removed it from the analysis because it is not possible to perform accurate quantitative analysis in this case. We speculate that this is a combination of two factors: the variation in transfection efficiency and the inherent variability in permeabilization between neurons. Specifically, it is particularly challenging to standardize and quantify the variability in permeabilization. Instead, the current version proposes TEN2-MT interaction via EBs by live imaging of EB3 in neurons expressing each partial domain. As observed in COS-7 cells where EB was overexpressed, whether TEN2 engages in continuous binding with microtubules or if it is a transient interaction remains an interesting topic for future investigation. We have mentioned this in the DISCUSSION section as well (line 415-422).

    2. Reviewer #3 (Public Review):

      In this paper, Ichinose et al. examine mechanisms that contribute to building inhibitory synapses through differential protein release from microtubules. They find that tenurin-2 plays a role in this process in cultured hippocampal neurons via EB1 using a variety of genetic and imaging methods. Overall, the experiments are generally designed well, but it is unclear whether their findings offer a significant advance. The experimental logic flow and rational difficult for readers to follow in the manuscript's current form.

      Strengths:<br /> 1) The experiments are generally well designed overall, and appropriate to the questions posed.<br /> 2) Several experimental methods are combined to validate key results.<br /> 3) Use of cutting-edge technologies (i.e. STORM imaging) to help answer key questions in the paper.

      Weakness:<br /> 1) Simplifying the text and story line would go a long way to ensure the study results are more effectively communicated. Additional specific suggestions are provided in the recommendations for the authors.<br /> 2) The introduction overall would benefit from simplification so that the reader is given only the information they need to know to understand the question at hand.<br /> 3) MT dynamics are important for paper results, but the background in the paper does not appropriately introduce this topic.<br /> 4) It is a bit unclear from the abstract and introduction how the findings of this paper have significantly advanced the field or taught something fundamentally new about how inhibitory synapses are regulated.<br /> 5) Figure 1 - Line 109, it is obscure why "it was found appropriate" to divide the data into three clusters. This section would better justified by starting with cellular functions and then basing the clusters on these functions.<br /> 6) The proteomic screen and candidate selection is not well justified and the logic steps for arriving at TEN2 are a bit weak. Again, less is more here.<br /> 7) Fig. 2 - The authors should consider whether EB1 overexpression would have functional consequences that alter the results and colocalization.<br /> 8) Fig. 3 - Is immobilization of COS cells using HA tag antibodies a relevant system for study of these questions?<br /> 9) Fig. 4 - The authors should confirm post-synaptic localization in vivo (brain).<br /> 10) Figure 4D-E - The way the STORM results are presented is confusing. The authors state is shows that TEN2 is postsynaptic but before this say that the Abs are the same size as the synaptic cleft so that the results cannot be considered conclusive. This issue should be resolved.<br /> 11) Figure 5 -The authors should examine the levels of gephyrin relative to the levels of knockdown given the knockdown variability.<br /> 12) Functional validation of a reduction in inhibition following TEN2 manipulation would elevate the paper.<br /> 13) Figure 6E - The expression levels of TEN2TM and TEN2NL are important to the outcome of these experiments. How did the authors ensure that the levels of two proteins were the same to begin with?

    1. Recommended next afrika-kulturtage-forchheim afrika-kulturtage-forchheim Share… Share this tag: Mbaqanga music
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      __Response: __Thank you to all the reviewers for their helpful efforts on behalf of our manuscript. At current, we have addressed most of the reviewers’ major comments, including providing additional replicates for many experiments and clarifying ambiguous points in the text. Related data, figures and text have been adjusted accordingly. We believe that these changes have improved our manuscript, both strengthening our main conclusions and clarifying ambiguous text.

      Several still-ongoing experiments are elaborated below. These experiments are well within the abilities of our lab and can be completed in short order.

      Specific responses to the individual concerns addressed by the reviewers are outlined below.

      Please feel free to contact me if I can be of any help in the decision process.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      • *

      [Reviewer 1]

      Comment: Across the manuscript, NIX levels appear to be unresponsive to most treatments in the MDA-MB-231 line, including hypoxia treatment. This is an unusual result and raises questions about the role of NIX in MDA-MB-231 line, mainly that BNIP3 is the primary driver of mitophagy in this system. Indeed, Figure 7D indicates that there is very little mitophagy contribution by NIX since knockout of BNIP3 is sufficient to abolish mitophagy almost completely. Therefore, the effects seen on mitophagy following EMC3 knockout in Figure 7 might be smaller in a line that is responsive to NIX mitophagy. It would be beneficial to analyse basal mitophagy flux in an additional cell line, for example U2OS (FigS1E) in which NIX is responsive to hypoxia.

      Response: Thank you for bringing this intriguing insight to our attention. We have seen that EMC3 knockout prevents lysosomal delivery of BNIP3 in U2OS cells (Fig S2D). However, we don’t know what the effects on mitophagy are in U2OS, or the extent to which mitophagy is dependent on BNIP3 and/or NIX. To test this, we will perform the suggested experiment, taking mt-Keima expressing U2OS cells testing the role of NIX and/or BNIP3 in mitophagy.

      Comment: Following on from comment 1 above, Figure 7 would benefit with an analysis of hypoxia (or DFP, or cobalt chloride) stimulation of mitophagy to assess whether mitophagy levels are higher in EMC3 KOs. The authors argue that BNIP3 is trafficked to the ER during mitophagy and is not turned over by mitophagy itself, it would therefore be interesting to test if BNIP3 is prevented from being removed from mitochondria whether this would affect the rate or levels of mitophagy under stimulating conditions.

      • *

      __Response: __To address this question, we will perform mitoflux analysis on EMC3 KO cells +/- hypoxia.

      Comment: Figure 4B: The localisation of tf-BNIP3 is reminiscent of ER in BTZ treated samples. How much of the protein is on mitochondria in the presence of BTZ? Does MLN4924 cause a similar issue?

      __Response: __To address this question, we will perform fluorescence microscopy of tf-BNIP3 cells co-expressing mito-BFP under these treatments and utilize our Coloc2 plugin pipeline to monitor correlation.

      • *

      Comment: Can the authors assess whether BNIP3 that is on mitochondria is transferred to the ER (perhaps through photoswitchable GFP-BNIP, activated on mitos and then observe its transfer to ER)? This seems important in order to address the possibility that BNIP3 that is being turned over by the endolysosome is being delivered directly to the ER.

      • *

      __Response: __This is an interesting question and a curiosity also shared by Reviewer #2. To test this hypothesis, we will utilize a photo-switchable Dendra2 fluorophore to track BNIP3 in the cell via microscopy.

      • *

      [Reviewer #2]

      Comment: How is BNIP3 inserted into the outer membrane? A previous study from the Weissman lab proposed that MTCH2 serves as insertase. The authors did not mention MTCH1 and MTCH2 in context of Fig. 2B. Were these proteins not found? Did the authors test the relevance of MTCH2 in their assay? This aspect should be addressed and mentioned.

      __Response: __Thank you for the insight and suggestion. We were intrigued when the Weissman/Voorhees paper characterizing MTCH1/2 was published. Consistent with their findings, MTCH2 was found in the “suppressor” population of our tf-BNIP3 CRISPR screen, but given our 0.5-fold change threshold, the gene was not validated (fold change value = 0.46, Table S1). We suspect the lack of significance stems from the redundancy with MTCH1. Consequently, we would hypothesize that MTCH1/2 are the responsible insertases. To formally address this suggestion, we plan to genetically perturb MTCH1/2 and look at BNIP3 localization and mitophagy.

      • *

      Comment: The authors generated an interesting BNIP3 mutant with a C-terminal Fis1 anchor. This variant is constantly located in the outer membrane (which is shown here). The physiological consequence of the constitutive distribution on mitochondria is however only superficially studied. The authors should characterize this interesting mutant in some more depth.

      • *

      __Response: __In the original manuscript, we characterized BNIP3(Fis1TMD) for lysosomal delivery and mitophagy. Going forward, we will perform Seahorse oxygen consumption experiments and mitochondrial network analysis to view the physiological consequences of constitutive expression of BNIP3(Fis1TMD) on the outer membrane.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      [Reviewer #1]

      Comment: Continuing from comment 2, given that the authors conclude that BNIP3 is not turned over by mitophagy, can they examine whether BNIP3 is excluded from sealed mitophagosomes?

      __Response: __We have softened the wording of our conclusions to reflect that the vast majority of BNIP3 lysosomal degradation is by this alternative pathway and not mitophagy. However, we do not wish to completely dismiss that BNIP3 is present on mitophagosomes. Rather, if mitophagosomes contain BNIP3, they seemingly account for only a very small portion of BNIP3 degradation in the cell, to the extent that it is not easily detectable by our assays (Lines 414-419). Definitively identifying whether BNIP3 is in sealed mitophagosomes will be part of future studies using CLEM or FIB-SEM techniques.

      Comment: Is the BNIP3(FisTMD) expressed to equivalent levels to WT BFP-BNIP3? Given that theFis1 form of BNIP3 cannot traffic to endolysosomes, its levels might be higher. In addition, overexpression of the BNIP3-Fis construct was used to make the argument that dimerization is not important for mitophagy. But the authors should also take into account the possibility that with overexpression, the potential efficiency afforded to mitophagy via dimerization of endogenous proteins may be negated, and therefore hidden. Given this, I don’t think that the authors can confidently conclude that dimerization does not contribute to mitophagy, and that instead its main role is ER-endolysosomal turnover of BNIP3.

      __Response: __We thank the reviewer for pointing out the possible over-interpretation of our data. Overexpression is an important caveat to consider. We would expect the Fis1 form of BNIP3 to be higher in protein levels given its deficiency in endolysosomal trafficking. Still, as the reviewer points out, over-expression could be mitigating the effect of our dimerization mutants. This caveat is now discussed in the manuscript and our interpretations regarding this fact have been greatly softened (Lines 373-376, Lines 449-462).

      • *

      Comment: Please include molecular weight markers for all western blots.

      • *

      __Response: __All western blots have now been labeled with molecular weight markers.

      Comment: Figure 5A-G: These data do not make a convincing case for the role of dimerization and are very difficult to follow. Only the mislocalized S172A mutant was responsive to Baf treatment, while the LG swap mutant which is mitochondrial and cannot dimerize is unaffected by Baf treatment. Figure 5H-I utilize a construct of BNIP3 that is missing most of the protein and which has very low turnover (Figure 5B). Unfortunately these results don’t make a highly convincing case about the biology of native, full length, mitochondrial BNIP3. The authors are advised to either strengthen the dimerization argument, or perhaps lighten the language around the main conclusions from these data.

      Response: __Thank you for bringing the lack of clarity to our attention. Both dimer mutants of BNIP3 (S172A and LG swap) are insensitive to Baf-A1 treatment. These results hold for full-length BNIP3 using either the tf (__Fig 5D) or IRES (Fig 5I) reporter. To demonstrate that defects in lysosomal transport were due to dimerization defects (and not other, unanticipated effects of the mutations), we looked at whether chemically induced dimerization could reverse the trafficking defects. Indeed, forced dimerization of the ER-restricted variant rescued ER-to-lysosome trafficking. From this, we conclude that that dimerization is a critical facet of BNIP3 trafficking to the lysosome.

      We have re-worked the relevant text (both in results and discussion) to clarify major points and lighten the language around the conclusions from these data (described below).

      First, as mentioned above, we have added a significant discussion about the limitations of our assay and of possible interpretations. (Lines 300-303, Lines 323-326, Lines 483-489).

      Second, with regards to the specific construct used in this experiment, we have expanded the results section to better describe our rationale and approach (Lines 304-308). In short, because dimerization of native BNIP3 occurs within the membrane, we aimed to place the DmrB domain as close to the TM segment as possible. Due to the topology of TA proteins, a C-terminal tag isn’t possible. Therefore, we used the shortest truncation version of BNIP3 (117-end) that undergoes measurable lysosomal delivery. This was an important experimental consideration, and one we did not sufficiently rationalize in the original manuscript. We now include this point in the text.

      • *

      [Reviewer #2]

      Comment: The authors show that BNIP3 on the ER is not stable but degraded by the proteasome. Does this require ERAD factors? Is the mitochondrial BNIP3 protein likewise degraded by proteasomal degradation? It is not clear whether both BNIP3 pools are constantly turned over or whether degradation exclusively/predominantly occurs on the ER surface.

      Response: __These are fascinating mechanistic questions. We hope to thoroughly address these questions in a subsequent study. However, as a teaser, we have included the basic answer to these questions in __Fig 5I.

      To preliminarily characterize the proteasomal degradation of ER- and mitochondrial-BNIP3, we utilized our IRES reporter system - adapted from Steve Elledge’s system for degron monitoring (Fig 5I). Strikingly, our ER-restricted BNIP3 mutation (S172A) is sensitive to inhibition of both the proteasome and the AAA-ATPase p97/VCP, a key extractase for ERAD substrates. These data tentatively suggest an ERAD-dependent degradation mechanism (although many follow-up studies will be needed to confirm the mechanistic details). In sharp contrast, our mitochondrial-restricted mutant (LG Swap) is sensitive to proteasome inhibition by Bortezomib, but it is insensitive to VCP inhibition. The differential requirement for VCP suggests that proteasomal degradation occurs on both cellular pools of BNIP3 albeit through different mechanisms.

      Comment: The results of the screen shown in Fig. 2B are particularly interesting for readers. The glutathione peroxidase GPX4 was found as a top hit among the EMC components. GPX4 protects membranes (including those of mitochondria) against oxidative damage, is a major component of ferroptosis and linked to mitochondrial dysfunction and mitophagy. The authors should mention this interesting hit in the context of their discussion of the lipid-sensing properties of the dimerizing TM domains of BNIP3.

      __Response: __Thank you to Reviewer #2 for bringing this to our attention. The relationship between GPX4 and BNIP3 flux is very interesting. We have incorporated GPX4 into the discussion section (Lines 457-459).

      • *

      [Reviewer #3]

      Comment: For all of the tf-BNIP3 FACS data (all violin plots), it is unclear how many biological replicates were performed. The author only stated that at least 10,000 cells were analyzed per sample, but I believe this is for each biological replicate. To better demonstrate the biological replicates, the authors should consider using bar graphs of the medians(triplicates) with error bars.

      Response: We have included biological replicates of FACS data in all primary figures (except for Fig.1C). Biological replicates, represented as medians (in triplicate), are indicated in figure legends.

      Comment: In Fig 3D, it is unclear as to why there is no basal state accumulation of BNIP3 protein levels compared to Baf1A treated condition especially with USO1 and SAR1A KO samples. Is this because BNIP3 are targeted for proteasomal degradation? I think Fig 3D should include a BTZ treatment next to Baf1A to account for the lack of basal state accumulation of BNIP3.

      Response: We apologize for the lack of clarity on this point. Yes, the reviewer’s interpretation of the data is correct. This point is more clearly elaborated in the text of our revised manuscript (Lines 219-223). Our results indicate that when lysosomal degradation is diminished, the expected increase in total BNIP3 protein levels is attenuated by proteasomal degradation (as evidenced by the hyperstability of BNIP3 upon Bortezomib treatment in mutant backgrounds). As requested, we have included the same knockout panel, now treated with BTZ (Fig S2E). These genetic data are further supported by Fig 3E, where a small molecule inhibitor of vesicle trafficking, Brefeldin-A, ameliorates the effect of lysosomal inhibition (BafA1) but exacerbates the effect of proteasome inhibition.

      Comment: Truncation of proteins could affect their protein stability even during their synthesis. For Fig 5B and 6B, the authors should show the blots for the expression of the different truncated mutants to prove that the change in BNIP3 stability and their effect of mitoflux (or lack thereof), is not due to poor expression of these mutants.

      Response: These were important potential caveats to document, and we thank the reviewer for their comment.

      We note that, due to differences in transduction efficiency, western blot data is an incomplete measure for relative expression levels – it cannot distinguish between fraction of cells transduced and expression level per cell. However, RFP fluorescence (Fig 5B) and BFP fluorescence (Fig 6B) are fluorescent internal controls allowing us to assess expression levels with single cell resolution. We have provided histograms of RFP and/or BFP intensity (new Fig S4A, Fig S5B), which provides support that overall expression levels of these constructs are similar. Critically, any variation we observe does not correlate with any of the effects we report.

      In addition, we have clarified the figure axis in Fig 5B to indicate that the value we are reporting is the “fold-stabilization upon BafA1 treatment”. The original figure legend wasn’t clear. Our metric (fold-stabilization) is internally normalized to compensate for differences in expression level. This is an important clarification.

      Comment: For the data in Fig 7, the authors demonstrated that treating cells with proteasomal inhibitor increases mitoflux. Since the proteasome targets monomeric BNIP3 for degradation, the logical assumption is that BTZ drives dimerization of BNIP3. Can the authors demonstrate this in an approach similar to Fig 5C? This simple experiment will add significant insight into the study.

      Response: __Thank you for the suggestion. As Fig 5C relied on BNIP3 over-expression, we thought it even more informative to assess the effects of BTZ on dimerization of endogenous BNIP3. Indeed, we see accumulation of an SDS-resistant BNIP3 dimer in cells treated with BTZ (__new Fig S2E, line 221). We hypothesize that BTZ indirectly drives dimerization of BNIP3 by accumulating the total levels of the protein, potentiating monomers to form additional stable dimers.

      Comment: In line 168-169, "In addition, multiple suppressor genes identified from our screen had previously been reported including TMEM11..." -- Unclear what biology they are reported to be involved in

      __Response: __We have clarified this line to read: "In addition, we recovered multiple known suppressors of BNIP3 flux, including outer membrane protein spatial restrictor TMEM11, mitochondrial protein import factors DNAJA3 and DNAJA11, and mitochondrial chaperone HSPA9"

      Comment: Along the line with Major comment 2, the explanation for Fig 3D needs to be better elaborated, perhaps to include the role of proteasome already at this point (if the authors think this is the reason why basal BNIP3 levels remains low with USO1 and SAR1A KO).

      __Response: __We have included a discussion about compensation by the proteasome in these genetic backgrounds (lines 219-226) and have referred to the newly incorporated western blot (new Fig S2E).

      Comment: Line 302-304, I believe that statement only refers to Fig S4C and the statement for Fig5G is in the next sentence. Please remove Fig5G from line 304. It was confusing to read.

      Response: __The reference of __Fig 5G has been removed.

      Comment: Line 367, there is a reference for Fig S5C but that figure is missing.

      __Response: __The spurious reference has been removed.

      Comment: Line 410-411, are there any reported clinical cases of EMC mutations with phenotypes that could be explained by elevated mitophagy?

      __Response: __Thank you for the suggestion. There are clinical presentations of EMC mutations and splice variants in diseases and conditions related to the central nervous system (PMID: 23105016, PMID: 26942288, PMID: 29271071). However, all characterization has been done in the clinical setting looking at clinical presentations/symptoms and not molecular or cellular characterization. We have added a line to the discussion about this speculative correlation between EMC deficiency and mitophagy (lines 516-519).

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      [Reviewer #1]

      Comment: Figure 3B: Are the red puncta observed in USO1 and SAR1A cells a product of higher levels of ER-phagy owing to BNIP3's high presence on the ER membrane?

      __Response: __This is an intriguing hypothesis. We will test whether this is true using a USO1/ATG9A dual KO. However, we don’t think this result is critical to the overall arc of the manuscript and we will not include these data if they indicate otherwise.

    1. These links to these threads are priceless. Two questions: How can I connect with these Reddit users? Never mind, I’m sure I can find the answer myself. Second question - how do you keep these thread references so handy? Is this hypothes.is ? Zotero? Raindrop.io? I have no idea how to capture this kind of info and keep it accessible.

      reply to u/coachdan007 at https://www.reddit.com/r/antinet/comments/13ygoz9/comment/jn80a7z/?utm_source=reddit&utm_medium=web2x&context=3

      Mostly these references were using Hypothesis, though I do have some material in Zotero. I don't use Raindrop. IIRC, I knew I'd seen the topics before and did a search for the tag bible and then narrowed it down my adding on zettelkasten and it popped up immediately. A large number of my replies here are just querying my digital ZK and spitting out pre-packaged answers or pointers to relevant material. I also occasionally do the same thing with my analog version, though with those I have to type them out. I follow roughly the same process for doing my own queries and writing. You get surprisingly good at it after a while, particularly when you know it's in there somewhere. Of course r/ has it's own internal search function too, so you could check out: - https://www.reddit.com/r/antinet/search/?q=bible&restrict_sr=1 - https://www.reddit.com/r/Zettelkasten/search/?q=bible&restrict_sr=1

      and have a slightly wider net to get the fishes and loaves you're seeking. With the proper notes at hand, perhaps you'll soon be able to turn water into wine? Interestingly, I think you're the first who's ever asked this question here (or other related fora). I hope people don't think I spend all my time writing all these custom answers when I'm just tipping out my zettelkasten. (Though I do always keep my original answers too in the eventuality that I ever want to turn all of these thoughts into an article or book.)

    2. Thank you, Chris. I have been watching Dan Alosso's antinet book club. So, it's nice to have a face to the name. I just subscribed to your newsletter this morning from an article you wrote.This is probably not the correct place, but I'd like to learn more about your use of Hypothes.is.I think someone else mentioned a branch for each book, as well. I'll read the threads you cited. I am sure there will be some good stuff in there.@Chrisaldrich - have you heard or come across the "Encyclopedia Puritannica Project"?https://www.publishepp.com/This is kind of what I have in mind for my antinet. The ability to cross-reference authors to various topics ot themes or doctrines while also linking them to the specific verses or passages they use to make a point. AND to look up a Bible verse and see what authors in my antinet cite these verses and where. AND, lastly, to look at a theme and see which Bible verses map to that theme and which author wrote on that theme.I think the antinet is a good tool for this. Certainly not in a comprehensive way but in a way that interconnects my own studies and readings. But I suspect that I'll have to do some hard thinking over how to accomplish this.

      reply to u/coachdan007 at https://www.reddit.com/r/antinet/comments/13ygoz9/comment/jn6fwzr/?utm_source=reddit&utm_medium=web2x&context=3

      Thanks u/coachdan007. I've heard of the EPP, but never delved heavily into it. There's still a lot of digging I want to do into Edwards' Miscellanies, but I just haven't had the time, sadly. Perhaps I'll find it over the summer? While you're searching around you might also find it interesting/useful to have an interleaved bible as well to give you bigger "margins" to write in as you go. This may make some of the direct thinking on the page a bit easier. Don't think too hard about some super custom method, just start practicing something that makes sense and evolve it as you go and as you need to.

      As for Hypothesis, following my account or reading past notes may be useful/helpful. For the day to day, I've documented pieces of it along with tips and tricks over time on my site at https://boffosocko.com/tag/hypothes.is/. Some of the older posts when I was first starting out are probably more interesting as more recent ones can be sort of meta.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      Thank you for your letter dated on May 5, 2023 concerning our manuscript (MS# RC-2023-01906) entitled “Activation of Nedd4L Ubiquitin Ligase by FCHO2-generated Membrane Curvature.”

      We thank the reviewers for their constructive comments and suggestions. We have considered all reviewers’ comments and plan to revise our manuscript accordingly.

      We believe that our revision plan will greatly improve the quality of our manuscript.

      1. Description of the planned revisions

      __Reviewer #1 __

      I enjoyed reading the paper by Sakamoto and colleagues, where they show that Nedd4L ubiquitin ligase activity is stimulated by membranes and in particular positive membrane curvature. This paper is a conceptual advance that hopefully will be extended by many other groups where membranes topology participates in the activation of associated enzymes, giving rise to added complexity but also specificity and further compartmentalization. It is an important paper for all cell biologists to understand.

      1. My comments are all relatively minor and I hope can improve the readability of the paper, but will not alter the overall conclusion as this is well backed up. In general I would like to see more/better statistics/quantitation and better figure legends. I found that often one had to read the paper to understand a figure where reading the figure legend should suffice.

      __Reply: __According to the reviewer’s comment, we will quantify the experiments (Fig. 1C, Fig. 2, Fig. 9B, and Fig. 10B) and add descriptions of statistics (Fig. 5, Fig. 6, B and D, and Fig. 7C). We will also write better figure legends to enable the readers to easily understand experiments.

      1. This paper reminds me of a paper from Gilbert Di Paolo's lab on the activation of synaptojanin PIP2 hydrolysis by high membrane curvature. One would expect that there may be many such proteins whose activities will be dependent on their membrane environment. I find it conceptually rather likely that a protein which interacts with membranes via a C2 domain (which has membrane insertions and will thus likely be curvature sensitive) will likely show some positive curvature sensitivity. Can I suggest this paper is referenced and discussed in the light of the discussion statement "Thus, our findings provide a new concept of signal transduction in which a specific degree of membrane curvature serves as a signal for activation of an enzyme that regulates a number of substrates."

      Reply: __According to the reviewer’s comment, we will cite the paper entitled “synaptojanin-1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission” by Chang-Ileto et al. (Dev. Cell __20, 206–18 , 2011). We will also discuss this paper in the light of the discussion statement.

      1. Where the paper could be improved (or I have not understood fully). In figure 1 there is a robust endocytosis of ENaC that is FCHo2 and Nedd4L sensitive. There is a rescue for FCHo2 in a fluorescence image (unquantified), so it would be good to have the more quantitative approach of rescue with both FCHo2 and Nedd4L in the biochemical assay.

      __Reply: __Although the reviewer suggests a rescue experiment in the biochemical assay, the experiment is difficult because the transfection efficiency is low (about 50%). On the other hand, we agree with the reviewer that a quantitative approach is required in the rescue experiment (Fig. 1C). Therefore, we plan to quantify the rescue experiment for FCHO2 in the immunofluorescence assay. The reviewer also suggests a rescue experiment for Nedd4L as well as FCHO2. However, since the involvement of Nedd4L in ENaC endocytosis is well established, we do not think that the rescue experiment for Nedd4L is further required.

      1. In figure 2 there is nice co-localisation between clathrin/FCHo2 and ENaC but not with Nedd4L. It would be good to have some quantitation of the co-localisation. But also one should use a Nedd4L mutant or a mutant of ENaC and so be able to visualise co-localisation between receptor and ub-ligase. I find it strange that there is no (or much less) Nedd4L-GFP visible in the cells overexpressing ENaC... Is there an explanation? Does overexpression of ENaC lead to more auto-ubiquitination of Nedd4L. Also the Nedd4L-GFP signal in other cells is punctate, while in the next figure Myc-Nedd4L is not.

      __Reply: __According to the reviewer’s comment, we will perform quantitative colocalization analysis in Fig. 2.

      We have found that a catalytically inactive Nedd4L mutant, C922A, co-localizes with cell-surface αENaC and FCHO2 in αβγENaC-HeLa cells. According to the reviewer’s comment, these data will be added in the revised manuscript.

      In Fig. 2C, Nedd4L was transiently transfected in cells stably expressing ENaC. In Nedd4L-transfected cells, overexpression of Nedd4L stimulated ENaC internalization, resulting in the disappearance of ENaC at the cell surface. On the other hand, in non-transfected cells, cell-surface ENaC was detected. Thus, Nedd4L-negative cells are non-transfected cells (cell-surface ENaC positive cells). This explanation will be added in the revised manuscript.

      The staining pattern of Nedd4L depends on what section of the cell a confocal microscope was focused on. Nedd4L-GFP signals were punctate at the bottom section of the cell in Fig. 2, whereas Myc-Nedd4L was diffusely distributed at the upper section (cytoplasm) of the cell (Fig. 3). Thus, Nedd4L shows distribution throughout the cytoplasm and punctate staining at the bottom (cell surface). The staining pattern of Nedd4L is also affected by the expression amount of Nedd4L in cells. When Nedd4L was highly expressed in COS7 and HEK293 cells in Fig. 3, the punctate staining was hardly detected. This localization pattern of Nedd4L will be clearly described in the revised manuscript.

      1. In figure 3 it appears to me that there is co-localization between ENaC and amphiphysin. Is this not a positive piece of information? I am not sure that FBP17 is a good F-BAR domain to use given its oligomerization may well prevent membrane association of Nedd4L. Minor comment: I don't see tubules for amphiphysin in panel B.

      __Reply: __The reviewer states that there is co-localization between Nedd4L and amphiphysin1 (Fig. 3A). However, Nedd4L was not recruited to membrane tubules generated by amphiphysin1. We will clearly show that there is no colocalization between Nedd4L and amphiphysin1.

      The reviewer states that FBP17 may not be a good F-BAR domain to use because its oligomerization may well prevent membrane association of Nedd4L. However, we have shown that FCHO2 as well as FBP17 forms oligomer (Uezu et al. Genes Cells, 16, 868-878, 2011). Furthermore, we have found that FCHO2 inhibits the membrane binding and catalytic activity of Nedd4L when the PS percentage in liposomes is elevated (unpublished data and Fig. 9C). Thus, since FBP17 and FCHO2 probably have similar properties, we presume that FBP17 is a good F-BAR domain to use.

      As the reviewer pointed out, membrane tubules generated by amphiphysin1 were hardly detected in HEK293 cells (Fig. 3B). It showed punctate staining, but did not co-localized with Nedd4L. This description will be added in the revised manuscript.

      1. Figure 5: The affinity of Nedd4 C2 domain for calcium is quite high given we normally assume a cytosolic concentration of 100nM (approximate). The authors have rightly buffered the calcium with EGTA. Normally we would check that the buffering is sufficient by varying the protein concentration and making sure the affinity is still the same, so can I suggest the authors use 3 or 4 times the amount of C2 domain and make sure the curve does not change (provided liposomes are not limiting). Minor comment: How many experiments and what are error bars (SD?).

      __Reply: __According to the reviewer’s comment, we will check that the buffering is sufficient by varying the protein concentration (Fig. 5). We will also add a description of statistics to the legend to Fig. 5.

      1. Figure 6: Controls have been performed to ensure that liposomes are pelleted, according to methods. In Figure 6B can the authors show that there is the same amount of liposomes in each sample by showing more of the coomassie gel so that the reader can see the Neutravidin band is the same in each sample. Also I believe a student t-test should not be used in this experiment (but perhaps an Anova test), and in panel D there does not appear to be a description of statistics.

      __Reply: __To ensure that the same amounts of liposomes were pelleted, the reviewer suggests that we show more of the Coomassie gel to present the neutravidin bands in Fig. 6B. However, as the molecular weight of neutravidin is about 15 kDa, neutravidin run out of the gel (7% SDS-PAGE gel) where Nedd4L (As the reviewer pointed out, we will use an Anova test in Fig. 6B. We will also add a description of statistics in Fig. 6D.

      1. Figure 11: In panel B I note that the FCHo2 BAR domain on small liposomes appears to inhibit Ubiquitination. Is this consistent with the BAR domain not preventing Nedd4L binding?

      __Reply: __The FCHO2 BAR domain enhances the liposome binding and catalytic activity of Nedd4L when the strength of interaction of Nedd4L with liposomes (20% PS) is weak. In contrast, we have also found that the FCHO2 BAR domain inhibits the membrane binding and catalytic activity of Nedd4L when the interaction of Nedd4L with liposomes is increased by elevating the PS percentage in liposomes (unpublished data and Fig. 9C). The reason for the different effects of FCHO2 on Nedd4L is considered as follows: When liposomes (20% PS) are used (the interaction of Nedd4L with PS in liposomes is weak), Nedd4L binds to liposomes mainly through ENaC (Fig. 8F). The liposome binding is hardly mediated by PS. Addition of the FCHO2 BAR domain increases the strength of interaction Nedd4L with PS by generating membrane curvature. Consequently, the FCHO2 BAR domain newly induces the PS-mediated liposome binding of Nedd4L, resulting in the enhancement of liposome binding and catalytic activity of Nedd4L. On the other hand, when the interaction of Nedd4L with PS in liposomes is increased by elevating the PS percentage in liposomes (50% PS), the liposome binding of Nedd4L is mainly mediated by PS. Addition of the FCHO2 BAR domain inhibits the PS-mediated liposome binding of Nedd4L. Since both FCHO2 and Nedd4L are PS-binding proteins, they compete with each other to bind to PS in liposomes. Therefore, the results in Fig. 11B are consistent, because the interaction of Nedd4L with PS is increased by 0.05 µm pore-size liposomes. This explanation will be added in the revised manuscript.

      __Reviewer #2 __

      The authors have reported the involvement of the BAR domain-containing protein FCHO2 in the Nedd4L-mediated endocytosis of ENaC. They propose a model in which the membrane curvature induced by the BAR domain-FCHO2 relieves the auto-inhibition of E3 ligase causing its activation and recruitment. The paper describes a series of in vitro reconstituted experiments that are interesting but not fully connected with the mechanism of ENaC endocytosis. Additional experiments are needed to fully support the authors' conclusions.

      Major comments:

      1. Although the data reported by the authors regarding FCHO2 and Nedd4L involvement in ENaC endocytosis are convincing, it is suggested that the authors perform the same ENaC endocytosis assay presented in Fig.1B under conditions of FBP17 and amphiphysin1 siRNA to formally prove the selective involvement of FCHO2 in the process among other BAR-containing proteins.

      __Reply: __The reviewer suggests the same ENaC endocytosis assay presented in Fig. 1B under conditions of FBP17 and amphiphysin1 siRNA to prove the selective involvement of FCHO2 in ENaC endocytosis. There seems to be a misunderstanding. Similar to FCHO2, FBP17 and amphiphysin are well known to be involved in clathrin-mediated endocytosis. As ENaC is internalized through clathrin-mediated endocytosis, FBP17 and amphiphysin siRNA presumably inhibit ENaC endocytosis. We cannot understand the significance of FBP17 and amphiphysin1 siRNA in the ENaC endocytosis assay.

      1. According to the previous point, it will be interesting to see not only a snapshot image of the internalisation assay performed by immunofluorescence (Fig.1C) but a more quantitative analysis of the different time points (as in Fig.1B) in condition of FCHO2 siRNA and eventually FBP17 and amphiphysin1 siRNA.

      __Reply: __According to the reviewer’s comment, we will perform a quantitative analysis in Fig. 1C. The reviewer also suggests the immunofluorescence assay at the different time point in Fig. 1C. However, we show the time course of ENaC internalization in Fig. 1B. We do not think that the time course in the immunofluorescence assay is further required. As for FBP17 and amphiphysin siRNA, our response is the same as that to the comment 1 of this reviewer.

      1. In Fig.2B, overexpression of the catalytically inactive version of Nedd4L (Nedd4L C922A) would help to see Nedd4L-ENaC co-localization.

      __Reply: __This comment is the same as the comment 4 of the reviewer#1.

      1. In Fig.4D, the authors need to analyse ENaC ubiquitination in the same experimental setting as Fig. 4A instead of transfecting cells with increasing amounts of Nedd4L in the presence or absence of FCHO2 BAR. It is also recommended to include Nedd4L C922A as an additional control.

      __Reply: __The reviewer requests us to analyse ENaC ubiquitination in the same setting as Fig. 4A. However, an in vivo autoubiquitination assay is widely used to determine the catalytic activity of E3 Ub ligase, because the E3 activity is typically reflected in their autoubiquitination. Therefore, the autoubiquitination assay is sufficient to show that Nedd4L is specifically activated by membrane tubules generated by FCHO2 in cells. Furthermore, we have found it very difficult to compare ENaC ubiquitination among many GFP-BAR proteins (GFP alone, GFP-FCHO2, GFP-FBP17, amphiphysin1-GFP, GFP-FCHO2 mutant) in the same experimental setting as Fig. 4A. In Fig. 4A, three types of cDNAs (HA-Ub, Myc-Nedd4L, and GFP-BAR protein) were transfected in cells. The expression amounts of Myc-Nedd4L were similar among the GFP-BAR proteins. On the other hand, in Fig. 4D, four types of cDNA (HA-Ub, Myc-Nedd4L, GFP-BAR protein, and FLAG-αENaC) were transfected in cells. Under these conditions, it is very difficult to adjust the expression amounts of Nedd4L and αENaC among many GFP-BAR proteins. Even when comparing two GFP-BAR proteins (GFP alone and GFP-FCHO2), it was necessary to assess the expression amounts of Nedd4L by transfection with various cDNA amounts of Nedd4L (Fig. 4D). Moreover, as shown in Fig. 4D, enhancement of ENaC ubiquitination by FCHO2 is decreased at higher expression of Nedd4L (1.0 and 1.5 μg DNA), although the reason is unknown. Therefore, we are not sure that we will able to accurately analyse ENaC ubiquitination in the same setting as Fig. 4A instead of transfecting cells with increasing amounts of Nedd4L.

