4,774 Matching Annotations
  1. Feb 2025
    1. Reviewer #3 (Public review):

      Summary:

      The mechanisms by which short-term isolation influences the brain to promote social behavior remain poorly understood. The authors observed that acute isolation enhanced social behaviors, including increased investigation, mounting, and ultrasonic vocalizations (USVs). These effects were evident in same-sex interactions among females and in male-female interactions. Concurrently, cFos expression in the preoptic area (POA) of the hypothalamus was selectively elevated in single-housed females. To further investigate, the authors used an innovative tagging strategy (TRAP2) to manipulate these neurons. Overall, the study identifies a population of hypothalamic neurons that promote various aspects of social behavior after short-term isolation, with effects that are sex- and context-dependent.

      Strengths:

      Understanding the neural circuit mechanisms underlying acute social isolation is an important and timely topic. By employing state-of-the-art techniques to tag neurons active during specific behavioral epochs, the authors identified the preoptic area (POA) as a key locus mediating the effects of social isolation. The experimental design is sound, and the data are of high quality. Notably, the control experiments, which show that chemogenetic inactivation of other hypothalamic regions (AH and VMH) does not affect social behavior, strongly support the specificity of the POA's role within the hypothalamus. Through a combination of behavioral assays, activity-dependent neural tagging, and circuit manipulation techniques, the authors provide compelling evidence for the POA's involvement in behaviors following social isolation. These findings represent a valuable contribution to understanding how hypothalamic circuits adapt to the challenges of social isolation.

      Weaknesses:

      The authors conducted several circuit perturbation experiments, including chemogenetics, ablation, and optogenetics, to investigate the effects of POA-social neurons. They observed that the outcomes of these manipulations varied depending on whether the intervention was chronic (e.g., ablations) or acute (e.g., DREADDs), potentially due to compensatory mechanisms in other brain regions. Furthermore, their additional experiments revealed that the robustness of the manipulations was influenced by the heterozygosity or homozygosity of TRAP2 animals. While these findings suggest that POA neurons contribute to multiple behavioral responses to social isolation, further experiments are needed to clarify their precise roles.

    1. Storage options: Configure settings here to help you recover your work in the event of a crash.

      This appears in the document itself not its "subtabs". Every tab that has a right triangle to it's left has subtabs and some things that don't show up right away could be hiding in the options of the subtabs if not in the main tag

    1. Knowing that there is a recommendation algorithm, users of the platform will try to do things to make the recommendation algorithm amplify their content. This is particularly important for people who make their money from social media content.

      I feel sometimes overuse of this property can worsen our experiences, for example, some people add a lot of irrelavent tags to their post and their post is recommended to a lot of people. But this can be really annoying when you see something that doesn't align with the tag you like.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public review): 

      The conserved AAA-ATPase PCH-2 has been shown in several organisms including C. elegans to remodel classes of HORMAD proteins that act in meiotic pairing and recombination. In some organisms the impact of PCH-2 mutations is subtle but becomes more apparent when other aspects of recombination are perturbed. Patel et al. performed a set of elegant experiments in C. elegans aimed at identifying conserved functions of PCH-2. Their work provides such an opportunity because in C. elegans meiotically expressed HORMADs localize to meiotic chromosomes independently of PCH-2. Work in C. elegans also allows the authors to focus on nuclear PCH-2 functions as opposed to cytoplasmic functions also seen for PCH-2 in other organisms. 

      The authors performed the following experiments: 

      (1) They constructed C. elegans animals with SNPs that enabled them to measure crossing over in intervals that cover most of four of the six chromosomes. They then showed that doublecrossovers, which were common on most of the four chromosomes in wild-type, were absent in pch-2. They also noted shifts in crossover distribution in the four chromosomes. 

      (2) Based on the crossover analysis and previous studies they hypothesized that PCH-2 plays a role at an early stage in meiotic prophase to regulate how SPO-11 induced double-strand breaks are utilized to form crossovers. They tested their hypothesis by performing ionizing irradiation and depleting SPO-11 at different stages in meiotic prophase in wild-type and pch-2 mutant animals. The authors observed that irradiation of meiotic nuclei in zygotene resulted in pch-2 nuclei having a larger number of nuclei with 6 or greater crossovers (as measured by COSA-1 foci) compared to wildtype. Consistent with this observation, SPO11 depletion, starting roughly in zygotene, also resulted in pch-2 nuclei having an increase in 6 or more COSA-1 foci compared to wild type. The increased number at this time point appeared beneficial because a significant decrease in univalents was observed. 

      (3) They then asked if the above phenotypes correlated with the localization of MSH-5, a factor that stabilizes crossover-specific DNA recombination intermediates. They observed that pch-2 mutants displayed an increase in MSH-5 foci at early times in meiotic prophase and an unexpectedly higher number at later times. They conclude based on the differences in early MSH-5 localization and the SPO-11 and irradiation studies that PCH-2 prevents early DSBs from becoming crossovers and early loading of MSH-5. By analyzing different HORMAD proteins that are defective in forming the closed conformation acted upon by PCH-2, they present evidence that MSH-5 loading was regulated by the HIM-3 HORMAD. 

      (4) They performed a crossover homeostasis experiment in which DSB levels were reduced. The goal of this experiment was to test if PCH-2 acts in crossover assurance. Interestingly, in this background PCH-2 negative nuclei displayed higher levels of COSA-1 foci compared to PCH-2 positive nuclei. This observation and a further test of the model suggested that "PCH-2's presence on the SC prevents crossover designation." 

      (5) Based on their observations indicating that early DSBS are prevented from becoming crossovers by PCH-2, the authors hypothesized that the DNA damage kinase CHK-2 and PCH2 act to control how DSBs enter the crossover pathway. This hypothesis was developed based on their finding that PCH-2 prevents early DSBs from becoming crossovers and previous work showing that CHK-2 activity is modulated during meiotic recombination progression. They tested their hypothesis using a mutant synaptonemal complex component that maintains high CHK-2 activity that cannot be turned off to enable crossover designation. Their finding that the pch-2 mutation suppressed the crossover defect (as measured by COSA-1 foci) supports their hypothesis. 

      Based on these studies the authors provide convincing evidence that PCH-2 prevents early DSBs from becoming crossovers and controls the number and distribution of crossovers to promote a regulated mechanism that ensures the formation of obligate crossovers and crossover homeostasis. As the authors note, such a mechanism is consistent with earlier studies suggesting that early DSBs could serve as "scouts" to facilitate homolog pairing or to coordinate the DNA damage response with repair events that lead to crossing over. The detailed mechanistic insights provided in this work will certainly be used to better understand functions for PCH-2 in meiosis in other organisms. My comments below are aimed at improving the clarity of the manuscript. 

      We thank the reviewer for their concise summary of our manuscript and their assessment of our work as “convincing” and providing “detailed mechanistic insight.”

      Comments 

      (1) It appears from reading the Materials and Methods that the SNPs used to measure crossing over were obtained by mating Hawaiian and Bristol strains. It is not clear to this reviewer how the SNPs were introduced into the animals. Was crossing over measured in a single animal line? Were the wild-type and pch-2 mutations made in backgrounds that were isogenic with respect to each other? This is a concern because it is not clear, at least to this reviewer, how much of an impact crossing different ecotypes will have on the frequency and distribution of recombination events (and possibly the recombination intermediates that were studied). 

      We have clarified these issues in the Materials and Methods of our updated preprint. The control and pch-2 mutants were isogenic in either the Bristol or Hawaiian backgrounds. Control lines were the original Bristol and Hawaiian lines and pch-2 mutants were originally made in the Bristol line and backcrossed at least 3 times before analysis. Hawaiian pch-2 mutants were made by backcrossing pch-2 mutants at least 8 times to the Hawaiian background and verifying the presence of Hawaiian SNPs on all chromosomes tested in the recombination assay. To perform the recombination assays, these lines were crossed to generate the relevant F1s.

      (2) The authors state that in pch-2 mutants there was a striking shift of crossovers (line 135) to the PC end for all of the four chromosomes that were tested. I looked at Figure 1 for some time and felt that the results were more ambiguous. Map distances seemed similar at the PC end for wildtype and pch-2 on Chrom. I. While the decrease in crossing over in pch-2 appeared significant for Chrom. I and III, the results for Chrom. IV, and Chrom. X. seemed less clear. Were map distances compared statistically? At least for this reviewer the effects on specific intervals appear less clear and without a bit more detail on how the animals were constructed it's hard for me to follow these conclusions. 

      We hope that the added details above makes the results of these assays more clear. Map distances were compared and did not satisfy statistical significance, except where indicated. While we agree that the comparisons between control animals and pch-2 mutants may seem less clear with individual chromosomes, we argue that more general, consistent patterns become clear when analyzing multiple chromosomes. Indeed, this is why we expanded our recombination analysis beyond Chromosome III and the X Chromosome, as reported in Deshong, 2014. We have edited this sentence to: “Moreover, there was a striking and consistent shift of crossovers to the PC end of all four chromosomes tested.”

      (3) Figure 2. I'm curious why non-irradiated controls were not tested side-by-side for COSA-1 staining. It just seems like a nice control that would strengthen the authors' arguments. 

      We have added these controls in the updated preprint as Figure 2B.

      (4) Figure 3. It took me a while to follow the connection between the COSA-1 staining and DAPI staining panels (12 hrs later). Perhaps an arrow that connects each set of time points between the panels or just a single title on the X-axis that links the two would make things clearer. 

      To make this figure more clear, we have generated two different cartoons for the assay that scores GFP::COSA-1 foci and the assay that scores bivalents. We have also edited this section of the results to make it more clear.

      Reviewer #2 (Public review): 

      Summary: 

      This paper has some intriguing data regarding the different potential roles of Pch-2 in ensuring crossing over. In particular, the alterations in crossover distribution and Msh-5 foci are compelling. My main issue is that some of the models are confusingly presented and would benefit from some reframing. The role of Pch-2 across organisms has been difficult to determine, the ability to separate pairing and synapsis roles in worms provides a great advantage for this paper. 

      Strengths: 

      Beautiful genetic data, clearly made figures. Great system for studying the role of Pch-2 in crossing over. 

      We thank the reviewers for their constructive and useful summary of our manuscript and the analysis of its strengths. 

      Weaknesses: 

      (1) For a general audience, definitions of crossover assurance, crossover eligible intermediates, and crossover designation would be helpful. This applies to both the proposed molecular model and the cytological manifestation that is being scored specifically in C. elegans. 

      We have made these changes in an updated preprint.

      (2) Line 62: Is there evidence that DSBs are introduced gradually throughout the early prophase? Please provide references. 

      We have referenced Woglar and Villeneuve 2018 and Joshi et. al. 2015 to support this statement in the updated preprint.

      (3) Do double crossovers show strong interference in worms? Given that the PC is at the ends of chromosomes don't you expect double crossovers to be near the chromosome ends and thus the PC? 

      Despite their rarity, double crossovers do show interference in worms. However, the PC is limited to one end of the chromosome. Therefore, even if interference ensures the spacing of these double crossovers, the preponderance of one of these crossovers toward one end (and not both ends) suggest something functionally unique about the PC end.

      (4) Line 155 - if the previous data in Deshong et al is helpful it would be useful to briefly describe it and how the experimental caveats led to misinterpretation (or state that further investigation suggests a different model etc.). Many readers are unlikely to look up the paper to find out what this means. 

      We have added this to the updated preprint: “We had previously observed that meiotic nuclei in early prophase were more likely to produce crossovers when DSBs were induced by the Mos transposon in pch-2 mutants than in control animals but experimental caveats limited our ability to properly interpret this experiment.”

      (5) Line 248: I am confused by the meaning of crossover assurance here - you see no difference in the average number of COSA-1 foci in Pch-2 vs. wt at any time point. Is it the increase in cells with >6 COSA-1 foci that shows a loss of crossover assurance? That is the only thing that shows a significant difference (at the one time point) in COSA-1 foci. The number of dapi bodies shows the loss of Pch-2 increases crossover assurance (fewer cells with unattached homologs). So this part is confusing to me. How does reliably detecting foci vs. DAPI bodies explain this? 

      We have removed this section to avoid confusion.

      (6) Line 384: I am confused. I understand that in the dsb-2/pch2 mutant there are fewer COSA-1 foci. So fewer crossovers are designated when DSBs are reduced in the absence of PCH-2.

      How then does this suggest that PCH-2's presence on the SC prevents crossover designation? Its absence is preventing crossover designation at least in the dsb-2 mutant. 

      We have tried to make this more clear in the updated preprint. In this experiment, we had identified three possible explanations for why PCH-2 persists on some nuclei that do not have GFP::COSA-1 foci: 1) PCH-2 removal is coincident with crossover designation; 2) PCH-2 removal depends on crossover designation; and 3) PCH-2 removal facilitates crossover designation. The decrease in the number of GFP::COSA-1 foci in dsb2::AID;pch-2 mutants argues against the first two possibilities, suggesting that the third might be correct. We have edited the sentence to read: “These data argue against the possibility that PCH-2’s removal from the SC is simply in response to or coincident with crossover designation and instead, suggest that PCH-2’s removal from the SC somehow facilitates crossover designation and assurance.”

      (7) Discussion Line 535: How do you know that the crossovers that form near the PCs are Class II and not the other way around? Perhaps early forming Class I crossovers give time for a second Class II crossover to form. In budding yeast, it is thought that synapsis initiation sites are likely sites of crossover designation and class I crossing over. Also, the precursors that form class I and II crossovers may be the same or highly similar to each other, such that Pch-2's actions could equally affect both pathways. 

      We do not know that the crossovers that form near the PC are Class II but hypothesize that they are based on the close, functional relationship that exists between Class I crossovers and synapsis and the apparent antagonistic relationship that exists between Class II crossovers and synapsis. We agree that Class I and Class II crossover precursors are likely to be the same or highly similar, exhibit extensive crosstalk that may complicate straightforward analysis and PCH-2 is likely to affect both, as strongly suggested by our GFP::MSH-5 analysis. We present this hypothesis based on the apparent relationship between PCH-2 and synapsis in several systems but agree that it needs to be formally tested. We have tried to make this argument more clear in the updated preprint.

      Reviewer #3 (Public review): 

      Summary: 

      This manuscript describes an in-depth analysis of the effect of the AAA+ ATPase PCH-2 on meiotic crossover formation in C. elegant. The authors reach several conclusions, and attempt to synthesize a 'universal' framework for the role of this factor in eukaryotic meiosis. 

      Strengths: 

      The manuscript makes use of the advantages of the 'conveyor' belt system within the c.elegans reproductive tract, to enable a series of elegant genetic experiments. 

      We thank this reviewer for the useful assessment of our manuscript and the articulation of its strengths.

      Weaknesses: 

      A weakness of this manuscript is that it heavily relies on certain genetic/cell biological assays that can report on distinct crossover outcomes, without clear and directed control over other aspects and variables that might also impact the final repair outcome. Such assays are currently out of reach in this model system. 

      In general, this manuscript could be more generally accessible to non-C.elegans readers. Currently, the manuscript is hard to digest for non-experts (even if meiosis researchers). In addition, the authors should be careful to consider alternative explanations for certain results. At several steps in the manuscript, results could ostensibly be caused by underlying defects that are currently unknown (for example, can we know for sure that pch-2 mutants do not suffer from altered DSB patterning, and how can we know what the exact functional and genetic interactions between pch-2 and HORMAD mutants tell us?). Alternative explanations are possible and it would serve the reader well to explicitly name and explain these options throughout the manuscript. 

      We have made the manuscript more accessible to non-C. elegans readers and discuss alternate explanations for specific results in the updated preprint. 

      Recommendations for the authors:  

      Reviewing Editor Comments: 

      (1) Please provide 'n' values for each experiment. 

      n values are now included in the Figure legends for each experiment.

      (2) Line 129: Please represent the DCOs as percent or fraction (1%-9.8%, instead of 1-13). 

      We have made this change.

      (3) Figure 3A legend: the grey bar should read 20hr. COSA-1/ 32 hr DAPI. In Figure 3E, it is not clear why 36hr Auxin and 34hr Auxin show a significant difference in DAPI bodies between control and pch-2, but 32hr Auxin treatment does not. Here again 'n' values will help. 

      We have made this change. We also are not sure why the 32 hour auxin treatment did not show a significant difference in DAPI stained bodies. We have included the n values, which are not very different between timepoints and therefore are unlikely to explain the difference. The difference may reflect the time that it takes for SPO-11 function to be completely abrogated.

      (4) Line 360: Please provide the fraction of PCH-2 positive nuclei in dsb-2.

      We have made this change. 

      Please also address all reviewer comments. 

      Reviewer #1 (Recommendations for the authors): 

      (1) Page 3, line 52. While I agree that crossing over is important to generate new haplotypes, work has suggested that the contribution by an independent assortment of homologs to generate new haplotypes is likely to be significantly greater. One reference for this is: Veller et al. PNAS 116:1659. 

      We deeply appreciate this reviewer pointing us to this paper, especially since it argues that controlling crossover distribution contributes to gene shuffling and now cite it in our introduction! While we agree that this paper concludes that independent assortment likely explains the generation of new haplotypes to a greater degree than crossovers, the authors performed this analysis with human chromosomes and explicitly include the caveat that their modeling assumes uniform gene density across chromosomes. For example, we know this is not true in C. elegans. It would be interesting to perform the same analysis with C. elegans chromosomes in control and pch-2 mutants, taking into account this important difference.

      (2) Figure 2. It would really help the reader if an arrow and text were shown below each irradiation sign to indicate the stage in meiosis in which the irradiation was done as well as another arrow in the late pachytene box to show when the COSA-1 foci were analyzed. In general, having text in the figures that help stage the timing in meiosis would help the non C. elegans reader. This is also an issue where staging of C. elegans is shown (Figure 4). 

      We have made these changes to Figure 2. To help readers interpret Figure 4, we have added TZ and LP to the graphs in Figure 4B and 4D and indicated what these acronyms (transition zone and late pachytene, respectively) are in the Figure legend.

      (3) Page 12, line 288. It would be valuable to first outline why the him3-R93Y and htp-3H96Y alleles were chosen. This was eventually done on Page 13, but introducing this earlier would help the reader. 

      We have introduced these mutations earlier in the manuscript.

      (4) Page 13, line 323. A one sentence description of the OLLAS tagging system would be useful. 

      We have added this sentence: “we generated wildtype animals and pch-2 mutants with both GFP::MSH-5 and a version of COSA-1 that has been endogenously tagged at the Nterminus with the epitope tag, OLLAS, a fusion of the E. coli OmpF protein and the mouse Langerin extracellular domain”

      Reviewer #2 (Recommendations for the authors): 

      (1) The title is a little awkward. Consider: PCH-2 controls the number and distribution of crossovers in C. elegans by antagonizing their formation 

      We have made this change.

      (2) Abstract: 

      Consider removing "that is observed" from line 20. 

      We have made this change.

      I'm confused by the meaning of "reinforcement of crossover-eligible intermediates" from line 27. 

      We have removed this phrase from the abstract.

      A definition of crossover assurance would be helpful in the abstract. 

      We have added this to the abstract: “This requirement is known as crossover assurance and is one example of crossover control.”

      (3) Line 36: I know a stickler but many meioses only produce one haploid gamete (mammalian oocytes, for example) 

      Thanks for the reminder! We have removed the “four” from this sentence.

      (4) Line 284 - are you defining MSH-5 foci as crossover-eligible intermediates? If so, please state this earlier. 

      We have added this to the introduction to this section of the results: “In C. elegans, these crossover-eligible intermediates can be visualized by the loading of the pro-crossover factor MSH-5, a component of the meiosis-specific MutSγ complex that stabilizes crossover-specific DNA repair intermediates called joint molecules”

      (5) Can the control be included in Figure S1? 

      We have made this change.

      (6) Can you define that crossover designation is the formation of a COSA-1 focus? 

      We did this in the section introducing GFP::MSH-5: “In the spatiotemporally organized meiotic nuclei of the germline, a functional GFP tagged version of MSH-5, GFP::MSH-5, begins to form a few foci in leptotene/zygotene (the transition zone), becoming more numerous in early pachytene before decreasing in number in mid pachytene to ultimately colocalize with COSA-1 marked sites in late pachytene in a process called designation” 

      (7) Would it be easier to see the effect of DSB to crossover eligible intermediates in Spo-11, Pch-2 vs. Spo-11 mutant with irradiation using your genetic maps? At least for early vs. late breaks? 

      Unfortunately, irradiation does not show the same bias towards genomic location that endogenous double strand breaks do so it is unlikely to recapitulate the effects on the genetic map.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weaknesses:

      In my estimation, the following would improve this manuscript:

      (1) The physiological relevance of these data could be better highlighted. For instance, future work could revolve around incubating oocytes with oviduct fluid (or OVGP1) to reduce polyspermy in porcine IVF, and naturally improve sperm selection in human IVF.

      Thank you for the suggestions. We have added these physiological relevance points at the end of the discussion.

      (2) Biological and technical replicate values for each experiment are unclear - for semen, oocytes, and oviduct fluid pools. I suggest providing in the Materials and Methods and/or Figure legends.

      Biological and technical replicates are now indicated in M&M. Number of oocytes or ZPs used were already indicated in every Supplementary Table.

      (3) Although differences presented in the bar charts seem obvious, providing statistical analyses would strengthen the manuscript.

      Statistical analyses are now indicated in each bar chart.

      (4) Results are presented as {plus minus} SEM (line 677); however, I believe standard deviation is more appropriate.

      This was a mistake; all the results are indicated as standard deviation.

      (5) Given the many independent experimental variables and combinations, a schematic depiction of the experimental design may benefit readers.

      A schematic depiction of the experimental design is now included as Figure 1. This new Figure modifies the number assigned to the rest of Figures.

      (6) Attention to detail can be improved in parts, as delineated in the "author recommendation" review section.

      Done

      Reviewer #2 (Public review):

      Weaknesses:

      The authors postulate a role for oviductal fluid in species-specific fertilization, but in my opinion, they cannot rule out hormonal effects or differences in the method of oocyte maturation employed.

      As we indicate below, the effect of hormones has been analyzed, and we have demonstrated that it is not the cause of zona pellucida specificity.

      They also cannot unequivocally prove that OVGP1 is the oviductal protein involved in the effect. Additional experiments are necessary to rule out these alternative explanations.

      Our work does not demonstrate that other proteins could be involved, but it does show that OVGP1 is involved in the process.

      When performing the EZPT assay on mouse oocytes obtained either from the ovary or from the oviduct, the oocytes obtained from the ovary came from mice primed with eCG, whereas the ones collected from the oviduct were obtained from superovulated mice (eCG plus hCG). This difference in the hormonal environment may make a difference in the properties of the ZP. Additionally, the ones obtained from the ovary were in vitro matured, which is also different from the freshly ovulated eggs and, again, may change the properties of the ZP. I suggest doing this experiment superovulating both groups of mice but collecting the fully matured MII eggs from the ovary before they get ovulated. In that way the hormonal environment will be the same in both groups and in both groups, oocytes will be matured in vivo. Hence, the only difference will be the exposure to oviductal fluids.

      In Figure 2, we compare ZPs from murine oocytes obtained from the ovary using only PMSG with ZPs from oviductal oocytes treated with both HCG and PMSG. But in Figure 7, however, we compared ZPs from murine oocytes exposed only to PMSG, with the only difference being whether or not they had been in contact with OVGP1. This shows that it is not the effect of the hormone but rather the contact with OVGP1 that determines their specificity.

      Mice with OVGP1 deletion are viable and fertile. It would be quite interesting to investigate the species-specificity of sperm-ZP binding in this model. That would indicate whether OVGP1 is the only glycoprotein involved in determining species-specificity. Alternatively, the authors could immunodeplete OVGP1 from oviductal fluid and then ascertain whether this depleted fluid retains the ability to impede cross-species fertilization.

      We agree with the reviewer that it would be interesting to investigate sperm-ZP binding in this model. Unfortunately, we do not have the OVGP1 knockout mouse strain. We also believe that immunodepletion of OVGP1 would not completely remove the protein, so its effect would likely not be entirely eliminated.

      What is the concentration of OVGP1 in the oviduct? How did the authors decide what concentration of protein to use in the experiments where they exposed ZPs to purified OVGP1? Why did they use this experimental design to check the structure of the ZP by SEM? Why not do it on oocytes exposed to oviductal fluid, which would be more physiological?

      We have included in the manuscript that the concentration of OVGP1 in the oviductal fluid was quantified using ImageJ software by comparing the mean gray value of the band in the oviductal fluid to the band in the recombinant protein lane. By establishing this relationship, along with the known concentration of protein amount in the recombinant one and in the total protein amount of oviductal fluid, the concentration of OVGP1 in the oviductal fluid was determined as the average of three western blots. The concentration of OVGP1 in oviductal fluids was in the range of 100-150 ng/µl in mice and 150-200 ng/µL in cow. We have included also in the manuscript the concentration that we have use for the EZPTs, 30 ng/µL of recombinants OVGP1 (bovine, murine and human) for 30 minutes in 20µL drops. With this concentration, we observed a clear effect on zona specificity with no negative impact on the gametes.

      As you can see in supplementary Fig S8B, we already realized SEM of oocytes exposed to oviductal fluid.

      None of the figures show any statistical analysis. Please perform analysis for all the data presented, include p values, and indicate which statistical tests were performed. The Statistical analysis section in the Methods indicating that repeated measures ANOVA was used must refer to the tables. Was normality tested? I doubt all the data are normally distributed, in which case using ANOVA is not appropriate.

      Statistical results are now included in each Figure and Table. All the statistical analysis are included, all the data pass normality, homogeneity of variance and independence; for this reason the data analysis was conducted by using a one-way ANOVA, followed by Tukey´s post hoc test. Significance level was set at p <0.05.

      Why was OVGP1 selected as the probable culprit of the species specificity? In the Results section entitled "Homology of bovine, human and murine OVGP1 proteins..." the authors delve into the possible role of this protein without any rationale for investigating it. What about other oviductal proteins?

      A sentence indicating this rationale for investigating OVGP1 has been introduced in this paragraph.

      Reviewer #3 (Public review):

      Weaknesses:

      The manuscript began with a well-written introduction, but problems started to surface in the Results section, in the Discussion, as well as in the Materials and Methods. Major concerns include inconsistencies, misinterpretation of results, lacking up-to-date literature search, numerous errors found in the figure legends, misleading and incorrect information given in the Materials and Methods, missing information regarding statistical analysis, and inadequate discussion. These concerns raise questions regarding the authenticity of the study, reliability of the findings, and interpretation of the results. The manuscript does not provide solid and convincing findings to support the conclusion.

      We have modified and clarified all the issues, some of which are misunderstandings, we have also performed the suggested experiment of putting sperm in contact with OVGP1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Ensure consistency in (past) tense, for example, "decondensed" (line 102), "induced" (line 103), and elsewhere.

      Done

      (2) Replace "table" with "Table" throughout.

      Done

      (3) The authors often refer to "co-incubation". I believe this should read "incubation". My understanding is that oocytes were incubated with oviduct fluid or sperm but never both simultaneously as "co-incubation" implies.

      Done

      (4) Synonymous terms "OVGP1" and "oviductin" are used interchangeably. Consider using one or the other for consistency.

      We believe that by using both terms, reading is more fluid.

      (5) Delete "around" on line 256 and "approximately" on line 263 and provide actual percentages.

      Done

      (6) The point of the sentence on lines 311-313 is unclear to me.

      Rewritten

      (7) Suggest specifying "wildtype" on line 419.

      All the mice used in this work are wildtype

      (8) Do the authors have details regarding cattle oocyte donor breeds?

      Done

      (9) What do the authors mean by "strengthen" on line 500?

      The word strengthen has been changed to carefully isolated

      (10) Ponceau and vinculin (Figure 3) details are not provided in the manuscript.

      Ponceau and vinculin details are now included in the manuscript

      (11) Address formatting issues (e.g. citation 26 among others).

      Done

      (12) Primary and secondary antibody controls for immunofluorescent imaging (to fully exclude autofluorescence) are lacking.

      Controls for immunofluorescent imaging are indicated in Supplementary Figure S7.

      (13) The corresponding author on the manuscript and in the eLife submission system are different

      It was a problem during submission, now it is corrected.

      Reviewer #2 (Recommendations for the authors):

      (1) For the experiment depicted in Figures 3C and D, the authors need to perform a negative control to demonstrate that this fluorescent signal is specific. What happens if they express a different FLAG-tagged protein instead of bOVGP1 and mOVGP1? FLAG antibodies give quite strong non-specific binding. Or if they expressed untagged bovine and mouse OVGP1?

      The negative controls are in the supplementary Figure S7. A rabbit polyclonal antibody to the human OVGP1 was used for murine and bovine IVM ZPs from ovaries and murine superovulated ZPs recovered from mouse oviducts. There is a remarkable difference in the ones that are not incubated with any OVGP1 and the endogenous one, given the specificity of the antibody.

      Also, IVM mouse and bovine oocytes incubated or not with OF were immunoblotted with anti-Flag-tag antibody. Since any of them present OVGP1 tagged to Flag, there is not signal in the immunofluorescence.

      (2) For the Western blots of recombinant proteins, why are the authors not showing the blots using His and FLAG tag antibodies? Is the 50-kDa band observed for the mouse OVGP1 detected with His-Tag antibody?

      We have included a supplementary figure S6 with the western blot with anti-His and anti-Flag. The protein around 50 kDa is not a specific band (there is not signal with anti-Flag). This new figure modifies the number assigned to the rest of supplementary figures (S6-S8).

      (3) How was the estrous cycle stage determined in mice? It is not described in the Methods.

      Estrous cycle stage was determined in mice by visual examination of the vaginal opening and cytological examination of the vagina smear. This is now included in the M&M

      (4) For sperm binding, what does the percentage mean?

      It was a mistake, percentages were related to pronuclear formation and cleavage not to sperm binding, this is now corrected.

      (5) In Figure 3A, the labels for regions C, D, and E are mixed up. It is regions A and C that are conserved (or orange and blue, if the letters are incorrect). The purple region is only present in the mouse (E?), and the red region (D?) is only in the human form. Also, the legend for this panel is repeated verbatim in the Results section. Please remove one of them.

      Errors in Figure 3a have been corrected. Legend repetition is removed.

      (6) In the title of Figure 1B and in different places in the text, it should be mouse (not mice) oocytes.

      Done

      (7) In line 140, I would change the part indicating "We extracted the cytoplasmic contents from the oocytes". It is not only the cytoplasm, but all the oocyte, including the nucleus and membranes, that are being removed.

      Done

      (8) Please rephrase the sentence in lines 245-247, as it is quite confusing.

      Done

      (9) In line 236, the authors indicate that "During in vitro maturation (IVM), oocytes displayed a porous ZP structure...". Do they mean after IVM? When were those oocytes collected for SEM?

      The sentence has been modified by “after IVF”. Bovine oocytes were collected from slaughterhouse ovaries and were similar to those used in the rest of the experiments in the manuscript.

      (10) In the legend of Figure 1, please indicate what the parthenogenic group is.

      Done

      (11) In the legend to Figure 1G, the text indicates "Note sperm only appear outside the zona". However, I cannot see any sperm in that image.

      The phrase has been removed, as when enlarging the image to better see the sperm that are inside the area, the vision of those that are outside has been lost.

      (12) In the legend to Figure 2 describing the different zona pictures, the letters of the panels are not correct.

      Done

      (13) In line 999, please provide the right concentration for NMase (it indicates 10 μ/mL).

      Done

      (14) Where does the model depicted at the end of the manuscript go? Is it a Figure? A graphical abstract? In that model, please correct some typos: it should be "ZP obtained from ovarian oocytes"; and change specie for species in all three panels.

      Done. It is a model (Fig. 10)

      (15) The FITC-PNA staining to visualize acrosomes is not described in the Methods section.

      Done

      Reviewer #3 (Recommendations for the authors):

      The present study reports findings from a series of experiments suggesting that bovine oviductal fluid and species-specific oviductal glycoprotein (OVGP1 or oviductin) from bovine, murine, or human sources modulate the species specificity of bovine and murine oocytes. The manuscript began with a well-written introduction, but problems started to surface in the Results section, Discussion as well as in the Materials and Methods. Major concerns include inconsistencies, misinterpretation of results, lacking up-to-date literature search, numerous errors found in the figure legends, misleading and incorrect information given in the Materials and Methods, missing information regarding statistical analysis, and inadequate discussion.

      We have modified and clarified all the issues, some of which are misunderstandings, we have also performed the suggested experiment of putting sperm in contact with OVGP1.

      Specific comments:

      (1) Lines 142 to 143 on page 5: It is stated that "Because this experiment was done on empty ZPs, we called this test "empty zona penetration test" (EZPT)". In fact, the experiment was not actually done on empty ZPs, but on oocytes with the ooplasm extracted. Therefore, the zona pellucidae used in the experiment were not empty but contained an intact zona matrix of glycoproteins. The term "EZPT" used by the authors in the manuscript is a misnomer. A better term should be used to reflect the ZPs which were intact and not empty.

      We extracted the cytoplasmic containing all the organelles, nucleus and membranes, and the polar body. This has been clarified in the text.

      (2) The authors need to distinguish between sperm penetration and sperm binding in the manuscript. In lines 169 to 177 on page 6, the authors mixed up the terms "penetration" and "binding" in the text. In writing about events leading to fertilization in reproductive biology, the term "sperm binding" refers to the interaction between the sperm plasma membrane and the oocyte zona pellucida (ZP), whereas the term "sperm penetration" refers to the passage of the sperm through the ZP. Therefore, the statements in lines 169 to 177 describing the binding of bovine, murine, and human sperm to bovine oocytes with and without prior treatment with oviductal fluid are misleading and not correct. In fact, Figure 2 and Table 6 show sperm penetration and not sperm binding.

      Figure 2A and B (now 3A and 3B), and Tables S6 show both sperm penetration (% penetration rate and average sperm in penetrated ZPs) and sperm binding (average sperm bound to ZPs). Throughout the manuscript, a clear distinction is made between sperm attached to the ZP and sperm that have penetrated it.

      (3) Lines 182 to 187 on page 6: What is being described in the text here does not match what is being shown in Figure 3A. As a result, the information provided in lines 182 to 187 is not correct and misleading. For example, it is stated in lines 182 to 183 that "As depicted in Fig. 3A, the sequences of these three OVGP1 have five distinct regions (A, B, C, D and E)." However, Figure 3A shows that hOVGP1 and mOVGP1 both have only 4 regions and bOVGP1 has only 3 regions. None of the three has 5 regions. In lines 183 to 184, the authors continued to state that "Regions A and D are conserved in the different mammals." This statement is also not true because Figure 3A shows that only region A is conserved in all three species but not region D which is found only in the human. What is stated in lines 186 to 187 is also not correct based on the information provided in Figure 3A. It is stated here that "Region C is an insertion present only in the mouse (Mus) and region E is typical of human oviductin." However, based on the color codes provided in Figure 3A, region C is present in all three species while region E is present only in the mouse.

      Errors with naming regions in Figure 3A (now 4A) have been corrected.

      (4) In lines 195 to 197 on page 6, the authors stated that "Western blots of the three OVGP1 recombinants indicated expected sizes based on those of the proteins: 75 kDa for human and murine OVGP1 and around 60 kDa for bovine OVGP1 (Fig. 3B)." However, the expected size of the recombinant human OVGP1 is not in agreement with what has been published in literature regarding the molecular weight of recombinant human OVGP1. It has been previously reported that a single protein band of approximately 110-150 kDa was detected for recombinant human OVGP1 using an antibody against human OVGP1. The authors provided Western blots of murine oviductal fluid and bovine oviductal fluid in Figure 3B but not a Western blot of native human oviductal fluid. The latter should have been included for a comparison with the recombinant human OVGP1.

      We do not have human oviductal fluid, but we have included now a supplementary figure 6S of a western blot with antibody again His and Flag (present in the recombinant OVGP1) which shows that the size of the recombinant protein is as indicated in the Figure 3B (now 4B).

      (5) Lines 220 to 229 on page 7: In this experiment, the authors conducted the EZPT using ZPs from bovine oocytes that were either treated with or without bOVGP1 followed by incubation, respectively, with homologous sperm (bovine) and heterologous sperm (human and murine). This is a logical experiment to determine if OVGP1 plays a species-specific role in setting the specificity of the zona pellucida. However, in the in vivo situation, sperm that reach the lumen of the ampulla region of the oviduct where fertilization takes place are also exposed to oviductal fluid of which OVGP1 is a major constituent. Therefore, an additional experiment in which sperm are treated with OVGP1 prior to incubation with ZP should be carried out for a comparison.

      The additional experiment in which sperm are treated with OVGP1 prior to incubation with ZP has been done (Table S9). No effects were observed. This is now included in the manuscript.

      (6) Regarding the results obtained with the use of neuraminidase (lines 278 to 293 on pages 8 to 9), if neuraminidase treatment of bovine ZP prevented bovine sperm penetration regardless of whether ZPs had been or had not been in contact with OVGP1, that means OVGP1 is not responsible for penetration despite the description of earlier findings in the manuscript. Sialic acid is likely associated with the sugar side chains of ZP glycoproteins and not sugar side chains of OVGP1. To attribute the species-specific property of sialic acid to OVGP1 for sperm binding, an experiment in which OVGP1 will be treated with neuraminidase prior to performing the EZPT is needed.

      We conducted the experiment by treating only OVGP1 with neuraminidase and then isolating OVGP1 from the enzyme previously to incubate treated OVGP1 with ZPs. The results agree with our previous findings, indicating the importance of sialic acid on OVGP1 for sperm binding and penetration, and confirming that OVGP1 is responsible for species-specific penetration. Results are shown in Fig. 9 and Table S14.

      (7) The Discussion appears superficial and a more in-depth discussion regarding the results obtained in the present study in relation to other reports about OVGP1 published in literature is needed (e.g. a recent paper published by Kenji Yamatoya et al. (2023) Biology of Reproduction https://doi.org/10.1093/biolre/ioad159). Lines 317 to 342 of the Discussion on pages 10 to 11 should belong to the Introduction.