      According to the reviewer’s comment, we will examine the effect of Nedd4L C922A on ENaC ubiquitination.

      1. While discussing the role of hydrophobic residues in Nedd4L C2 domain,the authors never mentioned the publication by Escobedo et al., Structure 2014 (DOI:10.1016/j.str.2014.08.016), which highlighted how I37 and L38 are directly involved in Ca2+ binding. This aspect should be discussed since the authors show the importance of Ca2+ for PS binding in the sedimentation assay.

      __Reply: __According to the reviewer’s comment, we will cite the reference (Escobedo et al.) and discuss the aspect (I37 and L38 are directly involved in Ca2+ binding).

      1. As stated by the authors those two residues I37 and L38 are also involved in E3 enzyme activation by relieving C2-HECT interaction. It is important to further demonstrate the effect of these mutations on ENaC substrate.

      __Reply: __To prove that the I37 and F38 residues are involved in E3 enzyme activation by relieving C2-HECT interaction, the reviewer requests us to further demonstrate the effect of Nedd4L I37A+F38A on ENaC ubiquitination. However, these two residues are critical noy only for Nedd4L activation but also for membrane binding and curvature sensing of Nedd4L. We also show that membrane binding of Nedd4L is critical for ENaC ubiquitination. Actually, we have found that Nedd4L I37A+F38A mutant, which loses membrane binding, shows little ENaC ubiquitination (unpublished data), whereas it enhances autoubiquitination (Fig. 4C). Thus, the effect of the I37A+F38A mutant on ENaC ubiquitination is not appropriate to prove that the two residues are involved in E3 enzyme activation.

      1. There are some concerns regarding the in vitro ubiquitination assay performed in Fig.8 and following figures. The Nedd4L proteins used during the assay has been produced as His tagged at the C-terminus, it was reported (Maspero et al, Nat Struct Mol Biol 2013 DOI: 10.1038/nsmb.2566), at least for the isolated HECT domain, that modification of the C-terminal residue of the protein affects its activity. It would be important to judge the activity of the purified proteins used in the assay. Moreover, as additional control it is suggested the introduction of a mSA-ENaC PY mutant protein. The authors claimed the importance of membrane localized PY motif for recruitment and activation of Nedd4L, it would be informative to perform the experiment in presence of PY mutated ENaC.

      __Reply: __The reviewer states that there are some concerns regarding His-tagged Nedd4L proteins. We have prepared Nedd4L that has no tag at its N- or C-terminus. N-terminal GST-tagged, C-terminal untagged Nedd4L was expressed in E. coli and purified by Glutathione-Sepharose column chromatography. The GST tag was cleaved off and Nedd4L was further purified by Mono Q anion-exchange column chromatography. Using this purified sample, we have examined the catalytic activity of untagged Nedd4L. We have found that concerning Ca2+-dependency, PS-dependency, and curvature-sensing, the properties of untagged Nedd4L are similar to those of C-terminal His-tagged Nedd4L (unpublished data).

      According to the reviewer’s comment, we will perform the experiment in the presence of PY-mutated ENaC.

      1. It is not clear why increasing the concentration of PS (from 20% to 50%) the presence of BAR domain doesn't allow ENaC ubiquitination (Fig.9C), is Nedd4L not recruited to the pellet? It would be interesting to see the sedimentation experiment of Fig.9A done in presence of 50% PS.

      __Reply: __This comment is essentially the same as the comment 8 of the reviewer#1. We have found that FCHO2 BAR domain inhibits the membrane binding of Nedd4L when the PS percentage in liposomes is elevated (~50%) (unpublished data). According to the reviewer’s comment, these data will be added in the revised manuscript.

      1. This reviewer is not an expert of lipids biology, thus the explanations related to the effect of FCHO2 BAR in presence of PI(4,5)P2 (Fig. 10) or 0.05 pore-size liposomes (Fig.11) were not clear. Does FCHO2 BAR have a different effect in inducing membrane tubulation in these two conditions? Is this parameter measurable by tubulation assay?

      __Reply: __According to the reviewer’s comment, we will write more clearly the explanation related to the effect of FCHO2 BAR domain in the presence of PI(4,5)P2 or 0.05 μm pore-size liposomes.

      Minor Comments

      1. It would be appreciated if a nuclei staining panel is included in all immunofluorescence images, as it would help to identify the number of cells in the field of view (e.g., Fig. 1C, Fig. 2B).

      __Reply: __According to the reviewer’s comment, we will show immunofluorescence images to identify the number of cells in Fig. 1C and Fig. 2B.

      1. It would be recommended to include colocalization analysis, such as Pearson's correlation coefficient or Manders coefficient in immunofluorescence images.

      __Reply: __According to the reviewer comment, we plan to perform quantitative colocalization analysis in Fig. 2.

      1. It is not clear how the quantitation of mSA-ENaC ubiquitination in Fig.8D, 8C, and 9B was performed. Did the authors normalise the detected Ub signal over the amount of unmodified mSA-ENaC?

      __Reply: __We did not normalize the detected Ub signals over the amount of unmodified mSA-ENaC, because the same amount of mSA-ENaC was added in each assay. The chemiluminescence intensity of Ub signals was quantified by scanning using ImageJ. According to the reviewer’ comment, we will clearly describe how the quantification of mSA-ENaC ubiquitination was performed.

      __Reviewer #3 __

      --- Summary ---

      The manuscript by Sakamoto et al. describes how the ubiquitin ligase Nedd4L is activated by membrane curvature generated by the endocytic protein FCHO2. For their experiments, the authors use the epithelial sodium channel (ENaC) as a model Nedd4L target and CME cargo. The authors start their manuscript by showing in cells the importance of FCHo2 and Nedd4L in ENaC internalization. Using a combination of experiments in cells and biochemistry, the authors show that Nedd4L binds preferentially to membranes with the same curvature generated by FCHO2. Next, the authors show that a combination of membrane composition (PS), calcium concentration, PY domain presence and membrane curvature all act in concert to recruit Nedd4L to membranes and fully release its ubiquitination activity. Crucially, the authors show that role of FCHO2 in Nedd4L recruitment is not direct, with FCHO2 simply generating an optimal membrane curvature for Nedd4L binding. Taken together, the authors suggest a mechanism by which the curvature of early clathrin coated pits, generated by FCHO1/2 define an optimal environment for the recruitment and activation of the ubiquitin ligase Nedd4L.

      The manuscript convincingly shows the membrane curvature-dependent mechanism of Nedd4L activation. The biochemistry experiments in the manuscript are well designed and the results are of clear. The quality of these experiments is very high. The experiments in cells are, however, not of the same level of quality.

      --- Major comments ---

      1) The results do not show convincingly that Nedd4L is recruited to CCPs. There is plenty of indirect evidence, but to support the model shown in the last figure, authors need to show more than the staining in figure 2C. Live-cell imaging showing the post-FCHo2 recruitment of Nedd4L would be required. I understand that the recruitment would possibly occur in a fraction of events and may be difficult to catch. The cmeAnalysis script from the danuser lab(https://doi.org/10.1016/j.devcel.2013.06.019 can facilitate the identification of these events.

      __Reply: __According to the reviewer comment, we plan to examine by live-cell TIRF microscopy that Nedd4L is recruited to CCPs.

      2) What happens to ENaC in Nedd4L and FCHO2 knockdown cells? One would expect accumulation of the receptor on the surface.

      __Reply: __We have found that upon Nedd4L or FCHO2 knockdown, αENaC accumulates at the cell surface in αβγENaC-HeLa cells. According to the reviewer’s comment, we will show these data in the revised manuscript.

      *3) In the experiments in figure 1, it would be important to use a standard CME cargo as an internal control (transferrin). This will serve as a functional confirmation of FCHO2 knockdown and help the reader to put the Need4L knockdown experiments into the context of CME. *

      __Reply: __According to the reviewer’s comment, we will use a standard CME cargo as an internal control (transferrin).

      *4) Quantification for the rescue experiment is required (figure 1C). if not possible, at least a picture where the reader can see transfected and non-transfected cells side-by-side is necessary. *

      Reply: This comment is the same as those of the reviewer#1 (comment 3) and reviewer#2 (comment 2). According to the reviewer’s comment, we plan to quantify the rescue experiment (Fig. 1C).

      *--- Minor comments --- *

      *1) The experiments in figure 3 must be presented in order as they are in the text. For example, figure 3E is cited in the text into the context of figure 7. It is very confusing. *

      __Reply: __According to the reviewer’ s comment, we will present the experiments in Fig. 3 in order they are in the text.

      *2) A better explanation of the assay in 1C would facilitate its understanding for the non-specialist reader. The reader needs to read the methods section to understand how it was done. *

      __Reply: __According to the reviewer’ comment, we will write a better explanation of the assay in the Fig. 1C legend to enable the readers to understand how it was done.

    1. Thanks for sharing this very interesting and useful study! The ability to simultaneously visualize different actin isoforms with reduced effects on endogenous dynamics is fantastic and will no doubt lead to future discovery of differential functions.

      The pitfalls of N-term actin tagging are well documented as you note, so strategies that allow for faithful binding to endogenous nucleators would indeed be beneficial. However, the preferred internal 229/230 tag still shows no greater co-localization (and perhaps reduced co-localization, as I am unsure of the statistical difference in figure 1C) with total f-actin/phalloidin staining relative to N-terminal tagging. This suggests that there are indeed additional effects of the internal tag on dynamics (likely driven by affected ABP binding) despite largely not identifying those defects in your assays. I would have also therefore have been interested to see the N-term tagged control for figure 3 alongside the internal tags. This control wouldn’t be quantitatively comparable of course but I can’t remember if formin binding is affected for n-term tagged actins or just getting through the formin ring.

      Regardless, I’ll emphasize the importance of additional tools and information such as what you present here. The extensive interactions of actin with hundreds of binding proteins with myriad functions throughout cells highlights extensive combinatorial complexity that benefits from the availability of a full suite of actin labels so that the right labeling strategy can be selected based on application. This is therefore a very welcome addition to that suite of strategies!

    1. After transformation into UVM4 cells (Neupert et al., 2009), we obtained a strain overexpressing CrMCA-II with a C-terminal mVenus tag, that we named CrMCA-II-overexpressor 14-3 (OE14-3).

      Are these over-expression cells more resistant to HS than WT cells?

    1. Will not read or write first-party [analytics cookies]. Cookieless pings will be sent to Google Analytics for basic measurement and modeling purposes.
    2. If a user denies consent, tags no longer store cookies but instead send signals to the Google Server as described in the next section. This prevents the loss of all information about visitors who deny consent and it enables Google Analytics 4 properties to model conversions as described in About modeled conversions.
    1. By default, Google tags use automatic cookie domain configuration. Cookies are set on the highest level of domain possible. For example, if your website address is blog.example.com, cookies are set on the example.com domain.
    2. This means that if cookie expiration is set to one week (604800 seconds), and a user visits using the same browser within five days, the cookie will be available for an additional week, and they will appear as the same visitor in your reports. If that same user instead visited after the original cookie had expired, a new cookie will be created, and their first and second visits will appear as coming from distinct visitors in your reports.

      Not perfect, but at least that's simple enough to understand

    1. Reviewer #1 (Public Review):

      Original review:

      This manuscript by Walker et. al. explores the interplay between the global regulators HapR (the QS master high cell density (HDC) regulator) and CRP. Using ChIP-Seq, the authors find that at several sites, the HapR and CRP binding sites overlap. A detailed exploration of the murPQ promoter finds that CRP binding promotes HapR binding, which leads to repression of murPQ. The authors have a comprehensive set of experiments that paints a nice story providing a mechanistic explanation for converging global regulation. I did feel there are some weak points though, in particular the lack of integration of previously identified transcription start sites, the lack of replication (at least replication presented in the manuscript) for many figures, some oddities in the growth curve, and not reexamining their HapR/CRP cooperative binding model in vivo using ChIP-Seq.

      Review of revised version:

      This revised manuscript by Walker et. al. addresses some of the editorial points and conceptual discussion, but in general, most of my suggestions (as the previous reviewer #1) for additional experimentation or addition were not addressed as discussed below. Therefore, my overall review has not changed.

      1) For example, in point 1, the suggested analysis was not performed because it is not trivial. My reason for making this suggestion is that the original manuscript was limited to Vibrio cholerae, and the impact of the manuscript would increase if the findings here were demonstrated to be more broadly applicable. I expect papers published in eLife to have such broad applicability. But no changes were made to the manuscript in this regard. The revised version is still limited to only Vibrio cholerae.

      2) For point 2, the activity of FLAG-tag luxO could have been simply validated in a complementation assay. Yes, they demonstrated DNA binding, but that is not the only activity of LuxO.

      3) For point 7, the transcriptional fusions were not explored at different times or different media, which is also something that was hinted at by other reviewers. In regard to exploring expression at different time points, this seems particularly relevant for QS regulated genes.

      4) For point 13, the authors express that doing an additional CHIP-Seq is outside of the scope of this manuscript. Perhaps that is the case, but the point of the comment is to validate the in vitro binding results with an in vivo binding assay. A targeted CHIP-Seq approach specifically analyzing the promoters where cooperative binding was observed in vitro could have addressed this point.

    2. Author Response:

      The following is the authors' response to the current reviews.

      Reviewer #1 (Public Review):

      This revised manuscript by Walker et. al. addresses some of the editorial points and conceptual discussion, but in general, most of my suggestions (as the previous reviewer #1) for additional experimentation or addition were not addressed as discussed below. Therefore, my overall review has not changed.

      In our previous response, we included i) extra experimental data illustrating the reproducibility of our results and ii) added transcription start site data at the request of this reviewer. We included the information because we agreed with the reviewer that these were important points to address. For the points raised again below, we explained why the additional analysis was unlikely to add much in terms of insight or rigour. We have elaborated further below.   

      1) For example, in point 1, the suggested analysis was not performed because it is not trivial. My reason for making this suggestion is that the original manuscript was limited to Vibrio cholerae, and the impact of the manuscript would increase if the findings here were demonstrated to be more broadly applicable. I expect papers published in eLife to have such broad applicability. But no changes were made to the manuscript in this regard. The revised version is still limited to only Vibrio cholerae.

      Our paper is focused on the unexpected co-operative interactions between HapR and CRP. Such co-binding of two transcription factors to the same DNA site is unexpected. Consequently, it is this mode of DNA binding that is likely to be of broad interest. With this in mind, we did provide experimental, and bioinformatic, analyses for other regulatory regions and other vibrio species (Figures S3 and S6). This, in our view, is where the “broad applicability” for papers published in eLife comes from.

      The analysis the reviewer suggests is not related to the main message of our paper. Instead, the reviewer is asking how many HapR binding sites seen here by ChIP-seq are also seen in other vibrio species by ChIP-seq. This is only likely to be of interest to readers with an extremely specific interest in both vibrio species and HapR. The reviewer states above that we did not make the change “because it is not trivial”. This is an oversimplification of the rationale we presented in our response. The analysis is indeed not straightforward. However, much more importantly, the outcome is unlikely to be of interest to many readers, and has no bearing on the rigour of work. With this in mind, we do not think our position is unreasonable. We also stress that, should a reader with this very specific interest want to explore further, all of our data are freely available for them to do so.

      2) For point 2, the activity of FLAG-tag luxO could have been simply validated in a complementation assay. Yes, they demonstrated DNA binding, but that is not the only activity of LuxO.

      DNA binding by LuxO is the only activity of the protein with which we are concerned in our paper. Furthermore, LuxO is very much a side issue; we found binding to only the known targets and potentially, at very low levels, one additional target. No further LuxO experiments were done for this reason. Indeed, even if these data were removed completely, our conclusions would not change or be supported any less vigorously. We are happy to remove the LuxO data if the reviewer would prefer but this would seem like overkill.

      3) For point 7, the transcriptional fusions were not explored at different times or different media, which is also something that was hinted at by other reviewers. In regard to exploring expression at different time points, this seems particularly relevant for QS regulated genes.

      In their previous review, the reviewer did not request that such experiments were done. Similarly, no other reviewer requested these experiments. Instead, this reviewer i) commented that lacZ fusions were not as sensitive as luciferase fusions ii) asked if we had done any time point experiments. We agreed with the first point, whilst also noting that lacZ is not unusual to use as a reporter. For the second point, we responded that we had not done such experiments (which by the reviewer’s own logic would have been complicated using lacZ as a reporter). This seems like a perfectly reasonable way to respond.   

      We should stress that these comments all refer to Figure 2a, which was our initial screening of 23 promoter::lacZ fusions, supported by separate in vitro transcription assays. Only one of these fusions was followed up as the main story in the paper. Given that the other 22 fusions were not investigated further, and do not form part of the main story, there would seem little value in now going back to assay them at different time points.

      4) For point 13, the authors express that doing an additional CHIP-Seq is outside of the scope of this manuscript. Perhaps that is the case, but the point of the comment is to validate the in vitro binding results with an in vivo binding assay. A targeted CHIP-Seq approach specifically analyzing the promoters where cooperative binding was observed in vitro could have addressed this point.

      We did appreciate the original comment, and responded as such, but we do think additional ChIP-seq assays are outside the scope of this paper.

      Reviewer #2 (Public Review):

      This manuscript by Walker et al describes an elegant study that synergizes our knowledge of virulence gene regulation of Vibrio cholerae. The work brings a new element of regulation for CRP, notably that CRP and the high density regulator HapR co-occupy the same site on the DNA but modeling predicts they occupy different faces of the DNA. The DNA binding and structural modeling work is nicely conducted and data of co-occupation are convincing. The work seeks to integrate the findings into our current state of knowledge of HapR and CRP regulated genes at the transition from the environment and infection. The strength of the paper is the nice ChIP-seq analysis and the structural modeling and the integration of their work with other studies.

      We thank the reviewer for the positive comments.

      The weakness is that it is not clear how representative these data are of multiple hapR/CRP binding sites

      This comment does not consider all data in our paper. We did test our model experimentally at multiple HapR and CRP binding sites. These data are shown in Figure S6 and confirm the co-operative interaction between HapR and CRP at 4 of a further 5 shared binding sites tested. We also used bioinformatics to show the same juxtaposition of CRP and HapR sites in other vibrio species (Figure S3). Hence, the model seems representative of most sites shared by HapR and CRP.

      or how the work integrates as a whole with the entire transcriptome that would include genes discovered by others.

      At the request of the reviewers, our revision integrated our ChIP-seq data with dRNA-seq data. No other suggestions to ingrate transcriptome data were made by the reviewers. 

      Overall this is a solid work that provides an understanding of integrated gene regulation in response to multiple environmental cues.

      We thank the reviewer for the positive comment.

      —————

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      This manuscript by Walker et. al. explores the interplay between the global regulators HapR (the QS master high cell density (HDC) regulator) and CRP. Using ChIP-Seq, the authors find that at several sites, the HapR and CRP binding sites overlap. A detailed exploration of the murPQ promoter finds that CRP binding promotes HapR binding, which leads to repression of murPQ. The authors have a comprehensive set of experiments that paints a nice story providing a mechanistic explanation for converging global regulation.

      We thank the reviewer for their positive evaluation.

      I did feel there are some weak points though, in particular the lack of integration of previously identified transcription start sites

      For completeness, we have now added the position and orientation or the nearest TSSs to each HapR or LuxO binding peak in Table 1 (based on Papenfort et al.).

      the lack of replication (at least replication presented in the manuscript) for many figures,

      We assume that the reviewer is referring to gel images rather than any other type of assay output (were error bars, derived from replicates, are shown). As is standard, we show representative gel images. All associated DNA binding and in vitro transcription experiments have been done multiple times. Indeed, comparison between figures reveals several instances of such replication (e.g. Figures 4b & 5d, Figures 4d & 5e). We have added details of repeats done to the methods section.

      some oddities in the growth curve

      We do not know why cells lacking hapR have a growth curve that appears biphasic. We can only assume that this is due to some regulatory effect of HapR, distinct from the murQP locus. Despite the unusual shape of the growth curve, the data are consistent with our conclusions.

      and not reexamining their HapR/CRP cooperative binding model in vivo using ChIP-Seq.

      We agree that these would be interesting experiments and, in the future, we may well do such work. Even without these data, our current model is well supported by the data presented (and the reviewer seems to agree with this above).

      Reviewer #2 (Public Review):

      This manuscript by Walker et al describes an elegant study that synergizes our knowledge of virulence gene regulation of Vibrio cholerae. The work brings a new element of regulation for CRP, notably that CRP and the high density regulator HapR co-occupy the same site on the DNA but modeling predicts they occupy different faces of the DNA. The DNA binding and structural modeling work is nicely conducted and data of co-occupation are convincing. The work could benefit from doing a better job in the manuscript preparation to integrate the findings into our current state of knowledge of HapR and CRP regulated genes and to elevate the impact of the work to address how bacteria are responding to the nutritional environment. Importantly, the focus of the work is heavily based on the impact of use of GlcNAc as a carbon source when bacteria bind to chitin in the environment, but absent the impact during infection when CRP and HapR have known roles. Further, the impact on biological events controlled by HapR integration with the utilization of carbon sources (including biofilm formation) is not explored.

      We thank the reviewer for their overall positive evaluation.

      The rigor and reproducibility of the work needs to be better conveyed.

      Reviewer 1 made a similar comment (see above) and we have modified the manuscript accordingly.

      Specific comments to address:

      1)  Abstract. A comment on the impact of this work should be included in the last sentence. Specifically, how the integration of CRP with QS for gene expression under specific environments impacts the lifestyle of Vc is needed. The discussion includes comments regarding the impact of CRP regulation as a sensor of carbon source and nutrition and these could be quickly summarized as part of the abstract.

      We have added an extra sentence. However, we have used cautious language as we do not show impacts on lifestyle (beyond MurNAc utilisation) directly. These can only be inferred.

      2)  Line 74. This paper examines the overlap of HapR with CRP, but ignores entirely AphA. HapR is repressed by Qrrs (downstream of LuxO-P) while AphA is activated by Qrrs. With LuxO activating AphA, it has a significant sized "regulon" of genes turned on at low density. It seems reasonable that there is a possibility of overlap also between CRP and AphA. While doing an AphA CHIP-seq is likely outside the scope of this work, some bioinformatic or simply a visual analysis of the promoters known AphA regulated genes would be interest to comment on with speculation in the discussion and/or supplement.

      In short, everything that the reviewer suggests here has already been done and was covered in our original submission (see text towards the end of the Discussion). Also, we would like to point the referee to our earlier publication (Haycocks et al. 2019. The quorum sensing transcription factor AphA directly regulates natural competence in Vibrio cholerae. PLoS Genet. 15:e1008362).

      3)  Line 100. Accordingly with the above statement, the focus here on HapR indicates that the focus is on gene expression via LuxO and HapR, at high density. Thus the sentence should read "we sought to map the binding of LuxO and HapR of V. cholerae genome at high density".

      Note that expression of LuxO and HapR is ectopic in these experiments (i.e. uncoupled from culture density).

      4)  Line 109. The identification of minor LuxO binding site in the intergenic region between VC1142 and VC1143 raises whether there may be a previously unrecognized sRNA here. As another panel in figure S1, can you provide a map of the intergenic region showing the start codons and putative -10 to -35 sites. Is there room here for an sRNA? Is there one known from the many sRNA predictions / identifications previously done? Some additional analysis would be helpful.

      We have added an extra panel to Figure S1 showing the position of TSSs relative to the location of LuxO binding. We have altered the main text to accommodate this addition..

      5)  Line 117. This sentence states that the CHIP seq analysis in this study includes previously identified HapR regulated genes, but does not reveal that many known HapR regulated genes are absent from Table 1 and thus were missed in this study. Of 24 HapR regulated investigated by Tsou et al, only 1 is found in Table 1 of this study. A few are commented in the discussion and Figure S7. It might be useful to add a Venn Diagram to Figure 1 (and list table in supplement) for results of Tsou et al, Waters et al, Lin et al, and Nielson et al and any others). A major question is whether the trend found here for genes identified by CHIP-seq in this study hold up across the entire HapR regulon. There should also be comments in the discussion on perhaps how different methods (including growth state and carbon sources of media) may have impacted the complexity of the regulon identified by the different authors and different methods.

      We have added a list of known sites to the supplementary material (new Table S1). We were unsure what was meant by the comment “A major question is whether the trend found here for genes identified by CHIP-seq in this study hold up across the entire HapR regulon”. We have added the extra comment to the discussion re growth conditions, also noting that most previous studies relied on in vitro, rather than in vivo, DNA binding assays.

      6)  The transcription data are generally well performed. In all figures, add comments to the figure legends that the experiments are representative gels from n=# (the number of replicate experiments for the gel based assays). Statements to the rigor of the work are currently missing.

      See responses above. We have added a comment on numbers of repeats to the methods section.

      7)  Line 357-360. The demonstration of lack of growth on MurNAc is a nice for the impact of the work. However, more detailed comments are needed for M9 plus glucose for the uninformed reader to be reminded that growth in glucose is also impaired due to lack of cAMP in glucose replete conditions and thus minimal CRP is active. But why is this now dependent of hapR? A reminder also that in LB oligopeptides from tryptone are the main carbon source and thus CRP would be active.

      We find this point a little confusing and, maybe, two issues (murQP regulation, and growth in general) are being conflated. In particular, we do not understand the comment “growth in glucose is also impaired due to lack of cAMP in glucose replete conditions and thus minimal CRP is active”.

      Growth in glucose should indeed result in lower cAMP levels*, and hence less active CRP, but this does not impair growth. This is simply the cell’s strategy for using its preferred carbon source. If the reviewer were instead referring to some aspect of P_murQP_ regulation then yes, we would expect promoter activity to be lower because less active CRP would be available in the presence of glucose. The reviewer also comments “why is this now dependent of hapR?”. We assume that they are referring to some aspect of growth in minimal media with glucose. If so, the only hapR effect is the change in growth rate as cells enter mid-late log-phase (i.e. the growth curve looks somewhat biphasic). A similar effect is seen in all conditions. We do not know why this happens and can only conclude this is due to some unknown regulatory activity of HapR. Overall, the key point from these experiments is that loss if luxO, which results in constitutive hapR expression, lengthens lag phase only for growth with MurNAc as the sole carbon source.

      *Although in V. fischeri (PMID: 26062003) cAMP levels increase in the presence of glucose.

      8)  A great final experiment to demonstrate the model would have been to show co-localization of the promoter by CRP and HapR from bacteria grown in LB media but not in LB+glucose or in M9+glycerol and M9+MurNAc but not M9+glucose. This would enhance the model by linking more directly to the carbon sources (currently only indirect via growth curves)

      This is unlikely to be as straightforward as suggested. The sensitivity of CRP binding to growth conditions is not uniform across different binding sites. For instance, the CRP dependence of the E. coli melAB promoter is only evident in minimal media (PMID: 11742992) whilst the role of CRP at the acs promoter is evident in tryptone broth (PMID: 14651625). Similarly, as noted above, in Vibrio fischeri glucose causes and increase in cAMP levels. (PMID: 26062003).

      9) Discussion. Comments and model focus heavily on GlcNAc-6P but HapR has a regulator role also during late infection (high density). How does CRP co-operativity impact during the in vivo conditions?

      We really can’t answer this question with any certainty; we have not done any infection experiments in this work.

      Does the Biphasic role of CRP play a role here (PMID: 20862321)?

      Again, we cannot answer this question with any confidence as experimentation would be required. However, the suggestion is certainly plausible.

      Reviewer #3 (Public Review):

      Bacteria sense and respond to multiple signals and cues to regulate gene expression. To define the complex network of signaling that ultimately controls transcription of many genes in cells requires an understanding of how multiple signaling systems can converge to effect gene expression and ensuing bacterial behaviors. The global transcription factor CRP has been studied for decades as a regulator of genes in response to glucose availability. It's direct and indirect effects on gene expression have been documented in E. coli and other bacteria including pathogens including Vibrio cholerae. Likewise, the master regulator of quorum sensing (QS), HapR), is a well-studied transcription factor that directly controls many genes in Vibrio cholerae and other Vibrios in response to autoinducer molecules that accumulate at high cell density. By contrast, low cell density gene expression is governed by another regulator AphA. It has not yet been described how HapR and CRP may together work to directly control transcription and what genes are under such direct dual control.

      We thank the reviewer for their assessment of our work.

      Using both in vivo methods with gene fusions to lacZ and in vitro transcription assays, the authors proceed to identify the smaller subset of genes whose transcription is directly repressed (7) and activated (2) by HapR. Prior work from this group identified the direct CRP binding sites in the V. cholerae genome as well as promoters with overlapping binding sites for AphA and CRP, thus it appears a logical extension of these prior studies is to explore here promoters for potential integration of HapR and CRP. Inclusion of this rationale was not included in the introduction of CRP protein to the in vitro experiments.

      We understand the reviewer’s comment. However, the rationale for adding CRP was not that we had previously seen interplay between AphA and CRP (although this is a relevant discussion point, which we did make). Rather, we had noticed that there was an almost perfect CRP site perfectly positioned to activate PmurQP. Hence, CRP was added.

      Seven genes are found to be repressed by HapR in vivo, the promoter regions of only six are repressed in vitro with purified HapR protein alone. The authors propose and then present evidence that the seventh promoter, which controls murPQ, requires CRP to be repressed by HapR both using in vivo and vitro methods. This is a critical insight that drives the rest of the manuscripts focus. The DNase protection assay conducted supports the emerging model that both CRP and HapR bind at the same region of the murPQ promoter, but interpret is difficult due to the poor quality of the blot.

      There are areas of apparent protection at positions +1 to +15 that are not discussed, and the areas highlighted are difficult to observe with the blot provided.

      We disagree on this point. The region between +1 and +15 is inherently resistant to attack by DNAseI and there are only ever very weak bands in this region (lane 1). Other than seeing small fluctuations in overall lane intensity (e.g. lanes 7-12 have a slightly lower signal throughout) the +1 to +15 banding pattern does not change. Conversely, there are dramatic changes in the banding pattern between around -30 and -60 (again, compare lane 1 to all other lanes). That CRP and HapR bind the same region is extremely clear. Also note that this is backed up by mutagenesis of the shared binding site (Figure 4c).

      The model proposed at the end of the manuscript proposes physiological changes in cells that occur at transitions from the low to high cell density. Experiments in the paper that could strengthen this argument are incomplete. For example, in Fig. 4e it is unclear at what cell density the experiment is conducted.

      Such details have been added to the figure legends and methods section.

      The results with the wild type strain are intermediate relative to the other strains tested.

      This is correct, and exactly what we would expect to see based on our model.

      Cell density should affect the result here since HapR is produced at high density but not low density. This experiment would provide important additional insights supporting their model, by measuring activity at both cell densities and also in a luxO mutant locked at the high cell density. Conducting this experiment in conditions lacking and containing glucose would also reveal whether high glucose conditions mimicking the crp results.

      We agree with this idea in principle but note that the output from our reporter gene, β- galactosidase, is stable within cells and tends to accumulate. This is likely to obscure the reduction in expression as cells transition from low to high cell density. Since we have demonstrated the regulatory effects of HapR and CRP both in vivo using gene knockouts, and in vitro with purified proteins, we think that our overall model is very well supported. Further experimental additions may provide an incremental advance but will not alter our overall story. Also note the unexpected increase in intracellular cAMP due to addition of glucose, in Vibrio fischeri (PMID: 26062003).

      Throughout the paper it was challenging to account for the number of genes selected, the rationale for their selection, and how they were prioritized. For example, the authors acknowledged toward the end of the Results section that in their prior work, CRP and HapR binding sites were identified (line 321-22).

      This is not quite what we say, and maybe the reviewer misunderstood, which is our fault. The prior work identified CRP sites whilst the current work identified HapR sites. We have made a slight alteration to the text to avoid confusion.

      It is unclear whether the loci indicated in Table 1 all from this prior study. It would be useful to denote in this table the seven genes characterized in Figure 2 and to provide the locus tag for murPQ.

      Again, we are unsure if we have confused the reviewer. The results in Table 1 are all HapR sites from the current work, not a prior study. However, some of these also correspond to CRP binding regions found in prior work.

      The reviewer mentions “the seven genes characterised in Figure 2” but 23 targets were characterised in Figure 2a and 9 in Figure 2b. The “VC” numbers used in Figure 2 are the same as used in Table 1 so it is easy to cross reference between the two. We have added a footnote to Table 1, also referred to in the Figure 2 legend, to allow cross referencing between gene names and locus tags (including for murQP and hapR).

      Of the 32 loci shown in Table 1, five were selected for further study using EMSA (line 322), but no rationale is given for studying these five and not others in the table.

      This is not quite correct, we did not select 5 from the 32 targets listed in Table 1. We selected 5 targets from Table 1 that were also targets for CRP in our prior paper. This was the rationale.

      Since prior work identified a consensus CRP binding motif, the authors identify the DNA sequence to which HapR binds overlaps with a sequence also predicted to bind CRP. Genome analysis identified a total of seven sites where the CRP and HapR binding sites were offset by one nucleotide as see with murPQ. Lines 327-8 describe EMSA results with several of these DNA sequences but provides no data to support this statement. Are these loci in Table 1?

      This comment is a little difficult to follow, and we may have misunderstood, but we think that the reviewer is asking where the EMSA data referred to on lines 327-328 resides. We can see that the text could be confusing in this regard. We had referred to the relevant figure (Figure S6) on line 324 but did not again include this information further down in the description of the result. We have changed the text accordingly.

      Using structural models, the authors predict that HapR repression requires protein-protein interactions with CRP. Electromobility shift assays (EMSA) with purified promoter DNA, CRP and HapR (Fig 5d) and in vitro transcription using purified RNAP with these factors (Figure 5e) support this hypothesis. However, the model proports that HapR "bound tightly" and that it also had a "lower affinity" when CRP protein was used that had mutations in a putative interaction interface. These claims can be bolstered if the authors calculate the dissociation constant (Kd) value of each protein to the DNA. This provides a quantitative assessment of the binding properties of the proteins.

      The reviewer is correct that we do not explicitly provide a Kd. However, in both Figures 5d and 5e, we do provide very similar quantification. In 5d, our quantification is the % of the CRP-DNA complex bound by HapR (using either wild type or E55A CRP). Since the % of DNA bound is shown, and the protein concentrations are provided in the figure legend, information regarding Kd is essentially already present. In 5e, we show the % of maximal promoter activity. This is a reasonable way of quantifying the result. Furthermore, Kd is not a metric we can measure directly in this experiment that is not a DNA binding assay.

      The concentrations of each protein are not indicated in panels of the in vitro analysis, but only the geometric shapes denoting increasing protein levels.

      The protein concentrations are all provided in the figure legend. It is usual to indicate relative concentrations in the body of the figure using geometric shapes.

      Panel 5e appears to indicate that an intermediate level of CRP was used in the presence of HapR, which presumably coincides with levels used in lane 4, but rationale is not provided.

      There was no particular rationale for this, it was simply a reasonable way to do the experiment.

      How well the levels of protein used in vitro compare to levels observed in vivo is not mentioned.

      The protein concentrations that we use (in the nM to low μM range) are very typical for this type of work and consistent with hundreds of prior studies of protein-DNA interactions. The general rule of thumb is that 1000 molecules of a protein per bacterial cell equates to a concentration of around 1 μM. However, molecular crowding is likely to increase the effective concentration. Additionally, in vitro, where the DNA concentration is higher.