      Results of Yamatoya are now included in discussion. Part of the discussion from 317 to 342 are now in the introduction

      (8) In is not clear what the authors exactly want to say in lines 343 to 344 of the Discussion on page 11. It is stated here that "The empty zona penetration test (EZPT) enables heterologous sperm to overcome the oocyte's second barrier, the plasma membrane or oolemma." Do the authors mean that the sperm can now enter the empty space encircled by the ZP without having to go through the plasma membrane or oolemma? In Figure S4 which depicts the method used to empty the ooplasm in the bovine oocyte, does the method extract only the ooplasm (or cytoplasmic contents) leaving behind the intact plasma membrane or oolemma? This needs to be clearly shown and clearly explained. High magnifications of the zona pellucida are also needed to show whether the plasma membrane (or oolemma) is still present and intact after extraction of the ooplasm.

      This is clearly explained in the text. To obtain empty ZP, everything except ZP (nucleus, organelles, membranes and cytoplasmic contents of the oocytes) was removed using a micromanipulator, following the procedure outlined in Figure S4.

      (9) The authors stated in the Discussion in lines 383 to 383 on page 12 that "After ovulation, the changes reported in the carbohydrate composition of the ZP (3, 25) are likely induced by the addition of glycoproteins of oviductal origin, as we have seen here with OVGP1." There is no evidence in the present study to suggest that OVGP1 or glycoproteins of oviductal origin have changed or can change the carbohydrate composition of the ZP. At present, it is not known if OVGP1 or glycoproteins of oviductal origin directly interact with ZP glycoproteins (including ZP1, ZP2, ZP3 and/or ZP4) that make up the zona matrix.

      There is scientific evidence suggesting that oviductal glycoproteins, including OVGP1, interact with the zona pellucida (ZP) glycoproteins of the oocyte. Studies have shown that OVGP1 binds to the ZP of the oocyte. Specifically, OVGP1 is thought to interact with ZP glycoproteins, such as ZP2 and ZP3, in a way that may help stabilize the oocyte or modify the ZP structure during its passage through the oviduct. This interaction is believed to influence processes like sperm binding, oocyte maturation, and potentially the prevention of polyspermy during fertilization. For example, in several studies, the absence of OVGP1 in knockout animals (such as in Ovgp1-KO hamsters) has been associated with impaired fertilization and embryonic development, which indicates the importance of this interaction. However, the detailed molecular mechanisms and functional significance of these interactions require further exploration. We have use the work “likely” to soften this statement.

      Velásquez, J. G., Canovas, S., Barajas, P., Marcos, J., Jiménez‐Movilla, M., Gallego, R. G., ... & Coy, P. (2007). Role of sialic acid in bovine sperm–zona pellucida binding. Molecular reproduction and development, 74(5), 617-628.

      Kunz, P., et al. (2013). "The role of oviductal glycoprotein 1 in sperm–egg interaction and early embryonic development." Reproduction, 145(3), 225-233. DOI: 10.1530/REP-12-0300

      Yamatoya, K., Kurosawa, M., Hirose, M., Miura, Y., Taka, H., Nakano, T., ... & Araki, Y. (2024). The fluid factor OVGP1 provides a significant oviductal microenvironment for the reproductive process in golden hamster. Biology of reproduction, 110(3), 465-475.

      (10) Lines 390 to 391 page 12: The statement "This determines that OVGP1 modifications are critical to define the barrier among the different species of mammals." needs to be rephrased because there is no evidence in the present study showing that OVGP1 has been modified. There are many concerns with errors, important information that is missing, and inconsistencies as well as wrong and misleading information in the Materials and Methods which are troublesome. These concerns raise questions regarding the authenticity and reliability of the study. Some of the major concerns are listed below:

      All concerns have been fixed

      (11) It says in line 399 on page 13 that "Human semen samples were obtained from a normozoospermic donor...". Do the authors really mean that the semen samples were obtained from only one donor?

      Samples were obtained from 3 normozoospermic donor, this is now indicated in M&M

      (12) In lines 409 to 411 on page 13, what do the authors mean by "...the samples were frozen into pellets..."? Was centrifugation of the samples carried out prior to freezing the samples? Secondly, what do the authors mean by "....and stored in liquid nitrogen at -196{degree sign}C or lower.", particularly what do the authors mean by "or lower"? The temperature of liquid nitrogen is -196{degree sign}C. What is the "lower" temperature?

      Centrifugation of the samples were no carried out at this time. A more detailed protocol is now included The word lower has been removed.

      (13) Line 424 on page 13: Provide the full name of "M2" when it is first used in the text then followed by the abbreviation.

      Done

      (14) Is there a reason why different counting chambers were used to determine sperm concentrations? In line 432 on page 13, a Thomas cell counting chamber was used to determine the sperm count of epididymal mouse sperm whereas it is mentioned in line 441 on page 14 that a Neubauer cell counting chamber was used to determine epididymal cat sperm. Furthermore, where did the cat's sperm come from?

      The cat sperm was obtained and processed at the Faculty of Veterinary Medicine and the rest of the samples were processed in the INIA-CSIC lab, and different chambers were used in both places.

      (15) The mention of the use of cat spermatozoa in line 439 on page 14 is a worrisome problem of the manuscript. The present study used bovine, mouse, and human sperm and not cat. Therefore, the sudden mentioning of the use of cat spermatozoa in the Materials and Methods is troublesome and worrisome. It appears that the paragraph from lines 439 to 450 was directly copied and pasted from previously published work. Furthermore, lines 441 to 445 do not flow and do not make sense. In fact, what is described in this paragraph (lines 439 to 450) does not appear to correspond to the method(s) used to obtain the results presented in the Results section of the manuscript.

      I don't understand why the reviewer says we don't use cat sperm. This study uses cat sperm. Results of cat sperm are indicated in the Figure 1A (now 2A). We have modified the M&M to clarify frozen description.

      (16) Similarly, several problems are also found in the paragraphs (lines 453-478 on page 14) describing the methods and procedures to obtain homologous and heterologous IVF of bovine oocytes. Firstly, it is mentioned here (in line 460) that COCs were co-incubated with selected sperm without removing the cumulus cells. However, the results of the sperm penetration experiment indicated otherwise. Figures 2 and 3 show that the oocytes were denuded of cumulus cells. Secondly, it is very worrisome and troublesome to read what is written in line 468 on page 14 that "...from other species (cat, human, mouse, and rabbit)." One wonders where the cat and rabbit came from. Again, it appears that this paragraph was directly copied and pasted from previously published work.

      Cat sperm was used in this manuscript and it is correctly indicated in every section and figures. About IVF and EZPT protocols, in the protocol of IVF for bovine oocytes, COCs were used without removing the cumulus cells. For the EZPT cumulus cells were removed, this is described in the following sections of the material and methods. The word rabbit was a mistake and it has been removed.

      (17) In lines 468 to 469 on page 14, it is mentioned that "Sperm-egg interactions were assessed through a sperm-ZP binding assay...". The authors only examined sperm penetration in their study. Therefore, this needs to be specified in the Materials and Methods. Secondly, the authors did not use the conventional sperm-ZP binding assay in their study. Instead, they used the EZPT in their study. There appear to be many inconsistencies throughout the manuscript.

      When the IVF experiments using bovine COCs were done (Fig 2A and C, Fig 1S to 3S, and Tables 1S to 4S) conventional sperm-egg interaction was assessed at 2.5 hours after IVF. EZPT was used in the rest of experiments. IVF with COCs and EZPT with ZPs are different experiments.

      (18) Lines 480 to 489 on page 15 under the sub-heading of "In vitro culture of presumptive zygotes to first cleavage embryos on Day 2" do not provide the correct methodology used for obtaining the results presented in the manuscript. In line 482, it is not clear where the "synthetic oviductal fluid" came from. In fact, in the Results section, none of the results came from the use of synthetic oviductal fluid. In line 487, humans and rabbits are mentioned here. However, human and rabbit oocytes were not used in the present study. It is very strange indeed to read human and rabbit in the sentence.

      SOF reference is now included. Human results are in Fig 1A; the sentence is referred about the cultures of bovine oocytes inseminated with sperm of bull, human, mouse or cat). Rabbit word is a mistake and is now eliminated of the manuscript.

      (19) In line 500 on page 15, what do the authors mean by "Each oviduct was strengthen by removing the adjacent tissue..."?

      The sentence has been modified.

      (20) On page 15 in the Materials and Methods, the authors described the collection of bovine and mouse oviductal fluid. However, there is no mention of human oviductal fluid and how it was collected. This important information is missing.

      We have not use human oviductal fluid in this manuscript.

      (21) Line 510 on page 15: The sub-heading of "Preparation of empty zonae pellucidae from bovine ovarian oocytes" should be rephrased. As pointed out earlier in my review, the ZPs prepared by the authors were intact and not "empty". It was the oocyte which was empty after extraction of the ooplasm.

      Everything except the ZP were removed from the oocyte, this is now clarified in the manuscript.

      (22) Line 518 on page 16 and line 553 on page 17: "Figure S5" should be "Figure 4S".

      Done

      (23) Line 538 and line 547 on page 16: "mice oocytes" should be "mouse oocytes".

      Done

      (24) On page 17, the procedures for in vitro fertilization, sperm penetration, and binding assessment in mice were described here in lines 560 to 574. Several problems are noted in this paragraph as listed below:<br /> a. As mentioned earlier the authors in the present manuscript mixed up sperm penetration and sperm binding which are two separate events. Based on the results presented in the manuscript, they represent sperm penetration and not sperm binding. Therefore, the authors need to precisely explain in the manuscript whether the results presented refer to sperm penetration or sperm binding.

      Both sperm penetration and binding have been analyzed in this work.

      b. In line 570 on page 17, the term "insemination" is wrongly used here. Insemination is the introduction of semen into the female reproductive tract either through sexual intercourse or through an instrument. The procedure used in the present study was carried out in vitro in a co-incubation manner and not by transferring sperm into the female reproductive tract.

      The word insemination has been changed to incubation

      c. Information regarding procedures for treatment with various oviductal fluid and OVGP1s are all missing in the Materials and Methods.

      This information is now in M&M

      d. The concentrations of various oviductal fluids and OVGP1s used and the number of ZPs used in each incubation are also missing.

      Concentrations are now indicated in the manuscript. All the numbers and ZPs used are indicated in supplementary figures.

      (25) Lines 577 to 603 on pages 17 to 18: Were recombinant bovine and murine glycoproteins prepared using the same methodology? In line 595 on page 18, it is stated that "Supernatant was saved in subsequent experiments." It is not clear exactly what experiments the supernatant was subsequently used in.

      Details about how the bovine and murine glycoproteins were prepared are now included. Sentence about subsequent experiment is delete; supernatant was used for the next steps of protein purification.

      (26) What is being described in lines 604 to 609 on page 18 is problematic. The paragraph starts by saying that "Human recombinant oviductin was obtained from Origene Technologies....". Strangely, the paragraph continues by saying that the recombinant proteins were produced by transfection in HEK293T...". If recombinant human OVGP1 had already been obtained from Origene Technologies, why did the authors want to produce it again? It does not make sense.

      We briefly described the method that Origene used for the production of the human recombinant OVGP1

      (27) In lines 626 to 627 on page 18, it is stated that "Zonae pellucidae previously incubated with OVGP1 proteins from several species and murine oviductal fluid...". Were the zonae pellucidae previously incubated with only murine oviductal fluid or also with others?

      It was only incubated with OVGP1 or with oviductal fluid, this is now clarified in the text.

      (28) In lines 638 and 639 on page 19, can the authors please explain the difference between "endogenous OVGP1 and bOVGP1" and "exogenous recombinant hOVGP1 and mOVGP1"?

      This is now clarified

      (29) As stated in lines 676 to 679 on page 20, statistical analysis was performed in the study. Strangely, no "n" numbers and p values were provided in any of the figures that require statistical analysis. This is problematic.

      Statistical analysis and significant differences are now included in the figures, all the numbers used are included in the supplementary tables that are related with the figures.

      There are also many errors noted in the Figure Legends. These concerns raise questions regarding the reliability of the findings and interpretation of the results. Some major ones that require attention are listed below:

      (30) Figure legend 1 on page 27: In line 912, where did the "cat sperm" come from? In line 913, where did the "feline sperm" come from? In line 918, as pointed out earlier, the term "empty zona penetration test (EZPT)" is a misnomer and should be replaced with a better term. In line 924, it is stated that "Note sperm only appear outside the zona." However, no sperm can be seen outside the zona pellucida shown in Figure 1.

      Cat sperm is used in this manuscript. Term EZPT is now clarified The sentence about sperm outside of ZP is removed

      (31) Figure legend 2 on page 27 (lines 928 to 940) needs to be rewritten. Some of the sentences are not clearly written. Authors, please check all the capital labeling letters some of which appear to be wrong.

      Done

      (32) As is written, Figure legend 3 on pages 28 and 29 (lines 943 to 959) presents many problems:

      a. Contrary to what is stated in the figure legend, not all five regions are present in the hOVGP1, mOVGP1, and bOVGP1.

      Done

      b. Contrary to what is stated in line 946, region D is not conserved in the mouse and bull as shown in Figure 3A, and region C is not present only in the mouse.

      Done

      c. Based on what is shown in Figure 3A, region E is present only in the mouse and not in the human.

      Done

      d. What is stated in line 951 that "Proteins were expressed in mammalian cells..." is not correct. Based on the information provided in the manuscript, recombinant human OVGP1 was obtained from Origene Technologies and was not expressed in mammalian cells as claimed.

      All the recombinant proteins were produced in mammalian cells.

      (33) Figure legend 6 on page 28: In lines 985 to 986, what do the authors mean by "...and combinations of the three oviductins with sperm of the three species."? As is written, it appears that the bovine ZPs were pretreated with a combination of all three oviductins and then co-incubated with sperm from the bull, mouse and human together.

      We have clarified this sentence

      (34) What is described in the figure legend for the supplemental figure (Figure S7) does not make sense.

      Legend of Fig S7 (now S8) is related to pictures A to E, the legend is now clarified.

      (35) In addition to the figures and supplemental figures provided in the manuscript, there is also an additional figure labeled with "Model" showing three diagrams. Strangely, there is no mention of this additional figure in the manuscript. There is no figure legend for or description of this figure. It is not clear what is being shown in this figure, and it is not clear about the purpose of the use of this figure.

      We have included a legend to the model that is now Figure 10.

    1. A dialogue tag tells who is speaking.

      Sometimes a dialogue tag is unneeded because of clarity through context, meaning that the context of the conversation makes it clear who is speaking. This can appear in back-and-forth conversation between characters.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This manuscript describes the impact of modulating signaling by a key regulatory enzyme, Dual Leucine Zipper Kinase (DLK), on hippocampal neurons. The results are interesting and will be important for scientists interested in synapse formation, axon specification, and cell death. The methods and interpretation of the data are solid, but the study can be further strengthened with some additional studies and controls.

      We greatly appreciate the thorough review and thoughtful suggestions from the reviewers and editors on our original manuscript. We provide point-to-point response below.  We added new studies on P10 mice and controls as suggested, and made revision of figures and texts for clarification. The revised manuscript includes three new supplemental figures; major text revision is copied under response.

      Reviewer #1 (Public Review):

      Summary:

      In this work, Ritchie and colleagues explore functional consequences of neuronal over-expression or deletion of the MAP3K DLK that their labs and others have strongly implicated in both axon degeneration, neuronal cell death, and axon regeneration. Their recent work in eLife (Li, 2021) showed that inducible over-expression of DLK (or the related LZK) induces neuronal death in the cerebellum. Here, they extend this work to show that inducible over-expression in Vglut1+ neurons also kills excitatory neurons in hippocampal CA1, but not CA3. They complement this very interesting finding with translatomics to quantify genes whose mRNAs are differentially translated in the context of DLK over-expression or knockout, the latter manipulation having little to no effect on the phenotypes measured. The authors note that several genes and pathways are differentially regulated according to whether DLK is over-expressed or knocked out. They note DLK-dependent changes in genes related to synaptic function and the cytoskeleton and ultimately relate this in cultured neurons to findings that DLK over-expression negatively impacts synapse number and changes microtubules and neurites, though with a less obvious correlation.

      Strengths:

      This work represents a conceptual advance in defining DLK-dependent changes in translation. Moreover, the finding that DLK may differentially impact neuronal death will become the basis for future studies exploring whether DLK contributes to differential neuronal susceptibility to death, which is a broadly important topic.

      We thank the reviewer for the comments on the value of our work.

      Weaknesses:

      This seems like two works in parallel that the authors have not yet connected. First is that DLK affects the translation of an interesting set of genes, and second, that DLK(OE) kills some neurons, disrupts their synapses, and affects neurite growth in culture.

      Specific questions:

      (1) Is DLK effectively knocked out? The authors reference the floxxed allele in their 2016 work (PMID: 27511108), however, the methods of this paper say that the mouse will be characterized in a future publication. Has this ever been published? The major concern is that here the authors show that Cre-mediated deletion results in a smaller molecular weight protein and the maintenance of mRNA levels.

      We apologize for out-of-date citation of the DLK(cKO)<sup>fl/fl</sup> mice.  The DLK(cKO)<sup>fl/fl</sup> mice have been published in (Li et al., 2021; Saikia et al., 2022); excision of the flox-ed exon was verified using several Cre drivers (Pv-Cre, AAV-Cre, and VGlut1-Cre in this study).  The flox-ed exon contains the initiation ATG and 148 amino acids.  By western blot analysis using antibodies against C-terminal peptides of DLK on cerebellar extracts (in Li et al., 2021) and hippocampal extracts (this study), the full-length DLK protein was significantly reduced (Fig 1A-B); DLK is expressed in other hippocampal cells, in addition to glutamatergic neurons, explaining remaining full-length DLK detected. 

      Our Ribo-seq of VGlut1-Cre; DLK(cKO)<sup>fl/fl</sup> detected remaining Dlk mRNAs lacking the floxed exon (Fig.S1C), which has several candidate ATG at amino acid 223 and after (Fig.S1C1). We detected a very faint band for smaller molecular weight proteins on western blots, only when the membrane was exposed under 5X longer exposure using Pico PLUS Chemiluminescent Substrate (Thermo Scientific, 34580) and a Licor Odyssey XF Imager (revised Fig. S1B). This smaller molecular weight protein might be produced using any candidate ATGs, but would represent an N-terminal truncated DLK protein lacking the ATP binding site and ~1/4 of the kinase domain, i.e. not a functional kinase. 

      The revised manuscript has updated citation for DLK(cKO)<sup>fl/fl</sup>. Revised Fig.S1B includes images of a western blot under normal exposure vs longer exposure of western blots using anti-DLK antibodies. New Fig.S1C1 shows effects of floxed exon on DLK.

      (2) Why does DLK(OE) not kill CA3 neurons? The phenomenon is clear but there is no link to gene expression changes. In fact, the highlighted transcript in this work, Stmn4, changes in a DLK-dependent manner in CA3.