      The authors are commended for seeking to connect the in vitro and vivo results obtained under lab conditions with conditions experienced by V. cholerae in niches it may occupy, such as aquatic systems. The authors briefly review the role of MurPQ in recycling of the cell wall of V. cholerae by degrading MurNAc into GlcNAc, although no references are provided (lines 146-50). Based on this physiology and results reported, the authors propose that murPQ gene expression by these two signal transduction pathways has relevance in the environment, where Vibrios, including V. cholerae, forms biofilms on exoskeleton composed of GlcNAc.

      We have added a citation to the section mentioned.

      The conclusions of that work are supported by the Results presented but additional details in the text regarding the characteristics of the proteins used (Kd, concentrations) would strengthen the conclusions drawn. This work provides a roadmap for the methods and analysis required to develop the regulatory networks that converge to control gene expression in microbes. The study has the potential to inform beyond the sub-filed of Vibrios, QS and CRP regulation.

      As noted above, quantification essentially equivalent to Kd is already shown (% of bound substrate is indicated in figures and all protein concentrations are given in the figure legends).

      Reviewer #1 (Recommendations For The Authors):

      1.  As similar experiments have been performed in other Vibrios, it would be interesting to do a more detailed analysis of the similarities and differences between the species. Perhaps a Venn diagram showing how many targets were found in all studies versus how many are species specific.

      We appreciate this suggestion but would prefer not to make this change. A cross-species analysis would be very time consuming and is not trivial. The presence and absence of each target gene, for all combinations of organisms, would first need to be determined. Then, the presence and absence of binding signals for HapR, or its equivalent, would need to be determined taking this into account. For most readers, we feel that this analysis is unlikely to add much to the overall story. Given the amount of effort involved, this seems a “non-essential” change to make.

      2.  Line 101-Are the FLAG tagged versions of LuxO and HapR completely functional? Can they complement a luxO or hapR deletion mutant?

      The activity of FLAG tagged HapR (LuxR in other Vibrio species) has been shown previously (e.g. PMIDs 33693882 and 23839217). Similarly, N-terminal HapR tags are routinely used for affinity purification of the protein without ill effect. We have not tested LuxO-3xFLAG for “full” activity, though this fusion is clearly active for DNA binding, the only activity that we have measured here, since all know targets are pulled down.

      3.  Line 106-As the authors state later that there are additional smaller peaks for HapR that could be other direct targets, I think a brief mention of the methodology used to determine the cutoff for the 5 and 32 peaks for LuxO and HapR, respectively, would be informative here.

      We have added a little more text to the methods section. The added text states “Note that our cut- off was selected to identify only completely unambiguous binding peaks. Hence, weak or less reproducible binding signals, even if representing known targets, were excluded (see Discussion for further details)”.

      4.  Line 118-Need a reference here to the prior HapR binding site.

      This has been added.

      5.  Figs. 1e-What do the numbers on the x-axis refer to? Why not just present these data as bases? The authors also refer to distance to the nearest start codon, but this is irrelevant for 4/5 of the luxO targets as they are sRNAs. They should really refer to the distance to the transcription start site. Likewise, for HapR, distance to the nearest start codon is not as informative as distance to the nearest transcription start site. A recent paper used transcriptomics to map all the transcription start sites of V. cholerae, and these results should be integrated into the author's study rather than just using the nearest start codon (PMID: 25646441).

      The numbers are kilo base pairs, this has been added to the axis label. We have also changed “start codon” to “gene start” (since “gene start” is also suitable for genes that encode untranslated RNAs).

      Re comparing binding peak positions to transcription start sites (TSSs) rather than gene starts, this analysis would be useful if TSSs could be detected for all genes. However, some genes are not expressed under the conditions tested by PMID: 25646441, so no TSS is found. Consequently, for HapR or LuxO bound at such locations, we would not be able to calculate a meaningful position relative to the TSS. We stress that the point of the analysis is to determine how peaks are positioned with respect to genes (i.e. that sites cluster near gene 5’ ends). Also note that nearest TSSs are now shown in the revised Table 1. In some cases, these are unlikely to be the TSS actually subject to regulation (e.g. because the regulated gene is switched off).

      6.  Fig. 1e-Is there directionality to the site? In other words, if a HapR binding site is located between two genes that are transcribed in opposite directions, is there a way to predict which gene is regulated? It looks like this might be the case with the list presented in Table 1, but how such determination is made and what the various symbol in Table 1 mean are not clear to me. This also has ramifications for Fig. 2a as the direction to construct the fusion is critical for the experiment.

      The site is a palindrome so lacks directionality. The best prediction re regulation is likely to be positioning with respect to the nearest TSS (which is now included in Table 1). However, this would remain just a prediction and, where TSSs are in odd locations with respect to binding sites (taking into account the caveats above) predictions would be unreliable.

      We are unsure which symbol the reviewer refers to in Table 1, a full explanation of any symbols used is provided in the table footnotes.

      With respect to Figure 2a, if sites were between divergent genes, and met our other criteria, we tested for regulation in both directions. For example, see the divergent genes VCA0662 (classified inactive) and VCA0663 (classified repressed).

      7.  Fig. 2a-It is a little disappointing that the authors use LacZ fusions to measure transcription as this is not the most sensitive reporter gene. Luciferase gene fusions would have been much more sensitive. Also, did the authors examine multiple time points. The methods only describe "mid-log phase" but some of the inactive promoters could be expressed at other time points. Also, it would be simple to repeat this experiment in different media, such as minimal with glucose or another non- CRP carbon source, to expand which promoters are expressed.

      The reviewer is correct regarding the sensitivity of β-galactosidase, which is very stable and so accumulates as cells grow. Even so, this reporter has been used very successfully, across thousands of studies, for decades. We did not examine multiple timepoints. We appreciate that the 23 promoter::lacZ fusions could be re-examined using varying growth conditions but this is unlikely to impact the overall conclusions, though it could generate some new leads for future work.

      8.  Fig. 2a legend-typos

      This has been corrected.

      9.  Line 138-I think you mean Fig. 2a here.

      This has been corrected.

      10.  Fig. 2b and many additional figures quantify band intensity but do not show any replication or error. Therefore, it is impossible to gauge reproducibility of these experiments.

      We have added a reproducibility statement (all experiments were done multiple times with similar results) as is standard throughout the literature. Also note that there is a lot of internal replication between figures. Figure 4d and Figure 5e lanes 1-9 show essentially the same experiment (albeit with slightly different protein concentrations) and very similar results. To the same effect, Figure 5e lanes 10-18 and lanes 19-27 show the same experiment for two different mutations of the same CRP residue. Again, the results are very similar. Also see the response to your comment 15 below.

      11.  Fig. 4a-lanes 2-4-the footprint does not change with additional CRP. In other words, it looks the same at the lowest concentration of CRP versus the highest concentration of CRP. The footprints for HapR look similar. This is somewhat troubling as in these types of experiments one would like to observe a dose dependent change in the footprint correlating with more DNA occupancy.

      For CRP we agree but are not concerned at all by this. The site is simply full occupied at the lowest protein concentration tested. Given that the footprint exactly coincides with a near consensus CRP site (which, when mutated, abolishes CRP binding in EMSAs, and regulation by CRP in vivo) all our results are perfectly consistent. Note that i) our only aim in this experiment was to determine the positions of CRP and HapR binding ii) our conclusions are independently backed up using gel shifts and by making promoter mutations. With respect to HapR, there are changes at the periphery of the main footprint.

      12.  Fig. 4e-Why does the transcriptional activation of murQP decrease with increasing concentrations of CRP? This is also seen in Fig. 5e.

      In our experience, this often does happen when doing in vitro transcription assays (with CRP and many other activators). The anecdotal explanation is that, at higher concentrations, the regulator can start to bind the DNA non-specifically and so interfere with transcription.

      13. The authors demonstrate in vitro that HapR requires binding of CRP to bind the murQP promoter. It would strengthen their model if they demonstrated this in vivo. To do this, the authors only need to repeat their ChIP-Seq experiment in a delta CRP mutant and the HapR signal at murQP would be lost. In fact, such an experiment would experimentally confirm which of the in vivo HapR binding sites are CRP dependent.

      We agree, appreciate the comment, and do plan to do such experiments in the future as a wider assessment of interactions between transcription factors. However, doing this does have substantial time and resource implications that we cannot devote to the project at present. We feel that our overall conclusions, regarding co-operative interactions between HapR and CRP at PmurQP, are well supported by the data already provided. This also seems the overall opinion of the reviewers.

      14.  Fig. 5b-I am confused by the Venn diagram. The text states that "In all cases, the CRP and HapR targets were offset by 1 bp", but the diagram only shows 7 overlapping sites. The authors need to better describe these data.

      We mean that, in all cases where sites overlap, sites are offset by 1 bp (i.e. we didn’t find any sites

      overlapping but offset by 2, 3 4 bp etc).

      15. Line 287-288 and Fig. 5d-The authors state that HapR binds with less affinity to the CRP E55A mutant protein bound to DNA. There does seem to be a difference in the amount of shifted bands at the equivalent concentrations of HapR, but the difference is subtle. In order to make such a conclusion, the authors should show replication of the data and calculate the variability in the results. The authors should also use these data to determine the actual binding affinities of HapR to WT and the E55A mutant CRP, along with error or confidence intervals.

      All of these experiments have been run multiple times and we are absolutely confident of the result. With respect to Figure 5d, this was done many times. We note that not all experiments were exact repeats. E.g. some of the first attempts had fewer HapR concentrations. Even so, the defect in HapR binding to the CRP E55A complex was always evident. The two gels to the left show the final two iterations of this experiment (these are exact repeats). The top image is that shown in Figure 5d. The lower image is an equivalent experiment run a day or so previously. Both clearly show a defect in HapR binding to the CRP E55A complex. We appreciate that our conclusion re these experiments is somewhat qualitative (i.e. that HapR binds the CRP E55A complex less readily) but this is not out of kilter with the vast majority of similar literature and our results are clearly reproducible.

      16.  Fig. 6a-It is odd that the locked low cell density mutants have such a growth defect in MurNAc, minimal glucose, and LB. To my knowledge, such a growth defect is not common with these strains. Perhaps this has to do with the specific growth conditions used here, but I can't find that information in the manuscript (it should be there). Furthermore, the growth rate of the luxO and hapR mutants appears to be similar up to the branch point (i.e. slope of the curve), but the lag phage of the luxO mutant is much longer. The authors need to address these issues in relationship to previous published literature and specify their growth conditions because the results are not consistent with their simple model described in Fig 6b.

      This comment is a little difficult to pick apart as it covers several different issues. We’ll try and

      answer these individually.

      a)     The unusual “biphasic growth curve with hapR and hapRluxO cells: We do not know why cells lacking hapR have a growth curve that appears biphasic. We can only assume that this is due to some regulatory effect of HapR, distinct from the murQP locus. Despite the unusual shape of the growth curve, the data are consistent with our conclusions.

      b)     The extended lag phase of the luxO mutant in minimal media + MurNAc: We appreciate this comment and had considered possible explanations prior to submission. In the end, we left out this speculation but are happy to include it as part of our response. The extended lag phase might be expected if CRP/HapR regulation is largely critical for controlling the basal transcription of murQP. The locus is likely also regulated by the upstream repressor MurR (VC0204) as in E. coli. So, if deprepression of MurR overwhelms the effect of HapR on murQP, we think you would expect that once the cells start growing on MurNAc, the growth rates are unchanged. But the extended lag is due to the fact that it took longer for those cells to achieve the critical threshold of intracellular MurNAc-6-P necessary to drive murR derepression. Obviously, we can not provide a definitive answer.

      c)     We have added further details regarding growth conditions to the methods section and the Figure 6a legend.

      17.  Fig. S6-The data to this point with murPQ suggested a model in which CRP binding then enabled HapR binding. But these EMSA suggest that both situations occur as in some cases, such as VCA0691, HapR binding promotes CRP binding. How does such a result fit with the structural model presented in Fig. 5?

      This is to be expected and is fully consistent with the model. Cooperativity is a two-way street, and each protein will stabilise binding of the other. Clearly, it will not always be the case that the shared DNA site will have a higher affinity for CRP than HapR (as at PmurQP). Depending on the shared site sequence, expected that sometimes HapR will bind “first” and then stabilise binding of CRP.

      18. Line 354-356-The HCD state of V. cholerae occurs in mid-exponential phase and several cell divisions occur before stationary phase and the cessation of growth, at least in normal laboratory conditions. Therefore, there is not support for the argument that QS is a mechanism to redirect cell wall components at HCD because cell wall synthesis is no longer needed.

      We did not intent to suggest cell wall synthesis is not needed at all, rather that there is a reduced need. We made a slight change to the discussion to reflect this.

      19. Line 357-360-Again, as stated in point 16, the statement that cells locked in the HCD are "defective for growth" is an oversimplification. The luxO mutants have a longer lag phage, but they actually outgrow the hapR mutants at higher cell densities and reach the maximum yield much faster.

      In fairness, we do go on to specify that the defect is an extended lag phase. Also see our response above.

      Reviewer #2 (Recommendations For The Authors):

      Comments to improve the text

      1)  Line 103-106, line 130, line 136, etc. Details of the methods and the text directing to presentations of figures should be in the methods and/or figure legends with (Figure x) in citation after the statement. The sentences in lines indicated can be deleted from the results. Although several lines are noted specifically here, this comment should be applied throughout the entire results section.

      We appreciate this comment but would prefer not to make this change (it seems mainly an issue of personal stylistic choice). It is sometimes helpful for the reader to include such information as it avoids them having to cross reference between different parts of the manuscript.

      2)  Line 115. Recommend a paragraph between content on LuxO and HapR (before "Of the 32 peaks for HapR binding")

      We agree and have made this change.

      3)  Line 138 and Figure 1a. I am not convinced this gel shows that VC1375 is activated by HapR. Is the arrow pointing to the wrong band? There does seem to be an induced band lower down.

      We understand this comment as it is a little difficult to see the induced band. This is because this is a compressed area of the gel and the transcript is near to an additional band.

      4)  Line 147. Add the VC0206-VC0207 next to murQP (and the gene name murQP into Table 1).

      We have added the gene name to the figure foot note. The text has been changed as requested.

      5) Methods. It is essential for this paper to have detailed methods on the bacterial growth conditions. Referring to prior paper, bacteria were grown in LB (add composition...is this high salt LB often used for vibrios or low salt LB often used for E. coli). Growth is to "mid log". Please provide the OD at collection. Is mid log really considered "high density". Provide a reference regarding HapR activity at mid log to support the method. Could the earlier collection of bacteria account for missing known HapR regulated genes? In preparing the requested ç, include growth conditions for other experiments in the legends.

      Note that we have included a new supplementary table, rather than a Venn diagram. We have also added further details of growth conditions as mentioned above. Also not that, for the ChIP-seq, HapR and LuxO were expressed ectopically and so uncoupled from the switch between low and high cell density.

      6)  Content of Table 1, HapR Chip-seq peaks, needs to be closely double checked to the collected data as there seems to be some errors. Specifically, VC0880 and VC0882 listed under Chromosome I are most likely VCA0880 (MakD) and VCA0882 (MakB), both known HapR induced genes on Chromosome II with VCA0880 previously validated by EMSA. This notable error suggests the table may have other errors and thus requires a very detailed check to assure its accuracy.

      We appreciate the attention to detail! We have double checked, thankfully this is not an error, the table is correct (even so, we have also checked all other entries in the table). As an aside, VCA0880 is one of the locations for which we see a weak HapR binding signal below our cut-off (included in the new Table S1). In cross checking between Table 1 and all other data in the paper we noticed that we had erroneously included assay data for VC0620 in Figure 2A. This was not one of our ChIP-seq targets but had been assayed at the same time several years ago. This datapoint, which wasn’t related to any other part of the manuscript, has been removed.

      If VCA0880 and VCA0882 are correctly placed on Chr. I, then add comment to text that the Mak toxin genomic island found on Chromosome II in N16961 is on Chr. I in E7946. (See recent references PMID: 30271941, 35435721, 36194176, 34799450).

      See above, this is not an error.

      7)  Alternatively for both comments 8 & 9, are these problems of present/missing genes or misannotations the result of the annotation of E7946 gene names not aligning with gene names of N16961? (if so, in Table 1, please give the gene name as in E7946 but include a separate column with the N16961 name for cross study comparison)

      See above and below, this is not an issue.

      8)  Line 126-127. Also regarding Table 1, please add a column with function gene annotation. For example, VC0916 needs to be identified as vpsU. If function is unknown, type unknown in the column. This will help validate the approach of selecting "HapR target promoters where adjacent coding sequence could be used to predict protein function."

      We added an extra column to Table 1 in response to a separate reviewer request (TSS locations). This leaves no space for any additional columns. Instead, to accommodate the reviewer’s request, we have added alternative gene names to the footnote.

      Not following up on VCA0880 (promoter for the mak operon) is a sad missed opportunity here as it is one of the most strongly upregulated genes by HapR (PMC2677876)

      As noted above, this was not an error and VCA0880 was not one of our 32 HapR targets. As such, we would not have followed this up.

      9)  Figure Legends. Add a unit to the bar graphs in Figure 1e (should be kb??) This has been corrected.

      10) The yellow color text labels in figures 3c, 4a, 4c are difficult to read. Can you use an alternative darker color for CRP.

      We have made this slightly darker (although to our eye it is easily reliable). We haven’t changed the colour too much, for consistency with colour coding elsewhere.

      11) Figure S3. Binding is misspelled. Add units to the x-axis

      This has been corrected.

      12) Figure S7. The text in this figure is too small to read. Figure could be enlarged to full page or text enlarged. Are these 4 the only other known regulated promoters? Could all the known alternative promoters linked to HapR be similarly probed?

      We have increased the font size and included a new Table S1 for all previously proposed HapR sites.

      13) Figure S8. Original images..are any of these the replicate gels (see public comment 6)

      We have added a statement regarding reproducibility, and also note the internal reproducibility between different figures in our reviewer response. The gels in Figure S8 are full uncropped versions of those shown in the main figures.

      Reviewer #3 (Recommendations For The Authors):

      None

      Whilst there were no specific recommendations from this reviewer, we have still responded to the public review and made changes if required.

  8. May 2023
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor and reviewers,

      Thank you very much for the thorough assessment of our manuscript. We have carefully considered the comments and reflected most of them in the new version. We recognized the need to shorten and clarify the manuscript. Therefore, we have omitted particularly the less important passages concerning metabolism and the loss of genes encoding mitochondrial proteins, which cut the text by six pages in the current layout. We have also removed the text relating this model to eukaryogenesis. Finally, we have slightly changed the structure and linked the different sections to improve the flow of the story and to emphasize the key messages, which are the absence of mitochondria in a large proportion of oxymonads and the impact of this loss, loss of Golgi stacking and transformation to endobiotic lifestyle on selected gene inventories. We hope the manuscript is now clear and more concise and will be of interest to a broad readership interested in the evolution of eukaryotes, mitochondria and protists.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      This is a very interesting paper that investigates through detailed comparative genomics the tempo and mode of the evolution of microbial eukaryotes/protists members of the Metamonada with a focus on Preaxostyla, currently the only known lineage among eukaryotes to have species that have lost, by all accounts, the mitochondria organelle all together. Notably, it includes a free-living representative of the lineage allowing potential interesting comparison between lifestyles among the Preaxostyla. This is a generally nicely crafted manuscript that presents well supported conclusions based on good quality genome sequence assemblies and careful annotations. The manuscript presents in particular (i) additional evidence for the common role of LGT from various bacterial sources into eukaryotic lineages and (ii) more details on the transition from a free-living lifestyle to an endobiotic one and (iii) the related evolution of MROs and associated metabolism.

      Thank you very much for the positive assessment.

      I have some comments to improve a few details:

      In the introduction, lines 42-43, the last sentence should be more conservative by replacing "whole Oxymonadida" with "...all known/investigated Oxymonadida".

      The sentence has been changed to: "Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria and every protein that has ever participated in the mitochondrion function for all three oxymonad species (M. exilis, B. nauphoetae, and Streblomastix strix) extending the amitochondriate status to all investigated Oxymonadida."

      Similarly on line 62, the sentence could state "... contain 140 described...".

      The sentence has been changed to: "Oxymonadida contain approximately 140 described species of morphologically divergent and diverse flagellates exclusively inhabiting digestive tracts of metazoans, of which none has been shown to possess a mitochondrion by cytological investigations (Hampl 2017)."

      When discussing the estimated completeness of the genome are discussed (lines 117-120) and contrasted with the values for Trypanosoma brucei and other genomes, the author should explicitly state that these genomes are considered complete, which seems is what they imply, is that the case? If so, please provide more details to support this idea.

      We have elaborated on this part also in reaction to comments of other reviewers. The text now reads: "It should be noted that, despite their wide usage, BUSCO values are not expected to reach 100% in lineages distant from model eukaryotes simply due to the true absence (or high sequence divergence) of some of the assessed marker genes. For example, various Euglenozoa representatives with highly complete genome sequences, including Trypanosoma brucei, have BUSCO completeness estimates in the range of 71-88% (Butenko et al. 2020), and representatives of Metamonada fall within the range of 60-91% (Salas-Leiva et al. 2021). Specifically in the case of oxymonad M. exilis, the improvement of the genome assembly using long-read resequencing from 2092 scaffolds to 101 contigs led to only a marginal increase of BUSCO value from 75.3 to 77.5 (Treitli et al. 2021). "

      Also please see the detailed table prepared in response to reviewers 2 and 3 summarizing the presence/absence of genes from BUSCO set in the selected representatives of Metamonada and Trypanosoma brucei. The table is commented in the answer to Reviewer 3 comment (page 18)

      The supplementary file named "132671_0_supp_2540708_rmsn23" is listed as a Table SX? (note: I found it rather difficult to establish exactly what file corresponds to what document referred in the main text)

      We apologize for this mistake. We have checked and corrected references to tables, figures and supplementary material throughout the manuscript and hope it now does not contain any errors.

      Lines 243-245, where 46 LGTs are discussed, it is relevant that the authors investigate their functional annotations. Indeed, it is suggested that these could have adaptive values, hence investigating their functional annotation will allow the authors to comment on this possibility in more details and precision. When discussing LGTs it would also be very useful to cite relevant reviews on the topic - covering their origins, functional relevance when known, distribution among eukaryotes. This is done when discussing the evolution and characteristics of MROs but not when discussing LGTs, with several reviews cited and integrated in the discussion of the data and their interpretation.

      Available annotations of all putative LGT genes are provided in Supplementary_file_3 and also in the Supplementary_file_6 if the gene belongs to a manually annotated cellular system. Although we agree with the reviewer that the discussion of 46 species-specific LGTs might be interesting, for the sake of conciseness and brevity of the manuscript, we have decided not to expand the discussion further. However, note that we discuss selected cases of P. pyriformis-specific LGTs in the part “P. pyriformis possesses unexpected metabolic capacities” which follows right after the lines reviewer is referring to.

      The sentence, lines 263-265, where the distribution of some LGTs are discussed, needs to be made more precise. When using the work "close" the authors presumably refer to shared/similar habitat,s or else? Entamoeba is not a close relative to the other listed taxa.

      The “close relatives” mentioned in the text were meant as close relatives of all p-cresol-synthesizing taxa discussed in the paragraph, including Mastigamoeba, i.e. a specific relative of Entamoeba. We have modified the text such as to make the intended meaning easier to follow.

      Lines 346-348, that sentence needs to end with a citation (e.g. Carlton et al. 2007).

      The citation proposed by the reviewer has been added. The sentence was changed to: " The most gene-rich group of membrane transporters identified in Preaxostyla is the ATP-binding cassette (ABC) superfamily represented by MRP and pATPase families, just like in T. vaginalis (Carlton et al. 2007). "

      In the paragraph (line 580-585) discussing ATP transporters, note that Major et al. (2017) did not describes NTTs but distantly related members of MSF transporter, shared across a broader range of organisms then the NTTs. Did the authors check if the genome of interest encoded homologues of these transporters too?

      The citation has been removed; we admit that it was not the most appropriate one in the given

      context. Concerning the NTT-like transporters, encouraged by the reviewer we searched for them in the Preaxostyla genome and transcriptome assemblies and found no candidates. This is not explicitly stated in the revised manuscript. The paragraph now reads: “MROs export or import ATP and other metabolites typically using transporters from the mitochondrial carrier family (MCF) or sporadically by the bacterial-type (NTT-like) nucleotide transporters (Tsaousis et al. 2008). We did not identify any homolog of genes encoding proteins from these two families in any of the three oxymonads investigated. In contrast, MCF carriers, but not NTT-like nucleotide transporters, were recovered in the number of four for each P. pyriformis and T. marina (Supplementary file 6).

      Line 920-921, I don't understand how the number 30 relates to "guarantee" inferring the directionality of LGTs events. This will be very much dataset dependent, 100 sequences might still not allow to infer directionality of LGT events. The authors probably meant to "increase the possibility to infer directionality".

      We agree the original wording has not been particularly fortunate, so the sentence has changed to: "Files with 30 sequences or fewer were discarded, as the chance directionality of the transfer can be determined with any confidence is low when the gene family is represented by a small number of representatives."

      Reviewer #2 (Evidence, reproducibility and clarity):

      Using draft genome sequencing of the free-living Paratrimastix pyriformis and the sister lineage oxymonad Blattamonas nauphoetae, Novack et al. infer the metabolic potential of the two protists using comparative genomics. The authors conclude that the common oxymonad ancestor lost the mitochondrion/mitosome and discuss general strategies for adapting to commensal/symbiotic life-style employed by this taxon. Some elaborations on pathways go on for several paragraphs and feel unnecessarily stretched, which made those sections of the paper rather difficult to digest.

      Having seen reflections on the manuscript by three reviewers we carefully reconsidered its content and attempted to make it shorter and more compact by removing some of the less substantial material. Namely, we have dispensed completely with the original last section of Results and Discussion (“No evidence for subcellular retargeting of ancestral mitochondrial proteins in oxymonads”) and made various cuts throughout other sections. We hope that the revised version makes a substantially better job of delivering the key messages of our study to the readers compared to the original submission.

      This might be also be because the work, and all conclusions drawn, depend entirely on incomplete (ca. 70-80%) genome data and simple similarity searches, and e.g. no kind of biochemistry or imaging is presented to underpin the manuscripts discussion.

      This is a very crude and superficial assessment of our data. We have actually good reasons to believe that the genome assemblies are close to complete. Please see the discussion on this topic below and an answer to a particular comment from reviewer 3 (page 18).

      This is noteworthy in light of other protist genome reports published in the last few years that differ in this respect, including previous work by this group. And for sequencing-only data, this paper - https://doi.org/10.1016/j.dib.2023.108990 - might offer an example of where we are at in 2023.

      Frankly, we do not think it is fair or relevant to compare our study to the paper pointed to by the reviewer, as that paper reports on a metagenomic study that delivers a set of metagenomically assembled genomes (MAGs) of varying quality retrieved from environmental DNA samples without providing any in-depth analysis of the gene content. Our study is very different in its scope and aims, and we are not certain what lesson we should take from this reviewer’s point. We have good reasons to believe that the datasets are close to complete. Please see the discussion on this topic below and answer to comment of reviewer 3 (page 18).

      With respect to previous work of the group (Karnkowska et al. 2016 and 2019), this submission is very similar (analysis pattern, even some figures and more or less the conclusion), i.e. to say, the overall progress for the broader audience is rather incremental. Then there are also some incidents, where the data presented conflicts with the author‘s own interpretation.

      It was our intention to use the previous analytical experiences and approaches, which at the same time makes the new results comparable with those published before. Although the format is intentionally similar, this work is a substantial step forward because only with our present study the amitochondrial status of the large part of Oxymonadida group can be considered solidly established. This in turn allows us to estimate the timing of the loss of mitochondrion (more than 100 MYA) demonstrating that the absence of mitochondrion in this group is not an episodic transient state but a long-established status. We do not understand what exactly the reviewer had in mind when pointing to “incidents, where the data presented conflicts with the author‘s own interpretation” – we are not aware of such cases.

      The text (including spelling and grammar) needs some attention and the choice of words is sometimes awkward. The overuse of quotation marks ("classical", "simple", "fused", "hits", "candidate") is confusing (e.g. was the BLAST result a hit or a "hit").

      The whole text has been carefully checked and the language corrected whenever necessary by a one of the co-authors, who is a native English speaker. The use of quotation marks has been restricted as per the reviewer’s recommendation.

      In its current formn the manuscript is, unfortunately, very difficult to review. This reviewer had to make considerable efforts to go through this very large manuscript, mainly because of issues affecting to the presentation and the lack of clarity and conciseness of the text. It would be greatly appreciated if the authors would make more efforts upfront, before submission, to make their work more easily accessible both to readers and facilitate the task of the reviewers.

      We admit that the story we are trying to tell is a complex one, consisting of multiple pieces whose integration into a coherent whole is a challenging task. As stated above, the reports provided by the reviewers provided us with an important stimulus, leading us to substantially modify the manuscript to make it more concise, less ambiguous when it comes to particular claims, and easier to read. We hope this intention has been fulfilled to a larger degree.

      About a fifth of the two genome is missing according the authors prediction (table 1). Early on they explain the (estimated) incompleteness of the genomes to be a result from core genes being highly divergent. In light of this already suspected high divergence, using (the simplest NCBI) sequence similarity approach to call out the absence of proteins (for any given lineage) may need lineage-specific optimization. The use of more structural motif-guided approaches such as hidden Markov models could help, but it is not clear whether it was used throughout or only for the search for (missing) mitochondrial import and maturation machinery. The authors state that the low completeness numbers are common among protists, which, if true, raises several questions: how useful are then such tools/estimates to begin with and does this then not render some core conclusions problematic? The reader is just left with this speculation in the absence of any plausible explanation except for some references on other species for which, again, no context is provided. Do they have similar issues such as GC-content, same core genes missing, phylogenetic relevance?, etc.. No info is provided, the reader is expected to simply accept this as a fact and then also accept the fact that despite this flaw, all conclusions of the paper that rests on the presence/absence of genes are fine. This is all odd and further skews the interpretations and the comparative nature of the paper.

      The question of the completeness of the data sets was raised also by reviewer 3 and we would like to provide an explanation at this point. First, it should be stated that there is no ideal and objective way how to measure the completeness of the eukaryotic genomic assembly. In the manuscript, we have used the best established method, adopted by the community at large, which is based on the search for a set of „core eukaryotic genes“ using a standardized pipeline BUSCO or previously popular CEGMA. The pipeline uses its own tools to identify the homologues of genes/proteins which ensures standardization of the procedure. This answers the question of reviewer 2, why we have not used more sensitive tools for these searches. We did not use them, because we followed the procedure that is the gold standard for such assessments, for comparability with other genomes and to make this as clear to the reader as possible. Although the result of the pipeline is usually interpreted as the completeness of the assembly, this is a simplification. Strictly speaking, the result is a percentage of the genes from the set of 303 core eukaryotic genes (in our case) which were detected in the assembly by the pipeline. Even in complete assemblies, the value is usually below 100% because some of the genes are not present in the organism and some diverged beyond recognition. We do not see any other way how to deal with this drawback than to compare with related complete genome assemblies acting as standards. This we have done in Supplementary file 11, where we list the presence/absence of each gene for Preaxostyla species and three highly complete assemblies of Trypanosoma brucei, Giardia intestinalis and Trichomonas vaginalis. T. brucei and G. intestinalis are assembled into chromosomes. As you can see, in these three „standards“ 63, 148 and 77 genes from the core were not detected resulting in BUSCO completeness values of 79%, 51% and 75%, respectively. 18 of the non-detected genes function in mitochondria (shown in red), which are highly reduced in some of these species, so the absence of the respective genes is therefore expected. Simply not considering these genes would increase the “completeness measure” for oxymonads by 6%. The values for our standards are not higher than the values for Preaxostyla (69-82%). In summary, the BUSCO incompleteness measure is far from ideal, particularly in these obscure groups of eukaryotes. The values received for Preaxostyla give no reason for concern about their incompleteness. See also our answer to reviewer 3 (page 18).

      At the same time, we admit that the BUSCO values do not confirm the high completeness of our assemblies. So, why do we think they are highly complete? One reason is that we do not see suspicious gaps in any of the many pathways which we annotated but the main reason is the high contiguity of the assemblies. Thanks to Nanopore long read sequencing, the assembly of P. pyriformis and B. nauphoetae compose of 633 and 879 scaffolds, suggesting that there are “only” hundreds of gaps. Although this may still sound too much, it is a relatively good achievement for genomes of this size and the experience shows that a further decrease in the number of scaffolds would allow the detection of additional genes but not in huge numbers. As we have shown for M. exilis (Treitli et al. 2021, doi:10.1099/mgen.0.000745) the decrease from 2 092 scaffolds to 101 contigs, i.e., filling almost 2 000 gaps, allowed the prediction of additional 1 829 complete gene models, of which 1 714 were already present in the previous assembly but only partially and just 115 were completely new. None of these newly predicted genes was functionally related to the mitochondrion. Thus, we infer the chance that all mitochondrion-related genes are hidden in the gaps of assemblies is very low.

      We have provided these arguments in a condensed form in the text following the description of genome assemblies: “It should be noted that, despite their wide usage, BUSCO values are not expected to reach 100% in lineages distant from model eukaryotes simply due to the true absence (or high sequence divergence) of some of the assessed marker genes. For example, various Euglenozoa representatives with highly complete genome sequences, including Trypanosoma brucei, have BUSCO completeness estimates in the range of 71-88% (Butenko et al. 2020), and representatives of Metamonada fall within the range of 60-91% (Salas-Leiva et al. 2021). Specifically in the case of oxymonad M. exilis, the improvement of the genome assembly using long-read resequencing from 2092 scaffolds to 101 contigs led to only a marginal increase of BUSCO value from 75.3 to 77.5 (Treitli et al. 2021).

      As a side note, this will also influence the number of proteins absent in other lineages and as such has consequences on LGT calls versus de novo invention. For the cases with LGT as an explanation, it would help to briefly discuss the candidate donors and some details of the proteins in the eco-physiological context (e.g. lines 263-268 suggest that HPAD may have been acquired by EGT which was facilitated by a shared anaerobic habitat and also comment on adaptive values for acquiring this gene). Exchanging metabolic genes via LGT (Line 163) blurs the differences between roles and extent of LGT in prokaryote vs eukaryote, and therefore is exciting and could use support/arguments other than phylogenies. I guess the number of reported LGTs among protists (whatever the source) over the last decade has by now deflated the novelty of the issue in more general; a report of the numbers is expected but they alone won't get you far anymore in the absence of a good story (such as e.g. work on plant cell wall degrading enzymes in beetles).

      We agree with the reviewer that the cases of LGT involving Preaxostyla would deserve more discussion in the manuscript. On the other hand, we also agree that none of them provides such a “cool” story that would deserve a special chapter or even a separate paper. Therefore, we have decided, also with regard to keeping the text in a reasonable dimension, not to expand the discussion of LGTs with the exception of HgcAB, where some new information has been included and the phylogeny of the genes updated. Please note that we had discussed in the original manuscript the donor lineages and ecological/biochemical context in the cases of GCS-L2, HPAD, UbiE, and NAD+ synthesis and this material has been kept also in the revised version.

      It would help to clarify which parts of the mitochondrial ancestor were reduced during the process of reductive evolution at what time in their hypothesized trajectory. For instance, loosing enzymes of anaerobic metabolism conflicts with the argued case of an aerobic (as opposed to facultative anaerobic) mitochondrial ancestor followed by gains of anaerobic metabolism in the rest of the eukaryotes via LGT, and some papers the authors themselves cite (e.g. the series by Stairs et al.). There is no coherent picture on LGT and anaerobic metabolism, although a reader is right to expect one.

      These are very interesting questions, that would fill a separate article. In the manuscript, we focus on the Preaxostyla lineage only and there the trajectory seems relatively simple: replacement of the mitochondrial ISC by cytosolic SUF in the common ancestor of Preaxostyla, loss of methionine cycle and in in consequence mitochondrial GCS and the mitochondrion itself. We have modified the first conclusion paragraph in this sense and it now reads the following:

      The switch to the SUF pathway in these species has apparently not affected the number of Fe-S-containing proteins but led to a decrease in the usage of 2Fe-2S clusters. The loss of MRO impacted particularly the pathways of amino acid metabolism and might relate also to the loss of large hydrogenases in oxymonads.

      It is not clear to us how to understand the reviewer’s remark concerning the conflict between loss of enzymes of anaerobic metabolism and the (presumed) aerobic nature of the mitochondrial ancestor. Provided that we read the reviewer’s rationale correctly, is it really so implausible that the anaerobic metabolism gained laterally by a particular lineage was then secondarily lost in specific descendant lineages? As a clear example demonstrating the feasibility of such an evolutionary pattern consider the evolution of plastids. There is no doubt these organelles move across eukaryotes by secondary or higher-order endosymbiosis or kletoplastidy, establishing themselves in lineages where there was no plastid before. Secondary simplification of such plastids, e.g. by the loss of photosynthesis, in its extreme form culminating in the complete loss of the organelle, has been robustly documented from several lineages, such as Myzozoa (e.g., https://pubmed.ncbi.nlm.nih.gov/36610734/). Hence, we see absolutely no reason to rule out the possibility that the ancestral mitochondrion was obligately aerobic and enzymes of anaerobic metabolism spread secondarily by eukaryote-to-eukaryote LGT, with their secondary loss in particular lineages. We really do not see any conflict here and we do not agree with the interpretation provided by the reviewer. That said, we admit that the discussion on the earliest stages of mitochondrial evolution is not an essential ingredient of the story we try to tell in our manuscript, so to avoid any unnecessary misunderstanding we have removed the original last sentence of Conclusions (“Thorough searches revealed …”) from the revised manuscript.

      In light of their data the authors also discuss the importance of the mitochondrion with respect to the origin of eukaryotes:

      First, the mitochondrion brought thousands of genes into the marriage with an archaeon, surely hundreds of which provided the material to invent novel gene families through fusions and exon shuffling and some of which likely went back and forth over the >billion years of evolution with respect to localizations. The authors look at a minor subset of proteins (pretty much only those of protein import, Fig. 6) to conclude, in the abstract no less: „most strikingly the data confirm the complete loss of mitochondria and every protein that has ever participated in the mitochondrion function for all three oxymonad species." I do not question the lack of a mitochondrion here, but this abstract sentence is theatrical in nature, nothing that data on an extant species could ever proof in the absence of a time machine, and is evolutionary pretty much impossible. A puzzling sentence to read in an abstract and endosymbiont-associated evolution.

      We feel that the reviewer is putting too much emphasis on an aspect of our original manuscript that is rather peripheral to its major message. Indeed, the manuscript is not, and has never been thought to be, primarily about eukaryogenesis and the exact role the mitochondrion played in it. We are, therefore, somewhat reluctant to react in full to the very long and complex argument the reviewer has raised in his/her report, so we keep our reaction at the necessary minimum. Concerning the criticized sentence in the original version of the abstract, it alluded to a section of the manuscript (“No evidence for subcellular retargeting of ancestral mitochondrial proteins in oxymonads”) that we have removed from the revised version, and hence we have modified also the abstract accordingly by removing the sentence. We still think our original arguments were valid, but apparently, much more space and more detailed analyses are required to deliver a truly convincing case, for which there is no space in the manuscript.

      Second, using oxymonads as an example that a lineage can present eukaryotic complexity in the absence of mitochondria and conflating it with eukaryogenesis is a logical fallacy. This issue already affected the 2019 study by Hampl et al.. We have known that a eukaryote can survive without an ATP-synthesizing electron transport chain ever since Giardia and other similar examples and the loss of Fe-S biosynthesis and the last bit of mitosome (secondary loss) doesn't make a difference how to think about eukaryogenesis. It confuses the need and cost to invent XYZ with the need and cost of maintenance. How can the authors write "... and undergo pronounced morphological evolution", when they evidently observe the opposite and show so in their Fig. 1? The authors only present evidence for reductive evolution of cellular complexity with the loss of a stacked Golgi. What morphological complexity did oxymonads evolve that is absent in other protists? A cytosolic metabolic pathway doesn't count in this respect, because it is neither morphological, nor was it invented but likely gained through LGT according to the authors. This is quite confusing to say the least. A recent paper (https://doi.org/10.7554/eLife.81033) that refers to Hampl et al. 2019 has picked this up already, and I quote: "Such parasites or commensals have engaged an evolutionary path characterized by energetic dependency. Their complexity might diminish over evolutionary timescale, should they not go extinct with their hosts first." Here the authors raise a red flag with respect to using only parasites and commensals that rely on other eukaryotes with canonical mitochondria as examples. If we now look at Fig. 1 of this submission, Novak et al. underpin this point perfectly, as the origin of oxymonads is apparently connected to the strict dependency on another eukaryote (or am I wrong?), and they support the prediction with respect to complexity reducing after the loss of mitochondria - mitosome gone, Golgi almost gone. What's next? This is a good time to remember that extant oxymonads are only a single picture frame in the movie that is evolution, and their evolution might be a dead-end or result in a prokaryote-like state should they survive 100.000s to millions of years to come.

      It seems that in this point the reviewer is particularly concerned with the following sentence that is part of the Introduction and which relates to the existence of amitochondrial eukaryotes we are studying: “The existence of such an organism implies that mitochondria are not necessary for the thriving of complex eukaryotic organisms, which also has important bearings to our thinking about the origin of eukaryotes (Hampl et al. 2018). Even after re-reading the sentence we confess we stay with it and find it perfectly logical. Nevertheless, we decided to omit it from the text so as not to distract from the main topic of the study.

      Next, when mentioning “… pronounced morphological evolution” we mean the evolution of four oxymonad families (Streblomastigidae, Oxymonadidae, Pyrsonymphidae and Saccinobaculidae) comprising almost a hundred described species with often giant and morphologically elaborated cells that evolved from a simple Trimastix-like ancestor (Hampl 2017, Handbook of Protists, 0.1007/978-3-319-32669-6_8-1). This is a fact that can hardly be dismissed. Also, given the current oxymonad phylogenies (Treitli et al. 2018, doi.org/10.1016/j.protis.2018.06.005) and the reported absence of a mitochondrion in M. exilis, B. nauphoetae, and S. strix we can infer that the mitochondrion was lost in the common ancestor of the three species at latest. This organism must have lived more than 100 MYA, as at that time oxymonads were clearly diversified into the families (Poinar 2009, 10.1186/1756-3305-2-12). So, these organisms indeed have lived without mitochondria for at least 100 MY. We think that these facts and our inferences based on them are solid enough to keep in the conclusion the following statement: “This fact moves this unique loss to at least 100 MYA deep past, when oxymonads had been already diversified (Poinar 2009), and shows that a eukaryotic lineage without mitochondria can thrive for eons and undergo pronounced morphological evolution, as is apparent from the range of shapes and specialized cellular structures exhibited by extant oxymonads (Hampl 2017).” Furthermore, as documented in Karnkowska et al. 2019 (https://pubmed.ncbi.nlm.nih.gov/31387118/), apart the loss of the mitochondrion oxymonads are surprisingly “normal” and complex eukaryotes, in fact much less reduced than, e.g., Giardia, Microsporidia, or even S. cerevisiae (in terms of the number of genes, introns, etc.). We strongly disagree with the claim that “Golgi is almost gone” in oxymonads, and our manuscript shows exactly the opposite. Viewing oxymonads as a lineage heading towards a prokaryote-like simplicity is dogmatic and ignores the known biology of these organisms.

      Some more thoughts: Line 47-52: Hydrogenosome or mitosome is a biological and established label as (m)any other and I find the use of the word "artificial" in this context strange. While the authors are correct to note that there is a (evolutionary) continuum in the reduction - obviously it is step by step - they exaggerate by referring to the existing labels as "artificial". You make Fe-S clusters but produce no ATP? Well, then you're a mitosome. It's a nomenclature that was defined decades ago and has proven correct and works. If the authors think they have a better scheme and definition, then please present one. Using the authors logic, terms such as amyloplast or the TxSS nomenclature for bacterial secretions systems are just as artificial. As is, this comes across as grumble for no good reason.

      We agree that the original wording sounded like unwarranted grumbling and we have changed the sentence in the following way: "However, exploration of a broader diversity of MRO-containing lineages makes it clear that MROs of various organisms form a functional continuum (Stairs et al. 2015; Klinger et al. 2016; Leger et al. 2017; Brännström et al. 2022)."

      Line 158: A duplication-divergence may also explain this since sequence similarity-based searches will miss the ancestral homologues.

      We do not disagree about this, in fact, the gene the reviewer’s point is concerned with for sure is a result of duplication and divergence, as it belongs to a broader gene family (major facilitator superfamily, as stated in the manuscript) together with other distant homologs. Nevertheless, this is not in conflict with our conclusion that it “may represent an innovation arising in the common ancestor of Metamonada”.

      Lines 201-202: Presence of GCS-L in amitochondriate should be explained in light of this group once having a mitochondrion, which then makes ancestral derivation and differential loss (as invoked for Rsg1) also a likely explanation along with eukaryote-to-eukaryote LGT.

      Yes, this most likely holds for the standard paralogue GCS-L1 (in P. pyriformis PAPYR_5544), which has the expected distribution and phylogenetic relationships and is absent in oxymonads. The discussion is, however, mainly about the rare, divergent and until now overlooked paralogue GCS-L2 (in P. pyriformis PAPYR_1328), which we found only in three distantly related eukaryote groups, Preaxostyla, Breviatea, and Archamoebae, which strongly suggests inter-eukaryotic LGT.

      Lines 356-392: Describes plenty of genomic signal for Golgi bodies but simultaneously cites literature suggesting the absence of a morphologically an identifiable Golgi in oxymonads. An explicit prediction regarding what to observe in TEM for the mentioned species might be nice to stimulate further work.

      We thank the reviewer for their suggestion and are glad that they are enthusiastic about this aspect of the manuscript. Unfortunately, the morphology of unstacked Golgi ranges from single cisternae (yeast, Entamoeba), vesicles (Mastigamoeba), and a “tubular membranous structure” in Naegleria. Therefore, no strong prediction is possible of what the oxymonad Golgi might look like under light or TEM. However, the data that we have provided should lead to molecular cell biological analyses aimed at identifying the organelle, giving target proteins to tag or against which to create antibodies as Golgi markers. An additional sentence to this effect has been added to the manuscript, “They also set the stage for molecular cell biological investigations of Golgi morphological variation, once robust tools for tagging in this lineage are developed.”

      Lines 414: The preceding paragraphs in this result section describes only the distribution, without mentioning origins - a sweeping one-line summary that proclaims different origin needs some context and support. Furthermore, the distribution of glycolytic enzymes might indeed be patchy, but to suggest it represents an 'evolutionary mosaic composed of enzymes of different origins' without discussing the alternative of a singular origin and different evolutionary paths (including a stringer divergence in one vs. another species) discredits existing literature and the authors own claim with respect to why BUSCO might fail in protists.

      The part of the text about glycolysis the reviewer alluded to has been removed while shortening the manuscript.

      Line 486: How uncommon are ADI and OTC in lineages sister to metamonada?

      This is an interesting but difficult question. Firstly, we are uncertain what is the sister lineage to Metamonada. Discoba, maybe, but a recent unpublished rooting of the eukaryotic tree does not support it (https://pubmed.ncbi.nlm.nih.gov/37115919/). Generally, the individual genes of the pathway (ADI, OTC and CK) are quite common in eukaryotes, but the combination of all three is rare (Metamonada, the heterolobosean Harpagon, the green algae Coccomyxa and Chlorella, the amoebozoan Mastigamoeba, and the breviate Pygsuia), see figure 1 in Novak et al 2016, doi: 10.1186/s12862-016-0771-4.

      Line 504: It might help an outside reader to include a few lines on consequences and importance of having 2Fe-S vs 4Fe-S clusters and set an expectation (if any) in Oxymonads.

      We apologize for omitting this explanation. The 2Fe-2S proteins are more common in mitochondria where 2Fe-2S clusters are synthesized in the early pathway of FeS cluster assembly, while the cytosolic CIA pathways produce 4Fe-4S clusters (https://pubmed.ncbi.nlm.nih.gov/33007329/). The original expectation therefore is that species without mitochondria should not have 2Fe-2S cluster proteins. Obviously, the switch to the SUF pathway affects this expectation as we do not know, what type of cluster this pathway produces in oxymonads (https://www.biorxiv.org/content/10.1101/2023.03.30.534840v1). For the sake of brevity, we have included a short statement as the beginning of the sentence in question, which now reads as follows: “As 2Fe-2S clusters are more frequent in mitochondrial proteins, the higher number of 2Fe-2S proteins in P. pyriformis compared to the oxymonads may reflect the presence of the MRO in this organism.

      Any explanations on what unique selection pressures and gene acquisition mechanisms may be operating in P. pyriformis which might allow for the unique metabolic potential?

      Every species exhibits a unique combination of traits that results from changing selection pressures imposed on historical contingency (including neutral evolutionary processes such as genetic drift). We lack real understanding of these factors for a majority of taxa including the familiar ones, so we should not expect to have a good answer to the reviewer’s question. In fact, we do not know how unique is the particular combination of P. pyriformis traits discussed in our manuscript, as there has been no comprehensive comparative analysis that would include ecologically and evolutionarily comparable taxa. We note that Paratrimastix represents only a third free-living metamonad with a sequenced genome (together with Kipferlia and Carpediemonas), so more data and additional analyses are needed to be in a position when we may start hoping answers to questions like the one posed by the reviewer are in reach.

      ** Referees cross-commenting** To R3: Hampl et al. 2019, to which Novak et al. refer, is about eukaryogensis and that is exactly the context in which this is discussed again and what Raval et al. 2022 had decided to touch upon. If the authors do not bring this up in light of the ability to evolve (novel) eukaryote complexity, then what else? Maybe they can elaborate, especially with respect to energetics to which they explicitly refer to in 2019 (and here). And with respect to text-book eukaryotic traits (and the evolution of new morphological ones), I do not see any new ones evolving in any oxymonad, but reduction as Novak et al. themselves picture it in this submission. Is a change in the number of flagella pronounced morphological evolution? Maybe for some, but I believe this needs to be seen in light of the context of how they discuss it. I see a reduction of eukaryotic complexity and not a gain. They have an elaborate section on the loss of Golgi characteristics (and a figure), but I fail to read something along the same lines with respect to the gain of new morphological traits. Again, novel LGT-based biochemistry does not equal the invention of a new morphology such as a new compartment. Oxymonads depend on mitochondria-bearing eukaryotes for their survival or don't they? This is the main point, and if evidence show that I am wrong, then I will be the first to adapt my view to the data presented.

      While we do see the logic of the reviewer’s point, a good reply would have to be too elaborate and certainly beyond the scope of the current manuscript. As the reviewers’ reports led us to reconsider the structure of the manuscript and to make it more focused and concise, we decided to simplify the matter by removing the allusions to eukaryogenesis, realizing that it is perhaps more suitable for a different type of paper (opinion, review). The comment on the evolution of complex morphology has been answered previously (see above).

      I have concerns with the presentation of a narrative that in my opinion is too one-sided and that has been has been publicly questioned in the community (in press, at meetings, personally). For the benefit of science and of the young authors on this study, this reviewer feels strongly that these issues should be taken very seriously and discussed openly in a more balanced way. . We only truly move forward on such complex topics, if we allow an open and transparent discussion.

      We agree that opinions on specific details of eukaryogenesis are divided in the community and that the topic requires a nuanced discussion for which there is perhaps no place in the current manuscript. As stated in the reply to the previous point, we have removed the discussion of the implications of our current study to eukaryogenesis from the revised manuscript.

      Having said that, I am happy that R3 has picked up exactly the same major concerns as I did with respect to e.g. the phrasing on mito (gene) loss and the BUSCO controversy.

      We appreciate these comments and hopefully have resolved the concern in the previous answers.

      Reviewer #2 (Significance):

      Using draft genome sequencing of the free-living Paratrimastix pyriformis and the sister lineage oxymonad Blattamonas nauphoetae, Novack et al. infer the metabolic potential of the two protists using comparative genomics. The authors conclude that the common oxymonad ancestor lost the mitochondrion/mitosome and discuss general strategies for adapting to commensal/symbiotic life-style employed by this taxon. Some elaborations on pathways go on for several paragraphs and feel unnecessarily stretched, which made those sections of the paper rather difficult to digest. This might be also be because the work, and all conclusions drawn, depend entirely on incomplete (ca. 70-80%) genome data and simple similarity searches, and e.g. no kind of biochemistry or imaging is presented to underpin the manuscripts discussion.

      We have addressed the concern about the possible incompleteness of our genome data above, demonstrating it is not substantiated ad stems from an inadequate interpretation of quality measures we provide in the manuscript. We hope that the revised manuscript, which is streamlined and more concise compared to the initial submission, conveys the key messages in a substantially more persuasive way and will be appreciated by a broad community of readers.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary: The genome sequences of two members of the protist group Preaxostyla are presented in this manuscript: Paratrimastix pyriformis and Blattamonas nauphoetae. The authors use a comparative genomics and phylogenetic approaches and compare the new genome datasets with three previously available genomes and transcriptomes from the group. The availability of genome-scale data from five Preaxostyla species is powerful to address interesting basic evolutionary questions. A substantial part of the manuscript is spent on testing the hypothesis of mitochondrial loss in the oxymonad lineage, which turns out to be supported. The datasets are also explored regarding the role of lateral gene transfer in the group, metabolic diversification and the evolution of Golgi.

      Major comments: I find the manuscript very interesting with many different fascinating results presented. However, the manuscript is very long. Two genome sequences are presented and it is not clear to me what the main question was when this project was initiated and why these two species was selected to answer this question. I do not see an obvious reason for sequencing the P. pyriformis genome if the mitochondrial loss was the main question (given that a transcriptome was already available). Why not spend the time and resources on a member of Preoxystyla, which lacked previous data? The authors should more clearly state why these organisms were chosen to answer the main question or questions of the study.

      We are sorry for having done a poor job when explaining the choice of the taxa for the comparison. The idea was to sample an outgroup of oxymonads (P. pyriformis) and a representative of other clades of oxymonads than M. exilis (B. nauphoetae and S. strix) for which it was feasible to obtain the data, or the data were already available. Obviously, more representatives of morphologically a probably also genetically diverse oxymonads should be investigated (e.g. Pyrsonympha, Oxymonas, Saccinobacullus) and we have such a plan but these organisms are difficult to work with. We considered it necessary to sequence the genome of P. pyriformis, and not rely on the transcriptome only, to avoid the issue of data set incompleteness (raised also by R2). Transcriptomes by nature provide an incomplete coverage of the full gene complement of the species, while our genome assemblies are close to complete, as we explain elsewhere.

      The evolution of MROs have received substantial attention from the protist research community since the 1990's. During this period the mitochondrial organelle have been considered essential for eukaryotes. Therefore, the result presented in the manuscript has a high significance. However, I am not convinced that it is appropriate to use the term "evolutionary transition" for the mitochondrial loss. The loss of MRO is the endpoint of a gradual change of the internal organisation of the cell that probably started when the ancestor of these organism adapted to an anaerobic lifestyle. The last step described in the manuscript probably had little impact on how these organisms interacted with their environment. The presence or absence of biosynthesis of p-cresol by some, but not all, Preaxystyla probably is much more significant from an ecological point of view. My point is that the authors need to consider how they use the term evolutionary transition and be explicit about that.

      We appreciate the comment concerning the use of the term “evolutionary transition”. Nevertheless, we believe there is no real consensus in the literature on what is and what is not an “evolutionary transition”, and the application of the term to specific cases is more or less arbitrary. For a lack of a standardized or better terminology, we have kept the term to refer to three evolutionary changes in the evolution of the Preaxostyla lineage that are particularly important from the cytological or ecological perspective, i.e. dispensing with the mitochondrion, reorganizing the Golgi apparatus by losing the stacked arrangement of the cisternae, and gaining the endobiotic life style.

      In the abstract the main finding is describes as "the data confirm the complete loss of mitochondria and every protein that has ever participated in the mitochondrion function for all three oxymonad species (M. exilis, B. nauphoetae, and Streblomastix strix) extending the amitochondriate status to the whole Oxymonadida.". I find this a really interesting observation, but I do find the wording a bit too bold for several reasons: • Not every protein that has participated in the mitochondrial function is known. • Mitochondrial proteins could be present in oxymonads, but divergent beyond the detection limit for existing methods. • Genes for one or several mitochondrial proteins could be present in one or more oxymonad genomes, but remain undetected due to the incomplete nature of the datasets.

      Although I do think that the authors' claim very well could be true, I don't think their data fully support it. Therefore, it needs to be rephrased.

      As a result of our decision to streamline the manuscript by removing the final part of Results and Discussion (“No evidence for subcellular retargeting of ancestral mitochondrial proteins in oxymonads”, the revised manuscript no longer support the statement “the data confirm the complete loss of … every protein that has ever participated in the mitochondrion function for all three oxymonad species” that is criticized by the reviewer, and hence the statement has been removed from the abstract. This addresses bullet point 1. As for bullet points 2 and 3, the proof of absence is in principle impossible to deliver, and we have been fighting with this already in the Karnkowska et al. 2016 paper. Although our certainty will never reach 100% (this is in fact impossible for a scientific, i.e., falsifiable, hypothesis), the mounting of evidence through studies gives the hypothesis on the amitochodriate status of oxymonads more and more credit. The genes for mitochondrial marker proteins have not been detected by the most sensitive methods available neither in the first genome assembly of M. exilis (Karnkowska et al. 2016), nor in the improved M. exilis genome assembly composed of only 101 contigs (Treitli et al. 2021), nor in either of the other two oxymonad species investigated here. On the other hand, they were readily detected in the data sets of P. pyriformis and T. marina. What is the probability that these genes always hide in the assembly gaps, or that they have all escaped recognition? Obviously, this probability is not zero, but we believe it is approaching so low values that it is reasonably safe to make the conclusion on the amitochondriate status of these species.

      The sentence was changed to: "Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status may be common to Oxymonadida."

      The third point maybe could be analysed further. BUSCO scores are reported, but also argued not being reliable for this group of organisms (which is true). Would it, for example, be useful to analyse how large fraction of the BUSCO proteins found in all non-Preoxystyla metamonada genomes that are present in the various Preoxystyla datasets?

      We provide a comprehensive answer to a similar comment of reviewer 2 above (page 6-8). We performed the requested analysis and provide the result in Supplementary file 11. In this table, we record presence/absence of each gene from the BUSCO set for our data sets and the highly complete “standard” datasets of Trypanosoma brucei, Giardia intestinalis and Trichomonas vaginalis. Of the 303 genes, 117 were present in all data sets and 17 in none (see column I). 20 were present only in Trypanosoma and not in metamonads. 6 were present in all Preaxostyla and absent in other metamonads (Trichomonas and Giardia), 44 were present in all Preaxostyla and Trichomonas and absent in Giardia, suggesting high divergence of this species. Only 23 (marked by *) were present in the three “standard” genomes and absent in one or more Preaxostyla species. Of those 8 and 8 were absent specifically in S. strix and P. pyriformis, respectively, but only 1 was absent specifically in M. exilis and no such case was observed in B. nauphoetae. We conclude that this non-random pattern argues for lineage-specific divergence rather than incomplete data sets, particularly in the case of M. exilis and B. nauphoetae.

      Line 160-161: 15 LGT events specific for the Preaxostyla+Fornicata clade is reported. This is an exciting finding because it supports a phylogenetic relationship between these two groups. But such an argument is only valid if the observed pattern is more common than the alternative hypotheses (Preaxostyla+Parabasalids and Fornicata+Parabasalids). How many LGT events support each of these groupings? How are these observation affected by the current taxon sampling with the highest number of datasets from Fornicata? How were putative metamonada-to-metamonada LGTs treated in this context?

      19 LGT are uniquely shared between Preaxostyla+Parabasalids, which is more than the number of shared LGTs between Preaxostyla and Fornicata. No common LGT was unique to Fornicata+Parabasalids. However, the latter is a direct consequence of our investigation method, which involved reconstruction phylogenies of genes present in Preaxostyla, and not across all metamonads. So, we do not have a way to investigate LGT gene families uniquely shared between Fornicata and parabasalids.

      When it comes to the effect of taxon sampling, we agree that it is possible that the number of genes of horizontal origin shared between parabasalids and Preaxostyla is underestimated because of the lower taxon sampling in parabasalids. However, it is still larger (19) than the number of LGTs shared uniquely between fornicate and Preaxostyla (15). In addition, while the taxon sampling is larger in fornicates, it also contains some representatives of closely related lineages (e.g., Chilomastix caulleryi and Chilomastix cuspidate) which, while they increase the number of fornicate representatives, does not increase the detection of shared genes between fornicates and Preaxostyla. Altogether, it's difficult to estimate how the current taxon sampling is biasing the detection of LGTs one way or another.

      Regarding metamonad-to-metamonad putative LGTs: we did not consider this possibility for the sake of not overestimating the number of gene transfers for two main reasons. First of all, our LGT detection relies on the incongruence between species tree and gene tree. The closer the lineages are in the species tree, the more difficult it is to interpret any incongruence in the gene tree as single protein phylogenies are notoriously poorly resolved because they rely on the little phylogenetic signal contained in few amino-acid positions. Because of this, small incongruences with the species tree could either reflect recent LGT events between metamonads, or simply blurry phylogenetic signal. Second, we can certainly use the argument that a limited taxonomic distribution among metamonads favors an LGT event between them. However, here again, the closer the lineages involved are, the more difficult it is to distinguish a scenario where one lineage was the recipient of an LGT from prokaryote before donating it to another metamonad, from a scenario involving a single ancestral LGT from prokaryotes to metamonads, followed by differential loss, leading to a patchy taxonomic distribution. Finally, we are working with both limited taxon sampling and incomplete genomic/transcriptomic data, which makes it more difficult to identify true absences. For all these reasons, we chose to be conservative and invoke the smallest number of LGT events.

      The authors have used a large-scale approach to make single-gene trees for inferences of LGT. In other parts of the manuscript inferences of evolutionary origins of single genes are made without support of phylogenetic trees. I find this inconsistent and argue that the hypothesis of the origin of a specific protein should be tested with the same rigor whether it is a putative LGT, gene duplication, gene loss or an ancestral member of LECA. Specific cases where I think a phylogenetic analysis is needed includes: • Line 222-223: It is concluded that Rsg1 is a component of LECA. • Line 307: HgcAB are argued to be acquired by LGT of a whole opeon. • Lines 350-355: It is unclear how the different numbers of transporters are interpreted (loss or expansion by duplication). This could be address with phylogenetics. • Lines 407-408: A tree should support the claim of LGT origin. (PFP) • Lines 414-415: The different origins of glycolytic enzymes should be supported by data or references. • Line 486: Trees or a reference (if available) should support the claim for LGT.

      As requested, trees were constructed for HgcA, HgcB, PFP and the transporters AAAP, CTL, ENT, pATPase, and SP. Citations were added for the glycolytic enzymes and the ADI pathway. No tree for Rsg1 is needed, as this is a eukaryote-specific protein lacking any close prokaryotic relatives. The inference on its presence in the LECA is based on the phylogenetically wide, however patchy, distribution across the eukaryote phylogeny. Testing possible eukaryote-eukaryote LGTs is hampered by a limited phylogenetic signal in the short and rapidly evolving Rsg1 sequences, resulting in very poorly resolved relationships among Rgs1 sequence in a tree we attempted to make (data not shown). For this reason, we opt for not presenting any phylogenetic analysis for Rsg1.

      Lines 530-531 and 773-774: "The switch to the SUF pathway in these species has apparently not affected the number of Fe-S-containing proteins but led to a decrease in the usage of 2Fe-2S clusters." I find it difficult to evaluate if the data support this because no exact numbers or identities are given for 2Fe-2S and 4Fe-4S proteins in the various genomes in Suppl. Fig. S4 or Supplementary file 4.

      The functional annotation of all detected FeS clusters containing proteins is provided in Supplementary Table S8 including the types of predicted clusters (columns G or F). Basically, the only putative 2Fe2S cluster containing proteins in species of oxymonad is xanthine dehydrogenase, while Paratrimastix and Trimastix contain also 2Fe2S cluster-containing ferredoxins and hydrogenases.

      The method used in the paper varies between the different parts of the paper. One example is single gene phylogenies, which are described three times in the method section [Lines 959-973, lines 1011-1034, lines 1093-1101], in addition to the automated approach within the LGT detection pipeline lines 923-926]. The approaches are slightly different with, for example, different procedures for trimming. This makes it difficult to know how the different presented analyses were done in detail. No rationale for using different approaches is given. At the least, it should be clear in the method section which approach was used for which analysis.

      The reviewer is correct, and we apologize for the inconsistency. The reason is only historical –the analyses were performed by different laboratories in different periods of time. We believe this fact does not make our results less robust, although it does not “look” nice and makes the description of the methods employed longer. We have double-checked the description and introduced slight changes as to make it maximally clear which method has been used for particular analyses presented in the Results and Discussion.

      Specific comments on single gene phylogenies:

      • Line 966-967: Why max 10 target sequences?

      The limit of 10 was applied in order to keep the datasets in manageable dimensions. The sentence has been changed to: " In order to detect potential LGT from prokaryotes while keeping the number of included sequences manageable, prokaryotic homologues were gathered by a BLASTp search with each eukaryotic sequence against the NCBI nr database with an e-value cutoff of 10-10 and max. 10 target sequences.

      • Lines 996-998: Is it a problem that these are rather old datasets?

      Although the publications are slightly older the set of queries is absolutely sufficient for the purpose.

      Minor comments: I appreciate that many data is included as supplementary material. However, the organisation of the data could be improved. The numbering of the files is not included in their names or within the files, as far as I could find. Descriptions of the files are often missing and information on the annotation such as colour coding is not always included. These aspects of the supplementary material needs to be strengthened in order to make it more useful. Specific comments: • Supplementary file 1, Table 1: accession numbers are missing. Kipferlia bialta appears to have a much smaller number of sequences than reported in the publication. The file consists of three tables and it would be very helpful if the reference in the main manuscript indicate the table number. • Supplementary file 4: The trees lack proper species names and a documented colour coding. There are multiple trees in the file, which make it difficult to find the correct tree. I would appreciate if the different trees were labelled A, B, C, etc., and if these were used in the main text.

      Supplementary file 1: Accession numbers were added.

      Supplementary file 4: Species names and alphabetical labelling were added. Colour coding was explained in the text at the first mention of the file: "(Supplementary file 4 H; Preaxostyla sequences in red)."

      o There is no HPAD-AE tree (as indicated on line 258), but a HPAD tree. Which part of the tree contain the described fusion protein?

      Thank you for spotting the mistake. There should have been “HPAD” instead of “HPAD-AE” indicated in the text. The sentence has been changed to:" The P. pyriformis HPAD sequence is closely related to its homolog in the free-living archamoebid M. balamuthi (Supplementary file 4 K), the only eukaryote reported so far to be able to produce p-cresol (Nývltová et al. 2017)."

      o Line 280-281: "UbiE homologs occur also in some additional metamonads, including the oxymonad B. nauphoetae and certain fornicates." These sequences should be clearly highlighted in the tree.

      We discovered these additional UbiE homologs only after the tree presented in the supplement had been constructed, so these sequences are missing from it. To ensure consistency we have decided to remove the remark on the presence of UbiE homologs metamonads other than P. pyriformis, so it is no longer part of the revised manuscript.

      o Lines 538-544: A three-gene system is mentioned, but only two AmmoMemoRadiSam trees are found.

      This part has been removed while streamlining the manuscript.

      • Supplementary file 6: I find it difficult to find the proteins discussed in the text, for example "the biosynthesis of p-cresol from tyrosine (line 254-255)".

      Abbreviations identifying the different enzymes have now been added to all mentions in the text, facilitating their localization in the supplementary file: "P. pyriformis encodes a complete pathway required for the biosynthesis of p-cresol from tyrosine (Supplementary file 6), only the second reported eukaryote with such capability. This pathway consists of three steps of the Ehrlich pathway (Hazelwood et al. 2008) converting tyrosine to 4-hydroxyphenyl-acetate (AAT, HPPD, ALDH) and the final step catalyzed by a fusion protein comprised of 4-hydroxyphenylacetate decarboxylase (HPAD) and its activating enzyme (HPAD-AE)."

      • Supplementary file 11: Which group of species are highlighted in red? How do I know from which species these sequences are (I can make educated guesses, but prefer full species names). I do not find any reference to this file in the main manuscript.

      We apologise for this inconvenience. The taxon labels in the treed in this supplementary file have been corrected to contain full species names.

      Line 227-228: "630 OGs seem to be oxymonad-specific or divergent, without close BLAST hits". It is unclear if BLAST searches includes only a representative of each 630 OGs, or every single protein in these OGs.

      The BLAST searches include every single protein in the investigated OGs. We clarified it in the text: “Of these, 630 OGs seem to be oxymonad novelties or divergent ancestral genes, without close BLAST hits (e-value -15) to any of these sequences.

      Line 243: I think it is five LGT mapped to internal nodes of Preoxystyla in Figure 1 (1+3+1).

      You are correct, we apologize for the mistake. The sentence has been changed to: "Also, 46 LGT events were mapped to the terminal branches and 5 to internal nodes of Preaxostyla, suggesting that the acquisition of genes is an ongoing phenomenon, and it might be adaptive to particular lifestyles of the species."

      Lines 325-331: The argument would be stronger with a figure showing the fusion and the alignment indicating the conserved amino acids mentioned in the text.

      We agree with the reviewer but for the sake of space, we finally decided not to include a new figure.

      Lines 425: "none of the species encoded" should be replaced by something like "none of the enzyme could be detected in any of the species" (the datasets are incomplete).

      The sentence has been changed to: "None of the alternative enzymes mediating the conversion of pyruvate to acetyl-CoA, pyruvate:NADP+ oxidoreductase (PNO) and pyruvate formate lyase (PFL), could be detected in any of the studied species."

      Line 455: "suggesting a cytosolic localization of these enzymes in Preaxostyla." The absence of a phylogenetic affiliation with the S. salmonicida homolog does not preclude a MRO localisation.

      The sentence was changed to: "Phylogenetic analysis of Preaxostyla ACSs (Supplementary file 4 B) shows four unrelated clades, none in close relationship to the S. salmonicida MRO homolog, consistent with our assumption that these enzymes are cytosolic in Preaxostyla."

      Lines 570-571: "Manual verification indicated that all the candidates recovered in oxymonad data sets are false positives" Using which criteria?

      The manual verification was based on the annotation of predicted proteins by BLAST and InterProScan. If the annotations did not correspond to the suggested function, they were considered false positives. For example, the protein BLNAU_15573 of Blattamonas nauphoetae was detected by Sam50 HMM profile and thus was considered a candidate for Sam50 proteins. Its functional annotation from BLAST was, however, unrelated to Sam50 (“putative phospholipase B”). Therefore, this candidate was concluded as a false positive hit of the HMM search resulting from the very high sensitivity of this method.

      We clarified this in the Results

      Reciprocal BLASTs indicated that all the candidates recovered in oxymonad data sets are very likely to be false positives based on the annotations of their top BLAST hits (mainly vaguely annotated kinases, peptidases and chaperones) (Fig. 6, Supplementary file 9).”.

      And Material and Methods

      Any hits received by the methods described above were considered candidates and were furter inspected as follows. All candidates were BLAST-searched against NCBI-nr and the best hits with the descriptions not including the terms 'low quality protein', 'hypothetical', 'unknown', etc. were kept. For each hit, the Gene Ontology categories were assigned using InterProScan-5.36-75.0. If the annotations received from BLAST or InterProScan corresponded to the originally suggested function, the candidates were considered as verified. Otherwise, they were considered as false positives.

      Lines 743-755: "Similar observations were made in other protists with highly reduced mitochondria, such as G. intestinalis or E. histolytica,..." References are needed.

      This part of the manuscript has been removed while streamlining the text.

      Line 849: How was the manually curation done for the gene models in the training set?

      The sentence has been changed to: "For de novo prediction of genes, Augustus was first re-trained using a set of gene models manually curated with regard to mapped transcriptomic sequences and homology with known protein-coding genes."