      We agree that this is a very interesting question not answered by our gene expression analysis.  While we verified Stmn4 expression levels to correlate to the levels of DLK, we do not think that increased Stmn4 per se in DLK(iOE) is a major factor accounting for CA1 death vs CA3 survival. Several published studies have also reported regulation of Stmn4 mRNAs in other cell types, in the contexts of cell death (Watkins et al., 2013; Le Pichon et al., 2017) and axon regeneration and cytoskeleton disruption (Asghari Adib et al., 2024; DeVault et al., 2024; Hu et al., 2019;  Shin et al., 2019). As Stmns have significant expression and function redundancy, conventional knockdown or overexpression of individual Stmn generally does not lead to detectable effects on cellular function. As CA3 neurons are widely known for their dense connections and show resilience to NMDA-mediated neurotoxicity (Sammons et al., 2024; Vornov et al., 1991), we speculate that the differential vulnerability of CA1 and CA3 under DLK(iOE) is a reflection of both the intrinsic property, such as gene expression, and also their circuit connection. 

      In the revised manuscript, we have included following statement on pg 18:

      ‘While our data does not pinpoint the molecular changes explaining why CA3 would show less vulnerability to increased DLK, we may speculate that DLK(iOE) induced signal transduction amplification may differ in CA1 vs CA3. CA1 genes appear to be more strongly regulated than CA3 genes, consistent with our observation that increased c-Jun expression in CA1 is greater than that in CA3. Other parallel molecular factors may also contribute to resilience of CA3 neurons to DLK(iOE), such as HSP70 chaperones, different JNK isoforms, and phosphatases, some of which showed differential expression in our RiboTag analysis of DLK(iOE) vs WT (shown in File S2. WT vs DLK(iOE) DEGs). Together with other genes that show dependency on DLK, the DLK and Jun regulatory network contributes to the regional differences in hippocampal neuronal vulnerability under pathological conditions.’

      Further we state in ‘Limitation of our study’ on pg 20:

      ‘Our analysis also does not directly address why CA3 neurons are less vulnerable to increased DLK expression. Future studies using cell-type specific RiboTag profiling and other methods at a refined time window will be required to address how DLK dependent signaling interacts with other networks underlying hippocampal regional neuron vulnerability to pathological insults.’

      We hope our data will stimulate continued interests for testable hypothesis in future studies.

      (3) Why are whole hippocampi analyzed to IP ribosome-associated mRNAs? The authors nicely show a differential effect of DLK on CA1 vs CA3, but then - at least according to their methods ¬- lyse whole hippocampi to perform IP/sequencing. Their data are therefore a mix of cells where DLK does and does not change cell death. The key issue is whether DLK does/does not have an effect based on the expression changes it drives.

      At the time of planning the Ribo-Tag experiment several years ago, we focused on the hippocampal glutamatergic neurons. Due to technical difficulty in micro-dissecting individual hippocampal regions from this early timepoint, we opted to use whole hippocampi to isolate ribosome-associated mRNAs. We agree with the reviewer that it is important to sort out DLK-dependent general gene expression changes vs those specific to a particular cell type where DLK impacts its survival. With emerging CA1, CA3 and other cell-type specific Cre drivers and advanced RNAseq technology, we hope that our work will stimulate broad interest in these questions in future studies. 

      In the revised manuscript, we have included new analysis comparing our Vglut1-RiboTag profiling (P15) with CamK2-RiboTag (for CA1) and Grik4-RiboTag (for CA3) (P42) published in Traunmüller et al., 2023 (GSE209870). We find that >80% of the top ranked genes in their CamK2-RiboTag (for CA1) and Girk4-RiboTag (for CA3) were detected in our VGlut1-RiboTag (revised methods and Supplemental Excel File S3). CA1-enriched genes tended to be expressed higher in DLK(cKO), compared to control, whereas CA3-enriched genes showed less significant correlation to DLK expression levels. Additionally, many genes known to specify CA1 fate do not show significant downregulation in DLK(iOE). This analysis, along with other data in our manuscript, is consistent with an idea that DLK does not regulate neuronal fate.

      In the revised manuscript, we presented this additional analysis in Fig. S6K-L, and expanded text description on page 9:

      ‘Additionally, we compared our Vglut1-RiboTag datasets with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We defined a list of genes enriched in CamK2-expressing CA1 neurons relative to Grik4-expressing CA3 neurons (CA1 genes), and those enriched in Grik4-expressing CA3 neurons (CA3 genes) (File S3). When compared with the entire list of Vglut1-RiboTag profiling in our control and DLK(cKO), we found CA1 genes tended to be expressed more in DLK(cKO) mice, compared to control (Fig.S6K), while CA3 genes showed a slight enrichment in control though the trend was less significant, and were less clustered towards one genotype (Fig.S6L). Moreover, many CA1 genes related to cell-type specification, such as FoxP1, Satb2, Wfs1, Gpr161, Adcy8, Ndst3, Chrna5, Ldb2, Ptpru, and Ntm, did not show significant downregulation when DLK was overexpressed. These observations imply that DLK likely specifically down-regulates CA1 genes both under normal conditions and when overexpressed, with a stronger effect on CA1 genes, compared to CA3 genes. Overall, the informatic analysis suggests that decreased expression of CA1 enriched genes may contribute to CA1 neuron vulnerability to elevated DLK, although it is also possible that the observed down-regulation of these genes is a secondary effect associated with CA1 neuron degeneration’.

      (4) Is the subtle decrease in synapse number (Basson/Homer co-loc.) in the DLK (OE) simply a function of neurons (and their synapses, presumably) having died? At the P15 time point that the authors choose because cell death is minimal, there is still a ~25% reduction in CA1 thickness (Figure 2B), which is larger than the ~15% change in synapses (Figure 5H) they describe.

      We thank reviewer for the question. To address this, we have analyzed synapses in the CA1 region at P10 in DLK(iOE) mice when there was no detectable loss of neurons. At P10, we did not detect significant changes in Bassoon, Homer1, or colocalized puncta in CA1 (Fig.S11A-F). In P15 DLK(iOE) mice, Homer1 puncta were slightly smaller (Fig.5L) and showed a significant decrease in CA1 SR (Fig.5I).

      In the revised manuscript we have also redone our statistical analysis of synapses, using mice rather than ROIs (revised Fig. 5), as recommended by R3. We also analyzed synapses in CA3, and found no significant differences in P10 or P15 (Fig.S12).  We would interpret the data to mean that the effects of DLK(OE) on synapses in CA1 may represent an early step in neuronal death. We hope that future studies will shed clarity on this question.

      Reviewer #2 (Public Review):

      This manuscript describes the impact of deleting or enhancing the expression of the neuronal-specific kinase DLK in glutamatergic hippocampal neurons using clever genetic strategies, which demonstrates that DLK deletion had minimal effects while overexpression resulted in neurodegeneration in vivo. To determine the molecular mechanisms underlying this effect, ribotag mice were used to determine changes in active translation which identified Jun and STMN4 as DLK-dependent genes that may contribute to this effect. Finally, experiments in cultured neurons were conducted to better understand the in vivo effects. These experiments demonstrated that DLK overexpression resulted in morphological and synaptic abnormalities.

      Strengths:

      This study provides interesting new insights into the role of DLK in the normal function of hippocampal neurons. Specifically, the study identifies:

      (1) CA1 vs CA3 hippocampal neurons have differing sensitivity to increased DLK signaling.

      (2) DLK-dependent signaling in these neurons is similar to but distinct from the downstream factors identified in other cell types, highlighted by the identification of STMN4 as a downstream signal.

      (3) DLK overexpression in hippocampal neurons results in signaling that is similar to that induced by neuronal injury.

      The study also provides confirmatory evidence that supports previously published work through orthogonal methods, which adds additional confidence to our understanding of DLK signaling in neurons. Taken together, this is a useful addition to our understanding of DLK function.

      We thank the reviewer for careful reading and positive comments.

      Weaknesses:

      There are a few weaknesses that limit the impact of this manuscript, most of which are pointed out by the authors in the discussion. Namely:

      (1) It is difficult to distinguish whether the changes in the translatome identified by the authors are DLK-dependent transcriptional changes, DLK-dependent post-transcriptional changes or secondary gene expression changes that occur as a result of the neurodegeneration that occurs in vivo. Additional expression analysis at earlier time points could be one method to address this concern.

      We appreciate the reviewer’s comment, and have performed new analysis on c-Jun and p-c-Jun levels in CA1, CA3, and DG in P10 DLK(OE) mice. Our data suggest that in CA3 elevations in p-c-Jun and c-Jun occur separately from cell death in a DLK-dependent manner, though the high elevation of both p-c-Jun and c-Jun in CA1 correlates with cell death.

      The data is presented in revised Fig.S7A,B, and described in revised text on pg 9-10:

      ‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis.’

      Also, on pg.10:

      In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).

      (2) Related to the above, it is difficult to conclusively determine from the current data whether the changes in synaptic proteins observed in vivo are a secondary result of neuronal degeneration or a primary impact on synapse formation. The in vitro studies suggest this has the potential to be a primary effect, though the difference in experimental paradigm makes it impossible to determine whether the same mechanisms are present in vitro and in vivo.

      We appreciate the comment, which is related to R1 point 4. We have performed further analysis and revised the text on pg.12 with the following text:

      ‘To assess effects of DLK overexpression on synapses, we immunostained hippocampal sections from both P10 and P15, with age-matched littermate controls. Quantification of Bassoon and Homer1 immunostaining revealed no significant differences in CA1 SR and CA3 SR and SL in P10 mice of _<_i>Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> and control (Fig.S11A-F, S12A-J). In P15, Bassoon density and size in CA1 SR were comparable in both mice (Fig 5G, H, K), while Homer1 density and size were reduced in DLK(iOE) (Fig.5G,I, L). Overall synapse number in CA1 SR was similar in DLK(iOE) and control mice (Fig.5J). Similar analysis on CA3 SR and SL detected no significant difference from control (Fig.S12M-V).’

      We would interpret the data to mean that the effects of DLK(OE) on synapses in CA1 may represent an early step in neuronal death. We hope that future studies will shed clarity on this question.

      Additionally, to address whether the same mechanisms are present in vitro, we have performed further analysis on cultured hippocampal neurons. As described in the Methods, we made hippocampal neuron cultures from P1 pups of the following crosses:

      For control: Vglut1<sup>Cre/+</sup> X Rosa26<sup>tdT/+</sup> 

      For DLKcKO: Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>  X Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>;Rosa26<sup>tdT/+</sup> 

      For DLKiOE: H11-DLK<sup>iOE/iOE</sup> X Vglut1<sup>Cre/+</sup>;Rosa26<sup>tdT/+</sup> 

      Dissociated cells from a given litter were pooled into the same culture. Because there were different proportions of neurons with our genotype of interest in each culture, it is not simple to know whether DLK was causing significant cell death.

      On pg 13, we stated our observation:

      ‘We did not notice an obvious effect of DLK(iOE) or DLK(cKO) on neuron density in cultures at DIV2. To assess neuronal type distribution in our cultures, we immunostained DIV14 neurons with antibodies for Satb2, as a CA1 marker (Nielsen et al., 2010), and Prox1, as a marker of DG neurons (Iwano et al., 2012). We did not observe significant differences in the proportion of cells labeled with each marker in DLK(cKO) or DLK(iOE) cultures (Fig.S13E). These data are consistent with the idea that DLK signaling does not have a strong role in neuron-type specification both in vivo and in vitro’.

      (3) The phenotype of DLK cKO mice is very subtle (consistent with previous reports) and while the outcome of increased DLK levels is interesting, the relevance to physiological DLK signaling is less clear. What does seem possible is that increased DLK may phenocopy other neuronal injuries but there are no real comparisons to directly address this in the manuscript. It would be helpful for the authors to provide this analysis as well as a table with all of the translational changes along with fold changes.

      Thank you for the suggestion. The fold changes of genes showing significantly altered expression in DLK(cKO) and DLK(iOE) are provided in the excel files (Supplementary excel File S1 WT vs DLK(cKO) DEGs and File S2. WT vs DLK(iOE) DEGs, highlighted columns B and F).  

      On pg 6, we revised the text as following to include comparison of DLK levels in other physiological conditions and our mice:

      ‘Several studies have reported that DLK protein levels increase under a variety of conditions, including optic nerve crush (Watkins et al., 2013), NGF withdrawal (~2 fold) (Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017), and sciatic nerve injury (Larhammar et al., 2017). Induced human neurons show increased DLK abundance about ~4 fold in response to ApoE4 treatment (Huang et al., 2019). Increased expression of DLK can lead to its activation through dimerization and autophosphorylation (Nihalani et al., 2000)’.

      And,

      ‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’

      In Discussion, we state (pg. 16): ‘The levels of DLK in our DLK(iOE) mice model appear comparable to those reported under traumatic injury and chronic stress.’

      (4) For the in vivo experiments, it is unclear whether multiple sections from each animal were quantified for each condition. More information here would be helpful and it is important that any quantification takes multiple sections from each animal into account to account for natural variability.

      We apologize this was unclear in the original manuscript.

      In the revised methods, under Confocal imaging and quantification (pg 33), we stated: “For brain tissue, three sections per mouse were imaged with a minimum of three mice per genotype for data analysis.”

      In revised figure legends, we made it clear that multiple sections from each animal have been used for quantification in all instances, i.e. “Each dot represents averaged thickness from 3 sections per mouse, N≥4 mice/genotype per timepoint.” 

      In Fig.1F-H: “Each dot represents averaged intensity from 3 sections per mouse”

      In Fig.S3B “Data points represent individual mice, averages taken across 3 sections per mouse”

      Reviewer #3 (Public Review):

      Dr Jin and colleagues revisit DLK and its established multifactorial roles in neuronal development, axonal injury, and neurodegeneration. The ambitious aim here is to understand the DLK-dependent gene network in the brain and, to pursue this, they explore the role of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. They produce evidence that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear unaffected. Then they identify the DLK-dependent translatome featured by conserved molecular signatures and cell-type specificity. Their evidence suggests that increased DLK signaling is associated with possible STMN4 disruptions to microtubules, among else. They also produce evidence on cultured hippocampal neurons showing that expression levels of DLK are associated with changes in neurite outgrowth, axon specification, and synapse formation. They posit that downstream translational events related to DLK signaling in hippocampal glutamatergic neurons are a generalizable paradigm for understanding neurodegenerative diseases.

      Strengths

      This is an interesting paper based on a lot of work and a high number of diverse experiments that point to the pervasive roles of DLK in the development of select glutamatergic hippocampal neurons. One should applaud the authors for their work in constructing sophisticated molecular cre-lox tools and their expert Ribotag analysis, as well as technical skill and scholarly treatment of the literature. I am somewhat more skeptical of interpretations and conclusions on spatial anatomical selectivity without stereological approaches and also going directly from (extremely complex) Ribotag profiling patterns to relevance based on immunohistochemistry and no additional interventions to manipulate (e.g. by knocking down or blocking) their top Ribotag profile hits. Also, it seems to this reviewer that major developmental claims in the paper are based on gene translational profiling dependent on DLK expression, not DLK activation, despite some evidence in the paper that there is a correlation between the two. Therefore, observed patterns and correlations may or may not be physiologically or pathologically relevant. Generalizability to neurodegenerative diseases is an overreach not justified by the scope, approach, and findings of the paper.

      We thank the reviewer for the encouraging and constructive comments on the manuscript.

      Weaknesses and Suggestions:

      The authors state that the rationale for the translatomic studies is to "to gain molecular understanding of gene expression associated with DLK in glutamatergic neurons" and to characterize the "DLK-dependent molecular and cellular network", However, a problem with the experimental design is the selection of an anatomical region at a time point featured by active neurodegeneration. Therefore, it is not straightforward that the differentially expressed genes or pathways caused by DLK overexpression changes could be due to processes related to neurodegeneration. Indeed, the authors find enrichment of signals related to pathways involved in extracellular matrix organization, apoptosis, unfolded protein responses, the complement cascade, DNA damage responses, and depletion of signals related to mitochondrial electron transport, etc., all of which could be the consequence of neurodegeneration regardless of cause. A more appropriate design to discover DLK-dependent pathways might be to look at a region and/or a time point that is not confounded by neurodegeneration.

      We appreciate reviewer’s comment. We included our thoughts in ‘Limitation of the study’ (pg 20):

      ‘Future studies using cell-type specific RiboTag profiling and other methods at a refined time window will be required to address how DLK dependent signaling interacts with other networks underlying hippocampal regional neuron vulnerability to pathological insults.’

      In a related vein, the authors ask "if the differentially expressed genes associated with DLK(iOE) might show correlation to neuronal vulnerability" and, to answer this question, they select the set of differentially expressed genes after DLK overexpression and assess their expression patterns in various regions under normal conditions. It looks to me that this selection is already confounded by neurodegeneration which could be the cause for their downregulation. Therefore, such gene profiles may not be directly linked to neuronal vulnerability. A similar issue also relates to the conclusion that "...the enrichment of DLK-dependent translation of genes in CA1 suggests that the decreased expression of these genes may contribute to CA1 neuron vulnerability to elevated DLK".

      We agree with the reviewer’s concern that it is difficult to separate neurodegenerative consequences from changes caused by DLK solely based on our translatomics studies on P15 DLK(iOE) mice.  As responded to reviewer 1 (point 4) and reviewer 2 (point 1), we have included new analysis of P10 mice (Fig.S7A,B) when neurons did not show detectable sign of degeneration.

      We consider several lines of evidence supporting that some differentially expressed genes in DLK(iOE) vs control may likely be specific for increased DLK signaling.

      First, the genes identified in DLK(iOE) vs control represent a small set of genes (260), which is comparable to other DLK dependent datasets (Asghari Adib et al., 2024) but shows cell-type specificity.

      Second, our analysis using rank-rank hypergeometric overlap (RRHO) detects a significant correlation between upregulated genes from DLK(iOE) vs downregulated genes in DLK(cKO), and vice versa, suggesting that expression of a similar set of genes is depended on DLK (Fig.3C, S6C-E). Consistently, GO term analysis using the list of genes coordinately regulated by DLK, derived from our RRHO analysis, leads to identification of similar GO terms related to up- and downregulated genes as using DLK(iOE)-RiboTag data alone. SynGO analysis of DLK(iOE) regulated genes and DLK(cKO) regulated genes also identified similar synaptic processes regulated by significantly regulated genes (Fig.3F and S6J).  

      Third, we performed additional analysis comparing our Vglut1-RiboTag dataset with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We observed >80% overlap among the top ranked genes (revised Methods). We described this analysis on pg 9 and Fig. S6K-L (and Supplemental Excel File S3):

      ‘Additionally, we compared our Vglut1-RiboTag datasets with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We defined a list of genes enriched in CamK2-expressing CA1 neurons relative to Grik4-expressing CA3 neurons (CA1 genes), and those enriched in Grik4-expressing CA3 neurons (CA3 genes) (File S3). When compared with the entire list of Vglut1-RiboTag profiling in our control and DLK(cKO), we found CA1 genes tended to be expressed more in DLK(cKO) mice, compared to control (Fig.S6K), while CA3 genes showed a slight enrichment in control though the trend was less significant, and were less clustered towards one genotype (Fig.S6L). Moreover, many CA1 genes related to cell-type specification, such as FoxP1, Satb2, Wfs1, Gpr161, Adcy8, Ndst3, Chrna5, Ldb2, Ptpru, and Ntm, did not show significant downregulation when DLK was overexpressed. These observations imply that DLK likely specifically down-regulates CA1 genes both under normal conditions and when overexpressed, with a stronger effect on CA1 genes, compared to CA3 genes. Overall, the informatic analysis suggests that decreased expression of CA1 enriched genes may contribute to CA1 neuron vulnerability to elevated DLK, although it is also possible that the observed down-regulation of these genes is a secondary effect associated with CA1 neuron degeneration.’