      Lines 853-856: It is a bit unclear which dataset was used for BUSCO and downstream analysis. Was it the Augustus-predicted proteins, or the EVM polished?

      The sentence has been changed to: "The genome completeness for each genome was estimated using BUSCO v3 with the Eukaryota odb9 dataset and the genome completeness was estimated on the sets of EVM-polished protein sequences as the input."

      Lines 858: What is it meant that KEGG and similarity searches was used in parallel (what if both gave a functional annotation?)?

      A sentence has been added for clarity: "KEGG annotations were given priority in cases of conflict."

      Lines 861-862 and 1007-1008: Which genes or sub-projects does this apply to? How many genes were detected in this procedure?

      The sentence has been changed to make this clear: "Targeted analyses of genes and gene families of specific interest were performed by manual searches of the predicted proteomes using BLASTp and HMMER (Eddy 2011), and complemented by tBLASTn searches of the genome and transcriptome assemblies to check for the presence of individual genes of interest that were potentially missed in the predicted protein sets (single digits of cases per set). Gene models were manually refined for genes of interest when necessary and possible."

      Lines 878-879: It is not clear to me why the sum of the two described numbers should be as high as possible and would appreciate an argument or a reference.

      When optimizing the inflation parameter of OrthoMCL, we reasoned that the optimal level of grouping/splitting for our purpose should result in the highest number of orthogroups containing all representatives of the groups of interest (i.e. Preaxostyla) but no other species – pan-Preaxostyla orthogroups. When going down with the values, you observe more and more groupings of pan-Preaxostyla OGs with others (indication of overgrouping) in the opposite direction you observe splitting of pan Preaxostyla OGs which indicates oversplitting. Because we were optimizing the inflation parameter for Preaxostyla and Oxymonadida at the same time, we maximized the sum of pan-Preaxostyla and pan-Oxymonadida groups.

      Lines 879-881: "Proteins belonging to the thus defined OGs were automatically annotated using BLASTp searches against the NCBI nr protein database (Supplementary file 1)." Why were these annotated in a different way (compare lines 857-859).

      This little inconsistency resulted from the fact that these parts of the analyses were performed by different researchers who did not cross-standardize the procedures. This inconsistency has no effect on the downstream analyses and conclusions as the annotations from Supplementary file 1 were not used in any further analyses.

      Lines 894-957: "Detection of lateral gene transfer candidates": • It is not clear which sequences were tested in the procedure. All Preaxostyla, or all metamonada? I think I am confused because in the result sections you only report numbers for Preaxostyla, but in the method section metamonada is mentioned repeatedly.

      Thank you for noticing. There was indeed some inconsistency in our writing.

      We did an all-against-all search using all metamonads. However, we filtered out all homologous families in which Preaxostyla were not present or that had no hit against GTDB. So in the end, the LGT search was restrained to protein families containing Preaxostyla homologues. We corrected the wording in our method section.

      • It would be easier to follow the procedure if numbers are provided for the different steps.

      We are not sure what numbers the reviewer refers to here.

      • Why was only small oxymonad proteins discarded (line 900)?

      This is indeed a mistake. We meant “Preaxostyla proteins”. This is because we only considered Preaxostyla sequences with significant hits against GTDB as a starting point, so we aimed to first remove those that might be too short to yield reliable phylogenies.

      • Line 911: How many sequences were collected?

      Up to 10,000 hits were retained. We have added that information to the text.

      • Lines 916-919: What is the difference between the protein superfamilies (line 916) and the OGs (line 919)? Are the OGs the same orthogroups that is described earlier in the method section? How are the redundancy of NCBI nr entries retrieved in different searches dealt with?

      We understand the confusion here. It primarily stemmed from two different ways to establish homologous families across the manuscript because of different researchers being responsible for different parts. Protein superfamilies that were used for reconstructing the single protein trees used for the LGT analyses were assembled based on the procedure describe line 916-919 (“Protein superfamilies were assembled by first running DIAMOND searches of all metamonad sequences against all (-e 1e-20 --id 25 --query-cover 50 --subject-cover 50). Reciprocal hits were gathered into a single FASTA file, as well as their NCBI nr homologues.”). However, this was a somewhat stricter procedure than the one used to establish the OGs that are discussed in the rest of the manuscript (because of the e-value and identity cut-off used), so we eventually enriched the datasets with the putatively missing metamonad sequences that were present in the OGs but not in the initial superfamily assembly. However, since these were often more divergent sequences, we did not use these as queries for our BLAST searches against prokaryotes.

      Line 987-989: "...was facilitated by Rsg1 being rather divergent from other Ras superfamily members" This statement is vague. What does it mean in practise?

      The sentence has been changed to: " The discrimination was facilitated by Rsg1 having low sequence similarity to other Ras superfamily members (such as Rab GTPases)."

      Lines 1037-1038: Why were these proteins re-annotated?

      They were not. We are sorry for this mistake, which has been fixed in the revised manuscript.

      Figures: The figures would be easier to follow if the colour coding for the five different species were consistent between the figures.

      This is a good point, the colour coding has been unified across all figures.

      Figure 1: It appears that the Venn diagram in C only shows the Preaxostyla-specific protein in B, not all OGs for which contain Preaxostyla proteins. This is not clear from legend or from the figure itself. The same comment applies to D.

      The interpretation of the figure by the reviewer is correct; we have modified the legend to make the meaning of the figure easier to understand.

      Figures 2 and 6: It would be clearer with panel labels A, B, etc, instead of "upper" and "lower" panel, as in the other figures.

      This is a fair point, we have added the alphabetical labels proposed by the reviewer to the figures.

      Figure 6: What is the colour code in the figure? The numbers within the boxes are not aligned.

      We have added an explanation of the color code to the legend and edited the figure to make it aesthetically more pleasing.

      Supplementary figures 1-3: What do green and magenta indicate in the figure?

      As with the previous figure, the color code is now explained in the revised legend.

      ** Referees cross-commenting** I agree with the other reviewers that the discussion of the functional and ecological implications of the LGTs could be developed.

      We understand the reviewers but as already explained in response to Reviewer 1, we have decided not to extend the already rather long manuscript further. We believe that the several exemplar LGT cases that we do discuss in detail provide a good impression of the significance of LGT in the evolution of Preaxostyla.

      In contrast to reviewer 2, I do not see that the authors discuss their result in the context of eukaryogenesis in this manuscript. Maybe the reference reviewer 2 mention could be cited in the introduction together with Hampl et al. 2018 to acknowledge that there are different views about the importance of secondarily amitochondrial eukaryotes on our thinking about the origin of eukaryotes. I disagree with reviewer 2's objection against the wording "... and undergo pronounced morphological evolution" because I think Fig. 4 in Hampl 2017 shows a large morphological diversity among oxymonads.

      We are glad to see that our perspective is not shared by other colleagues in the field. Nevertheless, having carefully considered the case we have decided to remove any mentions of eukaryogenesis from the revised manuscript, as we admit this topic is peripheral to the key message of our present study. On the other hand, we appreciate very much the note by the reviewer on the large morphological diversity among oxymonads – we have now added a similar remark to the revised manuscript (the last sentence of Conclusions).

    1. Author Response:

      The following is the authors' response to the original reviews.

      We’d like to take this opportunity to thank the reviewers and editors for their consideration of our work. As detailed below, we have made the majority of the suggested corrections by the reviewers and believe these have greatly improved our manuscript. The reviewer’s comment are in blue font below and our response to each of these in black font.

      Reviewer #1 (Recommendations For The Authors):

      Suggestions to improve the manuscript:

      -  Line 33 and 34: "This protein" is vague. Please reword to state whether you are referring to TcaA or to WTA

      This has been corrected in the revised manuscript (Line 33)

      -  Intro: It would be helpful to provide more rationale for testing serum as a surrogate to whole blood in the GWAS screen. Serum is obviously lacking components of the clotting cascade, and some of these components have antimicrobial functions. However, this is easily justified in the text- e.g. to avoid clumping during the screen, to focus only on serum-derived antimicrobial compounds, etc.

      This has been edited in the revised manuscript (Line 84-86)

      -  Line 120: Please state if the 300 clinical isolates represent 300 distinct patients, or if some of the isolates came from the same patient during sequential collections. If the latter, were there any instances in the which the tcaA SNP appeared during the course of infection?

      They each came from individual patients so we were unfortunately unable to look for within host events. This information has been added to the revised manuscript (line 104).

      -  Line 133: the closed parenthesis sign is missing after "CC22"

      This has been corrected in the revised manuscript (Line 135)

      -  Table 1a - NE1296 is misspelled as ME1296. Also there is a typo in the last entry of this table for the locus tag

      This has been corrected in the revised manuscript.

      -  Table 1b - the authors should comment (in the discussion) on the potential reasons why tcaA was not identified in the CC30 background.

      A comment to this effect has been added to the revised manuscript (Lines 553-59)

      -  Figure 2a - Why is the mutant with the empty complementation vector not significantly different from WT JE2?

      The most widely used and reliable expression plasmid for complementation of mutated phenotypes in S. aureus is the pRMC2 plasmid, which requires chloramphenicol selection and anhydrotetracycline to induce expression of the cloned gene. These antibiotics, and the presence of the plasmid often affect the expression of other genes by the bacteria (as noted by this reviewer). As such, to verify complementation of a mutation the comparison we make is between the strain containing the empty plasmid induced with anhydrotetracycline with a strain with the gene containing plasmid induced with anhydrotetracycline. In that situation, the only difference between those two strains under those conditions is whether the gene is expressed or not. A comment explaining this has been added to the revised manuscript (lines 149-153).

      -  Line 188: Statistical analyses should be applied to figure 3C, which also appears to be underpowered.

      P values have been added to this in the revised manuscript. We present data point of three biological replicates, which are the mean of three technical replicates, which we believe is sufficiently powers for this analysis.

      -  Figure 3 legend - Tecioplanin is mentioned in the title, but the data are not included here

      This legend title has been the revised (Line 193).

      -  Figure 4 - here is an example where testing the actual tcaA SNP could have been enlightening. For example, what if the selective pressure makes the SNP more relevant to a specific AMP or AA?

      While we agree that this would be an interesting experiment to perform, the complementing vector that we would need to use to compare the wild type and SNP contains gene requires antibiotics to select for the plasmid and another to induce expression. As such it becomes quite a complex and messy experiment where synergy between the antimicrobial agents would be likely, the results of which will be difficult to interpret.

      -  Lines 317-321 - Suggest moving this to discussion

      We have left this here as we felt it a necessary summation/explanation of the results described in that section. It is discussed again later in the discussion section.

      -  Line 341 - I believe "serum" should actually be "teicoplanin"

      This has been corrected in the revised manuscript (Line 342).

      -  Figure 6e - wouldn't it be more powerful to determine the WTA levels in the supernatants of these strains and conditions?

      We could have done this both ways, but we focussed here only on how TcaA ligates WTA into the cell wall in the presence of serum.

      -  Figure 6 - What is the explanation for the different growth yields for JE2 in tecioplanin in panel A versus panel F? Are these actually two different concentrations? If so, please update the figure legend and the methods.

      The concentration used for the A was inhibitory and for F sub-inhibitory. To improve the clarity of this we have now used a table displaying the MICs for the six strains as panel A. We have also included the concentration of teicoplanin used for each experiment in the legend.

      -  Line 413: Consider more precise language than "the cell wall is stronger". E.g. More crosslinks?

      This has been edited in the revised manuscript (Line 421)

      -  Line 415: Consider changing "altered" to a directional term such as increases. It can be difficult for the reader to follow the expected change when you are discussing how the lack of a gene versus the presence of a gene changes susceptibility in one direction and another phenotype in the opposite direction.

      This has been edited in the revised manuscript (Line 423).

      -  Figure 7: The conclusions made from panels A and B need to be supported by statistical analyses. It is unclear if these lines are truly different from one another.

      These have been included in the revised fig 7.

      -  Line 426: I believe "tcaA" is missing following "producing"

      This has been corrected in the revised manuscript (Line 434).

      -  Line 446: "increase" to "increases"

      This has been corrected in the revised manuscript (Line 460).

      -  Figure 8C: if one goal of the mouse experiment was to look at survival during transit in whole blood, earlier timepoints are indicated based on the described kinetics of bloodstream dissemination in this model.

      The primary goal of this experiment was to see if TcaA contributed positively or negatively to the development of the infection. Work on this protein is ongoing, and so we hope in coming years to be able to provide more detail on its activity in vivo.

      -  Line 506: "changes to the structural integrity of peptidoglycan" seems overstated without additional studies.

      This has been edited in the revised manuscript (Line 524).

      -  Line 564: "represents" to "represent"

      This has been corrected in the revised manuscript (Line 603).

      -  Line 588: The figures all refer to "100 net". Please confirm the concentration used.

      This has been corrected in the revised manuscript (Line 628).

      -  Line 609: This refers to capsule production? Is this a copy error from a prior paper?

      Yes it is, and has been corrected in the revised manuscript (Line 650).

      - Line 763: Please provide the concentrations of arachidonic acid used for each experiment.

      This has been included in the revised manuscript (Line 805)

      - Line 836 and 837: This mentions a time course for blood culture from the infected mice. Where are these data?

      Apologies, this is another cut and paste mistake from another paper, and had been removed.

      -  Line 870: please discuss how multiple comparisons testing was handled.

      This has been included in the revised manuscript (Line 908).

      -  Supplemental figure 5 - Please add statistical analyses to support the conclusions in the manuscript. For example, there appears to be no differences for dalbavancin. Please also italicize tcaA in the legend.

      These have been included and corrected in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Line 65 - I would suggest adding the reference (doi: 10.1128/Spectrum.00116-21), which shows increased mortality in S. aureus bacteremia patients due to agr deficient isolates.

      The suggested manuscript shows this effect of Agr dysfunction to be limited to patients with moderate to severe SOFA scores. As such it would require a nuanced description here that we think will detract from the flow of the introduction.

      Line 68 - Please add DOI: 10.1016/j.cmi.2022.03.015 as a reference to support the mortality rate in S. aureus bacteremia. A systematic review and meta-analysis provides the highest level of evidence, and this is a contemporary study performed in 2022

      This has been included in the revised manuscript (Line 68).

      Line 70 - please add supporting reference for this statement

      This has been included in the revised manuscript (Line 70).

      Figure 2 - This image is low quality and appears pixelated. Please revise

      This has been replaced with a higher resolution image in the revised manuscript.

      Figure 3c Also appears slightly pixelated

      This has been replaced with a higher resolution image in the revised manuscript.

      Line 173 - I think it would helpful to mention the catalytic activity encoded by tcaA (aside from mediating sensitivity to glycopeptides) is unknown.

      This has been included in the revised manuscript (Line 174)

      Line 174 - also confers sensitivity to vancomycin https://doi.org/10.1128/AAC.48.6.1953- 1959.2004

      This has been included in the revised manuscript, albeit at a later point than suggested here (Line 406)

      Line 209 - did the authors test any other antimicrobial fatty acids such as palmitoleic acid? If common mechanism would also expect decreased sensitivity to other HDFA

      No, we focused on arachidonic acid as this is the most relevant antimicrobial fatty acid in serum and it is produced by neutrophils and macrophages during the inflammatory burst.

      Figure 4a-D: it would be useful to know what the MIC to these different components is and how that MIC relates to the concentration in human serum

      We do not have MICs for all of these compounds tested here but can confirm that the concentrations used are physiologically relevant.

      Figure 4b - Can you mention in the legend how the killing assays varied for arachadonic acid versus the other AMPs? I am not immediately clear how this experiment was performed, despite referring to methods

      This has been included in the text of revised manuscript (Line 211-213) and the figure legend.

      Figure 5 - there is no panel D

      This has been corrected in the revised manuscript.

      Figure 6a: Lines 328-329 state the experiment was performed in the MIC for each strain. The legend (line 374) states 0.5 ug/ml teicoplanin was used, which is below the MIC for all of the strains tested per supp table 2. Please correct this discrepancy.

      This figure has been revised and the additional information included to improve the clarity of this section in the revised manuscript.

      Figure 6a: On line 328, the authors state that the tcpA knockout increases the MIC for teicoplanin in each background. Figure 6a is performed in the presence of teicoplanin at 1x the MIC of the wild type (which will be below the MIC for the knockout). Therefore, we know each tcpA mutant will be able to grow in the presence of sub-mic concentrations of teicoplanin. Would a more informative way of conveying this information be to have MIC on the Y axis and background on the X axis?

      This has been corrected and clarified in the revised manuscript with a table showing the MICs (fig. 6a).

      Figure 6b-c: Similarly, would it be more helpful to show how the MIC varies with the different clinical isolate tcpA mutants?

      While MICs have uses in clinical setting, they are a relatively crude and binary (growth V no growth) way to measure and compare sensitivity. For these two groups of isolates the MICs did not vary, which is why we used a concentration that sat that the threshold and quantified growth of all the isolates in this. This information has been added to the legend.

      Figure 6e: The figure legends instructs us to refer to supplemental figure 3 to see the densiometry results. However, Figure 6e appears to be 4 conditions (WT and mutant +/- serum) and only examines the cell wall, whereas the supplemental figure refers to two conditions (WT + mutant) and looks at the cell wall and supernatant. I would recommend providing the densitometry data associated with the conditions in figure 6e, especially as differences seem more subtle by eye.

      This has been included in the revised manuscript (fig. 6f)

      Line 689-691 - description of teicoplanin concentrations used in figure 2. However, no teicoplanin was used in figure 2. Assume is referring to a different figure (figure 6?)

      This has been corrected and clarified in the revised manuscript. Line 724.

      Please add a section in the methods describing how the MIC was determined for JE2, SH1000 and Newman. Was it performed in CA-MHB or the media that the experiment in figure 6a was performed in. Serum can alter the MIC of several antibiotics

      This has been corrected and clarified in the revised manuscript. Line 724-29.

      Please add a section to the methods describing the whole blood killing assay, ideally describing how the blood was not frozen and used same day as venipuncture. This is important as freeze/thaw or time periods >12 hours are likely to severely effect the function of phagocytes, especially neutrophils.

      This has been corrected and clarified in the revised manuscript. Lines 635-639

      Line 588: ng/ul should read ng/µl

      This has been corrected in the revised manuscript too ng/ml. Line 628

      Reviewer #3 (Recommendations For The Authors):

      We have now included a graphical abstract (Fig. 9)

      Major:

      1-    Line 102: I was not able to find the accession numbers of these 300 genomes, did the authors submit it to any public repository (e.g. NCBI)?

      These were submitted previously to a public repository and the associated reference cited, but we have provided these in supplementary Table 1.

      Minor:

      1 -    Typo in line 133. Fix parenthesis after CC22.

      Corrected.

      2 -    Typo: Fix figure 5 panels (5e should be 5d).

      Corrected.

      3 -    Line 276: It is not clear why the extract for this experiment was supplemented at 2% while the other part of the experiment was done with 10%. Clarification is needed.

      The experiments at 10% was using overnight supernatant, whereas those with 2% was a purified WTA extract. This has been clarified in the revised manuscript (lines 283 and in the figure legend)

      4 -    Line 278: Typo: Figure 6e should be figure 5d.

      Corrected. (Line 278)

      5 -    Figure 5f: There is no explanation in the text or in the figure legend what the purpose of using mprF was.

      A comment has been included in the figure legend.

      6 -    Line 328: It would be good if we the authors reports the CC of Newman and SH1000 for a better context for the readers.

      This has been added. (Line 332)

      7 -    Line 341: Did the authors mean less sensitive to teicoplanin?

      Corrected. (Line 342)

      8 -    Line 367: Dose dependent effect does not seem to be followed not only in panel H of Supp. Fig. 4(LL37 and EMRDA15) but also panels C, D and G.

      Corrected.

      9 -    Line 587: Typo: Table 2.

      These have all been corrected and/or clarified in the revised manuscript.

    1. ObsidianI am an academic, so a critic might say that intellectual masturbation is kind of my job description. That said, yes, I am using my ZK all the time to create stuff. Oftentimes, "stuff" may be less tangible things like inspiration for a discussion with my team or with students. But my ZK also helps me tremendously for writing papers and grant proposals because now a lot of my thinking can happen before I start writing. More precisely, of course I had done a lot of thinking even before I ever used a ZK, but now I can record, retrieve, and elaborate these thoughts easily so that they accumulate over time to something bigger. Now, writing a paper or grant proposal often comes down to concatenating a bunch of notes. Ok, maybe that's a bit exaggerated, it still does take some extra editing, but you catch my drift.It took me some experimenting but now I can't imagine going back to my pre-Zettelkasten way of working.

      reply to u/enabeh at https://www.reddit.com/r/Zettelkasten/comments/13s6dsg/comment/jluovm9/?utm_source=reddit&utm_medium=web2x&context=3

      If you're curious, I've been collecting examples of teachers/professors who used their zettelkasten for teaching: https://hypothes.is/users/chrisaldrich?q=tag%3A%27card+index+for+teaching%27 Examples include Mario Bunge, Frederic L. Paxson, Gotthard Deutsch, Roland Barthes, and Joachim Jungius. In more recent contexts, I've seen Dan Allosso (aka u/danallosso), Mark Robertson (aka calhistorian u/calhistorian), and Sean Graham (https://electricarchaeology.ca/) using zettelkasten or linked notes using Obsidian, Roam, etc. for teaching. Perhaps we should get the group together to trade stories? Ping me with an email if you're interested.

    2. Wittgenstein, Luhmann, Conrad Gessner, Leibniz, Linnaeus and Walter Benjamin are some I can think of off the top of my head.

      reply to u/muhlfriedl by way of reply to u/chounosumuheya at https://www.reddit.com/r/Zettelkasten/comments/13s6dsg/comment/jlpt8ai/?utm_source=reddit&utm_medium=web2x&context=3

      Examples of zettelkasten users

      S.D. Goitein, Beatrice Webb, Ludwig Wittgenstein, Harold Innis, Victor Margolin, Eminem, Aby Warburg, Antonin Sertillanges, Jacques Barzun, C. Wright Mills, Gotthard Deutsch, Roland Barthes, Umberto Eco, Vladimir Nabokov, Gerald Weinberg, Michael Ende, Twyla Tharp, Hans Blumenberg, Keith Thomas, Arno Schmidt, Mario Bunge, Sönke Ahrens, Dan Allosso for a few more. If you go with those who used commonplace books and waste books, which are notebook-based instead of index card-based, there are thousands upon thousands more.

      Historically the easier question might be: what creators didn't use one of these systems and was successful?!? The broad outlines of these methods go back much, much farther than Niklas Luhmann. These patterns are not new...

      Personally, I've used my own slip box to write large portions of the articles on my website. I also queried it to compile this reply.

    1. Nicht nur der THEO selbst ist im Stundenplan fest verankert, sondern auch Sonderfälle wie Sport, AGs oder der Wahlpflichtbereich werden berücksichtigt. Jeder Tag startet bei uns mit der sog. Theo-Planung. Hier strukturieren die Schüler*innen ihren Tag und ihr Lernen möglichst eigenverantwortlich. Natürlich werden sie dabei von uns begleitet und erhalten im wöchentlich stattfindende LEA eine Rückmeldung  zu ihren Planungen und der Arbeit in der Theozeit.

      t:Rythmisierung t:Stundenplan

    1. winnicott once said you know there's no such thing as a baby there's only a baby and someone
      • "gestation rewires your brain in fundamental ways um you it rewire it primes you for caretaking as a as a mother in a way which is far more visceral and far it's it's pre-rational it's it's immensely transformative experience and it's permanent you know once you've been rewired for mummy brain you'd never really go back um and that from the point of view of raising a child that matters um because when after a baby is born it's you know as winnicott once said you know there's no such thing as a baby there's only a baby and someone there's a a baby doesn't exist as an independent entity until it's some years some years into its life arguably quite a few years into its life um and what I would say about artificial wounds is that you may be you may think that what you're doing is creating a baby without the misery of gestation but what you're doing in practice is creating a baby without creating a mother because a pregnancy doesn't just create a baby it also creates a mother"

      • Comment

    2. I think we are very good at honing in on the ways in which the world remains imperfect and there are ways in which it is egregiously unfair today 00:43:57 but we discount the fact that so many of the gains of the last 100 to 250 years have been enabled by the Industrial Revolution
      • "I think we are very good at honing in on the ways in which the world remains imperfect and there are ways in which it is egregiously unfair today but we discount the fact that so many of the gains of the last 100 to 250 years have been enabled by the Industrial Revolution have been enabled by harnessing the hubris of harnessing fossil fuels harnessing more energy from the environment allowing us to agglomerate in cities which when you do this when you collect all of people in a room like this you're actually creating a more powerful hive mind by bringing intelligence together so that it can share ideas at closer range and it can innovate faster and through that for all the trade-offs which are undeniable there's many negatives that have come from that we're very quick to Discount when we talk about future biomedicine very quick to Discount things like polio vaccines and the virtual eradication of that disease along with smallpox of the fact that we have got so many infectious diseases under control we struggle with the big Killers like cancer and heart disease at the moment those are sort of like the biggest Global threats um but through basic Innovations through Modern Sanitation through better housing all of which the Industrial Revolution enabled we have lifted so many people out of poverty and yes we created new tears of poverty but overall fewer people are living in abject poverty today than in the past we have the higher average global life expectancies child mortality is plummeted the fact that you can give birth by cesarean section rather than in the case of my mother giving birth to a dead child which is what would have happened to me because my umbilical cord was wrapped twice around my neck the fact that technology can intervene and bring us so many of these Spoils of modernity that we readily take for granted I don't know where there's obviously attention but I don't know at what point you say we want to hit pause or indeed we want to go backwards again the challenge sort of remains like we agree we're barreling on this trajectory if we're not going to get off it then we need to think about how we manage it as well as possible and that means we need to think about how AI becomes a healthy part of our world or indeed if it can cut it can we co-exist with AI"
      • Comment
    3. it is as if man had been suddenly appointed managing director of the biggest business of all the business of evolution appointed without being asked if he wanted it and without proper warning and preparation what is more he 00:05:49 can't refuse the job whether he wants to or not whether he is conscious of what he is doing or not he is in point of fact determining the future direction of evolution on this earth that is his 00:06:02 inescapable Destiny and the sooner he realizes it and starts believing in it the better for all concerns
      • quote

        • "it is as if man had been suddenly appointed managing director of the biggest business of all the business of evolution appointed without being asked if he wanted it and without proper warning and preparation what is more he can't refuse the job whether he wants to or not whether he is conscious of what he is doing or not he is in point of fact determining the future direction of evolution on this earth that is his inescapable Destiny and the sooner he realizes it and starts believing in it the better for all concerns"
        • Julian Huxley
      • Comment

    1. @Will Thanks for always keeping up with your regular threads and considerations.

      I've been keeping examples of people talking about the "magic of note taking" for a bit. I appreciate your perspectives on it. Personally I consider large portions of it to be bound up with the ideas of what Luhmann termed as "second memory", the use of ZK to supplement our memories, and the serendipity of combinatorial creativity. I've traced portions of it back to the practices of Raymond Llull in which he bound up old mnemonic techniques with combinatorial creativity which goes back to at least Seneca.

      A web search for "combinatorial creativity" may be useful, but there's a good attempt at what it entails here: https://fs.blog/seneca-on-combinatorial-creativity/

    1. Specialising in active and immersive experiences in London, Ultimate Recreation offers everything from laser tag, paintball and airsoft, to escape rooms and immersive theatre, to zombie experiences.

      Visit us today!

    1. AIRSOFT, LASER TAG, PAINTBALL, AND MORE INSIDE A COLD WAR NUCLEAR BUNKER THEMED VENUE, LOCATED IN SOUTH EAST LONDON

      Visit us today!

    1. @chrisaldrich I think the is an underated idea more broadly. I would love to see this done with other authors books that use an index card system, like Robert Greene. I think it would be a useful illustration to help people better understand the research and writing process. I've been wanting to and created a few experimental vaults where I do a similar thing except for a podcast (all of Sean Carroll's Mindscape transcripts are free) or a textbook (Introduction to Psychology). But I never followed through on the projects just because of how much work it takes to due it right. This also makes me wish for a social media type zettelkasten, where a community can keep a shared vault, creating a social cognition of sorts. I know this was kind of happening with the shared vaults Dan Alloso was experimenting with but his seemed more focused than random/chaotic. I'm also not sure if he continued it for later books.

      Reply to Nick at https://forum.zettelkasten.de/discussion/comment/17926/#Comment_17926

      Some pieces of social media come close to the sort of sense making and cognition you're talking about, but none does it in a pointed or necessarily collaborative way. The Hypothes.is social annotation tool comes about as close to it as I've seen or experienced beyond Wikipedia and variations which are usually a much slower boil process. As an example of Hypothes.is, here's a link to some public notes I've been taking on the "zettekasten output problem" which I made a call for examples for a while back. The comments on the call for examples post have some rich fodder some may appreciate. Some of the best examples there include videos by Victor Margolin, Ryan Holiday (Robert Greene's protoge), and Dustin Lance Black along with a few other useful examples that are primarily text-based and require some work to "see".

      For those interested, I've collected a handful of fascinating examples of published note collections, published zettelkasten, and some digitized examples (that go beyond just Luhmann) which one can view and read to look into others' practices, but it takes some serious and painstaking work. Note taking archaeology could be an intriguing field.

      Dan Allosso's Obsidian book club has kept up with additional books (they're just finishing Rayworth's Doughnut Economics and about to start Simon Winchester's new book Knowing What We Know, which just came out this month.) Their group Obsidian vault isn't as dense as it was when they started out, but it's still an intriguing shared space. For those interested in ZK and knowledge development, this upcoming Winchester book looks pretty promising. I'd invite everyone to join if they'd like to.

    1. Reviewer #1 (Public Review):

      Specifically controlling the level of proteins in bacteria is an important tool for many aspects of microbiology, from basic research to protein production. While there are several established methods for regulating transcription or translation of proteins with light, optogenetic protein degradation has so far not been established in bacteria. In this paper, the authors present a degradation sequence, which they name "LOVtag", based on iLID, a modified version of the blue-light-responsive LOV2 domain of Avena sativa phototropin I (AsLOV2). The authors reasoned that by removing the three C-terminal amino acids of iLID, the modified protein ends in "-E-A-A", similar to the "-L-A-A" C-terminus of the widely used SsrA degradation tag. The authors further speculated that, given the light-induced unfolding of the C-terminal domain of iLID and similar proteins, the "-E-A-A" C-terminus would become more accessible and, in turn, the protein would be more efficiently degraded in blue light than in the dark.

      Indeed, several tested proteins tagged with the "LOVtag" show clearly lower cellular levels in blue light than in the dark. While the system works efficiently with mCherry (10-20x lower levels upon illumination), the effect is rather modest (2-3x lower levels) in most other cases. Accordingly, the authors propose to use their system in combination with other light-controlled expression systems and provide data validating this approach. Unfortunately, despite the claim that the "LOVtag" should work faster than optogenetic systems controlling transcription or translation of protein, the degradation kinetics are not consistently shown; in the one case where this is done, the response time and overall efficiency are similar or slightly worse than for EL222, an optogenetic expression system.

      The manuscript and the figures are generally very well-composed and follow a clear structure. The schematics nicely explain the underlying principles. However, limitations of the method in its main proposed area of use, protein production, should be highlighted more clearly, e.g., (i) the need to attach a C-terminal tag of considerable size to the protein of interest, (ii) the limited efficiency (slightly less efficient and slower than EL222, a light-dependent transcriptional control mechanism), and (iii) the incompletely understood prerequisites for its application. In addition, several important controls and measurements of the characteristics of the systems, such as the degradation kinetics, would need to be shown to allow a comparison of the system with established approaches. The current version also contains several minor mistakes in the figures.

    2. Reviewer #2 (Public Review):

      In this manuscript the authors present and characterize LOVtag, a modified version of the blue-light sensitive AsLOV2 protein, which functions as a light-inducible degron in Escherichia coli. Light has been shown to be a powerful inducer in biological systems as it is often orthogonal and can be controlled in both space and time. Many optogenetic systems target regulation of transcription, however in this manuscript the authors target protein degradation to control protein levels in bacteria. This is an important advance in bacteria, as inducible protein degradation systems in bacteria have lagged behind eukaryotic systems due to protein targeting in bacteria being primarily dependent on primary amino acid sequence and thus more difficult to engineer. In this manuscript, the authors exploit the fact that the J-alpha helix of AsLOV2, which unwinds into a disordered domain in response to blue light, contains an E-A-A amino acid sequence which is very similar to the C-terminal L-A-A sequence in the SsrA tag which is targeted by the unfoldases ClpA and ClpX. They truncate AsLOV2 to create AsLOV2(543) and combine this truncation with a mutation that stabilizes the dark state to generate AsLOV2*(543) which, when fused to the C-terminus of mCherry, confers light-induced degradation. The authors do not verify the mechanism of degradation due to LOVtag, but evidence from deletion mutants contained in the supplemental material hints that there is a ClpA dominated mechanism. They demonstrate modularity of this LOVtag by using it to degrade the LacI repressor, CRISPRa activation through degradation of MCP-SoxS, and the AcrB protein which is part of the AcrAB-TolC multidrug efflux pump. In all cases, measurement of the effect of the LOVtag is indirect as the authors measure reduction in LacI repression, reduction in CRISPRa activation, and drug resistance rather than directly measuring protein levels. Nevertheless the evidence is convincing, although seemingly less effective than in the case of mCherry degradation, although it is hard to compare due to the different endpoints being measured. The authors further modify LOVtag to contain a known photocycle mutation that slows its reversion time in the dark, so that LOVtag is more sensitive to short pulses of light which could be useful in low light conditions or for very light sensitive organisms. They also demonstrate that combining LOVtag with a blue-light transcriptional repression system (EL222) can decrease protein levels an additional 269-fold (relative to 15-fold with LOVtag alone). Finally, the authors apply LOVtag to a metabolic engineering task, namely reducing expression of octanoic acid by regulating the enzyme CpFatB1, an acyl-ACP thioesterase. The authors show that tagging CpFatB1 with LOVtag allows light induced reduction in octanoic acid titer over a 24 hour fermentation. In particular, by comparing control of CpFatB1 with EL222 transcriptional repression alone, LOVtag, or both the authors show that light-induced protein degradation is more effective than light-induced transcriptional repression. The authors suggest that this is because transcriptional repression is not effective when cells are at stationary phase (and thus there is no protein dilution due to cell division), however it is not clear from the available data that the cells were in stationary phase during light exposure. Overall, the authors have generated a modular, light-activated degron tag for use in Escherichia coli that is likely to be a useful tool in the synthetic biology and metabolic engineering toolkit.

    3. Reviewer #3 (Public Review):

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark-stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein; however, results are not benchmarked against similar degradation tagging and optogenetic control constructs. Creating fusion proteins that do not alter either of the original functions, is often difficult to achieve, and the novelty of this should be expanded upon to drive further impact.

    1. Reviewer #1 (Public Review):

      This is a generally well-written manuscript that elegantly begins to explore the molecular basis of exosome release under conditions of sheer stress or calcium influx. The authors use a sensitive luciferase assay that enables them to monitor the release of exosomes from CD63-tag-expressing cells. Upon SLO pore formation or sheer stress, cells release exosomes in a calcium-dependent manner; MVBs are (indirectly) shown to undergo calcium-dependent plasma membrane fusion in a process that depends on a set of 4 proteins that were identified by an unbiased analysis of proteins that associate with MVBs. One of these is Annexin A6, a protein shown by several other groups to participate in membrane repair. Thus, calcium triggers the binding of 4 proteins to the surface of MVBs, and likely also to the plasma membrane, driving MVB fusion at the cell surface. The authors also present a semi-intact cell system that will permit functional analysis of the MVB fusion process.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The authors of this study utilize a novel nanobody-based technique to specify the location of the SPT complex to either the peripheral or nuclear membrane-associated endoplasmic reticulum membranes. Considering the potential importance of sub-ER compartmentalization on metabolic enzymes of the ER, this is a novel and useful approach. The studies are, with the minor exceptions noted below, comprehensive and very well executed and documented. The authors have combined genetic, proteomic, lipidomic, and flux experimental approaches to test whether sub-ER compartmentalization affects the function and regulation of the SPT complex. The results are, for the most part, negative, although there does seem to be some effect on the overall activity of the SPT complex as measured with flux analysis. Overall, while the authors do not detect dramatic effects on SPT complex localization, the technical advance using tethered nanobodies to direct complex localization, and the complementary approaches to testing SPT function and regulation, will be useful to workers in the sphingolipid field.