      To understand the role and relevance of the DLK overexpression model, there should be a discussion of to what extent it corresponds to endogenous levels of DLK expression or DLK-MAPK pathway activation under baseline or pathological conditions.

      We appreciate the suggestion, which is similar to R2 point 3. We have revised the text and discussion to include how DLK levels may be altered in other physiological conditions vs our mice.

      Pg. 6: ‘Several studies have reported that DLK protein levels increase under a variety of conditions, including optic nerve crush (Watkins et al., 2013), NGF withdrawal (~2 fold) (Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017), and sciatic nerve injury (Larhammar et al., 2017). Induced human neurons show increased DLK abundance about ~4 fold in response to ApoE4 treatment (Huang et al., 2019). Increased expression of DLK can lead to its activation through dimerization and autophosphorylation (Nihalani et al., 2000)’.

      And,

      ‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’

      In Discussion (pg. 16): ‘The levels of DLK in our DLK(iOE) mice model appear comparable to those reported under traumatic injury and chronic stress.’

      The authors posit that "dorsal CA1 neurons are vulnerable to elevated DLK expression, while neurons in CA3 appear largely resistant to DLK overexpression". This statement assumes that DLK expression levels start at a similar baseline among regions. Do the authors have any such data? Ideally, they should show whether DLK expression and p-c-Jun (as a marker of downstream DLK signaling) are the same or different across regions in both WT and overexpression mice. For example, what are the DLK/p-c-Jun expression levels in regions other than CA1 in Supplementary Figures 2-3 and how do they compare with each other? Normalization to baseline for each region does not allow such a comparison. Also, in Supplementary Figure 6, analyses and comparisons between regions are done at a time point when degeneration has already started. Ideally, these should be done at P10.

      We thank the reviewer for raising these points. In the revised manuscript we have included protein expression analysis of DLK (Fig S3), c-Jun, and p-c-Jun at P10 (Fig. S7).

      We provided a quantification of DLK immunostaining intensity in CA1 and CA3 in Fig.S3D,E and find roughly comparable levels between regions.

      Pg. 6: ‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’

      We provided our quantifications without normalization to baseline in each region for c-Jun and p-c-Jun, and revised the text accordingly:

      Pg. 9-10: ‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis’.

      Pg. 10: ‘In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).

      Illustration of proposed selective changes in hippocampal sector volume needs to be very carefully prepared in view of the substantial claims on selective vulnerability. In 2A under P15 and especially P60, it is difficult to see the difference - this needs lower magnification and a lot of care that anteroposterior levels are identical because hippocampal sector anatomy and volumes of sectors vary from level to level. One wonders if the cortex shrinks, too. This is important.

      Thank you for raising the point. We have provided images to view the anteroposterior level in Fig.S2A-C. We have noticed cortex in DLK(OE) mice to become thinner, along with expansion of ventricles in some animals at later timepoints (Fig.S2C).

      One cannot be sure that there is selective death of hippocampal sectors with DLK overexpression versus, say, rearrangement of hippocampal architecture. One may need stereological analysis, otherwise this substantial claim appears overinterpreted.

      We appreciate the comment.

      In the revised manuscript, we included a new supplemental figure (Fig. S2) showing lower magnification images of coronal sections, and used cautionary wording, such as ‘CA3 is less vulnerable, compared to CA1’, to minimize the impression of over-interpretation.  By NeuN staining, at P10, P15, P60, we did not observe detectable difference in overall hippocampus architecture, apart from noted cell death of CA1 and DG and associated thinning of each of the layers. At 46 weeks, some animals showed differences in the overall shape of dorsal hippocampus, though this appeared to reflect a disproportionately large CA3 region compared to other regions (Fig S2). Increased GFAP staining (Fig.S5A-C) was detected in CA1 but not in CA3, and microglia by IBA1 staining (Fig.S5E) also displayed less reactivity in CA3, compared to CA1. Thus, based on NeuN staining, GFAP staining, IBA1 staining and analysis of the differentially regulated genes, we infer that the effect of DLK(iOE) in CA1 is different than the effect on CA3.

      Is the GFAP excess reflective of neuroinflammation? What do microglial markers show? The presence of neuroinflammation does not bode well with apoptosis. Speaking of which, TUNEL in one cell in Supplementary Figure 4E is not strong evidence of a more widespread apoptotic event in CA1.

      We have included staining data for the microglia marker IBA1. Both GFAP and IBA1 showed evidence of reactivity particularly in the CA1 region (S5A-E), supporting the differential vulnerability in different regions, though whether cell death is primarily due to apoptosis is unclear.

      We agree that our data of sparse TUNEL staining at P15 (Fig S5F,G) do not rule out whether other mechanisms of cell death may also occur.  We have included this in our limitations (pg.20) “While we find evidence for apoptosis, other forms of cell death may also occur.”

      In several places in the paper (as illustrated in Figure 4B, Supplementary Figure 2B, etc.): the unit of biological observation in animal models is typically not a cell, but an organism, in which averaged measures are generated. This is a significant methodological problem because it is not easy to sample neurons without involving stereological methods. With the approach taken here, there is a risk that significance may be overblown.

      We appreciate the reviewer’s point. We used same region for quantification of RNAscope, genotype-blind when possible. We revised the graphs to show mean values for individual mice in Fig.4B, 4C, and Fig.S3B (previously Fig.S2B).

      Other Comments and Questions:

      Supplementary Figure 9: The authors state that data points are shown for individual ROIs - ideally, they should also show averages for biological replicates. Can the authors confirm that statistical analyses are based on biological replicates (mice) and not ROIs?

      We have revised the graphs to show averages from individual mice in Fig.5B-D, F5E-F (previously Fig.S9G-I), Fig.5H-J, and Fig.5K-L (previously Fig.S9J-L)  and Fig.S10B,C,E,F (previously Fig.S9B,C, E,F). The statistical analyses are based on biological replicates of mice.

      For in vitro experiments, what is the effect of DLK overexpression on neuronal viability and density? Could these variables confound effects on synaptogenesis/synapse maturation?

      As described in the Methods, we made hippocampal neuron cultures from P1 pups of the following crosses:

      For control: Vglut1<sup>Cre/+</sup> X Rosa26<sup>tdT/+</sup> 

      For DLKcKO: Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>  X Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>;Rosa26<sup>tdT/+</sup> 

      For DLKiOE: H11-DLK<sup>iOE/iOE</sup> X Vglut1<sup>Cre/+</sup>;Rosa26<sup>tdT/+</sup> 

      Dissociated cells from a given litter were pooled into the same culture. Because there were different proportions of neurons with our genotype of interest in each culture, it is not simple to know whether DLK was causing significant cell death.

      On pg 13, we stated our observation:

      ‘We did not notice an obvious effect of DLK(iOE) or DLK(cKO) on neuron density in cultures at DIV2. To assess neuronal type distribution in our cultures, we immunostained DIV14 neurons with antibodies for Satb2, as a CA1 marker (Nielsen et al., 2010), and Prox1, as a marker of DG neurons (Iwano et al., 2012). We did not observe significant differences in the proportion of cells labeled with each marker in DLK(cKO) or DLK(iOE) cultures (Fig.S13E). These data are consistent with the idea that DLK signaling does not have a strong role in neuron-type specification both in vivo and in vitro’.

      We cannot rule out whether variable factors in our cultures may confound effects on synaptogenesis/synapse maturation, and would hope future studies will shed clarity.

      Correlations between c-jun expression and phosphorylation are extremely important and need to be carefully and convincingly documented. I am a bit concerned about Supplementary Figure 6 images, especially 6B-CA1 (no difference between control and KO, too small images) and 6D (no p-c-Jun expression at all anywhere in the hippocampus at P15?).

      At P10, P15, and P60 we stained for p-c-Jun using the Rabbit monoclonal p-c-Jun (Ser73) (D47G9) antibody from Cell Signaling (cat# 3270) at a 1:200 dilution and imaged using an LSM800 confocal microscope with a 20x objective. We observed p-c-Jun to be quite low generally in control animals. We have replaced the images in Fig.S7F (previously S6D), and adjusted the brightness/contrast to enable better visualization of the low signal in Fig.S7B,D,F (previously Fig.S6B,D).

      We revised our text to present the data carefully as stated above:

      Pg. 9-10: ‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis’.

      Pg. 10: ‘In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).

      Recommendations for the authors:

      Several major and minor reservations were raised. The major issues are the need for more information about the over-expression of DLK and a need to extrapolate to an in vivo condition with DLK. A considerable amount of useful information is presented with some very nicely done experiments but it is not yet a coherent or integrated story. The lack of impact of DLK overexpression in some neurons is perhaps the most impactful observation of the study and would be great to have more information around the differential transcriptional/signaling response in these cell types. There is also a need for more experimental details and to address several questions about the mouse genetic and translatome analysis. They are valid concerns that require attention by the authors.

      We thank the editors and reviewers for their thoughtful evaluation and suggestions.  We hope that the editors and reviewers find that the new data and text changes in our revised manuscript, along with above point-to-point response, have addressed the concerns and strengthened our findings.

      Minor points:

      (1)The authors state that deletion of DLK has no effect on CA1 at 1yr, however, the image of CA1 in Figure S1D shows substantially fewer NeuN+ neurons. Is this a representative field of view?

      We have re-examined images, and observed no effect on hippocampal morphology at 1 yr. We now included representative images in the revised Fig S1D.

      (2) Is the DLK protein section staining in Figure 2C a real signal? The staining looks like speckles and is purely somatic. Axonal staining is widely expected based on the literature and the authors' own work. There should be a specificity control.

      To our knowledge, axonal staining of DLK reported in the literature is mostly based on cultured DRG neurons. In addition to the reported axonal localization, DLK is present in the cell soma, near the golgi (Hirai et al., 2002), and in the post-synaptic density (Pozniak et al., 2013).

      In the revised manuscript, we addressed this point by including controls with no primary antibody, and using an antibody against the closely related kinase, LZK. These additional data are shown in (Fig.S3C,D) (previously Fig.S2C), supporting that DLK protein staining represents real signal.  At P10 and P15, DLK immunostaining around CA3 showed axonal staining of the mossy fibers, as well as in the soma and dendritic layers (Fig.S3C,D). A similar pattern was also seen in primary cultured neurons (Fig 6A).

      (3) The protein expression of DLK in the transgenic overexpressor (Figure S7C) looks, to the resolution of this blot, to be at least 50kD heavier than 'WT' DLK. Can the authors explain this discrepancy?

      The Cre-induced DLK(iOE) transgene has T2A and tdTomato in-frame to C-terminus of DLK. It is known that T2A ‘self-cleavage’ is often incomplete. DLK-T2A-tdTomato would be about 50 kD bigger than WT DLK. We now include the transgene design in revised Fig S1D, and also stated in figure legend of Fig.S8C (previously S7C) that ‘Larger molecular weight band of DLK in Vglut1<sup>Cre/+</sup>;H11-DLKiOE/+ would match the predicted molecular weight of DLK-T2A-tdTomato if T2A-peptide induced ‘self-cleavage’ due to ribosomal skipping is ineffective (Fig.S1D).’

      (4) Expression changes in DLK affect various aspects of neurites in CA1 cultures (Figure 6), and changes in DLK also modestly affect STMN4 (and 2, perhaps indirectly) levels (Figure S7C), but there is no indication that DLK acts via STMN4 to cause these changes. It is not clear what to make of these data. Of note, Stmn4 levels change in response to DLK in CA3, without DLK affecting cell death in this region.

      We appreciate and agree with the comment. Other studies (Asghari Adib et al., 2024; DeVault et al., 2024; Hu et al., 2019; Larhammar et al., 2017; Le Pichon et al., 2017; Shin et al., 2019; Watkins et al., 2013) reported expression changes in Stmn4 mRNAs in other cell types and cellular contexts, which appeared to depend on DLK. Hippocampal neurons express multiple Stmns (Fig.S8A). While we present our analysis on the effects of DLK dosage on Stmn4, and also Stmn2, we do not think that DLK-induced changes of Stmn4 expression per se is a major factor underlying CA1 cell death vs CA3 survival.

      In the revised manuscript, we addressed this point in ‘Limitation of our study’ (pg 20):

      ‘Additional experiments will be needed to elucidate in vivo roles of STMN4 and its interaction with other STMNs’.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review):  

      Summary:  

      The study by Pudlowski et al. investigates how the intricate structure of centrioles is formed by studying the role of a complex formed by delta- and epsilon-tubulin and the TEDC1 and TEDC2 proteins. For this, they employ knockout cell lines, EM, and ultrastructure expansion microscopy as well as pull-downs. Previous work has indicated a role of delta- and epsilon-tubulin in triplet microtubule formation. Without triplet microtubules centriolar cylinders can still form, but are unstable, resulting in futile rounds of de novo centriole assembly during S phase and disassembly during mitosis. Here the authors show that all four proteins function as a complex and knockout of any of the four proteins results in the same phenotype. They further find that mutant centrioles lack inner scaffold proteins and contain an extended proximal end including markers such as SAS6 and CEP135, suggesting that triplet microtubule formation is linked to limiting proximal end extension and formation of the central region that contains the inner scaffold. Finally, they show that mutant centrioles seem to undergo elongation during early mitosis before disassembly, although it is not clear if this may also be due to prolonged mitotic duration in mutants.  

      Strengths:  

      Overall this is a well-performed study, well presented, with conclusions mostly supported by the data. The use of knockout cell lines and rescue experiments is convincing.  

      Weaknesses:  

      In some cases, additional controls and quantification would be needed, in particular regarding cell cycle and centriole elongation stages, to make the data and conclusions more robust. 

      We thank the reviewer for these comments and have improved our analyses of these as detailed below.

      Reviewer #2 (Public Review):  

      Summary:  

      In this article, the authors study the function of TEDC1 and TEDC2, two proteins previously reported to interact with TUBD1 and TUBE1. Previous work by the same group had shown that TUBD1 and TUBE1 are required for centriole assembly and that human cells lacking these proteins form abnormal centrioles that only have singlet microtubules that disintegrate in mitosis. In this new work, the authors demonstrate that TEDC1 and TEDC2 depletion results in the same phenotype with abnormal centrioles that also disintegrate into mitosis. In addition, they were able to localize these proteins to the proximal end of the centriole, a result not previously achieved with TUBD1 and TUBE1, providing a better understanding of where and when the complex is involved in centriole growth.  

      Strengths:  

      The results are very convincing, particularly the phenotype, which is the same as previously observed for TUBD1 and TUBE1. The U-ExM localization is also convincing:

      despite a signal that's not very homogeneous, it's clear that the complex is in the proximal region of the centriole and procentriole. The phenotype observed in U-ExM on the elongation of the cartwheel is also spectacular and opens the question of the regulation of the size of this structure. The authors also report convincing results on direct interactions between TUBD1, TUBE1, TEDC1, and TEDC2, and an intriguing structural prediction suggesting that TEDC1 and TEDC2 form a heterodimer that interacts with the TUBD1- TUBE1 heterodimer.  

      Weaknesses:  

      The phenotypes observed in U-ExM on cartwheel elongation merit further quantification, enabling the field to appreciate better what is happening at the level of this structure.  

      We thank the reviewer for these comments and have improved our analyses of cartwheel elongation as detailed below.

      Reviewer #3 (Public Review):  

      Summary:  

      Human cells deficient in delta-tubulin or epsilon-tubulin form unstable centrioles, which lack triplet microtubules and undergo a futile formation and disintegration cycle. In this study, the authors show that human cells lacking the associated proteins TEDC1 or TEDC2 have these identical phenotypes. They use genetics to knockout TEDC1 or TEDC2 in p53negative RPE-1 cells and expansion microscopy to structurally characterize mutant centrioles. Biochemical methods and AlphaFold-multimer prediction software are used to investigate interactions between tubulins and TEDC1 and TEDC2.  

      The study shows that mutant centrioles are built only of A tubules, which elongate and extend their proximal region, fail to incorporate structural components, and finally disintegrate in mitosis. In addition, they demonstrate that delta-tubulin or epsilon-tubulin and TEDC1 and TEDC2 form one complex and that TEDC1 TEDC2 can interact independently of tubulins. Finally, they show that the localization of four proteins is mutually dependent.  

      Strengths:  

      The results presented here are mostly convincing, the study is exciting and important, and the manuscript is well-written. The study shows that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to build a stable and functional centriole, significantly contributing to the field and our understanding of the centriole assembly process.  

      Weaknesses:  

      The ultrastructural characterization of TEDC1 and TEDC2 obtained by U-ExM is inconclusive. Improving the quality of the signals is paramount for this manuscript.  

      We thank the reviewer for these comments and have improved our imaging of TEDC1 and TEDC2 localization, as detailed below.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):  

      The reviewers agreed that the conclusions are largely supported by solid evidence, but felt that improving the following aspects would make some of the data more convincing:  

      (1) The UExM localizations of TEDC1/2 are not very convincing and the reviewers suggest to complement these with alternative super-resolution approaches (e.g. SIM) and/or different labeling techniques such as pre-expansion labeling using STAR red/orange secondaries (also robust for SIM and STED), use of the Halo tag, different tag antibodies, etc 

      We thank the reviewers for these recommendations and have adapted two of these strategies to improve our imaging of TEDC1 and TEDC2 localization. First, we used an alternative super-resolution approach, a Yokogawa CSU-W1 SoRA confocal scanner (resolution = 120 nm) and imaged cells grown on coverslips (not expanded). We found that TEDC1 and TEDC2 localize to procentrioles and the proximal end of parental centrioles (Fig 2 – Supplementary Figure 1a, b). Second, we used a recently described expansion gel chemistry (Kong et al., Methods Mol Biol 2024) combined with Abberior Star red and orange secondary antibodies. This technique resulted in robust signal at centrosomes and in the cytoplasm and indicated that TEDC1 and TEDC2 localize near the centriole walls of procentrioles and the proximal region of parental centrioles, near CEP44 (Fig 2 – Supplementary Figure 1c, d). These results complement and support our initial observations (Fig 2C, D) and we have edited the text to reflect this (lines 157-163). We also note that these Flag tag and V5 tag primary antibodies are specific and have little background signal in all applications (Fig 2 – Supplementary Fig 1E-J), while other commercially available antibodies against these tags did exhibit non-specific signal. 

      (2) The cell cycle classifications of centrioles would strongly benefit, apart from a better description, from adding quantifications of average centriole length at a given stage based on tubulin staining (not acTub). 