      Minor points:

      The results with YPK1-linker-CAAX are confusing. This construct does not result in Orm2 phosphorylation with heat shock, whereas endogenous YPK1 does. Yet it can support viability even without Orm deletion. In other words, this tethered construct appears functional in viability assays, but not in a biochemical assay.This discrepancy is not discussed by the authors. The manuscript would be improved by a discussion by the authors that addresses this issue. It is not clear why the figure legend to Figure 2 suggests that Ypk1 regulates Orms mainly in the peripheral ER. Considering that WT Ypk1 is more efficient than CAAX tethered YPK1, this statement does not seem supported. Perhaps the authors can elaborate on how they came to this conclusion.

      The figures depicting Orm phosphorylation (Figure 1e, f Figure 2d,e, Figure 6 b,c) should be improved. The resolution of two forms is not sufficient in Figure1 and 2. The use of Phos-Tag might solve this issue. It would be helpful to the reader to include arrows that indicate the phosphorylated and unphosphorylated forms of Orm. Quantitation of these gels is essential.

      Lines 318 and 319. Figure 6e and 6f are referred to. The correct assignment is 6f and 6g.

      Referees cross-commenting

      I agree with Reviewer #2's assessment that some of the conclusions are over stated. While Reviewer #2 is correct that the advances in this manuscript are modest, this is principally because expected differences in the function and regulation of the SPT in different ER sub-domains did not materialize. This may be disappointing, but is still important to document

      Significance

      This is a very well performed study, utilizing a variety of approaches to test whether localization of the SPT complex impacts on it activity and regulation. With very minor exceptions, it is well executed and documented.

      The advances reported here are two-fold. First, the authors introduce a novel approach using nanobodies that are tethered to distinct regions of the yeast endoplasmic reticulum to localize intact and unmodified complexes to distinct locations. This could be a very useful tool in other contexts to examine the role of subcellular compartmentalization in the function of enzymes and signaling components. This targeting system is well characterized in this study. The second advance, utilizing this targeting system, is that localization of the SPT complex to distinct subcompartments of the ER has minimal effects on regulation, and observable, but relatively minor effects on SPT function in terms of sphingolipid production. While a positive result would have been more exciting, negative results can be equally informative.

      This study will be of interest to workers in the signaling and metabolic fields that may utilize this unique targeting strategy. It will also be of interest to the sphingolipid community.

    1. Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

    1. Tag
      • tag在一般情况下是由硬件自动设置和管理的,不可由软件直接修改。
    2. Intel 大多数处理器的L1 Cache都是32KB,8-Way 组相联,Cache Line 是64 Bytes。

      如果是 2-way组相联或者 4-way组相联,其他不变,会发生啥? 对于4-way组相联场景: * 32KB的可以分成,32KB / 64 = 512条cache line。 * 因为有4way,于是会每一way有 512 / 4 = 128 条 cache line。 * 于是每一路就有 128 * 64 = 8192 bytes的内存,即8kB。 为了方便索引内存地址,tag和offset不变,只有index需要调整。 * inex:内存地址后续的7个bits则是在这一way的是cache line索引,2^7 = 128刚好可以索引128条cache line。 对于 2-way场景以后补充。

    1. Louise Bennett had a programme called “Miss Lou’s Views” on Jamaican JBC Radio in the 1970s. One correspondent wrote in a daily newspaper that such a programme should be scrapped because it tended to perpetuate ignorance in Jamaicans. Though Louise Bennett has sought to foster love and respect for the Jamaican dialect, she has never advocated that Standard English be abandoned. She argued that for far too long it was considered not respectable to use the dialect, because there was a social stigma attached to the kind of person who used it. She added that many people still did not accept that for many Caribbean people, there were many things best said in the language of the folk. (“Bennett on Bennett” 101).

      Louise Bennett, a radio talkshow host for the JBC, sought to show her respect for her roots, even advocating that standard English ought to be the spoken language because of the social stigma related to speaking in the island country's dialect. She added that many people still did not accept that for many Caribbean people, there were many things best said in the language of the folk. (Davidson par.4). 

    2. Louise Bennett, Caribbean cultural icon, linguist and poet, has been writing and performing using the Jamaican Creole since the 1950s. For a long time, despite the fact that her work gained limited favour among the working class and some intellectuals, her writings did not appear in the important Jamaican anthology Focus in the 1940s to the 1960s, and the Jamaica Poetry League ignored her. In 1962, she was included in the Independence Anthology of Jamaican Literature, but not in the section for poetry. It took the social and political upheaval of the 1970s for academics and others to accept Louise Bennett as a guru of the Jamaican Creole. She received the Order of Jamaica in 1974.

      Despite being overlooked for decades Miss Lou had a following. She was featured in the Independence Anthology of Jamaican Literature in 1962, but not in the poetry section. In the 1970s Miss Lous following finally broke the stalemate that placed Louise Bennett as a guru of the Jamaican Creole receiving the Order of Jamaica. (September 7 th has been officially declared Miss Lou Day. Known as Miss Lou, that is to say the honorable Louise Bennett-Coverley who was born in Kingston Jamaica in 1919 to a widowed dressmaker. Miss Lou is highly esteemed as the queen of comedy her persona is known for highlighting, commemorating, and exploring Jamaican heritage (Davidson par 3).

    3. Miss Lou, the Honourable Louise Bennett-Coverley O.M., O.J., finally has her day! September 7 has officially been declared, by Governor-General Sir Howard Cooke, to be ‘Miss Lou Day’. The day marks the works of the esteemed first lady of comedy in promoting, celebrating, and exploring Jamaican culture. It also marks the day of her birth.

      September 7 th has been officially declared Miss Lou Day. Known as Miss Lou, that is to say the honorable Louise Bennett-Coverley who was born in Kingston Jamaica in 1919 to a widowed dressmaker. Miss Lou is highly esteemed as the queen of comedy her persona is known for highlighting, commemorating, and exploring Jamaican heritage (Davidson par 1-2).

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to reviewers.

      We deeply thank the reviewers for the time spent on evaluating our manuscript as well as providing comments and suggestions to improve our study.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      *In this manuscript Lebdy et al. describe a new role of GNL3 in DNA replication. They show that GNL3 controls replication fork stability in response to replication stress and they propose this is due to the regulation of ORC2 and the licensing of origins of replication. Their data suggest that GNL3 regulates the sub nuclear localization of ORC2 to limit the number of licensed origins of replication and to prevent resection of DNA at stalled forks in the presence of replication stress.

      While many of the points of the manuscript are proven and well supported by the results, there are some experiments that could improve the quality and impact of the manuscript. The main issue is that the connection between the role of GNL3 in controlling ORC2, the firing of new origins and the protection of replication forks is not clearly established. At the moment the model relies on mainly correlative data. In order to further substantiate the model, we propose to address some of the following issues:*

      1. *The authors indicate that RPA and RAD51 accumulation at stalled forks is not affected by GNL3 depletion. These data should be included and other proteins should be analysed. In addition, the role of helicases could be explored through the depletion of the main helicases involved in the remodelling of the forks. * Response: As asked by the reviewer we will add the fractionation experiments that show that the level of RAD51 and RPA on chromatin is not affected by GNL3 depletion. So far, the other proteins we checked (RIF1 and BRCA1), both involved in nascent strand protection, did not show clear differences. Therefore, we concluded that depletion of GNL3 does not seem to affect the recruitment of major proteins required for protection of nascent DNA. Of course, we cannot exclude that other proteins may be affected by GNL3 depletion, but testing all the possible candidates would be time consuming with a very low chance of success. In addition, fractionation experiments are possibly not quantitative enough to uncover small differences and may be not that informative. Thus it remains possible that RPA exhaustion may be the cause of resection in absence of GNL3 as suggested by the work conducted in Lukas’ lab (Toledo et al. 2013. https://pubmed.ncbi.nlm.nih.gov/24267891/). To test this hypothesis, we will analyze if resection in absence of GNL3 is still occurring in a well-characterized cell line that overexpress the three RPA subunits that we obtained from Lukas’ lab.

      To our knowledge not many helicases have been shown to be involved in remodeling of stalled forks. The best example is RECQ1, however we feel that testing RECQ1 involvement in resection upon GNL3 depletion will complicate our story without adding much regarding the mechanism. We hope the reviewer understands our concern.

      • The proposed model implies that GNL3 depletion leads to increased origin licensing. FThe authors should address if the primary effect of GNL3 depletion is on origin firing by using CDC7 inhibition in the absence of stress (Rodríguez-Acebes et al., JBC 2018). *

      __Response: __This is an excellent point raised by the reviewer. To test if the primary effect of GNL3 depletion in on origin firing we will test if the defect in replication fork progression is dependent on CDC7 using DNA fibers experiments and CDC7 inhibitor.

      • A way to prove that origin firing mediates the effect of GNL3 on fork protection would be to reduce the number of available origins. The depletion of MCM complexes has been shown to limit the number of back-up origins that are licensed and leads to sensitivity to replication stress (Ibarra et al., PNAS 2008). If GNL3 depletion results in increased number of origins, this effect should be prevented by the partial depletion of MCM complexes. *

      __Response: __This is also an excellent point. We will test if MCM depletion decreases resection upon GNL3 depletion and treatment with HU. In addition, we will integrate in the manuscript experiments that we have done recently that show that treatment with roscovitine, a CDK inhibitor that impairs origin firing, decreases the level of resection observed in absence of GNL3. We think this experiment strengthens the results obtained with CDC7 inhibitors.

      *Alternatively, the authors could try to modulate the depletion of GNL3. Origin licensing takes place in the G1 phase and thus the depletion of GNL3 by siRNA could affect the following S phase. Using an inducible degron for GNL3 depletion would allow to deplete GNL3 in G1 or S phase specifically. If the model is correct, the removal of GNL3 in S phase should not affect fork protection but removing GNL3 in the previous G2/M phase should reduce the number of licensed origins and lead to impaired fork protection. *

      __Response: __This is obviously a good point given the fact that GNL3 deletion is not viable (see responses to reviewer 2). We tried to develop an auxin induced degron of GNL3, but we could not obtain homozygous clones, meaning that our clones had always an untagged GNL3 allele. Since GNL3 is essential its tagging may impair its function, explaining why we could not obtain homozygous clones. However, we are planning to optimize the design using other degrons system (for instance Halo-tag) to address the role of GNL3 specifically during S-phase. But we think this is above the scope of the present study.

      *In addition to the connection GNL3-origin firing-fork protection, it is unclear how the lack of GNL3 in the nucleolus and the change in the sub nuclear localization of ORC2 controls origin firing and resection. The strong interaction observed between GNL3-dB and ORC2, and the subsequent change in ORC2 localization does not explain how origin licensing can be affected. In this sense, the authors could address: *

      1. *Does the depletion of GNL3 and the expression of GNL3-dB affect the formation of the ORC complex, its subnuclear localization or its binding to chromatin? The authors have not explored if the interaction of GNL3 with ORC2 is established in the context of the ORC complex. An IF showing NOP1 with PLA data from GNL3-dB and ORC2 is needed to analyse how the expression of increasing amounts of GNL3-dB affects ORC2. * __Response: __We tested if GNL3 depletion impacts ORC2 and ORC1 recruitment on chromatin, but we could not observe significant differences. No clear differences were observed upon GNL3-dB expression either. One reason for this may be due to the excess of ORC complex on the chromatin, in addition chromatin fractionation is likely not sensitive enough to observe small differences. We think that quantitative ChIP-seq of ORC2 or other ORC subunits upon GNL3 depletion is required to visualize such differences, but this is above the scope of the study, and this constitutes the following of this project. We also tried to look at subnuclear localization of ORC2 using immunofluorescence, but the signal was not specific enough to observe differences. We think that the increased interaction (PLA) of ORC2 with GNL3-dB (Figure 5E) demonstrates a change in ORC2 subnuclear localization. To confirm this, we will perform the excellent experiment proposed by the reviewer to test if increasing level of GNL3-dB affects its interaction with ORC2 using PLA.

      We do not think that the interaction between ORC2 and GNL3 is established in the context of the ORC complex since only ORC2 (and not the other ORC) was significantly enriched in the GNL3 Bio-ID experiment. The full list of proteins from the Bio-ID experiment (Figure 4A) will be provided in the revised version. Therefore, we think that either GNL3 regulates ORC2 subnuclear localization that in turns impact the ORC complex or GNL3 regulates ORC2-specific functions. More and more evidences show that ORC2 plays roles possibly independently of the ORC complex (see Huang et al. 2016 https://doi.org/10.1016/j.celrep.2016.02.091 or Richards et al. 2022 https://doi.org/10.1016/j.celrep.2022.111590 for instance). Future work should uncover how these ORC2 functions may regulate origins activity.

      *In order to confirm if the mislocalization of ORC2 by the expression of GNL3-dB increases origin firing and mediates the effects on fork protection the authors could check DNA resection levels inhibiting CDC7 in high GNL3-dB conditions. Also, the levels of MCM2, phosphor-MCM2, CDC45, have not been analysed upon expression of GNL3-dB. *

      __Response: __This is a good point; we will test if the resection observed upon expression of GNL3-dB is dependent on origin firing using CDC7 inhibitor. We have not measured the level of the cited proteins but instead we performed DNA combing to measure Global Instant Fork Density. We now show that expression of GNL3-WT suppresses the increased origin firing observed upon GNL3 depletion, in contrast expression of GNL3-dB does not suppress it. This important result indicates that origin firing is increased upon GNL3-dB expression, providing a link between aberrant localization and increased firing. These data will be part of the revised version of the manuscript.

      The data in the paper suggest that GNL3 may affect the role of ORC2 in centromeres. Since depletion of GNL3 leads to increased levels of gH2AX, it would be interesting to address if this damage is due to incomplete replication in centromeres by analysing the co-localization of g*H2AX and centromeric markers both in unstressed conditions and upon the induction of replication stress. *

      __Response: __This is indeed and interesting comment, however since it has been previously shown that gH2AX signal is rather strong upon GNL3 depletion (see Lin et al. 2013. https://pubmed.ncbi.nlm.nih.gov/24610951/ ; Meng et al. 2013. https://pubmed.ncbi.nlm.nih.gov/23798389/) we do not think that co-localization experiments with CENP-A for instance will be informative given the high number of gH2AX foci.

      *Minor points: *

      1. In the initial esiRNA screen the basal levels of g*H2AX should also be shown. * Response: Our negative control is the transfection of an esiRNAs that targets EGFP (a gene that is not expressed in the tested cell line). This esiRNAs is ranked at the end of the list and therefore constitutes the basal level of gH2AX signal. In any case it is well-established that GNL3 depletion increases gH2AX signal (see Lin et al. 2013. https://pubmed.ncbi.nlm.nih.gov/24610951/ ; Meng et al. 2013. https://pubmed.ncbi.nlm.nih.gov/23798389/).

      *Figure EV1B: I think the rank needs another RS mark to see better the effect of each esiRNA on DNA lesions (high variability in all the conditions showed). *

      __Response: __We understand this issue, but we cannot repeat this set of experiments for technical reasons (reagents and cost mainly). Anyway, we believe that the role of GNL3 is response to replication stress is extensively addressed by other experiments of this manuscript.

      *Figure 1C and Figure EV1D/E: the quantification of the pCHK1/CHK1 levels could be included to show that there are no changes in phosphorylation upon GNL3 depletion. *

      Response: it is a good point; we will put quantification in the revised version.

      *In the first section of the results, at the end Figure 4B is incorrectly called for. *

      __Response: __Thanks for the comment, we will modify accordingly.

      The levels of GLN3 expression in 293 cells should be already included in section GNL3 interacts with ORC2.

      __Response: __We will add a figure that shows the level of expression in 293 cells.

      The full MS data needs to be included for both GNL3 and ORC2.

      __Response: __This will be integrated in the revised version.

      Figure 4B should be improved, since there is a faint band in the IgG mouse control.

      __Response: __it is true that the figure is not perfect, but we believed that our Bio-ID and PLA experiments fully demonstrate the interaction between GNL3 and ORC2.

      __Reviewer #1 (Significance (Required)): __

      *The work is nicely written, the figures are well presented and the experiments have the necessary controls. It provides relevant information to understand how replication stress is controlled and linked to replication fork protection through origin firing. These results are relevant to the field, linking GNL3 to origin firing and with potential to help understand the role of GNL3 in cancer. They provide new information and can give rise to new studies in the future. Many of the conclusions of the manuscript are well supported. Additional support for some of the main claims would strengthen the results and also increase the impact providing a bigger conceptual advance by performing some of the suggested experiments. *

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      *This manuscript explores the role of GNL3/nucleostemin in DNA replication and specifically in the response of DNA replication to DNA damage. GNL3 is a predominantly nucleolar protein, previously characterised as a GTP-binding protein and shown to be necessary for effective recruitment of the RAD51 recombinase to DNA breaks. The entry point for this report is a mini screen, based on proteins identified previously by the authors to associate with replication forks by iPOND, for factors that increase gamma-H2Ax (an indicator of DNA damage) after treatment with the Top1 inhibitor camptothecin (CPT). In this mini-screen GNL3 emerged as the top hit.

      The authors put forward the hypothesis that GNL3 is able to sequester the replication licensing factor ORC2 in the nucleolus and that failure of this mechanism leads to excessive origin firing and DNA resection following CPT treatment.*

      • The model put forward is interesting, but currently rather confusing. However, for the reasons upon which I expand below, I do not believe that the data provide a compelling mechanistic explanation for the effects that are reported and I am left not being certain about some of the links that are made between the various parts of the study, even though individual observations appear to be of good quality. *

      *Specific points: *

      *The knockdown of GNL3 is very incomplete. In this regard, the complementation experiments are welcome and important. However, is it an essential protein? Can it be simply deleted with CRISPR-Cas9?

      *__Response: __There are obviously variations between experiments but overall, the depletion of GNL3 using siRNA seems good in our opinion. Deletion of GNL3/nucleostemin leads to embryonic lethality in mouse (Beekman et al. 2006. https://pubmed.ncbi.nlm.nih.gov/17000755/ ; Zhu et al. 2006. https://pubmed.ncbi.nlm.nih.gov/17000763/). ES cells deleted for GNL3 can be obtain but do not proliferate probably because of their inability to enter in S-phase (Beekman et al. 2006. https://pubmed.ncbi.nlm.nih.gov/17000755/). We wanted to test if it was the case in our cellular model and we tried to delete it using CRISPR-Cas9. We managed to obtain few clones deleted for GNL3, but they grow really poorly prevented us to do experiments. To bypass this, and as suggested by the reviewer 1, we tried to make an auxin-induced degron of GNL3. Unfortunately, we did not manage to obtain homozygous clones, only heterozygous. One possibility could be that the tagging induced a partial loss of function of GNL3, and since GNL3 is essential, it may explain why we did not obtain homozygous clones. We may also want to use alternative degron systems such as Halo-Tag, but we believe this is out of the scope of the study.

      __ __*Global instant fork density is not quite the same as actually measuring origin firing. Ideally, it would be good to see some more direct evidence of addition origin firing e.g. by EdU-seq (Macheret & Halazonetis Nature 2018) but this would be quite a significant additional undertaking. However, given the authors have performed DNA combing with DNA counterstain, they should be able to provide accurate measurements of origin density and inter-origin distance. *

      __Response: __As indicated by the reviewer EdU-seq would need a lot of development since we are not using this approach in our team. In addition, this method can detect replication origins only if performed in the beginning of S-phase, meaning that only the early firing origins will be detected and not the others. GIFD measurement is actually directly linked with origin firing since it is counting the forks to duplicate the genome. The measurements of IODs have at least two main limitations: (1) there is a bias for short IODs due to the length of analyzed fibers and (2) it focuses only on origins within a cluster not globally. Overall, we believe that GIFD is the method of choice to measures origins firing. In addition, these experiments have been done by the lab of Etienne Schwob (see acknowledgments), a leader in the field.

      *'Replication stress' is induced with CPT. This term is frequently used to describe events that lead to helicase-polymerase uncoupling (e.g. O'Connor Mol Cell 2015) but that is not the case with CPT, which causes fork collapse and breaks. Are similar effects seen with e.g. UV or cisplatin? Additionally, a clear statement of the authors definition of replication stress would be welcome. *

      __Response: __We will better define the term ‘replication stress’ in the revised version of the manuscript. It should be understood, in our case, that any impediment that leads to replication fork stalling and measurable by DNA combing or Chk1 phosphorylation. We have not performed experiments using UV and cisplatin.

      *It is really not clear how the authors explain the link between potential changes in origin firing and resection. i.e. What is the relationship between global origin firing and resection at a particular fork, presumably broken by encounter with a CPT-arrested TOP1 complex. What is the link mechanistically? This link needs elaborating experimentally or clearly explaining based on prior literature. *

      • *__Response: __Most of our results on resection has been performed with hydroxyurea, but it is true that we saw resection in absence of GNL3 in response to CPT. Treatment with HU or CPT reduces fork speed and activates additional replication origins (see Ge et al. 2007 https://pubmed.ncbi.nlm.nih.gov/18079179/ for HU or Hayakawa et al. 2021 https://pubmed.ncbi.nlm.nih.gov/34818230/ for CPT ). When GNL3 is depleted, more forks are active, meaning more targets for HU and CPT. In addition, it is likely that the firing of additional origins in response to HU and CPT is stronger in absence of GNL3. Because of this we believe that factors required to protect stalled forks may be exhausted explaining why resection is observed. This is inspired by the work of Lukas’ lab (Toledo et al. 2013 https://pubmed.ncbi.nlm.nih.gov/24267891/) and is described in the figure 6. One obvious candidate that may be exhausted is RPA, to test this we will check if resection upon GNL3 depletion and treatment with HU is still occurring in cell lines provided by Lukas’ lab that overexpress RPA complex (described in Toledo et al.). We will explain our model more carefully in the revised version.

      *Related to this, I remain unconvinced that the experiments in Figure 3 show that the effects of ATRi and Wee1i on origin firing and on resection are contingent on each other. I do not believe that the authors have adequately supported the statement (end of pg 9) 'We conclude that the enhanced resection observed upon GNL3 depletion is a consequence of increased origin firing.' The link between origin firing and resection needs really needs further substantiation and / or explanation.

      *__Response: __Our rational was the following. Inhibition of ATR or WEE1 increase replication origin firing, a situation that may be like the one observed for GNL3 depletion. In Toledo et al, they show that inhibition of WEE1 or ATR induces exhaustion of RPA. This exhaustion is reduced in presence of CDC7 inhibitor, roscovitine (a CDK inhibitor that inhibits origin firing) or depletion of CDC45, indicating that this is due to excessive origin activation. In our case we show that the resection observed upon WEE1 or ATR inhibition is reduced upon treatment with CDC7 inhibitor. We conclude that excessive replication origin firing induces DNA resection. Since we observed the same thing upon GNL3 depletion (but not upon BRCA1 depletion) we conclude that excessive origin firing favors DNA resection likely through exhaustion of RPA. As indicated above we will test this hypothesis by overexpressing RPA. In addition, we now show that treatment with roscovitine decreases resection upon GNL3 depletion (this will be part of the revised manuscript), an experiment that we believe confirms that excessive replication origins firing is responsible for resection upon GNL3 depletion. As suggested by reviewer 1, we will also test if depletion of MCM also reduces resection observed in absence of GNL3.

      *It is not clear whether the binding of ORC2 to GNL3 also sequesters other components of the origin recognition complex? Does loss of the ability of GNL3 to bind ORC2 actually lead to more ORC bound to chromatin? How does GNL3 contribute to regulation of origin firing under normal conditions? Is it a quantitatively significant sink for ORC2 and what regulates ORC2 release? *

      Response: The results of GNL3 Bio-ID were extremely clear, we could not significantly detect any other ORC subunits than ORC2 (these data were not present in the manuscript but will be added in the revised version), therefore we believe that GNL3 may sequester/regulate only ORC2. We tried to see if GNL3 depletion was changing the binding of ORC1 and ORC2 to the chromatin, but we could not see any difference, one possibility may be that small differences are not detectable by chromatin fractionation. We believe that ChIP-seq or ORC2 or other ORC subunits in absence of GNL3 is required but this it out of the scope of the study. GNL3 may regulates the stability of the ORC complex on chromatin via ORC2 but GNL3 may also regulates other ORC2 functions, at centromeres for instance. It has been shown indeed that ORC2 plays roles possibly independently of the ORC complex (see Huang et al. 2016 https://doi.org/10.1016/j.celrep.2016.02.091 or Richards et al. 2022 https://doi.org/10.1016/j.celrep.2022.111590 for instance). How exactly this is affecting origin firing is still mysterious. This is something we are planning to address in the future.

      We do not know if it is a quantitatively sink for ORC2 or how this is regulated, however we believe that the ability of GNL3 to accumulate in the nucleolus may sequester ORC2. Consistent with this, we show that a mutant of GNL3 (GNL3-dB) that diffuses in the nucleoplasm interacts more with ORC2 in the nucleoplasm suggesting a release. As suggested by reviewer 1 we will now test if the interaction between ORC2 and GNL3-dB is dependent on the level of expression of GNL3-dB. In addition, we now show that expression of GNL3-dB increases replication origin firing like GNL3 depletion (data that will be added in the revised version), suggesting that regulation of ORC2 is the major cause of increased firing upon GNL3 depletion.

      *Minor points: *

      *All blots should include size markers *

      __Response: __We will add them

      *Some use of language is not sufficiently precise. For instance: ** - the meaning of 'DNA lesions' at the end of the first paragraph of the introduction needs to be more explicit. *

      * - the approach to measurement of these 'lesions' (monitoring gamma-H2Ax) needs to be spelled out explicitly, e.g. line 4 of the last paragraph of the introduction. *

      *

      • 'we observed that the interaction between GNL3-dB and ORC2 was stronger' ... I do not see how number of foci indicates necessarily the strength of an interaction. *

      * - in many places throughout 'replication origins firing' should be 'replication origin firing' (or 'firing of replication origins'). *

      __Response: __We will correct these language mistakes.

      __Reviewer #2 (Significance (Required)): __

      The model put forward here has the potential to shed light on an important facet of the cellular response to DNA damage, namely the control of origin firing in response to replication stress that will certainly be of interest to the DNA repair / replication community and possibly more widely. The roles of GNL3 are poorly understood and this study could improve this state of affairs. However, the gaps in the mechanism outlined above and somewhat confusing conclusions do limit the ability of the paper to achieve this at present.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      *In this study, Lebdy et al propose a new mechanism to regulate the resection of nascent DNA at stalled replication forks. The central element of this mechanism is nucleolar protein GNL3, whose downregulation with siRNA stimulates DNA resection in the presence of stress induced by HU (Figure 1). Resection depends on the activity of nucleases MRE11 and CtIP, and can be rescued by reintroducing exogenous GNL3 protein in the cells (Figure 1G). GNL3 downregulation decreases fork speed and increases origin activity, without any strong effect on replication timing (Figure 2). Inhibition of Dbf4-dependent kinase CDC7 (a known origin-activating factor) also restricts fork resection (Figure 3). GNL3 interacts with ORC2, one of the subunits of the origin recognition complex, preferentially in nucleolar structures (Figure 4). A mutant version of GNL3 (GNL3-dB) that is not sufficiently retained in the nucleoli fails to prevent fork resection as the WT protein (Figure 5). In the final model, the authors propose that GNL3 controls the levels of origin activity (and indirectly, stalled fork resection) by maintaining a fraction of ORC2 in the nucleoli (Figure 6). *

      This model is interesting and provocative, but it also relies on a significant degree of speculation. The authors are not trying to "oversell" their observations, because the Discussion section entertains different interpretations and possibilities, and the model itself contains several interrogative statements (e.g. "ORC2-dependent?"; "exhaustion of factors?").

      • While the article is honest about its own limitations, the major concern remains about its highly speculative nature. I have some questions and suggestions for the authors to consider that could contribute to test (and hopefully support) their model. *

      • *If GNL3 downregulation induces an excess of licensed origins and mild replicative stress resulting in some G2/M accumulation (Figure 2), what is the consequence of longer-term GNL3 ablation? Do the cells adapt, or do they accumulate signs of chromosomal instability? (micronuclei, chromosome breaks and fusions, etc) * __Response: __This is an important point also raised by Reviewer 2: deletion of GNL3 leads to embryonic lethality in mouse and ES cells deleted for GNL3 do not proliferate and fail to enter into S-phase. Consistent with this, the clones deleted for GNL3 that we obtained using CRISPR-Cas9 grow poorly, thus preventing us to do experiments. To our knowledge micronuclei and chromosome breaks have never been analyzed upon transient depletion of GNL3 using siRNA. However, it is well established that depletion of GNL3 induces phosphorylation of H2A.X) and the formation of ATR, RPA32 and 53BP1 foci due to S-phase arrest (Lin et al. 2013. https://pubmed.ncbi.nlm.nih.gov/24610951/ ; Meng et al. 2013. https://pubmed.ncbi.nlm.nih.gov/23798389/). DNA lesions have also been visualized by comet assay (Lin et al. 2019. https://pubmed.ncbi.nlm.nih.gov/30692636/). Consistent with this we observed a weak increased of DNA double-strand breaks upon GNL3 depletion using pulse-field gel electrophoresis as well as mitotic DNA synthesis (MiDAS). We can integrate this data in the revised version of the manuscript if required. To sum up, it is clear that GNL3 depletion is inducing problems during S-phase that may lead to possible genomic rearrangements.

      • The model relies on the link between origin activity and stalled fork resection that is almost exclusively based on the results obtained with CDC7i (Figure 3). But CDC7 has other targets besides pre-RC components at the origins, such as Exo1 (from the Weinreich lab, cited in the study), MERIT40 and PDS5B (from the Jallepalli lab, also cited). The effect of CDC7i could be exerted through these factors, which are linked to fork stability and DNA resection. The loss of BRCA1 (Figure 3F) could somehow entail the loss of control over these factors. Could the authors check the possible participation of these proteins?*

      __Response: __It is true that CDC7 has other targets than pre-RC components. We therefore decided to inhibit origin firing using roscovitine, a broad CDK inhibitor, a strategy previously used in Lukas lab (Toledo et al. 2013. https://pubmed.ncbi.nlm.nih.gov/24267891/). We observed that treatment with roscovitine decreased significantly resection observed upon GNL3 depletion, confirming the link between origin activity and stalled fork resection. This will be integrated in the revised version of the manuscript. As asked by Reviewer 1, we will also perform depletion of MCM to strength our model.

      Exo1 is indeed a target of CDC7 as shown by the Weinreich lab (Sasi et al. 2018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111017/) however the authors do not formally demonstrate that Exo1 phosphorylation is required for its activity. We observed that depletion of Exo1 significantly reduced resection upon GNL3 depletion (data that will be added in the revised version), indicating that the effect of CDC7 inhibitor could be exerted via the control of Exo1. This is why our BRCA1 control is important, it is well stablished that Exo1 is required for nascent strand degradation upon BRCA1 depletion (Lemaçon et al. 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643552/) but CDC7 inhibition has no effect on resection upon BRCA1 depletion suggesting that resection by Exo1 may not be regulated by CDC7 in our context.

      As stated by the reviewer MERIT40 and PDS5B are targets of DDK kinases (Jones et al. 2021 https://doi-org.insb.bib.cnrs.fr/10.1016/j.molcel.2021.01.004) and seem to be required for protection of nascent DNA and in response to HU. However, little is known about the role(s) of these proteins and we think that adding them will complicate message. We hope the reviewer understands this.

      The model also relies on the fact that GNL3-dB mutant (not retained in the nucleoli) is not sufficient to counteract fork resection induced by HU (Figure 5G). The authors should test directly whether GNL3-dB induces extra origin activation, using their available DNA fibers-based technique.

      __Response: __This is an excellent point. We have now GIFD (Global Instant Fork Density) data that shows that the number of active forks is increased upon dB GNL3-dB expression. It demonstrates that when GNL3 is no longer retained in the nucleolus more origins are active. These data will be integrated in the revised version of the manuscript, and we believe further support the regulation of ORC2 by GNL3.

      *Finally, the model implies an exquisite regulation of the amount of ORC2 protein, which could influence the number of active origins and the extent of fork resection in case of stress. In this scenario, one could predict that ORC2 ectopic expression would have similar, or even stronger effects, than GNL3 downregulation. Is this the case? *

      __Response: __We completely agree with this prediction. However, we are afraid that overexpression of ORC2 may have indirect effects due to the many described functions of ORC2, therefore it may be difficult to interpret the data. We will give a try anyway.

      *Even if the connection between origins and fork resection could be firmly established, the molecular link between them remains enigmatic. The authors hint (as "data not shown") that it is neither mediated by RPA nor RAD51. Unfortunately, the reader is left without a clear hypothesis about this point. *

      __Response: __We will add data that show that RPA and RAD51 recruitment is not affected by GNL3 depletion. However, the sensitivity of chromatin fractionation approach may be too weak to detect low differences. Based on the work of Lukas Lab (Toledo et al. 2013 https://pubmed.ncbi.nlm.nih.gov/24267891/) one possible mechanism may be exhaustion of the pool of RPA. This may link the excessive activation of origins observed upon GNL3 depletion and resection. To test this, we will check if resection upon GNL3 depletion and treatment with HU is still occurring in cell lines that overexpress RPA complex (described in Toledo et al.) that we obtained from Lukas’ lab.

      __ __ **Referees cross-commenting**

      __ __In addition to each reviewer's more specific comments, the three reviews share a main criticism: the lack of mechanistic information about the proposed link between origin activity and resection of nascent DNA at stalled forks.

      __Reviewer #3 (Significance (Required)): __

      In principle, this study would appeal to the readership interested in fundamental mechanisms of DNA replication and the cellular responses to replicative stress.

      For the reasons outlined in the previous section, I believe that in its current version the study is not strong enough to provide a new paradigm about origins being regulated by partial ORC2 sequestering at nucleoli. The other potentially interesting advance is the connection between frequency of origin activity and the extent of nascent DNA resection at stalled forks, but the molecular link between both remains unknown.


    1. While rPAL improves sensitivity of apparent high molecular weight (MW) glycoRNA species, it also induces

      Do you think combining Ac4ManNAz and rPAL labeling could be a good way to both specifically identify Neu5Ac-ligated RNA and amplify that signal using orthogonal labels (perhaps Biotin and a FLAG tag) with different fluorophores?

      This is an archived comment originally written by Peter Thuy-Boun

    1. potential benefits

      I've been sharing ideas via email, websites, blogs and social media since late 1990s. My goal is to motivate people to use AI and traditional search tools to look for "tutor mentor" plus words in this tag cloud where they will find much of what I have posted.

      Over time links will break and in future years I won't be alive to keep sites on-line. So, will future AI tools reach into the Internet Archive to find ideas posted on sites that are no longer active? Can our ideas live longer than we do?

    1. 「快速浏览」的关键在于要把重点放在「发现」而不是「吸收」上面。因为前者花的时间很短,而后者会很长,最有效率的做法是,看到你感兴趣的,就把他扔在一个统一的地方,然后忘掉,去看发现下一个。等刷完你的时间线后,再开始「吸收」刚刚扔进来的一堆信息。这有点像你在 shopping, 把你想要的都放在购物车上,然后回家再把这一车的东西吸收整理。

      1.加上tag 2.我还会在这篇文章加上注释 —— 为什么我想读这篇文章? 我想从这篇文章里得到什么? 我会强迫自己添加一篇稍后读的文章的时候思考这个问题,并且用十几个字简单地描述。这样当我在之后读这篇文章的时候,我可以带着我的问题去阅读,这样会更有效率。

    1. Tinderbox Meetup - Sunday, May 7, 2023 Video: Connect with Sönke Ahrens live, the author of How to Take Smart Notes

      reply for Fidel at https://forum.eastgate.com/t/tinderbox-meetup-sunday-may-7-2023-video-connect-with-sonke-ahrens-live-the-author-of-how-to-take-smart-notes/6659

      @fidel (I'm presuming you're the same one from the meetup on Sunday, if not perhaps someone might tag the appropriate person?), I was thinking a bit more on your question of using physical index cards for writing fiction. You might find the examples of both Vladimir Nabokov and Dustin Lance Black, a screenwriter, useful as they both use index card-based workflows.

      Vladimir Nabokov died in 1977 leaving an unfinished manuscript in note card form for the novel The Original of Laura . Penguin later published the incomplete novel with in 2012 with the subtitle A Novel in Fragments . Unlike most manuscripts written or typewritten on larger paper, this one came in the form of 138 index cards. Penguin's published version recreated these cards in full-color reproductions including the smudges, scribbles, scrawlings, strikeouts, and annotations in English, French, and Russian. Perforated, one could tear the cards out of the book and reorganize in any way they saw fit or even potentially add their own cards to finish the novel that Nabokov couldn't. Taking a look at this might give you some ideas of how Nabokov worked and how you might adapt the style for yourself. Another interesting resource is this article with some photos/links about his method with respect to writing Lolita: https://www.openculture.com/2014/02/the-notecards-on-which-vladimir-nabokov-wrote-lolita.html

      You might also find some useful tidbits on his writing process (Bristol cards/Exacompta anyone?) in: Gold, Herbert. “Vladimir Nabokov, The Art of Fiction No. 40.” The Paris Review, 1967. https://www.theparisreview.org/interviews/4310/the-art-of-fiction-no-40-vladimir-nabokov.

      Carl Mydans photographed Nabokov while writing in September 1958 and some of those may be interesting to you as well.

      Dustin Lance Black outlines his index card process in this video on YouTube: https://www.youtube.com/watch?v=vrvawtrRxsw

      If you dig around you'll also find Michael Ende and a variety of other German fiction writers who used index cards on the Zettelkasten page on Wikipedia, but I suspect most of the material on their processes are written in German.

      Index cards for fiction writing may allow some writers some useful affordances/benefits. By using small atomic pieces on note cards, one can be far more focused on the idea and words immediately at hand. It's also far easier in a creative and editorial process to move pieces around experimentally.

      Similarly, when facing Hemmingway's "White Bull", the size and space of an index card is fall smaller. This may have the effect that Twitter's short status updates have for writers who aren't faced with the seemingly insurmountable burden of writing a long blog post or essay in other software. They can write 280 characters and stop. Of if they feel motivated, they can continue on by adding to the prior parts of a growing thread.

      However, if you can, try to use a card catalog drawer with a rod so that you don't spill all of your well-ordered cards the way the character in Robert M. Pirsig's novel Lila (1991) did.

    1. hashtag

      A hash (#) is used. A hashtag is a hash symbol prepended to a string for example: #hashtag. The 'tag' part of a 'hashtag' is the string following the hash until the next space.

    1. Tagging and linking with AI (Napkin.one) by Nicole van der Hoeven

      https://www.youtube.com/watch?v=p2E3gRXiLYY

      Nicole underlines the value of a good user interface for traversing one's notes. She'd had issues with tagging things in Obsidian using their #tag functionality, but never with their [[WikiLink]] functionality. Something about the autotagging done by Napkin's artificial intelligence makes the process easier for her. Some of this may be down to how their user interface makes it easier/more intuitive as well as how it changes and presents related notes in succession.

      Most interesting however is the visual presentation of notes and tags in conjunction with an outliner for taking one's notes and composing a draft using drag and drop.

      Napkin as a visual layer over tooling like Obsidian, Logseq, et. al. would be a much more compelling choice for me in terms of taking my pre-existing data and doing something useful with it rather than just creating yet another digital copy of all my things (and potentially needing sync to keep them up to date).

      What is Napkin doing with all of their user's data?

    1. I am an art theory student and started in Zettelkasten in February. I knew about Warburg moodboards of images but only now I realized that he was using zettelkasten too. Thats nice to know.

      reply to cristinadias7 at https://forum.zettelkasten.de/discussion/comment/17804/#Comment_17804

      @cristinadias7 If you're interested in the overlap of zettelkasten and art or even zettelkasten for art, I've got a small collection available digitally if you think it would be useful/helpful.

      Some artworks are difficult to index on physical cards because of their physical nature, so if it helps and you don't have pictures available to file away, you can index their storage locations the way libraries would index "realia" and keep your notes on them there. Twyla Tharpe kept actual objects in larger boxes by categories which is another fascinating way of doing things.

    1. Author Response:

      Assessment note: “Whereas the results and interpretations are generally solid, the mechanistic aspect of the work and conclusions put forth rely heavily on in vitro studies performed in cultured L6 myocytes, which are highly glycolytic and generally not viewed as a good model for studying muscle metabolism and insulin action.”

      While we acknowledge that in vitro models may not fully recapitulate the complexity of in vivo systems, we believe that our use of L6 myotubes is appropriate for studying the mechanisms underlying muscle metabolism and insulin action. As mentioned below (reviewer 2, point 1), L6 myotubes possess many important characteristics relevant to our research, including high insulin sensitivity and a similar mitochondrial respiration sensitivity to primary muscle fibres. Furthermore, several studies have demonstrated the utility of L6 myotubes as a model for studying insulin sensitivity and metabolism, including our own previous work (PMID: 19805130, 31693893, 19915010).

      In addition, we have provided evidence of the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies at protein levels and the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. These findings support the relevance of our in vitro results to in vivo muscle metabolism.

      Finally, we will supplement our findings by demonstrating a comparable relationship between ceramide and Coenzyme Q in mice exposed to a high-fat diet, to be shown in Supplementary Figure 4 H-I. Further animal experiments will be performed to validate our cell-line based conclusions. We hope that these additional results address the concerns raised by the reviewer and further support the relevance of our in vitro findings to in vivo muscle metabolism and insulin action.

      Points from reviewer 1:

      1. Although the authors' results suggest that higher mitochondrial ceramide levels suppress cellular insulin sensitivity, they rely solely on a partial inhibition (i.e., 30%) of insulin-stimulated GLUT4-HA translocation in L6 myocytes. It would be critical to examine how much the increased mitochondrial ceramide would inhibit insulin-induced glucose uptake in myocytes using radiolabel deoxy-glucose.

      Response: The primary impact of insulin is to facilitate the translocation of glucose transporter type 4 (GLUT4) to the cell surface, which effectively enhances the maximum rate of glucose uptake into cells. Therefore, assessing the quantity of GLUT4 present at the cell surface in non-permeabilized cells is widely regarded as the most reliable measure of insulin sensitivity (PMID: 36283703, 35594055, 34285405). Additionally, plasma membrane GLUT4 and glucose uptake are highly correlated. Whilst we have routinely measured glucose uptake with radiolabelled glucose in the past, we do not believe that evaluating glucose uptake provides a better assessment of insulin sensitivity than GLUT4.

      We will clarify the use of GLUT4 translocation in the Results section:

      “...For this reason, several in vitro models have been employed involving incubation of insulin sensitive cell types with lipids such as palmitate to mimic lipotoxicity in vivo. In this study we will use cell surface GLUT4-HA abundance as the main readout of insulin response...”

      1. Another important question to be addressed is whether glycogen synthesis is affected in myocytes under these experimental conditions. Results demonstrating reductions in insulin-stimulated glucose transport and glycogen synthesis in myocytes with dysfunctional mitochondria due to ceramide accumulation would further support the authors' claim.

      Response: We have carried out supplementary experiments to investigate glycogen synthesis in our insulin-resistant models. Our approach involved L6-myotubes overexpressing the mitochondrial-targeted construct ASAH1 (as described in Fig. 3). We then challenged them with palmitate and measured glycogen synthesis using 14C radiolabeled glucose. Our observations indicated that palmitate suppressed insulin-induced glycogen synthesis, which was effectively prevented by the overexpression of ASAH1 (N = 5, * p<0.05). These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism.

      These data will be added to Supplementary Figure 4K and the results modified as follows:

      “Notably, mtASAH1 overexpression protected cells from palmitate-induced insulin resistance without affecting basal insulin sensitivity (Fig. 3E). Similar results were observed using insulin-induced glycogen synthesis as an ortholog technique for Glut4 translocation. These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism (Sup. Fig. 5K). Importantly, mtASAH1 overexpression did not rescue insulin sensitivity in cells depleted…”

      We will add to the method section:

      “L6 myotubes overexpressing ASAH were grown and differentiated in 12-well plates, as described in the Cell lines section, and stimulated for 16 h with palmitate-BSA or EtOH-BSA, as detailed in the Induction of insulin resistance section.

      On day seven of differentiation, myotubes were serum starved in plain DMEM for 3 and a half hours. After incubation for 1 hour at 37C with 2 µCi/ml D-[U-14C]-glucose in the presence or absence of 100 nM insulin, glycogen synthesis assay was performed, as previously described (Zarini S. et al., J Lipid Res, 63(10): 100270, 2022).”

      1. In addition, it would be critical to assess whether the increased mitochondrial ceramide and consequent lowering of energy levels affect all exocytic pathways in L6 myoblasts or just the GLUT4 trafficking. Is the secretory pathway also disrupted under these conditions?

      Response: As the secretory pathway primarily involves the synthesis and transportation of soluble proteins that are secreted into the extracellular space, and given that the majority of cellular transmembrane proteins (excluding those of the mitochondria) use this pathway to arrive at their ultimate destination, we believe that the question posed by the reviewer is highly challenging and beyond the scope of our research. We will add this to the discussion:

      “...the abundance of mPTP associated proteins suggesting a role of this pore in ceramide induced insulin resistance (Sup. Fig. 6E). In addition, it is yet to be determined whether the trafficking defect is specific to Glut4 or if it affects the exocytic-secretory pathway more broadly…”

      Points from reviewer 2:

      1. The mechanistic aspect of the work and conclusions put forth rely heavily on studies performed in cultured myocytes, which are highly glycolytic and generally viewed as a poor model for studying muscle metabolism and insulin action. Nonetheless, the findings provide a strong rationale for moving this line of investigation into mouse gain/loss of function models.

      Response: The relative contribution of the anaerobic (glycolysis) and aerobic (mitochondria) contribution to the muscle metabolism can change in L6 depending on differentiation stage. For instance, Serrage et al (PMID30701682) demonstrated that L6-myotubes have a higher mitochondrial abundance and aerobic metabolism than L6-myoblasts. Others have used elegant transcriptomic analysis and metabolic characterisation comparing different skeletal muscle models for studying insulin sensitivity. For instance, Abdelmoez et al in 2020 (PMID31825657) reported that L6 myotubes exhibit greater insulin-stimulated glucose uptake and oxidative capacity compared with C2C12 and Human Mesenchymal Stem Cells (HMSC). Overall, L6 cells exhibit higher metabolic rates and primarily rely on aerobic metabolism, while C2C12 and HSMC cells rely on anaerobic glycolysis. It is worth noting that L6 myotubes are the cell line most closely related to adult human muscle when compared with other muscle cell lines (PMID31825657). Our presented results in Figure 6 H and I provide evidence for the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies. Additionally, in Figure 3J-K, we demonstrate the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. Furthermore, we have supplemented these findings by demonstrating a comparable relationship in mice exposed to a high-fat diet, as shown in Supplementary Figure 4 H-I (refer to point 4). We will clarify these points in the Discussion:

      “In this study, we mainly utilised L6-myotubes, which share many important characteristics with primary muscle fibres relevant to our research. Both types of cells exhibit high sensitivity to insulin and respond similarly to maximal doses of insulin, with Glut4 translocation stimulated between 2 to 4 times over basal levels in response to 100 nM insulin (as shown in Fig. 1-4 and (46,47)). Additionally, mitochondrial respiration in L6-myotubes have a similar sensitivity to mitochondrial poisons, as observed in primary muscle fibres (as shown in Fig. 5 (48)). Finally, inhibiting ceramide production increases CoQ levels in both L6-myotubes and adult muscle tissue (as shown in Fig. 2-3). Therefore, L6-myotubes possess the necessary metabolic features to investigate the role of mitochondria in insulin resistance, and this relationship is likely applicable to primary muscle fibres”.

      We will also add additional data - in point 2 - from differentiated human myocytes that are consistent with our observations from the L6 models. Additional experiments are in progress to further extend these findings.

      1. One caveat of the approach taken is that exposure of cells to palmitate alone is not reflective of in vivo physiology. It would be interesting to know if similar effects on CoQ are observed when cells are exposed to a more physiological mixture of fatty acids that includes a high ratio of palmitate, but better mimics in vivo nutrition.

      Response: Palmitate is widely recognized as a trigger for insulin resistance and ceramide accumulation, which mimics the insulin resistance induced by a diet in rodents and humans. Previous studies have compared the effects of a lipid mixture versus palmitate on inducing insulin resistance in skeletal muscle, and have found that the strong disruption in insulin sensitivity caused by palmitate exposure was lessened with physiologic mixtures of fatty acids, even with a high proportion of saturated fatty acids. This was associated, in part, to the selective partitioning of fatty acids into neutral lipids (such as TAG) when muscle cells are exposed to physiologic lipid mixtures (Newsom et al PMID25793412). Hence, we think that using palmitate is a better strategy to study lipid-induced insulin resistance in vitro. We will add to results:

      “In vitro, palmitate conjugated with BSA is the preferred strategy for inducing insulin resistance, as lipid mixtures tend to partition into triacylglycerides (33)”.

      We are also performing additional in vivo experiments to add to the physiological relevance of the findings.

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. This could be more representative of toxicity rather than pathophysiology. It would be helpful to know if these same effects are observed with other manipulations that lower CoQ to a similar degree. If not, the discrepancies should be discussed.

      Response: We conducted a staining procedure using the mitochondrial marker mitoDsRED to observe the effect of SMPD5 overexpression on cell toxicity. The resulting images, displayed in the figure below (Author Response Figure 1), demonstrate that the overexpression of SMPD5 did not result in any significant changes in cell morphology or impact the differentiation potential of our myoblasts into myotubes.

      Author Response Figure 1.

      In addition, we evaluated cell viability in HeLa cells following exposure to SACLAC (2 uM) to induce CoQ depletion (left panel). Specifically, we measured cell death by monitoring the uptake of Propidium iodide (PI) as shown in the right panel. Our results demonstrated that Saclac-induced CoQ depletion did not lead to cell death at the doses used for CoQ depletion (Author Response Figure 2).

      Author Response Figure 2.

      Therefore, we deemed it improbable that the observed effect is caused by cellular toxicity, but rather represents a pathological condition induced by elevated levels of ceramides. We will add to discussion:

      “...downregulation of the respirasome induced by ceramides may lead to CoQ depletion. Despite the significant impact of ceramide on mitochondrial respiration, we did not observe any indications of cell damage in any of the treatments, suggesting that our models are not explained by toxic/cell death events.”

      1. The conclusions could be strengthened by more extensive studies in mice to assess the interplay between mitochondrial ceramides, CoQ depletion and ETC/mitochondrial dysfunction in the context of a standard diet versus HF diet-induced insulin resistance. Does P053 affect mitochondrial ceramide, ETC protein abundance, mitochondrial function, and muscle insulin sensitivity in the predicted directions?

      Response: We would like to note that the metabolic characterization and assessment of ETC/mitochondrial function in these mice (both fed a high-fat (HF) and chow diet, with or without P053) were previously published (Turner N, PMID30131496). In addition to this, we have conducted targeted metabolomic and lipidomic analyses to investigate the impact of P053 on ceramide and CoQ levels in HF-fed mice. As illustrated in the figures below (Author Response Figure 3), the administration of P053 led to a reduction in ceramide levels (left panel) and an increase in CoQ levels (right panel) in HF-fed mice, which is consistent with our in vitro findings.

      Author Response Figure 3.

      We will add to results:

      “…similar effect was observed in mice exposed to a high fat diet for 5 wks (Supp. Fig. 4H-I further phenotypic and metabolic characterization of these animals can be found in (41))”

      We will further perform more in-vivo studies to corroborate these findings.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their comments and constructive suggestions to improve the manuscript. We are encouraged to see that both reviewers acknowledge how the results from our manuscript uses state-of-art technologies to advance molecular underpinnings of centriole length, integrity and function regulation. Both reviewers also highlighted that the manuscript is well laid out and presents clear, rigorous, and convincing data. Reviewer#1 described our manuscript of highest experimental quality and broad interest to the field of centrosome and cell biology form a basic research and genetics/clinical point of view. Here, we explain the revisions, additional experimentations and analyses planned to address the points raised by the referees. We will perform most of the experimentations and corrections requested by the reviewers. We have already made several revisions and are currently working on additional experiments.

      Our responses to each reviewer comment in bold are listed below. References mentioned here are listed in the references section included at the of this document.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: __In this manuscript, Arslanhan and colleagues use proximity proteomics to identify CCDC15 as a new centriolar protein that co-localizes and interacts with known inner scaffold proteins in cell culture-based systems. Functional characterization using state-of-the-art expansion microscopy techniques reveals defects in centriole length and integrity. The authors further reveal intriguing aberrations in the recruitment of other centriole inner scaffold proteins, such as POC1B and the SFI1/centrin complex, in CCDC15-deficient cells, and observe defects in primary cilia. __

      We thank the reviewer for the accurate summary of the major conclusions of our manuscript.

      Major points:

      1) The authors present a high-quality manuscript that identifies a novel centriolar protein by elegantly revealing and comparing the proximity proteomes of two known centriolar proteins, which represents an important component for the maintenance of centrioles.

      We thank the reviewer for highlighting that our manuscript is of high quality and presents important advances for the field.

      __2) Data are often presented from two independent experiments (n = 2), which is nice, but also the minimum for experiments in biology. It is strongly recommended to perform at least three independent experiments. __

      We agree with the reviewer that analysis of data form three experimental replicates is ideal for statistical analysis. We performed three replicates for the majority of experiments in the manuscript. However, as the reviewer pointed out, we included analysis from two experiments for the following figures:

      • Fig. 4H: quantification of CCDC15 total cellular levels throughout the cell cycle by western blotting
      • Fig. 5A: CCDC15-positive centrioles in control and CCDC15 siRNA-transfected cells
      • Fig. 6B: % centriolar coverage of POC5, FAM161A, POC1B and Centrin-2 in control and CCDC15 siRNA-transfected cells
      • Fig. 6C, 6E: Centrin-2 or SFI1-positive centrioles in control and CCDC15 siRNA-transfected cells
      • Fig. 6J, K: normalized tubulin length and percentage of defective centrioles in cells depleted for CCDC15 or co-depleted for CCDC15 and POC1B
      • Fig. 7F, H: SMO-positive cilia and basal body IFT88 levels in control and CCDC15 siRNA-transfected cells
      • Fig. S3H: centriole amplification in HU-treated control and CCDC15 siRNA-transfected cells (no)
      • Fig. S3A: centrosomal levels upon CCDC15 depletion There are two reasons for why we performed two experimental replicates for these experiments: 1) results from the two experimental replicates were similar, 2) quantification of data by U-ExM is laborious. To address the reviewer’s comments, we will perform the third experimental replicate for the sets of data that led to major conclusions of our manuscript, which are Figures 4H, 6C, 6E, 6J, 6K, 7F, 7H and S3A.

      3) The protein interaction studies presented in Fig. 3 could be of higher quality. While it is great that the authors compared interactions to the centriolar protein SAS6, which is not expected to interact with CCDC15, the presented data raise many questions.

      __a) In most cases, co-expression of tagged CCDC15 stabilizes the tested interaction partners, such that the overall abundance seems to be higher. The increase in protein abundance is substantial for Flag-FAM161A (Fig. 3D) and GFP-Centrin-2 (Fig. 3E) and is even higher for the non-interactor SAS6 (Fig. 3G), while it cannot be assessed for GFP-POC1B (Fig. 3F). Hence, the higher expression levels under these conditions make it more likely that these proteins are "pulled down" and therefore do not represent appropriate controls. __

      We agree with the reviewer that the differences in protein abundance of the prey proteins upon expression of CCDC15 relative to control might impact the interpretation of the interaction data. To address this concern, we will perform the following experiments:

      • To account of the potential stabilizing effects of CCDC15 expression, we will change the relative ratio of plasmids expressing proteins of interest and assess the expression of bait and prey protein levels. We will then repeat the co-immunoprecipitation experiments in conditions where prey expression levels are similar.
      • To avoid the potential stabilizing effects of CCDC15 overexpression, we will perform immunoprecipitation experiments in cells expressing GFP or V5-tagged inner scaffold proteins and assess their potential physical or proximity interaction by blotting for endogenous CCDC15. __b) All Co-IP experiments are lacking negative controls in the form of proteins that are not pulled down under the presented conditions. __

      For the co-IP experiments, we only included a specificity control for the interaction of the bait protein with the tag of the prey protein (i.e. GBP pulldown of GFP or GFP-CCDC15-expressing cells). As the reviewer suggested, we will also include a specificity control for the interaction of bait with the tag of the prey protein for co-immunoprecipitation experiments (i.e. GFP pulldown of cells expressing GFP-CCDC15 with V5-BirA* or V5-BirA*-FAM161A).

      __c) The amounts of co-precipitation of the tested proteins appears very different. Could this reflect strong or weak interactors, or does it reflect the abundance of the respective proteins in centrioles? __

      We agree with the reviewer that the quantity of the co-precipitated prey proteins might be a proxy for the interaction strength if the abundance of the bait proteins is similar. However, the expression levels of bait and prey proteins in co-transfected cells are different and thus, cannot be used to derive a conclusion on the interaction strength. For the revised manuscript, we will repeat the IP experiments and comment on this in the discussion section.

      __4) The observation that IFT88 is supposedly decreased at the base of cilia in CCDC15-depleted cells requires additional experiments/evidence. Fig. 7G shows the results of n = 2 and more importantly, a similar reduction of gamma-tubulin in siCCDC15. Could the observed reduction in IFT88 be explained by a decrease in accessibility to immunofluorescence microscopy? Would the reduction in IFT88 at the base also be apparent when the signals were normalized to gamma-tubulin signals? __

      To address the reviewer’s concern, we quantified the basal body gamma-tubulin and IFT88 levels in control and CCDC15-depleted cells and plotted the basal body IFT88 levels normalized to gamma-tubulin levels in Fig. 7H. Similar to the reduction in IFT88 levels, gamma-tubulin-normalized IFT88 levels was significantly less relative to control cells. Moreover, the gamma-tubulin basal body levels were similar between control and CCDC15 cells. We revised the gamma-tubulin micrographs in Fig. 7G to represent this. These results indicate that the reduction in basal body IFT88 levels upon CCDC15 depletion in specific.

      __5) The observed Hedgehog signaling defects are described as follows: "CCDC15 depletion significantly decreased the percentage of SMO-positive cells". It is similarly described in the figure legend. If this was true, the simplest explanation would be that it reflects the reduction in ciliation rate (which is in a similar range). If SMO-positive cilia (instead of "cells") were determined, the text needs to be changed accordingly. __

      As the reviewer pointed out, we quantified SMO-positive cilia, but not cells. We are sorry for this typo. We corrected SMO-positive cells as SMO-positive cilia in the manuscript text, Fig. 7 and figure legends.

      __6) OPTIONAL: While expansion microscopy is slowly becoming one of the standard super-resolution microscopy methods, which is particularly well validated for studying centrioles, the authors should consider confirming part of their findings (as a proof of principle, surely not in all instances) by more established techniques. This could serve to convince critical reviewers that may argue that the expansion process may induce architectural defects of destabilized centrioles, as observed after disruptions of components, such as in Fig. 6. Alternatively, the authors could cite additional work that make strong cases about the suitability of expansion microscopy for their studies, ideally with comparisons to other methods. __

      • SIM imaging was previously successfully applied for nanoscale mapping of other centriole proteins including CEP44, MDM1 and PPP1R35 (Atorino et al., 2020; Sydor et al., 2018; Van de Mark et al., 2015). To complement the U-ExM analysis, we have started imaging cells stained for CCDC15 and different centriole markers (i.e. distal appendage, proximal linker, centriole wall) using a recently purchased 3D-SIM superresolution microscope. We already included the SIM imaging data for CCDC15 localization in centrosome fractions purified from HEK293T cells in Fig. S5B. In the revised manuscript, we will replace confocal imaging data in Fig. 3A and 3B with SIM imaging data.
      • As the reviewer noted, expansion microscopy has been successfully used for the analysis of a wide range of cellular structures and scientific questions including nanoscale mapping of cellular structures across different organisms. In particular, U-ExM of previously characterized centrosome proteins various centriole proteins have significantly advanced our understanding of centriole ultrastructure. In our manuscript, we used the U-ExM protocol that was validated for centrioles by comparative analysis of U-ExM and cryo-ET imaging by our co-authors (Gambarotto et al., 2019; Hamel et al., 2017). To clarify these points, we included the following sentence along with the relevant references in the introduction: “Application of the U-ExM method to investigate known centrosome proteins has started to define the composition of the inner scaffold as well as other centriolar sub-compartments (Chen et al., 2015; Gambarotto et al., 2021; Gambarotto et al., 2019; Kong and Loncarek, 2021; Laporte et al., 2022; Mahen, 2022; Mercey et al., 2022; Odabasi et al., 2023; Sahabandu et al., 2019; Schweizer et al., 2021; Steib et al., 2022; Tiryaki et al., 2022; Tsekitsidou et al., 2023).”

      Minor points:

      1) Text, figures, and referencing are clear and accurate, apart from minor exceptions.

      We clarified and corrected the points regarding text, figures and references as suggested by the two reviewers.

      __ 2) The title suggests a regulator role for CCDC15 in centriole integrity and ciliogenesis, which has formally not been shown. __

      We revised the title as “CCDC15 localizes to the centriole inner scaffold and functions in centriole length control and integrity”.

      __3) As the authors observe changes in centriole lengths in the absence of CCDC15, it would be very insightful to compare these phenotypes to other components that affect centriolar length, such as C2CD3, human Augmin complex components (as HAUS6 is identified in Fig. 1) or others. These could be interesting aspects for discussion, additional experiments are OPTIONAL. __

      We agree with the reviewer that comparative analysis of centriole length phenotypes for CCDC15 and other components that regulate centriole length will provide insight into how these components work together at the centriole inner core. To this end, we phenotypically compared CCDC15 loss-of-function phenotypes to that of other components of the inner scaffold (POC5, POC1B, FAM161A) that interact with CCDC15. In agreement with their previously reported functions in U2OS or RPE1 cells, we found that POC5 depletion resulted in a 4% slight but significant increase in centriole length and POC1B depletion resulted in a 15% significant decrease. In contrast, FAM161A depletion did not alter centriole length (siControl: 447.8±59.7 nm, siFAM161A 436.3±64 nm). Together, our analysis of their centriolar localization dependency and regulatory roles during centriole length suggest that CCDC15 and POC1B might form a functional complex as positive regulators of centriole length. In contrast, POC5 functions as a negative regulator and might be part of a different pathway for centriole length regulation. We integrated the following sub-paragraph in the results section and also included discussion of this data in the discussion section:

      “Moreover, we quantified centriole length in control cells and cells depleted for POC5 or POC1B. While POC5 depletion resulted in longer centrioles, POC1B resulted in shorter centrioles (POC5: siControl: 414.1 nm±38.3, siPOC5: 432.7±44.8 nm, POC1B: siControl: 400.6±36.1 nm, siPOC1B: 341.5±44.39 nm,). FAMA161A depletion did not alter centriole length (siControl: 447.8±59.7 nm, siFAM161A 436.3±64 nm). Together, these results suggest that CCDC15 might cooperate with POC1B and compete with POC5 to establish and maintain proper centriole length.”

      __ 4) While the reduced ciliation rate in the absence of CCDC15 is convincing, the authors did not investigate "ciliogenesis", i.e. the formation of cilia, and hence should re-phrase. The sentence in the discussion that "CCDC15 functions during assembly" should be removed. __

      To clarify that we only investigated the role of CCDC15 in the ability of cells to form cilia, we replaced sentences that indicates “CCDC15 functions in cilium assembly” with “CCDC15 is required for the efficiency of cilia formation”.

      __5) The existence of stably associated CCDC15 pools with centrosomes (Fig. 2) requires further evidence. The recovery of fluorescence after photobleaching in FRAP experiments is strongly dependent on experimental setups and is only semi-quantitative. A full recovery is unrealistic, hence, it is ideally compared to a known static or known mobile component. I personally think this experiment -as it is presented now- is of little value to the overall fantastic study. The authors may consider omitting this piece of data. __

      We agree with the reviewer that FRAP data by itself does not prove the existence of stably associated CCDC15 pool. As controls in these experiments, we use FRAP analysis of GFP-CCDC66, which has a 100% immobile pool at the cilia and 50% immobile pool at the centrosomes as assessed by FRAP (Conkar et al., 2019). To address these points, we toned down the conclusions derived from this experiment by revising the sentence as follows:

      Additionally, we note that the following data provides support for the stable association of CCDC15 at the centrioles:

      • About 49.6% (± 3.96) of the centrioles still had CCDC15 fluorescence signal at one of the centrioles upon CCDC15 siRNA treatment (Fig. 5A, 5B). The inefficient depletion of the mature centriole pool of CCDC15 is analogous to what was observed upon depletion of other centriole lumen and inner scaffold proteins including WDR90 and HAUS6 (Schweizer et al., 2021; Steib et al., 2020). __6) The data that CCDC15 is a cell cycle-regulated protein is not very convincing (see Fig. 3H), as the signals area weak and the experiment has been performed only once (n= 1). This piece of data does not appear to be very critical for the main conclusions of the manuscript and may be omitted. Otherwise, this experiment should be repeated to allow for proper statistical analysis. __

      We will perform these experiments two more times, quantify cellular abundance of CCDC15 in synchronized populations from three experimental replicates and plot it with proper statistical analysis.

      __7) Experimental details on how "defective centrioles" are determined are missing. __

      We included the following experimental details to the methods section:

      “Centrioles were considered as defective when the roundness of the centriole was lost or the microtubule walls were broken or incomplete. In the longitudinal views of centrioles, defective centrioles were visualized as heterogenous acetylated signal along the centriole wall or irregularities in the cylindrical organization of the centriole wall (Fig. 5F). We clarified these points in the methods section.

      __ 8) For figures, in which the focus should be on growing centrioles (see Fig. 4), it could be helpful to guide the reader and indicate the respective areas of the micrographs by arrows. __

      We added arrows to point to the respective areas of the micrographs in Fig. 4F.

      __ 9) Page18: "centriole length shortening" could be changed to "centriole shortening". __

      We corrected this description as suggested.

      __10) It is unclear how the authors determine distal from proximal ends of centrioles in presented micrographs (see Fig. 5D). __

      We determined the proximal and distal ends of the centrioles by taking the centriole pairs as a proxy. Even though we only represent a micrograph containing a single centriole in some of the U-ExM figures including Fig. 5D, the uncropped micrographs contain two centrioles, which are oriented orthogonally and tethered to each other at their proximal ends in interphase cells. We added the following sentence to the methods section to clarify this point:

      *“Since centrioles are oriented orthogonally and tethered to each other at their proximal ends in interphase cells, we also used the orientation of the centriole pairs as a proxy to determine the proximal and distal ends of the centrioles.” *

      __11) Fig. 7A is missing scale bars and Fig.7 overall is lacking rectangle indicators of the areas that are shown at higher magnification in the insets. __

      We added scale bar to Fig. 7A and rectangle indicators for zoomed in regions in Fig. A, E, G.

      12) Fig. 7C displays cilia that appear very short, especially when comparing to the micrographs and bar graphs presented. The authors may want to explain this discrepancy.

      We thank the reviewer for the comment. The zoomed in representative cilia is 4.1 µM in control cells and 1.4 µM in CCDC15-depleted cells. Therefore, the representative cilia is in agreement with the quantification of cilia in Fig. 7C.

      Reviewer #1 (Significance (Required)):From a technical point of view the authors use two state-of-the-art technologies, namely proximity labeling combined with proteomics and ultrastructure expansion microscopy, that are both challenging and very well suited to address the main questions of this study. ____ • General assessment: The presented study is of highest experimental quality. Despite being very challenging, the expansion microscopy and proximity proteomics experiments have been designed and performed very well to allow solid interpretation. The results of the central data are consistent and allow strong first conclusions about the putative function of the newly identified centriolar protein CCDC15. The study presents a solid foundation for future hypothesis-driven, mechanistic analysis of CCDC15 and inner scaffold proteins in centriole length control and maintaining centriole integrity. The only limitation of the study is that the technically simpler experiments should be repeated to allow proper statistical assessment, which can be addressed easily. • Advance: This is the first study that identifies CCDC15 as a centriolar protein and localizes it to the inner scaffold. It further describes a function for CCDC15 in centriole length control and shows its importance in maintaining centriole integrity with consequences for stable cilia formation in tissue culture. The study provides further functional insights into the interdependence of inner scaffold proteins and the role of CCDC15 in the recruitment of the SFI1/centrin distal complex. • Audience: The manuscript will be of broad interest to the fields of centrosome and cell biology, both from a basic research and genetics/clinical point of view due to the association with human disorders. The state-of-the-art technologies applied will be of interest to a broader cell and molecular biology readership that studies subcellular compartments and microtubules. • Reviewer's field of expertise: Genetics, imaging, and protein-protein interaction studies with a focus on centrosomes and cilia.

      We thank the reviewer for recognizing the importance of our work and for supportive and insightful comments that will further strengthen the conclusions of our manuscript. Our planned revisions will address the only major technical limitation raised by the reviewer that requires adding one more experimental replicate for analysis of the data detailed in major point#1. Notably, we also thank the reviewer to specifying the experiments that are not essential or will be out of the scope of our manuscript as “optional”.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      __In this study, Arslanhan et al. propose CCDC15 as a novel component of the centriole inner scaffold structure with potential roles in centriole length control, stability and the primary cilium formation in cultured epithelial cells. Using proximity labelling they explore the common interactors of Poc5 and Centrin-2, two resident molecules of the centriole inner scaffold, to hunt for novel regulators of this structure. The authors leverage expansion microscopy-based localization and siRNA-dependent loss-of-function experiments to follow up on one such protein they identify, CCDC15, with the aforementioned roles in centriole and cilia biology.

      This study is designed and laid out nicely; however, to be able to support some of the important claims regarding their proximity labelling results and exploration on the roles of CCDC15, there are several major technical and reproducibility concerns that deem major revision. Similarly, the introduction (perhaps inadvertently) omits much of the recent studies on centriole size control that have highlighted the complexity of this biological problem. As such, addressing the following major points will be essential in further considering this work for publication. __

      __We thank the reviewer for recognizing the importance of our work and appreciate the positive reflections on our manuscript and the feedback comments that were well thought-out and articulated and will further strengthen the conclusions of our manuscript. Our planned revisions focus on addressing the reviewer’s comments especially in further supporting our conclusions for proximity-labeling, phenotypic characterization and immunoprecipitation experiments, examining CCDC15 centriole localization in an additional cell line and investigating how CCDC15 works together during centriole length control with known components of the inner scaffold. __

      Major points:

      __1a) The authors use Poc5 and Centrin-2 molecules as joint baits to reveal the interactome of the centriole inner scaffold, however the work lacks appropriate experimental and analytical controls to argue that this is a proximity mapping "at the centriole inner scaffold". In its current state, it is simply an interactome of total Poc5 and Centrin-2, and it might be misleading to call it an interactome at the centriole inner scaffold (the statistical identification of shared interactors cannot do full justice to their biology at the centrosome). Appropriate expression data needed to delineate how large the centrosomal vs. cytoplasmic (or nucleoplasmic) fraction is for either of these molecules, both without and upon the addition of biotin (to see whether the bulk of interaction data stem from the cytoplasm/nucleoplasm or the centrioles themselves). The authors can test this by selectively blotting a lysate fraction containing the centrosomes after centrifugation, and compare them with the simultaneous blot of the supernatant (which were readily used for the blots presented in Fig. 1B). This experiment also becomes very relevant for the case of Centrin-2, as it also heavily localizes to the nucleoplasm as the authors found out (see Fig. 1A and Fig. S1A). __

      __ Additionally, an orthogonal approach should be taken to perform bio-image analysis on their biotin/streptavidin imaging data to demonstrate the exact ratios between the centrosomal vs. cytoplasmic/nucleoplasmic biotin activation with appropriate signal normalization between the biotin/streptavidin images. This is particularly important, as although the authors claim that these cells stably express the V5BirA*, it seems that there is partial clonality to the expression. Some cells in both the Poc5 and Centrin-2 fusion constructs appear to lack the V5/Streptavidin signals upon Biotin addition (such as the two cells in the centre right in Poc5, and again a cell in the centre right for Centrin-2 images). In its current form, Fig. 1A lacks signal quantification and does not report any information about the replicates and distributions of the data. I worry that this may raise concerns on the reproducibility if published in its current form. __a) We agree with the reviewer that the proximity maps of POC5 and

      a) Centrin-2 are not specific to the centriole inner scaffold and thus, do not represent the inner scaffold interactome. The proximity maps identified interactions across different pools of POC5 and Centrin-2 in nucleus, cytoplasm and centrosomes (Fig. 1, S1). To highlight these important points, we already included extensive analysis of the different cellular compartments and biological processes identified by the POC5 and Centrin-2 proximity maps in the results section (pg. 9-10).