      We thank the reviewers for these recommendations. We have added an improved description of our cell cycle analyses (lines 234-237). We have also added new analyses for centriole length as measured by staining with alpha-tubulin (Fig 4 – Supp 3 and Fig 4 – Supp 4). We find that in all mutants, acetylated tubulin elongates along with alpha-tubulin in a similar way as control centrioles.

      Reviewer #1 (Recommendations For The Authors):  

      Specific points:  

      (1) The introduction is a bit oddly structured. About halfway through it summarizes what is going to be presented in the study, giving the impression that it is about to conclude, but then continues with additional, detailed introduction paragraphs. Overall, the authors may also want to consider making it more concise.

      We thank the reviewer for these suggestions and have shortened and restructured the introduction for clarity and conciseness.

      (2) The text should explain to the non-expert reader why endogenous proteins are not detected and why exogenously expressed, tagged versions are used. Related to this, the authors state overexpression, but what is this assessment based on? Does expression at the endogenous level also rescue? At least by western blot, these questions should be addressed. 

      In the text, we have added clarification about why endogenous proteins were not detected for immunofluorescence (lines 149-151). To quantify the overexpression, we have added Western blots of TEDC1 and TEDC2 to Fig 1 – Supplementary Figure 1E,F. We note that endogenous levels of both proteins are very low, and the rescue constructs are overexpressed 20 to 70 fold above endogenous levels.  

      (3) The figures should clearly indicate when tagged proteins are used and detected.

      Currently, this info is only found in the legends but should be in the figure panels as well. 

      We have made these changes to the figure panels in Fig 2, Fig 2 – Supp 1, and Fig 3.

      (4)  I could not find a description and reference to Figure 2 Supplement 2 and 3. 

      We have replaced these supplements with new supplementary figures for TEDC1 and TEDC2 localization (Fig 2 – Supp 1).

      (5) The multiple bands including unspecific (?) bands should be labeled to guide the reader in the western blots. 

      We have labeled nonspecific bands in our Western blots with asterisks (Fig 1 – Supp 1, Fig 3)

      (6) The alphafold prediction suggests that TUBD1 can bind to the TED complex in the absence of TUBE1 can this be shown? This would be a nice validation of the predicted architecture of the complex. I also missed a bit of a discussion of the predicted architecture. How could it be linked to triplet microtubule formation? Is the latest alphafold version 3 adding anything to this analysis? 

      In our pulldown experiments, we found that TUBD1 cannot bind to TEDC1 or TEDC2 in the absence of TUBE1 (Fig 3C, D, IB: TUBD1). We performed this experiment with three biological replicates and found the same result. It is possible that TUBD1 and TUBE1 form an intact heterodimer, similar to alpha-tubulin and beta-tubulin, and this will be an exciting area of future research.

      We have added new analysis from AlphaFold3 (Fig 3 – Supp 1B). AlphaFold3 predicts a similar structure as AlphaFold Multimer.

      We have also added additional discussion about the AlphaFold prediction to the text (lines 220-222, 365-367). Thanks to the reviewer for pointing out this oversight.

      (7) I suggest briefly explaining in the text how cells and centrioles at different cell cycle stages were identified. I found some info in the legend of Figure 1, but no info for other figures or in the text. Related to this, how are procentrioles defined in de novo formation? There is no parental centriole to serve as a reference. 

      We have added a brief explanation of the synchronization and identification in lines 234237. We have also clarified the text regarding de novo centrioles, and now term these “de novo centrioles in the first cell cycle after their formation” (lines 271-272).

      (8) Related to point 7: using acetylated tubulin as a universal length and width marker seems unreliable since it is a PTM. The authors should use general tubulin staining to estimate centriole dimensions, or at least establish that acetylated tubulin correlates well with the overall tubulin signal in all mutants. 

      We have added two supplementary data figures (Fig 4 – supp 3 and Fig 4 – supp 4) in which we co-stain control and mutant centrioles with alpha-tubulin. We found that acetylated tubulin marked mutant centrioles well and as alpha-tubulin length increased, acetylated tubulin length also increased. 

      (9) Presence and absence of various centriolar proteins. These analyses lack a clear reference for the precise centriole elongation stage. This is particularly problematic for proteins that are recruited at specific later stages (such as inner scaffold proteins). The staining should be correlated with centriole length measurements, ideally using general tubulin staining.  

      As described for point 8, we have added two supplementary data figures in which we costain control and mutant centrioles with alpha-tubulin and found that acetylated tubulin also increases as overall tubulin length increases in all mutants. We note that inner scaffold proteins are absent in all our mutant centrioles at all stages of the cell and centriole cycle, as also previously reported for POC5 in Wang et al., 2017.

      Reviewer #2 (Recommendations For The Authors):  

      Here's a list of points I think could be improved:  

      -  As the authors previously published, the centriole appears to have a smaller internal diameter than mature centrioles. Could the authors measure to see if the phenotype is identical? Is the centriole blocked in the bloom phase (Laporte et al. 2024)? 

      We have added an additional supplementary figure (Fig 4 – supp 5) to show that mutant centrioles have smaller diameters than mature centrioles, as we previously reported for the delta-tubulin and epsilon-tubulin mutant centrioles by EM. We thank the reviewers for the additional question of the bloom phase. Given the comparatively smaller number of centrioles we analyzed in this paper compared to Laporte et al (50 to 80 centrioles per condition here, versus 800 centrioles in Laporte et al), it is difficult to definitively conclude whether there is a block in bloom phase. This would be an interesting area for future research.  

      -  The images of the centrioles in EM are beautiful. Would it be possible to apply a symmetrisation on it to better see the centriolar structures? For example, is the A-C linker present? 

      We thank the reviewer for this excellent suggestion. Using centrioleJ, we find that the A-C linker is absent from mutant centrioles. The symmetrized images have been added to Fig 1 – Supplementary Fig 2, and additional discussion has been added to the text (line 143-144, line 368-374).  

      -  How many EM images were taken? Did the centrioles have 100% A-microtubule only or sometimes with B-MT? 

      For TEM, we focused on centrioles that were positioned to give perfect cross-section images of the centriolar microtubules, and thus did not take images of off-angle or rotated centrioles. Given the difficulty of this experiment (centrioles are small structures within the cell, centrosomes are single-copy organelles, and off-angle centrioles were not imaged), we were lucky to image 3 centrioles that were in perfect cross-section – 2 for Tedc1<sup>-/-</sup> and 1 for Tedc2<sup>-/-</sup>. Our images indicate that these centrioles only have A-tubules (Fig 1 – Supp Fig

      2).

      -  In Figure 2 - it would be preferable to write TEDC2-flag or TEDC1-flag and not TEDC2/1. 

      We have made this change

      -  It seems that Figures 2C and D aren't cited, and some of the data in the supplemental data are not described in the main text. 

      We have replaced these supplements with new supplementary figures for TEDC1 and TEDC2 localization (Fig 2 – Supp 1).

      -  The signal in U-ExM with the anti-Flag antibody is heterogeneous. Did the authors test several anti-FLAG antibodies in U-ExM? 

      We tested several anti-Flag and anti-V5 antibodies for our analyses, and chose these because they have little background signal in all applications (Fig 2 – Supplementary Fig 1E-J). Other commercially available antibodies against these tags did exhibit non-specific signal.

      -  The AlphaFold prediction is difficult to interpret, the authors should provide more views and the PDB file. 

      We have added 2 additional views of the AlphaFold prediction in Fig 3 – Supp 1A.

      -  In general, but particularly for Figure 4: the length doesn't seem to be divided by the expansion factor, it is therefore difficult to compare with known EM dimensions. Can the authors correct the scale bars? 

      We have corrected the scale bars for all figures to account for the expansion factor.

      -  Concerning Gamma-tubulin that is "recruited to the lumen of centrioles by the inner scaffold, had localization defects in mutant centrioles. However, we were unable to reliably detect gamma-tubulin within the lumen of control or de novo-formed centrioles in S or G2-phase (Figure 4 - Supplement 1E), and thus were unable to test this hypothesis". In Laporte et al 2024, Gamma-tubulin arrives later than the inner scaffold and only on mature centrioles, so this result appears to be in line with previous observation. However, the authors should be able to detect a proximal signal under the microtubules of the procentriole, is this the case? 

      We agree that this is an exciting question. However, in our expansion microscopy staining, we frequently observe that gamma-tubulin surrounds centrioles, corresponding to its role in the pericentriolar material (PCM). In our hands, we find it difficult to distinguish between centriolar gamma-tubulin at the base of the A-tubule from gamma-tubulin within the PCM.  

      -  In the signal elongation of SAS-6, STIL, CEP135, CPAP, and CEP44, would it be possible to quantify the length of these signals (with dimensions divided by the expansion factor for comparison with known TEM distances)? 

      We have quantified the lengths of SAS-6 and CEP135 in new Fig 4 – Supp 3 and Fig 4 – Supp 4.  

      -  The authors observe that centrin is present, but only as a SFI1 dot-like localization (which is another protein that would be interesting to look at), and not an inner scaffold localization. Can the authors elaborate? These results suggest that the distal part is correctly formed with only a microtubule singlet. 

      We agree with the reviewer’s interpretation that the centriole distal tip is likely correctly formed with only singlet microtubules, as both distal centrin and CP110 are present. We have added this point to the discussion (line 415).

      -The authors observe that CPAP is elongated, but CPAP has two locations, proximal and distal. Is it distal or proximal elongation? Is the proximal signal of CPAP longer than that of CEP44 in the mutants? The authors discuss that the elongation could come from overexpression of CPAP, but here it seems that the centriole is not overlong, just the structures around the cartwheel. 

      We thank the reviewer for this point. It is difficult for us to conclude whether the proximal or distal region is extended in the mutants, as our mutant centrioles lacks a visible separation between these two regions. It would be interesting to probe this question in the future by testing whether subdomains of CPAP may be differentially regulated in our mutants.

      Reviewer #3 (Recommendations For The Authors):  

      It isn't apparent to me what was counted in Figure 1C. Were all centrioles (mother centrioles and procentrioles) counted? Where is the 40% in control cells coming from? Can this set of data be presented differently? 

      We apologize for the confusion. In this figure, all centrioles were counted. We have updated the figure legend for clarity. We performed this analysis in a similar way as in Wang et al., 2017 to better compare phenotypes.  

      Figure 2C. and the text lines 182-187: The ultrastructural characterization of TEDC1 and TEDC2 suffers from the low quality of the TEDC1 and TEDC2 signals obtained postexpansion. In comparison with robust low-resolution immunosignal, it appears that most of the signal cannot be recovered after expansion. Another sub-resolution imaging method to re-analyze TEDC1 and TEDC22 localization would be essential. The same concern applies to Figures 2 - Supplement 2 and 3. Also, Figure 2 - Supplement 2 and Supplement 3 do not seem to be cited. 

      We thank the reviewer for these recommendations. As also mentioned above, we used an alternative super-resolution approach, a Yokogawa CSU-W1 SoRA confocal scanner (resolution = 120 nm), and found that TEDC1 and TEDC2 localize to procentrioles and the proximal end of parental centrioles (Fig 2 – Supplementary Figure 1a, b). Second, we used a recently described expansion gel chemistry (Kong et al., Methods Mol Biol 2024) combined with Abberior Star red and orange secondary antibodies. This technique resulted in robust signal at centrosomes and in the cytoplasm and indicated that TEDC1 and TEDC2 localize near the centriole walls of procentrioles and the proximal region of parental centrioles, near CEP44 (Fig 2 – Supplementary Figure 1c, d). These stainings complement and support our initial observations (Fig 2C, D) and we have edited the text to reflect this (lines 157-163). We have also removed the supplementary figures that were uncited in the text.

      TUBD1 and TUBE1 form a dimer and TEDC2 and TEDC1 can interact. Any speculation as to why TEDC2 does not pull down both TUBE1 and TUBD1? 

      We apologize for the confusion. TEDC2 does pull down both TUBE1 and TUBD1 (Fig 3D, pull-down, second column, Tedc2-V5-APEX2 rescuing the Tedc2<sup>-/-</sup> cells pulls down TUBD1, TUBE1, and TEDC1).  

      Figure 4A and B. The authors use acetylated tubulin to determine the length of procentrioles in the S and G2 phases. However, procentrioles are not acetylated on their distal ends in these cell phase phases (as the authors also mention further in the text). Why has alpha tubulin not been used since it works well in U-ExM? The average size of the control, G2 procentrioles, seems too small in Figure 4A and not consistent with other imaging data (for instance, in Figure 4 - Supplement 1 C, Cp110, and CPAP staining). There is no statistical analysis in F4A.  

      We have added two supplementary data figures (Fig 4 – supp 3 and Fig 4 – supp 4) in which we co-stain control and mutant centrioles with alpha-tubulin. We found that acetylated tubulin correlates well with overall tubulin signal in all mutants. We have added statistical analysis to the figure legend of Fig 4A.

      Lines 260 - 262: "These results indicate that centrioles with singlet microtubules can elongate to the same length as controls, and therefore that triplet microtubules are not essential for regulating centriole length." It is hard to agree with this statement. Mutant procentrioles show aberrantly elongated proximal signals of several tested proteins. In addition, in lines 326 - 328, the authors state that "Together, these results indicate that centrioles lacking compound microtubules are unable to properly regulate the length of the proximal end."  

      We thank the reviewer and have clarified the statement to state that these results indicate that centrioles with singlet microtubules can elongate to the same overall length as control centrioles in G2 phase.  

      Line 353: The authors suggest that elongated procentriole structure in mitosis may represent intermediates in centriole disassembly. Another interpretation, more in line with the EM data from Wang et al., 2017, would be that these mutant procentrioles first additionally elongate before they disassemble in late mitosis. The aberrant intermediate structure concept would need further exploration. For instance, anti-alpha/beta-tubulin antibodies could be used to investigate centriole microtubules.  

      We apologize for the confusion and have edited this section for clarity (lines 341-343): “We conclude that in our mutant cells, centrioles elongate in early mitosis to form an aberrant intermediate structure, followed by fragmentation in late mitosis.”

      References need to be included in lines 122, 277, 279. 

      We have added these references

      Line 281: Add references PMID: 30559430 and PMID: 32526902.  

      We have added these references (lines 265-266).

      Line 289: "Moreover, our results suggest that centriole glutamylation is a multistep process, in which long glutamate side chains are added later during centriole maturation." This does not seem like an original observation. For instance, see PMID: 32526902.  

      We have added this reference (lines 273-274).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review): 

      Hotinger et al. explore the population dynamics of Salmonella enterica serovar Typhimurium in mice using genetically tagged bacteria. In addition to physiological observations, pathology assessments, and CFU measurements, the study emphasizes quantifying host bottleneck sizes that limit Salmonella colonization and dissemination. The authors also investigate the genetic distances between bacterial populations at various infection sites within the host.

      Initially, the study confirms that pretreatment with the antibiotic streptomycin before inoculation via orogastric gavage increases the bacterial burden in the gastrointestinal (GI) tract, leading to more severe symptoms and heightened fecal shedding of bacteria. This pretreatment also significantly reduces between-animal variation in bacterial burden and fecal shedding. The authors then calculate founding population sizes across different organs, discovering a severe bottleneck in the intestine, with founding populations reduced by approximately 10^6-fold compared to the inoculum size. Streptomycin pretreatment increases the founding population size and bacterial replication in the GI tract. Moreover, by calculating genetic distances between populations, the authors demonstrate that, in untreated mice, Salmonella populations within the GI tract are genetically dissimilar, suggesting limited exchange between colonization sites. In contrast, streptomycin pretreatment reduces genetic distances, indicating increased exchange.

      In extraintestinal organs, the bacterial burden is generally not substantially increased by streptomycin pretreatment, with significant differences observed only in the mesenteric lymph nodes and bile. However, the founding population sizes in these organs are increased. By comparing genetic distances between organs, the authors provide evidence that subpopulations colonizing extraintestinal organs diverge early after infection from those in the GI tract. This hypothesis is further tested by measuring bacterial burden and founding population sizes in the liver and GI tract at 5 and 120 hours post-infection. Additionally, they compare orogastric gavage infection with the less injurious method of infection via drinking, finding similar results for CFUs, founding populations, and genetic distances. These results argue against injuries during gavage as a route of direct infection. 

      To bypass bottlenecks associated with the GI tract, the authors compare intravenous (IV) and intraperitoneal (IP) routes of infection. They find approximately a 10-fold increase in bacterial burden and founding population size in immune-rich organs with IV/IP routes compared to orogastric gavage in streptomycin-pretreated animals. This difference is interpreted as a result of "extra steps required to reach systemic organs."

      While IP and IV routes yield similar results in immune-rich organs, IP infections lead to higher bacterial burdens in nearby sites, such as the pancreas, adipose tissue, and intraperitoneal wash, as well as somewhat increased founding population sizes. The authors correlate these findings with the presence of white lesions in adipose tissue. Genetic distance comparisons reveal that, apart from the spleen and liver, IP infections lead to genetically distinct populations in infected organs, whereas IV infections generally result in higher genetic similarity. 

      Finally, the authors investigate GI tract reseeding, identifying two distinct routes. They observe that the GI tracts of IP/IV-infected mice are colonized either by a clonal or a diversely tagged bacterial population. In clonally reseeded animals, the genetic distance within the GI tract is very low (often zero) compared to the bile population, which is predominantly clonal or pauciclonal. These animals also display pathological signs, such as cloudy/hardened bile and increased bacterial burden, leading the authors to conclude that the GI tract was reseeded by bacteria from the gallbladder bile. In contrast, animals reseeded by more complex bacterial populations show that bile contributes only a minor fraction of the tags. Given the large founding population size in these animals' GI tracts, which is larger than in orogastrically infected animals, the authors suggest a highly permissive second reseeding route, largely independent of bile. They speculate that this route may involve a reversal of known mechanisms that the pathogen uses to escape from the intestine. 

      The manuscript presents a substantial body of work that offers a meticulously detailed understanding of the population dynamics of S. Typhimurium in mice. It quantifies the processes shaping the within-host dynamics of this pathogen and provides new insights into its spread, including previously unrecognized dissemination routes. The methodology is appropriate and carefully executed, and the manuscript is well-written, clearly presented, and concise. The authors' conclusions are well-supported by experimental results and thoroughly discussed. This work underscores the power of using highly diverse barcoded pathogens to uncover the within-host population dynamics of infections and will likely inspire further investigations into the molecular mechanisms underlying the bottlenecks and dissemination routes described here.

      Major point:

      Substantial conclusions in the manuscript rely on genetic distance measurements using the Cavalli-Sforza chord distance. However, it is unclear whether these genetic distance measurements are independent of the founding population size. I would anticipate that in populations with larger founding population sizes, where the relative tag frequencies are closer to those in the inoculum, the genetic distances would appear smaller compared to populations with smaller founding sizes independent of their actual relatedness. This potential dependency could have implications for the interpretation of findings, such as those in Figures 2B and 2D, where antibiotic-pretreated animals consistently exhibit higher founding population sizes and smaller genetic distances compared to untreated animals.

      Thank you for raising this important point regarding reliance on cord distances for gauging genetic distance in barcoded populations. The reviewer is correct that samples with more founders will be more similar to the inoculum and thus inherently more similar to other samples that also have more founders. However, creation of libraries containing very large numbers of unique barcodes can often circumvent this issue. In this case, the effect size of chance-based similarity is not large enough to change the interpretation of the data in Figures 2B and 2D. In our case, the library has ~6x10<sup>4</sup> barcodes, and the founding populations in Figure 2B are ~10<sup>3</sup>. Randomly resampling to create two populations of 10<sup>3</sup> cells from an initial population with 6x10<sup>4</sup> barcodes is expected to yield largely distinct populations with very little similarity. Thus, the similarity between streptomycin-treated populations in Figure 2D is likely the result of biology rather than chance.  

      Reviewer #2 (Public review):

      In this paper, Hotinger et. al. propose an improved barcoded library system, called STAMPR, to study Salmonella population dynamics during infection. Using this system, the authors demonstrate significant diversity in the colonization of different Salmonella clones (defined by the presence of different barcodes) not only across different organs (liver, spleen, adipose tissues, pancreas, and gall bladder) but also within different compartments of the same gastrointestinal tissue. Additionally, this system revealed that microbiota competition is the major bottleneck in Salmonella intestinal colonization, which can be mitigated by streptomycin treatment. However, this has been demonstrated previously in numerous publications. They also show that there was minimal sharing between populations found in the intestine and those in the other organs. Upon IV and IP infection to bypass the intestinal bottleneck, they were able to demonstrate, using this library, that Salmonella can renter the intestine through two possible routes. One route is essentially the reverse path used to escape the gut, leading to a diverse intestinal population; while the other, through the bile, typically results in a clonal population. Although the authors showed that the STAMPR pipeline improved the ability to identify founder populations and their diversity within the same animal during infections, some of the conclusions appear speculative and not fully supported.

      (1) It's particularly interesting how the authors, using this system, demonstrate the dominant role of the microbiota bottleneck in Salmonella colonization and how it is widened by antibiotic treatment (Figure 1). Additionally, the ability to track Salmonella reseeding of the gut from other organs starting with IV and IP injections of the pathogen provides a new tool to study population dynamics (Figure 5). However, I don't think it is possible to argue that the proximal and distal small intestine, Peyer's patches (PPs), cecum, colon, and feces have different founder populations for reasons other than stochastic variations. All the barcoded Salmonella clones have the same fitness and the fact that some are found or expanded in one region of the gastrointestinal tract rather than another likely results from random chance - such as being forced in a specific region of the gut for physical or spatial reasons-and subsequent expansion, rather than any inherent biological cause. For example, some bacteria may randomly adhere to the mucus, some may swim toward the epithelial layer, while others remain in the lumen; all will proliferate in those respective sites. In this way, different founder populations arise based on random localization during movement through the gastrointestinal tract, which is an observation, but it doesn't significantly contribute to understanding pathogen colonization dynamics or pathogenesis. Therefore, I would suggest placing less emphasis on describing these differences or better discussing this aspect, especially in the context of the gastrointestinal tract.

      Thank you for helping us identify this area for further clarification. We agree with the reviewer’s interpretation that seeding of proximal and distal small intestine, Peyer's patches (PPs), cecum, colon, and feces with different founder populations is likely caused by stochastic variations, consistent with separate stochastic bottlenecks to establishing these separate niches. To clarify this point we have modified the text in the results section, “Streptomycin treatment decreases compartmentalization of S. Typhimurium populations within the intestine”.

      Change to text:

      “Except for the cecum and colon, in untreated animals the S. Typhimurium populations in different regions of the intestine were dissimilar (Avg. GD ranged from 0.369 to 0.729, 2D left); i.e., there is little sharing between populations in the intestine. These data suggest that there are separate bottlenecks in different regions of the intestine that cause stochastic differences in the identity of the founders. Interestingly, when these founders replicate, they do not mix, remaining compartmentalized with little sharing between populations throughout the intestinal tract (i.e., barcodes found in one region are not in other regions, Figure S3). This was surprising as the luminal contents, an environment presumably conducive to bacterial movement, were not removed from these samples.”

      In this section we are interested in the underlying biology that occurs after the initial bottleneck to preserve this compartmentalization during outgrowth of the intestinal population. In other words, what prevents these separate populations from merging (e.g., what prevents the bacteria replicating in the proximal small intestine from traveling through the intestine and establishing a niche in the distal small intestine)? While we do not explore the mechanisms of compartmentalization, we observe that it is disrupted by streptomycin pretreatment, suggesting a microbiota-dependent biological cause. 

      (2) I do think that STAMPR is useful for studying the dynamics of pathogen spread to organs where Salmonella likely resides intracellularly (Figure 3). The observation that the liver is colonized by an early intestinal population, which continues to proliferate at a steady rate throughout the infection, is very interesting and may be due to the unique nature of the organ compared to the mucosal environment. What is the biological relevance during infection? Do the authors observe the same pattern (Figures 3C and G) when normalizing the population data for the spleen and mesenteric lymph nodes (mLN)? If not, what do the authors think is driving this different distribution?

      Thank you for raising this interesting point. These data indicate that the liver is seeded from the intestine early during infection. The timing and source of dissemination have relevance for understanding how host and pathogen variables control the spread of bacteria to systemic sites. For example, our conclusion (early dissemination) indicates that the immune state of a host at the time of exposure to a pathogen, and for a short period thereafter, are what primarily influence the process of dissemination, not the later response to an active infection. 

      We observe that the liver and mucosal environments within the intestine have similar colonization behaviors. Both niches are seeded early during infection, followed by steady pathogen proliferation and compartmentalization that apparently inhibits further seeding. This results in the identity of barcodes in the liver population remaining distinct from the intestinal populations, and the intestinal populations remaining distinct from each other.

      We observe a similar pattern to the liver in the spleen and MLN (the barcodes in the spleen and MLN are dissimilar to the population in the intestine). To clarify this point, we have modified the text (below) and added this analysis as a supplemental figure (S4).

      Change to text:

      Genetic distance comparison of liver samples to other sites revealed that, regardless of streptomycin treatment, there was very little sharing of barcodes between the intestine and extraintestinal sites (Avg. GD >0.75, Figure 3C). Furthermore, the MLN and spleen populations also lacked similarity with the intestine (Figure S4). These analyses strongly support the idea that S. Typhimurium disseminates to extraintestinal organs relatively early following inoculation, before it establishes a replicative niche in the intestine.

      (3) Figure 6: Could the bile pathology be due to increased general bacterial translocation rather than Salmonella colonization specifically? Did the authors check for the presence of other bacteria (potentially also proliferating) in the bile? Do the authors know whether Salmonella's metabolic activity in the bile could be responsible for gallbladder pathology?

      The reviewer raises interesting points for future work. We did not check whether other bacterial species are translocating during S. Typhimurium infection. The relevance of Salmonella’s metabolic activity is also very interesting, and we hope these questions will be answered by future studies.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Minor points:

      (1) P. 9/10 "... the marked delay in shedding after IP and IV relative to orogastric inoculation suggest that the S. Typhimurium population encounters substantial bottleneck(s) on the route(s) from extraintestinal sites back to the intestine.": Can you conclude that from the data? It could also be possible that there is a biological mechanism (other than chance events) that delays the re-entry to the intestine.

      We propose that the delay in shedding indicates additional obstacles that bacteria face when re-entering the intestine, and that there are likely biological mechanisms that cause this delay. However, these unknown mechanisms effectively act as additional bottlenecks by causing a stochastic loss of population diversity. 

      (2) P. 11 "...both organs would likely contain all 10 barcodes. In contrast, a library with 10,000 barcodes can be used to distinguish between a bottleneck resulting in Ns = 1,000 and Ns = 10,000, since these bottlenecks result in a different number of barcodes in output samples. Furthermore, high diversity libraries reduce the likelihood that two tissue samples share the same barcode(s) due to random chance, enabling more accurate quantification of bacterial dissemination.": I agree with the general analysis, but I find it misleading to talk about the presence of barcodes when the analyses in this manuscript are based on the much more powerful comparison of relative abundance of individual tags instead of their presence or absence.

      The reviewer raises an excellent point, and the distinction between relative abundance versus presence/absence is discussed extensively in the original STAMPR manuscript. Although relative abundance is powerful, the primary metric used in this study (Ns) is calculated principally from the number of barcodes, corrected (via simulations) for the probability of observing the same barcode across distinct founders. Although this correction procedure does rely on barcode abundance, the primary driver of founding population quantification is the number of barcodes.

      (3) P.14 "the library in LB supplemented with SM was not significantly different than the parent strain" and Figure 2C: How was significance tested? How many times were the growth curves recorded? On my print-out, the red color has different shades for different growth curves.

      Significance was tested with a Mann-Whitney and growth curves were performed 5 times. Growth curves are displayed with 50% opacity, and as a result multiple curves directly on top of each other appear darker. The legend to S2 has been modified accordingly.

      (4) P.16: close bracket in the equation for FRD calculation.

      Done

      (5) Figure 2C "Average CFU per founder": I found the wording confusing at first as I thought you divided the average bacterial burden per organ by Ns, instead of averaging the CFU/Ns calculated for each mouse.

      The wording has been clarified. 

      (6) Figure 3B: It would be helpful to include expected genetic distances in the schematic as it is difficult to infer the genetic distance when only two of three, respectively, different "barcode colors" are used. While I find the explanation in the main text intuitive, a graphical representation would have helped me.

      Thank you for the suggestion. Unfortunately, using colors to represent barcodes is imperfect and limits the diversity that can be depicted. We have modified Figure 3B to further clarify. 

      (7) Figure 3C: Why do you compare the genetic distance to the liver, when you discuss the genetic distance of the intestinal population? Is it not possible that the intestinal populations are similar to the extraintestinal organs except the liver?

      For clarity, we chose to highlight exclusively the liver. However, we observed a similar pattern to the liver in other extraintestinal organs. To clarify the generalizability of this point we have added a supplemental figure with comparisons to MLN and Spleen (Supplemental figure S4) as well as further text.

      (8) Figure 3C & S5A: I found "+SM" and "+SM, Drinking" confusing and would have preferred "+SM, Gavage" and "+SM, Drinking" for clarity.

      Done, thank you for the suggestion.

      (9) Figure 3G&H: I find it worthy of discussion that the bacterial burden increases over time, while the founding population decreases. Does that not indicate that replication only occurs at specific sites leading to the amplification of only a few barcodes and thereby a larger change of the relative barcode abundance compared to the inoculum?

      From 5h to 120h the size of the founding population decreases in multiple intestinal sites. This likely indicates that the impact of the initial bottleneck is still ongoing at 5h, although further temporal analysis would be required to define the exact timing of the bottleneck. Notably, the passage time through the mouse intestine is ~5h. Many of the founders observed at 5h could be a population that will never establish a replicative niche, and failing to colonize be shed in the feces, bottlenecking the population between 5h and 120h. To clarify this point we have added the following text:

      Section “S. Typhimurium disseminates out of the intestine before establishing an intestinal replicative niche”.

      “In contrast to the liver, there were more founders present in samples from the intestine (particularly in the colon) at 5 hours versus 120 hours (Figure 3H). These data likely indicate that many of the founders observed in the intestine at 5 hours are shed in the feces prior to establishing a replicative niche, and demonstrates that the forces restricting the S. Typhimurium population in the intestine act over a period of > 5 hours.”  

      (10) Figure S2A: I do not understand this figure. Why are there more than 70.000 tags listed? I was under the impression the barcode library in S. Typhimurium had 55.000 tags while only the plasmid pSM1 had more than 70.000 (but the plasmid should not be relevant here). Why are there distinct lines at approximately 10^-5 and a bit lower? I would have expected continuously distributed barcode frequencies.

      During barcode analysis, each library is mapped to the total barcode list in the barcode donor pSM1, which contains ~70,000 barcodes. This enables consistent analysis across different bacterial libraries. The designation “barcode number” refers to the barcode number in pSM1, meaning many of the barcodes in the Salmonella library are at zero reads. This graph type was chosen to show there was no bias toward a particular barcode, however there is significant overlap of the points, making individual barcode frequencies difficult to see. We have changed the x-axis to state “pSM1 Barcode Number” and clarified in the figure legend.

      Since the y-axes on these graphs is on a log10 scale, the lines represent barcodes with 1 read, 2 reads, 3 reads, etc. As the number of reads per barcode increases linearly, the space between them decreases on logarithmic axes.

      (11) There are a few typos in the figure legends of the supplementary material. For example Figure S2: S. Typhimurium not italicized, ~7x105 no superscript. Fig. S4&5 ", Open circles" is "O" is capitalized.

      Typos have been corrected.

  2. Jan 2025
    1. IMPORTANT: never “Print to PDF” when exporting a Word Document to PDF. A screen reader user may still be able to access the text of a PDF created in this way, but heading structure, alternative text, and any other tag structure will be lost.

      Never use print to PDF

    1. if you publish galleys in PDF, you can set the language tag for the document as follows: Open the Document Properties dialog: Choose File > Properties Select a language from the Language menu in the Reading Options area of the Advanced tab.

      Setting default language for PDF galleys in OJS

    2. If you use OJS with multiple languages, make sure to use the proper language locale for that language (e.g. French locale for the French language) as the locale determines the language tag for the page.

      Expectations for multiple language journals in OJS>

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary: It has been known for many years that some peroxisomal proteins are imported by the major peroxisomal protein import receptor Pex5, which recognises the C terminal targeting signal PTS1, despite either lacking a PTS1 or if the PTS1 is blocked. Some proteins are also able to 'piggyback' into peroxisomes by binding to a partner which possesses a PTS. Eci1, the subject of this study is such a protein. This manuscript identified a PTS1-independent, non-canonical interaction interface between S. cerevisiae PEX5 and imported protein Eci1. Confocal imaging was used to observe the PTS1-independent import of Eci1 into peroxisomes and to establish dependence of Pex5 even in the absence of its piggyback partner Dci1. The authors purified the Pex5-Eci1 complex and used Cryo-EM to provide a structure of the purified PEX5-Eci1 complex. In general, this manuscript is well written and easy to read.

      Major points

      Most of the experiments presented are well-designed and accompanied with appropriate controls. However, please mention how many times the experiments have been repeated and how many biological samples were used in the analysis.The authors should also consider the following suggestions substantiate their conclusions:

      Figure 1A: Include full-length Eci1 with an N-terminal fluorophore, Eci1 PTS1-deletion with N-terminal fluorophore, and the PTS1 deletion with a C-terminal fluorophore, to control for any disturbance of targeting by the C terminal NG tag.

      Figure 1C: Confirm the Eci1 and Dci1 levels (if an antibody is available for the latter) by western blot. It is difficult to compare expression levels when comparing just a small number of cells in the microscope. Western blot would give a more robust evaluation of protein levels and help corroborate the claim that Eci1 expression is decreased in the absence of Dci1 if the authors wish to stand by this conclusion.

      Figure 2: confirm the deletion and overexpression of PEX9, PEX5, and PEX7 by western blot of the relevant strains. The production of these strains is not described in the manuscript. If they have been previously described this should be referenced if not it should be included.

      Figure 2: Validate these strains by checking import of a canonical PTS1 and canonical PTS2 and pex9 dependent protein to ensure they function as they should, unless these strains have been published elsewhere in which case their characterisation can be referenced.

      Figure 3: The gel should include a standard of a known amount of the lysate used in the pull down to enable a semi-quantitative estimation of the amount of Eci1 protein captured by PEX5 with and without its PTS1. Also include Eci1 with a C-terminal fluorophore to be comparable with the in vivo data in Figs 1 and 2. A control with no pex5 for background would be useful. A full Coomassie-blue stained gel (not western blot) is required to demonstrate the direct interaction as with the western blot it cannot be excluded that other proteins bridge the interaction since this is a pull down from lysate not purified proteins. OPTIONAL:Interestingly the surface on Eci1 which binds pex5 is where CoA binds in the active enzyme. Would CoA compete for binding to Pex5? (could add it into the pull down expt?)

      Figure S2: The complex between pex5 and eci1 is solved by cryo EM. Eci1 is hexameric usually 1 but sometimes 2 or 3 pex5s are bound to the complex. The size-exclusion chromatography figure with calculated molecular weight is required to support the stoichiometry. A native gel to show the complex, as well as a denaturing gel (using the complex) to show the individual proteins will be beneficial.

      Figure S9: Would Eci1 compete with Dci1 to bind to Pex5 since they share highly conserved interfaces? If so, why did the deletion of Dci1 impair Eci1 location? Or is this just reduced expression in the dci1 deletion background? (See point 2) This seems counterintuitive/contradictory so please comment.

      OPTIONAL: As the authors acknowledge this work is in vitro. It would have been interesting to examine the role of this interface in vivo by mutating one or more of the residues in Eci 1 identified as being important for the interaction. Granted that mutation can affect the folding of the protein, but the binding region is on the surface so it may not, and this can be readily checked e.g by enzyme activity or limited proteolysis.

      OPTIONAL: Similarly, it would have been interesting to see if mutating the residues of PEX5 involved in the interface affect the import of other cargoes than eci1 or if reciprocal mutations in pex5 and Eci1 e.g switching charges could restore an import defect.

      OPTIONAL If 8 & 9 isn't possible could a co-evolutionary analysis of the interface residues provide further independent evidence for their functional importance? They have looked at conservation of residues in Eci1 but this could be extended to a co-evolution analysis.

      Minor points

      Figure 1C and throughout the manuscript state clearly whether the same confocal settings are used when comparing fluorescence intensity of different images/samples.

      Figure S2B: Please use different colours for PEX5 and Eci1 for clarity.

      Figure 4A: please indicate the PTS1 for the other 5 molecules of Eci1. Are they buried? Or not seen? Please add explanation.

      Figure 4B, C, and D: please colour the circled helix in PEX5 so that it can be more easily seen.

      Please indicate the EBI-mediated interaction in Figure 4C. The relationship between 4C and 4D could be explained better as they are not viewed from the same direction

      Figure S3: As the authors indicated, Pex5 binds with multiple conformations and forms a variable interface with an Eci1 subunit. Does this mean different types of non-canonical interface are possible? Please discuss this.

      Figure 5A and B: they should be labelled as PEX5 TPR domain

      Figure S8 is very helpful in understanding the interface and could be included in Figure 5.

      Significance

      While cargo recognition by Pex5-PTS1 is well understood in molecular detail there are proteins which either lack a PTS1 or have a nonessential PTS1 that still require Pex5 for import into peroxisomes. This study provides a structural view of interaction between Pex5 and its cargo Eci1, a protein that does have a PTS1 but which is not essential for import. It's not the first example of a PEX5-cargo structure to show a non-canonical binding interface and the results are compared to the human pex5-AGT structure. It is an important addition to understanding how so-called PTS context dependent or non1 non2 proteins can be imported. Is this the first structure showing Pex5 bound to an oligomer cargo? Previous work is appropriately cited in the manuscript.