      We think that there are two reasons that caused the misinterpretation of the use of these proximity maps as the “inner scaffold interactome”: 1) the way we introduced the motivation for proximity mapping studies, 2) proposing the use of the resulting interactomes as resources for identification of the full repertoire of the inner scaffold proteins. To clarify these points, we revised the manuscript in all relevant parts that might have led to misinterpretation. Following are the specific revisions:

      • To clarify that the proximity maps are not specific to the inner scaffold pools of POC5 and Centrin-2, we revised the title of the results section for Fig. 1 and 2 as follows: “Proximity mapping of POC5 and Centrin-2 identifies new centriolar proteins”.

      • To indicate that POC5 and Centrin-2 localizes to the cytoplasm and/or nucleus in addition to the centrosome, we added the following sentence to the result section: In addition to centrosomes, both fusion proteins also localized to and induced biotinylation diffusely in the cytoplasm and/or nucleus (Fig. 1A).”

      • In the introduction, we revised the following sentence “Here, we used the known inner scaffold proteins as probes to identify the molecular makeup of the inner scaffold in an unbiased way.” as follows: *“Here, we used the known inner scaffold proteins as probes to identify new components of the inner scaffold”. *

      • To highlight the different cellular pools of POC5 and Centrin-2 and identification of their interactors in these pools, we included the following sentence in the results section: “As shown in Fig. S1, Centrin-2 and POC5 proximity interactomes were enriched for GO categories that are relevant for their published functions during centrosomal, cytoplasmic and/or nuclear biological processes and related cellular compartments (Azimzadeh et al., 2009; Dantas et al., 2013; Heydeck et al., 2020; Khouj et al., 2019; Resendes et al., 2008; Salisbury et al., 2002; Steib et al., 2020; Yang et al., 2010; Ying et al., 2019).”

      • We replaced the “interactome” statement with “proximity interaction maps” or “proximity interactors” throughout the manuscript to prevent the conclusion that the proximity maps represent the inner scaffold interactome. b) As the reviewer noted, most centrosome proteins have multiple different cellular pools including the centrosome. For most proteins like gamma-tubulin and centrin, their cytoplasmic/nucleoplasmic pools are more abundant than their centrosomal pools (Moudjou et al., 1996; Paoletti et al., 1996). For the Firat-Karalar et al. Current Biology 2015 paper, I compared the biotinylation levels of centrosomal fractions versus cytoplasmic fractions and confirmed that this is also true in cells expressing myc-BirA* fusions of CDK5RAP2, CEP192, CEP152 and CEP63 (unpublished) (Firat-Karalar et al., 2014). For the revised manuscript, we will compare the biotinylation level of centrosomal, nuclear and cytoplasmic pools of V5Bir*-POC5 and V5BirA*-Centrin-2 using the stable lines. To this end, we will use published centrosome purification protocols. We will include this data in Fig. S1 to highlight that the proximity interactomes represent the different pools of the bait proteins and to show the relative levels of the baits across their different pools.

      c) BioID approach has been successfully used to probe centrosome interactions by my lab and other labs in the field. In fact, proximity interaction maps of over 50 centrosome proteins were published as resource papers by Pelletier&Gingras labs (Gheiratmand et al., 2019; Gupta et al., 2015). Analogous to our strategy in this manuscript, these studies generated proximity maps of centrosome proteins by creating cell lines that stably express BioID-fusions of centrosome proteins followed by streptavidin pulldowns from whole cell extracts and mass spectrometry analysis. Since majority of centrosome proteins also have pools in multiple cellular locations, the published BioID proximity maps for centrosome proteins are not specific to centrosomes. However, the proximity maps included all known centrosome proteins and identified new proteins, which shows that centrosome interactions are represented in pulldowns form whole cell lysates. Moreover, maps form whole cell lysates are also advantageous as they are are unbiased and can be used in future studies as resources for studying the functions and interactions of the bait proteins in different contexts.

      In the Firat-Karalar et al. Current Biology 2015 paper, I combined centrosome purifications with BioID pulldowns to enrich for the centrosomal interactions in the proximity maps of centriole duplication proteins(Firat-Karalar et al., 2014). However, I started the purification with cells transiently transfected with the BioID-fusion constructs, which resulted in high ectopic expression of the fusions in the cytoplasm and/or nucleus. Therefore, centrosome enrichments were useful as an additional step before mass spectrometry. Comparative analysis of the data for proximity maps of 4 centrosome proteins generated from stable lines or centrosome fractions of transiently transfected cells substantially overlap as compared in the Gupta et al. Cell 2015 study and were more comprehensive (Table S2) (Gupta et al., 2015). Therefore, we are confident that the proximity interactomes we generated for POC5 and Centrin-2 include their centrosomal interactions.

      __1b) Similarly, it is not clear whether the expression of Poc5 and Centrin-2 fusion molecules somehow interfere with their endogenous interactions or function. At least some loss-of-function (e.g., RNAi) experiments should be performed where the depletion of endogenous proteins should be attempted to rescue by the fusion constructs. This will help evaluate whether the fusion proteins can rescue the depletion of their endogenous counterparts and behave as expected from a wild-type scenario. __

      The reviewer raises an important concern regarding the physiological relevance of the POC5 and Centrin-2 proximity maps. In the manuscript, we showed and discussed the validation of their proximity interactomes by two lines of evidence, which are: 1) the interactomes identified the previously described cellular compartments, biological processes or interactors of POC5 and Centrin-2, 2) the interactomes led to the identification of CCDC15 as a new inner scaffold protein.

      As the reviewer indicated, stable expression of POC5 and Centrin-2 in the presence of their endogenous pools might affect cellular physiology and thereby the landscape of the interactomes. We plan to address this using the following experiments:

      a) We will perform a set of functional assays to assess whether stable V5BirA*-Centrin-2 and V5BirA*-POC5 cells behaves like control cells in terms of their centrosome number, cell cycle profiles and mitotic progression. We will specifically quantify:

      • centrosome number (immunofluorescence analysis for gamma-tubulin and centrin)
      • their mitotic index (immunofluorescence analysis by DAPI)
      • spindle polarity and percentage of multinucleation (immunofluoerescence analysis for microtubules, gamma-tubulin and DAPI)
      • cell cycle profiles (flow cytometry and immunofluorescence)
      • apoptosis (immunoblotting for caspase 3) Together, results from these experiments indicate that the V5BirA*-POC5 or Centrin-2-expressing stable lines do not exhibit defects associated with their stable expression.

      b) We will perform expansion microscopy in V5BirA*-Centrin-2 and V5BirA*-POC5 cells to assess whether the fusion protein specifically localizes to the centriole inner scaffold, which will provide support for the presence of inner scaffold proteins in their proximity maps. Specifically, we plan to stain the fusion proteins by V5 or BirA antibodies and include the data for the antibody that works for expansion microscopy. This experiment will address whether their stable expression results in specific localization of these proteins at the centriole inner scaffold.

      1c) Overall, as the entire claim around the proximity mapping revolve around its assumption about the centriole inner scaffold, these controls seem imperative to substantiate the ground truth of the biology presented in the manuscript.

      In the revised manuscript, we toned down and made it clear that Centrin-2 and POC5 proximity maps are not specific to the inner scaffold and do not represent the inner scaffold interactome. Since the maps were generated from the whole cell extract, they will provide a resource for future studies aimed at studying functions and mechanisms of POC5 and Centrin-2 across their different cellular pools including the centrosome.

      We would like to also highlight that the proximity maps of POC5 and Centrin-2 are not the major advances of our manuscript. The major advance of our manuscript is the identification of CCDC15 as a new inner scaffold protein that is required for regulation of centriole size and architectural integrity and thereby, for maintaining the ability of centrioles to template the assembly of functional cilia. Importantly, our results identified CCDC15 as the first dual regulator of centriolar recruitment of inner scaffold protein POC1B and the distal end SFI1/Centrin complex and provided important insight into how inner scaffold proteins work together during centriole integrity and size regulation. The new set of experiments we will perform for the revisions of the paper will strengthen these conclusions.

      __2) I am curious about the choices of the cell lines in this work. The proximity mapping to reveal CCDC15 as a candidate protein for centriole inner scaffold was performed in HEK293T cells (human embryonic kidney), however its immunostaining was performed using RPE1 and U2OS cells (human retinal and osteosarcoma epithelial cells respectively). This raises questions regarding the generality of CCDC15 as a centriole inner scaffold protein. Could CCDC15 be simply unique to the centriole inner scaffold of epithelial cells such as RPE1 and U2OS cells? Or could the authors demonstrate any information/data on whether it's similarly localized to the inner scaffold in embryonic kidney cells or other cell types? If not, the claims should be moderated to reflect this fine detail. __

      To test whether CCDC15 localizes to the inner scaffold in other cell types, we performed U-ExM analysis of CCDC15 localization relative to the centriolar microtubules in differentiating multiciliated epithelial cultures (MTEC). As shown in Fig. S3A, CCDC15 localized to the inner scaffold in the centrioles in MTEC ALI+4 cells. Given that the inner scaffold proteins including CCDC15 and previously characterized ones have not been studied in multiciliated epithelia, this result is important and provides support for potential role of the inner scaffold in ensuring centriole integrity during ciliary beating. Additionally, we examined CCDC15 localization by 3D-SIM in centrosomes purified from HEK293T cells, which showed that CCDC15 localizes between the distal centriole markers CEP164 and Centrin-3 and proximal centriole markers gamma-tubulin and rootletin (Fig. S3B).

      3) Discussions and data on the localization of CCDC15 to centriolar satellites appear anecdotal and not fully convincing (Fig. S2D). Given that the authors test the relevance of PCM1 for CCDC15's centriolar localization, it is key to have quantitative data supporting their claim that centriolar satellites can help recruit CCDC15 to the centriole. Could the authors quantify what proportion of CCDC15 localize to the centriolar satellites? One way to do this could be to quantify the colocalization coefficience of CCDC15 and PCM1 signals.

      We only observed co-localization of CCDC15 with the centriolar satellite marker PCM1 in cells transiently transfected with mNG-CCDC15. In Fig. S2E, we included the quantification of the percentage of U2OS and RPE1 cells that exhibit co-localization of PCM1 (100% of U2OS cells, about 80% of RPE1 cells). Like CCDC15, ectopic expression of WDR90 revealed its centriolar satellite localization, suggesting a potential link between centriolar satellites and inner scaffold proteins that can be investigated in future studies (Steib et al., 2020). We now included these results in the discussion section as follows:

      As assessed by co-localization with the centriolar satellite marker PCM1, mNG-CCDC15 localized to centriolar satellites in all U2OS cells and in about 80% of RPE1 cells (Fig. S2C-E). Association of CCDC15 with centriolar satellites is further supported by its identification in the centriolar satellite proteomes(Gheiratmand et al., 2019; Quarantotti et al., 2019).”

      Even though endogenous staining for CCDC15 did not reveal its localization to centriolar satellites, following lines of data support the presence of a dynamic and low abundance pool of CCDC15 at the centriolar satellites: 1) CCDC15 was identified in the centriolar satellite proteome and interactome (Gheiratmand et al., 2019; Quarantotti et al., 2019). 2) CCDC15 centrosomal targeting is in part regulated by PCM1 (Fig. S2F, S2G). For majority of the proteins identified in the centriolar satellite proteome, their satellite pool can only be observed upon ectopic expression. This might be because their centriolar satellite pool is of low abundance and transient as satellite interactions are extensively identified only in proximity mapping studies, but not in traditional pulldowns

      __4) Similar to above (#3), there is no quantitative information on the co-localization or partial co-localization of the signal foci in Fig. 3A and 3B. The authors readily study CCDC15's localization in wonderful detail in their expansion microscopy data, so they could actually consider taking out Fig. 3A and 3B, as the data seem redundant without any quantification. __

      To address the reviewer’s concern, we included plot intensity profile analysis of CCDC15 and different centriole markers along a line drawn at the centrioles in Fig. 3A and 3B, which shows the extent of their overlap. As part of our revision plan, we will replace the confocal imaging data in Fig. 3A and 3B with 3D-SIM imaging data of CCDC15 relative to different centriole markers together with plot profile analysis. We already included 3D-SIM imaging of centrosomes purified form HEK293T cells in Fig. S3B. 3D-SIM imaging data will complement the localization data revealed by U-ExM.

      __5) Do the authors also feel that CCDC15 localize to the core lumen in a somehow helical manner (Fig. 1A, Fig. 1F top and bottom panels, Fig. 5A etc.)? Le Guennec et al. 2020's helical lattice proposal for the inner scaffold further reaffirms that CCDC15 is indeed a likely major component of the inner scaffold. In my view, authors should state this physical similarity explicitly to further support their findings on CCDC15. __

      As the reviewer indicated, cryo–electron tomography and subtomogram averaging of centrioles from four evolutionarily distant species showed that centriolar microtubules are bound together by a helical inner scaffold covering ~70% of the centriole length (Le Guennec et al., 2020). Although U-ExM data do not have enough resolution to show that CCDC15 localizes in a helical manner, we agree with the reviewer that the discussion of this possibility is important and thus we included the following sentence in the results:

      “Longitudinal views suggest potential helical organization of CCDC15 at the inner scaffold, which is consistent with its reported periodic, helical structure (Le Guennec et al., 2020).”

      __6a) The data on the link between the CCDC15 recruitment and the centriole growth (Fig. 4F) or the G2 phase of the cell cycle (Fig. 4H) are not fully convincing without quantitative data. For Fig. 4F, the authors should consider plotting the daughter centriole length vs the daughter CCDC15 intensities against each another, to see whether more elongated daughters truly tend to have more CCDC15. __

      To address the reviewer’s concern, we will plot the daughter centriole length versus CCDC15 intensity at different stages of centriole duplication. In asynchronous cultures that we analyzed with U-ExM, we were not able to find enough cells to perform such quantification. To overcome this limitation, we will perform U-ExM analysis of cells fixed at different points after mitotic shake-off and stained for CCDC15 and tubulin. We will include minimum 10 different representative U-ExM data for different stages of centriole duplication in the revised manuscript along with quantification of length versus signal.

      As detailed in the results section, the goal of these experiments was to determine when CCDC15 is recruited to the procentrioles during centriole duplication, but not to suggest a role for CCDC15 in centriole growth. We clarified this by including the following sentence:

      “To investigate the timing of CCDC15 centriolar recruitment during centriole biogenesis, we examined CCDC15 localization relative to the length of procentrioles that represent cells at different stages of centriole duplication (Fig. 4F).”

      __6b) For Fig. 4H, the argument regarding the cell cycle regulation requires quantification of the bands from several WB repeats, normalized to the expression of GAPDH within each blot (this is particularly relevant, as the bands of CCDC15 do not look dramatically different enough to draw conclusions by eye). __

      We will perform these experiments two more times, quantify cellular abundance of CCDC15 in synchronized populations from three experimental replicates and plot it with proper statistical analysis.

      __7a) The authors find herein that CCDC15 depletion lead to centrioles that are ~10% shorter than the controls. With the depletion of Poc5 and Wdr90 (other proposed components of the inner scaffold), the centrioles end up larger however (Steib et al., 2020). If the role of inner scaffold in promoting centriole elongation is structural, why are these two results the opposite of each other? I realize there is a brief discussion about this at the end of the paper, however, this requires a detailed discussion and speculation on the relevance of these findings. It would be key to clarify whether the inner scaffold as a structure inhibits or promotes centriole growth - or somehow both? If so, how? __

      We agree with the reviewer that comparative analysis of centriole length phenotypes for CCDC15 and other components that regulate centriole length will provide insight into how these components work together at the centriole inner core. To this end, we phenotypically compared CCDC15 loss-of-function phenotypes to that of other components of the inner scaffold (POC5, POC1B, FAM161A) that interact with CCDC15. In agreement with their previously reported functions in U2OS or RPE1 cells, we found that POC5 depletion resulted in a 4% slight but significant increase in centriole length and POC1B depletion resulted in a 15% significant decrease. In contrast, FAM161A depletion did not alter centriole length (siControl: 447.8±59.7 nm, siFAM161A 436.3±64 nm). Together, our analysis of their centriolar localization dependency and regulatory roles during centriole length suggest that CCDC15 and POC1B might form a functional complex as positive regulators of centriole length. In contrast, POC5 functions as a negative regulator and might be part of a different pathway for centriole length regulation. We integrated the following sub-paragraph in the results section in pg. 19 and also included discussion of this data in the discussion section in pg. 23:

      “Moreover, we quantified centriole length in control cells and cells depleted for POC5 or POC1B. While POC5 depletion resulted in longer centrioles, POC1B resulted in shorter centrioles (POC5: siControl: 414.1 nm±38.3, siPOC5: 432.7±44.8 nm, POC1B: siControl: 400.6±36.1 nm, siPOC1B: 341.5±44.39 nm,). FAMA161A depletion did not alter centriole length (siControl: 447.8±59.7 nm, siFAM161A 436.3±64 nm). Together, these results suggest that CCDC15 might cooperate with POC1B and compete with POC5 to establish and maintain proper centriole length.”

      __7b) There might be some intriguing opposing regulatory action of Poc5 and CCDC15 as demonstrated here, where CCDC15 depletion leads to slightly over-recruitment of Poc5, and vice versa. Does this suggest that a tug-of-war going on between different molecules that localize to the inner scaffold? Does this provide some dynamicity to this structure, which might in turn regulate centriole length both positively and negatively? This may be analogous to how opposing forces of dyneins and kinesins provide robust length control for mitotic spindles. I am speculating here, but hopefully these may provide some useful grounds for further discussion in the paper. If the authors deem it interesting experimentally, they can test whether the two molecules indeed regulate centriole length by opposing each other's action, by a double siRNA of CCDC15 and Poc5 to see if this retains the centriole length at its control siRNA size (like how they do a similar test for Poc1's potential co-operativity with CCDC15 in Fig. 6J). __

      We thank the reviewer for proposing excellent ideas on how inner scaffold proteins work together to regulate centriole length. As proposed by the reviewer, different proteins oppose each other analogous to how dynein and kinesin regulate mitotic spindle length. Loss-of-function and localization dependency data support that CCDC15 cooperates with POC1B, which was supported by phenotypic characterization of co-depleted cells (Fig. 6I-K).

      The increase in POC5 levels and coverage at the centrioles upon CCDC15 depletion and vice versa (Fig. 7B, 7G) suggest that CCDC15 and POC5 compete with each other in centriole length regulation. As suggested by the reviewer, we attempted to test this by comparing centriole length in cells co-depleted for CCDC15 and POC5 relative to their individual depletions. Although we tried different depletion workflows, we were not able to co-deplete CCDC15 and POC5. Specifically, we tried transfecting cells with CCDC15 and POC5 siRNAs at the same time or sequentially for 48 h or 96 h. The centrioles in cells that survived co-depletion were positive for both CCDC15 and POC5. This might be because co-depletion of both proteins is toxic to cells. Since CCDC15 and POC5 are likely part of two different pathway in regulation of centrioles and also have other cellular functions, this might have caused cell death. We included the following statement in the discussion to address the excellent model proposed by the reviewer:

      “Taken together, our results suggest that CCDC15 cooperates with POC1B and competes with POC5 during centriole length regulation. Moreover, they also raise the exciting possibility that centriole length can be regulated by opposing activities of inner scaffold proteins. Future studies that explore the relationship among centriole core proteins are required to uncover the precise mechanisms by which they regulate centriole integrity and size.”

      __8) In their introduction section, the authors discuss how relatively little is known about the size control of centrioles, however they fail to mention a series of recent primary literature that uncover striking, new mechanisms and novel molecular players that highlight the complexity of centriole size control. This complexity appears to arise from the existence of multitude of length control mechanisms that influence the cartwheel or the microtubule length individually, or simultaneously via yet-to-be further explored crosstalk mechanisms. a. As such, when the authors talk about the procentriole size control in the introduction, they should discuss and refer to the following studies, in terms of: • How theoretical and experimental work demonstrate that procentriole length may vary dependent on the levels of its building block Sas-6 in animals (Dias Louro et al., 2021 PMID: 33970906; Grzonka and Bazzi, 2022 bioRxiv). • How a homeostatic Polo-like kinase 4 clock regulates centriole size during the cell cycle (Aydogan et al., 2018 JCB PMID: 29500190), and how biochemistry and genetics coupled with mathematical modelling unravel a conserved negative feedback loop between Cep152 and Plk4 that constitutes the oscillations of this clock in flies (Boese et al., 2018 PMID: 30256714; Aydogan et al., 2020 PMID: 32531200) and human cells (Takao et al., 2019 PMID: 31533936). __

      __b. Similarly, when the authors refer to centriole size control induced by microtubule-related proteins, they should highlight the further complexity of this process by referring to: • How a molecule located at the microtubule wall, Cep295/Ana1, can regulate centriole length in flies (Saurya et al., 2016 PMID:27206860) and human cells (Chang et al., 2016 PMID:27185865) - like all the other centriolar MT molecules that the authors discuss in the manuscript. • How a crosstalk between Cep97 and Cep152 influences centriole growth in fly spermatids (Galletta et al., 2016 PMID:27185836). • How a crosstalk between CP110-Cep97 and Plk4 influences centriole growth in flies (Aydogan et al., 2022 PMID:35707992), and this molecular crosstalk is conserved, at least biochemically, in human cells (Lee et al., 2017 PMID:28562169). __

      We thank the reviewer for highlighting the papers that uncovered new mechanisms and players of centriole size and integrity control as well as for the detailed explanation of how different studies led to these discoveries in different organisms. We should have discussed these proteins, functional complexes and mechanisms in our manuscript and cited the relevant literature. We inadvertently focused on literature that uncovered centriole length regulation by MAPs and the inner scaffold. In the introduction section of the revised manuscript where we introduced centriole size regulation in pg. 5, we summarized the major findings on the role of different MAPs, cartwheel and PLK4 homeostatic clock in ensuring formation of centrioles at the correct size in different organisms.

      __Minor points: __

      __1) Introduction section: Literature reference missing for the sentence starting with "Importantly, the stable nature of centrioles enables them to withstand...". __

      We cited research articles that show the importance of centriole motility during ciliary motility and cell division.

      “Importantly, the stable nature of centrioles enables them to withstand mechanical forces during cell division and upon ciliary and flagellar motility (Abal et al., 2005; Bayless et al., 2012; Meehl et al., 2016; Pearson et al., 2009).

      __2) Fig. S1 legend: A typo as follows: CRAPome banalysis should read CRAPome analysis. __

      We corrected this typo.

      __3) Fig. S2: Info on the scale bar in the legend is missing in Fig. S2A. Scale bars for different panels are missing in general in Fig. S2A. __

      We added scale bar information for Fig. S2A and to all other supplementary figure legends that lack scale bar information.

      __4) Fig. 3A and 3B: When displaying the data, coloured cartoon diagrams would be beneficial to guide the reader who are not fully familiar with the spatial orientation of these proteins. __

      As suggested by the reviewer, we will remove the confocal imaging data for CCDC15 localization from Fig. 3A and 3B. For the revised version, we will include 3D-SIM imaging data along with a diagram that represents the spatial orientation of CCDC15 relative to the chosen centriole markers.

      __5) Fig. 3H: No information about the sample number (number of cells or technical repeats examined) reported. __

      We included information on the number of experimental replicates and cells analyzed.

      __6) Fig. S3B legend: A typo as follows: CCD15-depelted RPE1 cells should read CCDC15-depleted RPE1 cells. __

      We corrected this typo.

      __7) Fig. S3B legend: A typo as follows: cellswere fixed with should read cells were fixed with. __

      We corrected this typo.

      __8) There are many spelling mistakes and typos throughout the paper. I have listed a few examples above, but please carefully read through the manuscript to correct all the errors. __

      Thank you for indicating the spelling mistakes we missed to correct for initial submission. In the revised manuscript, we carefully read through the manuscript to correct the mistakes.

      __9) Fig. S3E: The orange columns depicting % of cells with Sas-6 dots look awkward. Why the columns look larger than the mean line? Please correct as appropriate. __

      The total percentage of cells in the two categories (orange and purple) we counted is 100%, which corresponds to the column value at the y-axis. Therefore, the value for each experimental replicate for the orange category is less than 100% and is marked below the 100% line.

      __10) Although authors provide microscopy information for the U-ExM and FRAP experiments, there is no information about the microscopy on regular confocal imaging experiments which should be detailed in Materials and Methods. Also, there is no information about the lenses, laser lines and the filter sets that were used in the imaging experiments. These should be provided as well. __

      In the methods section, we now included detailed information for the microscopes we used and imaging setup (lenses, laser lines, filter sets, detectors, z-stack size, resolution).

      11)

      • __ Fig. 2A: lacks a scale bar. __
      • __ Fig. 2C legend: lacks info on the scale bar length. __
      • __ Fig. 5A legend: lacks info on the scale bar length. __
      • __ Fig. 7A: lacks a scale bar. __
      • __ Fig. 7G legend: lacks info on the scale bar length. __
      • __ Fig. S2C-E: lack scale bars. __
      • __ Fig. S3D, F and H: lack scale bars. (Fig. S4 in the revised manuscript)__
      • __ Fig. S3J legend: lacks info on the scale bar length. (Fig. S4 in the revised manuscript)__
      • __ Fig. S4A, B, D and E: lack scale bars. (Fig. S5 in the revised manuscript)__
      • __ Fig. S4C legend: lacks info on the scale bar length. (Fig. S5 in the revised manuscript)__
      • __ Fig. S4G legend: lacks info on the scale bar length. (Fig. S5 in the revised manuscript)__ We added the scale bars and the size information to the figures and figure legends for the above figures.

      Reviewer #2 (Significance (Required)): __The findings of this study join among the relatively new literature (e.g., Steib et al., 2020 and Le Guennec et al. 2020) on the nature of centriole inner scaffold and its potential roles in centriole formation, integrity and its propensity to form the primary cilium. Therefore, it will be of interest to a group of scientists studying these topics in the field of centrosomes/cilia.

      My expertise is on the biochemistry and genetics of centriole formation in animals.__

      We thank the reviewer for his/her comments and constructive feedback to improve our manuscript. We are encouraged to see that the reviewer acknowledges how the results from our manuscript advances our understanding of centriole length, integrity and function regulation.

      References

      Abal, M., G. Keryer, and M. Bornens. 2005. Centrioles resist forces applied on centrosomes during G2/M transition. Biol Cell. 97:425-434.

      Atorino, E.S., S. Hata, C. Funaya, A. Neuner, and E. Schiebel. 2020. CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion. Nat Commun. 11:903.

      Azimzadeh, J., P. Hergert, A. Delouvee, U. Euteneuer, E. Formstecher, A. Khodjakov, and M. Bornens. 2009. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol. 185:101-114.

      Bayless, B.A., T.H. Giddings, Jr., M. Winey, and C.G. Pearson. 2012. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell. 23:4820-4832.

      Chen, F., P.W. Tillberg, and E.S. Boyden. 2015. Optical imaging. Expansion microscopy. Science. 347:543-548.

      Conkar, D., H. Bayraktar, and E.N. Firat-Karalar. 2019. Centrosomal and ciliary targeting of CCDC66 requires cooperative action of centriolar satellites, microtubules and molecular motors. Sci Rep. 9:14250.

      Dantas, T.J., O.M. Daly, P.C. Conroy, M. Tomas, Y. Wang, P. Lalor, P. Dockery, E. Ferrando-May, and C.G. Morrison. 2013. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair. PLoS One. 8:e68487.

      Firat-Karalar, E.N., N. Rauniyar, J.R. Yates, 3rd, and T. Stearns. 2014. Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol. 24:664-670.

      Gambarotto, D., V. Hamel, and P. Guichard. 2021. Ultrastructure expansion microscopy (U-ExM). Methods Cell Biol. 161:57-81.

      Gambarotto, D., F.U. Zwettler, M. Le Guennec, M. Schmidt-Cernohorska, D. Fortun, S. Borgers, J. Heine, J.G. Schloetel, M. Reuss, M. Unser, E.S. Boyden, M. Sauer, V. Hamel, and P. Guichard. 2019. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods. 16:71-74.

      Gheiratmand, L., E. Coyaud, G.D. Gupta, E.M. Laurent, M. Hasegan, S.L. Prosser, J. Goncalves, B. Raught, and L. Pelletier. 2019. Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J.

      Gupta, G.D., E. Coyaud, J. Goncalves, B.A. Mojarad, Y. Liu, Q. Wu, L. Gheiratmand, D. Comartin, J.M. Tkach, S.W. Cheung, M. Bashkurov, M. Hasegan, J.D. Knight, Z.Y. Lin, M. Schueler, F. Hildebrandt, J. Moffat, A.C. Gingras, B. Raught, and L. Pelletier. 2015. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell. 163:1484-1499.

      Hamel, V., E. Steib, R. Hamelin, F. Armand, S. Borgers, I. Fluckiger, C. Busso, N. Olieric, C.O.S. Sorzano, M.O. Steinmetz, P. Guichard, and P. Gonczy. 2017. Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. Curr Biol. 27:2486-2498 e2486.

      Heydeck, W., B.A. Bayless, A.J. Stemm-Wolf, E.T. O'Toole, A.S. Fabritius, C. Ozzello, M. Nguyen, and M. Winey. 2020. Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation. J Cell Sci. 133.

      Khouj, E.M., S.L. Prosser, H. Tada, W.M. Chong, J.C. Liao, K. Sugasawa, and C.G. Morrison. 2019. Differential requirements for the EF-hand domains of human centrin 2 in primary ciliogenesis and nucleotide excision repair. J Cell Sci. 132.

      Kong, D., and J. Loncarek. 2021. Analyzing Centrioles and Cilia by Expansion Microscopy. Methods Mol Biol. 2329:249-263.

      Laporte, M.H., I.B. Bouhlel, E. Bertiaux, C.G. Morrison, A. Giroud, S. Borgers, J. Azimzadeh, M. Bornens, P. Guichard, A. Paoletti, and V. Hamel. 2022. Human SFI1 and Centrin form a complex critical for centriole architecture and ciliogenesis. EMBO J. 41:e112107.

      Le Guennec, M., N. Klena, D. Gambarotto, M.H. Laporte, A.M. Tassin, H. van den Hoek, P.S. Erdmann, M. Schaffer, L. Kovacik, S. Borgers, K.N. Goldie, H. Stahlberg, M. Bornens, J. Azimzadeh, B.D. Engel, V. Hamel, and P. Guichard. 2020. A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv. 6:eaaz4137.

      Mahen, R. 2022. cNap1 bridges centriole contact sites to maintain centrosome cohesion. PLoS Biol. 20:e3001854.

      Meehl, J.B., B.A. Bayless, T.H. Giddings, Jr., C.G. Pearson, and M. Winey. 2016. Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Mol Biol Cell. 27:2394-2403.

      Mercey, O., C. Kostic, E. Bertiaux, A. Giroud, Y. Sadian, D.C.A. Gaboriau, C.G. Morrison, N. Chang, Y. Arsenijevic, P. Guichard, and V. Hamel. 2022. The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol. 20:e3001649.

      Moudjou, M., N. Bordes, M. Paintrand, and M. Bornens. 1996. gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J Cell Sci. 109 ( Pt 4):875-887.

      Odabasi, E., D. Conkar, J. Deretic, U. Batman, K.M. Frikstad, S. Patzke, and E.N. Firat-Karalar. 2023. CCDC66 regulates primary cilium length and signaling via interactions with transition zone and axonemal proteins. J Cell Sci. 136.

      Paoletti, A., M. Moudjou, M. Paintrand, J.L. Salisbury, and M. Bornens. 1996. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci. 109 ( Pt 13):3089-3102.

      Pearson, C.G., D.P. Osborn, T.H. Giddings, Jr., P.L. Beales, and M. Winey. 2009. Basal body stability and ciliogenesis requires the conserved component Poc1. J Cell Biol. 187:905-920.

      Quarantotti, V., J.X. Chen, J. Tischer, C. Gonzalez Tejedo, E.K. Papachristou, C.S. D'Santos, J.V. Kilmartin, M.L. Miller, and F. Gergely. 2019. Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J.

      Resendes, K.K., B.A. Rasala, and D.J. Forbes. 2008. Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol Cell Biol. 28:1755-1769.

      Sahabandu, N., D. Kong, V. Magidson, R. Nanjundappa, C. Sullenberger, M.R. Mahjoub, and J. Loncarek. 2019. Expansion microscopy for the analysis of centrioles and cilia. J Microsc. 276:145-159.

      Salisbury, J.L., K.M. Suino, R. Busby, and M. Springett. 2002. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 12:1287-1292.

      Schweizer, N., L. Haren, I. Dutto, R. Viais, C. Lacasa, A. Merdes, and J. Luders. 2021. Sub-centrosomal mapping identifies augmin-gammaTuRC as part of a centriole-stabilizing scaffold. Nat Commun. 12:6042.

      Steib, E., M.H. Laporte, D. Gambarotto, N. O’lieric, C. Zheng, S. Borgers, V. Olieric, M.L. Guennec, F. Koll, A.M. Tassin, M.O. Steinnmetz, P. Guichard, and V. Hamel. 2020. WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife.

      Steib, E., R. Tetley, R.F. Laine, D.P. Norris, Y. Mao, and J. Vermot. 2022. TissUExM enables quantitative ultrastructural analysis in whole vertebrate embryos by expansion microscopy. Cell Rep Methods. 2:100311.

      Sydor, A.M., E. Coyaud, C. Rovelli, E. Laurent, H. Liu, B. Raught, and V. Mennella. 2018. PPP1R35 is a novel centrosomal protein that regulates centriole length in concert with the microcephaly protein RTTN. Elife. 7.

      Tiryaki, F., J. Deretic, and E.N. Firat-Karalar. 2022. ENKD1 is a centrosomal and ciliary microtubule-associated protein important for primary cilium content regulation. FEBS J. 289:3789-3812.

      Tsekitsidou, E., C.J. Wong, I. Ulengin-Talkish, A.I.M. Barth, T. Stearns, A.C. Gingras, J.T. Wang, and M.S. Cyert. 2023. Calcineurin associates with centrosomes and regulates cilia length maintenance. J Cell Sci. 136.

      Van de Mark, D., D. Kong, J. Loncarek, and T. Stearns. 2015. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell. 26:3788-3802.

      Yang, C.H., C. Kasbek, S. Majumder, A.M. Yusof, and H.A. Fisk. 2010. Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly. Mol Biol Cell. 21:4361-4372.

      Ying, G., J.M. Frederick, and W. Baehr. 2019. Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. J Biol Chem. 294:3957-3973.