      The study will be of interest to audiences interested in protein-protein interaction and in protein targeting to organelles. This manuscript presents additional knowledge on how an oligomeric PTS1-independent protein can be imported into peroxisomes. The potential of other proteins using the similar importing mechanism can be tested to understand how one receptor can use apparently multiple binding modes to import a wide range of different proteins.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Proteins are imported into peroxisomes by mobile receptors such as PEX5. PEX5 recognizes cargo proteins in the cytosol by their peroxisome targeting signal (PTS) and then shuttles them across the peroxisomal membrane into the matrix. While most peroxisomal proteins contain well-characterized signals that bind to PEX5 either directly (PTS1) or through PEX7 (PTS2), some proteins interact with PEX5 independently of these canonical signals. The molecular basis of these unconventional interactions has been poorly understood.

      The manuscript by Peer et al. deals with one such protein called Eci1 in yeast. Eci1 has a PTS1 signal at its C terminus and a putative PTS2 signal at its N terminus, yet the authors show that neither of these signals is required for import of Eci1 into peroxisomes. They also show that import of Eci1 cannot be entirely explained by piggy-backing on its paralog Dci1. Regardless, import of Eci1 depends entirely on PEX5, indicating that Eci1 can bind to PEX5 unconventionally. To identify this additional interface, the authors solve the cryo-EM structure of PEX5 bound to Eci1 (which is a hexamer). Surprisingly, the structure reveals that PEX5 binds to only one of the six Eci1 subunits, and that two distinct interfaces are apparent. One reflects the canonical interaction between the PTS1 signal of Eci1 and the receptor's cognate PTS1-binding TPR domain. The other interface is novel and of potential interest. It involves a region of Eci1 that engages a segment of PEX5 upstream of the TPR domain. This segment has not been previously implicated in binding protein cargo.

      Major issues:

      1. The major issue with the paper is that the novel interface between Eci1 and PEX5 has not been demonstrated to be important for import into peroxisomes. Specifically, mutagenesis of both sides of the interface is required to demonstrate that this interaction mediates import of Eci1 lacking the canonical PTS1 signal (and also in the absence of the paralog Dci1). Such data are indisputably a precondition for publication of this paper. Pull-down experiments should also be performed to demonstrate that the interface is sufficient for interacting with PEX5 in the absence of the PTS1 signal on Eci1.
      2. The paper hinges on the demonstration of a residual interaction between PEX5 and Eci1 lacking its PTS1 signal. However, the pull-down experiment in Figure 3 that allegedly shows this result lacks a critical control for non-specific binding of Eci1 to the nickel beads alone. Also, this experiment does not show a direct interaction between PEX5 and Eci1, since the two proteins are co-expressed in bacteria and then pulled down using an engineered His-tag in PEX5. This experiment should be repeated using PEX5 and Eci1 purified separately and then mixed in vitro. Please show a coomassie-stained SDS-PAGE gel to assess protein purity in addition to the immunoblot, and please show the pull-down in a more conventional way comparing the input and the bound fraction (it is unclear what is meant by soluble and elution fractions).
      3. The presentation of the structure in Figure 4 should be improved. An overview of the complex should be shown first, and then each interface should be pointed out in a different view (and accordingly labeled). It is distracting and not necessary to show all six subunits of Eci1 in different colors. The non-conventional interface should be shown more clearly, with key amino acids numbered and labeled, and the configurations of their side chains highlighted. Please also highlight the salt bridges and hydrogen bonds at this interface that are mentioned in the text but never illustrated.
      4. The data in Figs. S2 and S3 raise doubts about the reported resolution of PEX5 in the cryo-EM structure. Please provide examples of the density map and the fit to the model.
      5. Please provide data for the purification of the complex between PEX5 and Eci1, including a gel-filtration chromatogram and an SDS-PAGE gel of the purified sample used for cryo-EM.
      6. OPTIONAL: The observation that the non-conventional interface between PEX5 with Eci1 corresponds to the site of CoA binding is interesting. This interaction might keep the enzyme inactive while in the cytosol and bound to PEX5, until it would be correctly delivered into peroxisomes and released from the receptor. Alternatively, it could also reflect regulation of Eci1 import by CoA. This idea could easily be tested by pull-down experiments performed with or without CoA, or perhaps by an in vitro Eci1 activity assay in the presence or absence of PEX5. The significance of the paper would be considerably improved if this interaction reflected a mechanism to regulate Eci1 activity or import.

      Minor issues:

      1. The manuscript has many grammatical mistakes which should be addressed. The absence of line numbers precludes us from indicating specific issues.
      2. In general, when referring to a single subunit from the Eci1 hexamer, please use the terms subunit or protomer, and avoid the use of the term monomer which is misleading.
      3. In Fig. 1C, it is unclear whether the experiment was performed in the absence or presence of PEX11. Since the paper hinges on the demonstration of an unconventional interaction between Eci1 and PEX5, perhaps this experiment should be performed in pex11 knockout cells (to enlarge peroxisomes as in Fig. 1B) to show that the residual peroxisomal localization indeed corresponds to the matrix.
      4. In Fig. 6, it would help to show each structure individually and then the overlay.
      5. Fig. S4 should include a scale bar and box size.
      6. Why are phosphorylation sites indicated in Fig. S6?
      7. In Fig. S8, please show the structures of Eci1 bound to PEX5 and to CoA individually, and then the overlay. The figure is very diffucult to understand otherwise.
      8. In Fig. S9, please label the homologous interface residues on Eci1 and Dci1 in individual views, and then show the overlay.

      Significance

      The main finding of the paper is a noncanonical interaction between Eci1 and the peroxisomal import receptor PEX5. This interaction could solve a longstanding mystery about how Eci1 can be targeted to peroxisomes in the absence of its canonical peroxisome targeting signal. Because the authors have not demonstrated that this interaction is sufficient for import of Eci1 in vivo, this key conclusion of the paper remains unconfirmed. If this omission were corrected, the paper would add another example to the growing list of proteins that are imported into peroxisomes by binding unconventionally to PEX5.

      The authors employ an interesting strategy to confirm that Eci1 is correctly imported into the peroxisomal matrix in vivo (and not just recruited to the cytosolic surface of the peroxisomal membrane). This strategy involves enlarging peroxisomes (which normally are diffraction limited) by knocking out a factor required for peroxisome division, allowing the matrix to be resolved from the limiting membrane by light microscopy. Failure to adequately demonstrate import into the matrix had plagued many earlier studies on protein targeting to peroxisomes. The strategy employed in this paper could therefore be useful to other researchers.

      In its current form, the manuscript would be of some interest to the peroxisomal community and perhaps also to researchers studying protein targeting to membrane-bounded organelles. However, if the authors could show that the novel interface between PEX5 and Eci1 functions in part to regulate Eci1 enzymatic activity (or conversely, Eci1 import by CoA), then the paper would be of much broader interest to the fields of metabolism and metabolic regulation.

    1. a dialogue tag is not always necessary once it is established who is speaking.

      Dialogue tags become redundant once the speaker's identity is clear, allowing for a more fluid and natural conversation in writing. The hypothesis suggests that minimizing unnecessary tags enhances readability and maintains the story’s pacing without disrupting immersion.

    1. The single juvenile seal was instrumented with a Wildlife Computers SPOT6 tag, which only provided Argos satellite tracking data

      Elaborate as to why there was as single juvenile in the study.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Zhu et al describes a novel role for MED26, a subunit of the Mediator complex, in erythroid development. The authors have discovered that MED26 promotes transcriptional pausing of RNA Pol II, by recruiting pausing-related factors.

      Strengths:

      This is a well-executed study. The authors have employed a range of cutting-edge and appropriate techniques to generate their data, including: CUT&Tag to profile chromatin changes and mediator complex distribution; nuclear run-on sequencing (PRO-seq) to study Pol II dynamics; knockout mice to determine the phenotype of MED26 perturbation in vivo; an ex vivo erythroid differentiation system to perform additional, important, biochemical and perturbation experiments; immunoprecipitation mass spectrometry (IP-MS); and the "optoDroplet" assay to study phase-separation and molecular condensates.

      This is a real highlight of the study. The authors have managed to generate a comprehensive picture by employing these multiple techniques. In doing so, they have also managed to provide greater molecular insight into the workings of the MEDIATOR complex, an important multi-protein complex that plays an important role in a range of biological contexts. The insights the authors have uncovered for different subunits in erythropoiesis will very likely have ramifications in many other settings, in both healthy biology and disease contexts.

      Weaknesses:

      There are almost no discernible weaknesses in the techniques used, nor the interpretation of the data. The IP-MS data was generated in HEK293 cells when it could have been performed in the human CD34+ HSPC system that they employed to generate a number of the other data. This would have been a more natural setting and would have enabled a more like-for-like comparison with the other data.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, "PAbFold: Linear Antibody Epitope Prediction using AlphaFold2", the authors generate a python wrapper for the screening of antibody-peptide interactions using AlphaFold, and test the performance of AlphaFold on 3 antibody-peptide complexes. In line with previous observations regarding the ability of AlphaFold to predict antibody structures and antigen binding, the results are mixed. While the authors are able to use AlphaFold to identify and experimentally validate a previously characterized broad binding epitope with impressive precision, they are unable to consistently identify the proper binding registers for their control [Myc-tag, HA-tag] peptides. Further, it appears that the reproducibility and generality of these results are low, with new versions of AlphaFold negatively impacting the predictive power. However, if this reproducibility issue is solved, and the test set is greatly increased, this manuscript could contribute strongly towards our ability to predict antibody-antigen interactions.

      Strengths:

      Due to the high significance, but difficulty, of the prediction of antibody-antigen interactions, any attempts to break down these predictions into more tractable problems should be applauded. The authors' approach of focusing on linear epitopes (peptides) is clever, reducing some of the complexities inherent to antibody binding. Further, the ability of AlphaFold to narrow down a previously broadly identified experimental epitope is impressive. The subsequent experimental validation of this more precisely identified epitope makes for a nice data point in the assessment of AlphaFold's ability to predict antibody-antigen interactions.

      Weaknesses:

      Without a larger set of test antibody-peptide interactions, it is unclear whether or not AlphaFold can precisely identify the binding register of a given antibody to a given peptide antigen. Even within the small test set of 3 antibody-peptide complexes, performance is variable and depends upon the scFv scaffold used for unclear reasons. Lastly, the apparent poor reproducibility is concerning, and it is not clear why the results should rely so strongly on which multi-sequence alignment (MSA) version is used, when neither the antibody CDR loops nor the peptide are likely to strongly rely on these MSAs for contact prediction.

      Major Point-by-Point Comments:

      (1) The central concern for this manuscript is the apparent lack of reproducibility. The way the authors discuss the issue (lines 523-554) it sounds as though they are unable to reproduce their initial results (which are reported in the main text), even when previous versions of AlphaFold2 are used. If this is the case, it does not seem that AlphaFold can be a reliable tool for predicting antibody-peptide interactions.

      (2) Aside from the fundamental issue of reproducibility, the number of validating tests is insufficient to assess the ability of AlphaFold to predict antibody-peptide interactions. Given the authors' use of AlphaFold to identify antibody binding to a linear epitope within a whole protein (in the mBG17:SARS-Cov-2 nucleocapsid protein interaction), they should expand their test set well beyond Myc- and HA-tags using antibody-antigen interactions from existing large structural databases.

      (3) As discussed in lines 358-361, the authors are unsure if their primary control tests (antibody binding to Myc-tag and HA-tag) are included in the training data. Lines 324-330 suggest that even if the peptides are not included in the AlphaFold training data because they contain fewer than 10 amino acids, the antibody structures may very well be included, with an obvious "void" that would be best filled by a peptide. The authors must confirm that their tests are not included in the AlphaFold training data, or re-run the analysis with these templates removed.

      (4) The ability of AlphaFold to refine the linear epitope of antibody mBG17 is quite impressive and robust to the reproducibility issues the authors have run into. However, Figure 4 seems to suggest that the target epitope adopts an alpha-helical structure. This may be why the score is so high and the prediction is so robust. It would be very useful to see along with the pLDDT by residue plots a structure prediction by residue plot. This would help to see if the high confidence pLDDT is coming more from confidence in the docking of the peptide or confidence in the structure of the peptide.

      (5) Related to the above comment, pLDDT is insufficient as a metric for assessing antibody-antigen interactions. There is a chance (as is nicely shown in Figure S3C) that AlphaFold can be confident and wrong. Here we see two orange-yellow dots (fairly high confidence) that place the peptide COM far from the true binding region. While running the recommended larger validation above, the authors should also include a peptide RMSD or COM distance metric, to show that the peptide identity is confident, and the peptide placement is roughly correct. These predictions are not nearly as valuable if AlphaFold is getting the right answer for the wrong reasons (i.e. high pLDDT but peptide binding to a non-CDR loop region). Eventual users of the software will likely want to make point mutations or perturb the binding regions identified by the structural predictions (as the authors do in Figure 4).

      Comments on revisions:

      I have read the author's responses and the revised manuscript. The authors did not sufficiently address my comments, nor the fundamental issue with the manuscript.

      By the authors' own admission, many of the results presented in the current version of the manuscript cannot be reproduced without relying on locally saved MSAs. In other words, there is almost no evidence presented that this pipeline will predict antibody-antigen interactions using currently publicly available software. This manuscript is reduced to essentially a case study (N=1) in how one might go about making such predictions coupled with pretty good experimental evidence backing up this singular prediction.

    1. 支持相联方式:4WAY

      将缓存分为多个组(Set),每组中有固定数量的缓存块(Block)。一个内存地址只能映射到特定的组,但可以存储在该组内的任意块中 而其中的4-way 相连方式(4-way set associative)是一种缓存组织方式。 4-way 相连方式是一种权衡性能与成本的缓存设计方案,适用于大多数处理器的 L1 缓存(如 ICache 或 DCache)。它在直接映射缓存和全相连缓存之间提供了折中点,既提升了缓存命中率,又保持了相对较低的硬件复杂性

      include <stdio.h>

      include <stdlib.h>

      include <stdbool.h>

      define CACHE_SIZE 16 // 缓存总块数

      define BLOCK_SIZE 4 // 每组内的块数(4-way)

      define NUM_SETS (CACHE_SIZE / BLOCK_SIZE) // 组数

      typedef struct { int valid; // 有效位 int tag; // 地址标签 int last_used; // LRU 计数 } CacheBlock;

      // 定义缓存(二维数组,每组包含多个块) CacheBlock cache[NUM_SETS][BLOCK_SIZE];

      // 全局计数器用于 LRU 替换策略 int global_time = 0;

      // 计算组索引 int get_set_index(int address) { return address % NUM_SETS; // 简单取模 }

      // 计算标签 int get_tag(int address) { return address / NUM_SETS; // 地址除以组数 }

      // 缓存查找和替换 bool access_cache(int address) { int set_index = get_set_index(address); int tag = get_tag(address);

      // 查找对应的组
      for (int i = 0; i < BLOCK_SIZE; i++) {
          if (cache[set_index][i].valid && cache[set_index][i].tag == tag) {
              // 缓存命中,更新 LRU
              cache[set_index][i].last_used = global_time++;
              return true; // 命中
          }
      }
      
      // 缓存未命中,需要替换
      // 找到需要替换的块(使用 LRU 策略)
      int lru_index = 0;
      for (int i = 1; i < BLOCK_SIZE; i++) {
          if (cache[set_index][i].last_used < cache[set_index][lru_index].last_used) {
              lru_index = i;
          }
      }
      
      // 替换 LRU 块
      cache[set_index][lru_index].valid = 1;
      cache[set_index][lru_index].tag = tag;
      cache[set_index][lru_index].last_used = global_time++;
      return false; // 未命中
      

      }

      int main() { // 初始化缓存 for (int i = 0; i < NUM_SETS; i++) { for (int j = 0; j < BLOCK_SIZE; j++) { cache[i][j].valid = 0; cache[i][j].tag = -1; cache[i][j].last_used = 0; } }

      // 模拟访问
      int addresses[] = {0, 0, 8, 12,4, 8, 20, 12, 4, 32};
      int n = sizeof(addresses) / sizeof(addresses[0]);
      
      for (int i = 0; i < n; i++) {
          int address = addresses[i];
          if (access_cache(address)) {
              printf("Address %d: Cache HIT\n", address);
          } else {
              printf("Address %d: Cache MISS\n", address);
          }
      }
      
      return 0;
      

      }

    Annotators

    1. Als 2010 am Tag des Gedenkens an die Opfer des Nationalsozialismus der israe­lische Staatspräsident Shimon Peres im Bundestag sprach, erhoben sich anschließend alle Abgeordneten – bis auf Sahra Wagenknecht (damals noch Linkspartei) und Buchholz.

      Und Sevim Dagdelen.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary: The manuscript by Yang et al. describes a new CME accessory protein. CCDC32 has been previously suggested to interact with AP2 and in the present work the authors confirm this interaction and show that it is a bona fide CME regulator. In agreement with its interaction with AP2, CCDC32 recruitment to CCPs mirrors the accumulation of clathrin. Knockdown of CCDC32 reduces the amount of productive CCPs, suggestive of a stabilisation role in early clathrin assemblies. Immunoprecipitation experiments mapped the interaction of CCDC42 to the α-appendage of the AP2 complex α-subunit. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome disrupt the interaction of this protein to the AP2 complex. The manuscript is well written and the conclusions regarding the role of CCDC32 in CME are supported by good quality data. As detailed below, a few improvements/clarifications are needed to reinforce some of the conclusions, especially the ones regarding CFNDS.

      Response: We thank the referee for their positive comments. In light of a recently published paper describing CCDC32 as a co-chaperone required for AP2 assembly (Wan et al., PNAS, 2024, see reviewer 2), we have added several additional experiments to address all concerns and consequently gained further insight into CCDC32-AP2 interactions and the important dual role of CCDC32 in regulating CME.

      Major comments:

      1) Why did the protein could just be visualized at CCPs after knockdown of the endogenous protein? This is highly unusual, especially on stable cell lines. Could this be that the tag is interfering with the expressed protein function rendering it incapable of outcompeting the endogenous? Does this points to a regulated recruitment?

      Response: The reviewer is correct, this would be unusual; however, it is not the case. We misspoke in the text (although the figure legend was correct) these experiments were performed without siRNA knockdown and we can indeed detect eGFP-CCDC32 being recruited to CCPs in the presence of endogenous protein. Nonetheless, we repeated the experiment to be certain.

      2) The disease mutation used in the paper does not correspond to the truncation found in patients. The authors use an 1-54 truncation, but the patients described in Harel et al. have frame shifts at the positions 19 (Thr19Tyrfs*12) and 64 (Glu64Glyfs*12), while the patient described in Abdalla et al. have the deletion of two introns, leading to a frameshift around amino acid 90. Moreover, to be precisely test the function of these disease mutations, one would need to add the extra amino acids generated by the frame shift. For example, as denoted in the mutation description in Harel et al., the frameshift at position 19 changes the Threonine 19 to a Tyrosine and ads a run of 12 extra amino acids (Thr19Tyrfs*12).

      Response: The label of the disease mutant p.(Thr19Tyrfs∗12) and p.(Glu64Glyfs∗12) is based on a 194aa polypeptide version of CCDC32 initiated at a nonconventional start site that contains a 9 aa peptide (VRGSCLRFQ) upstream of the N-terminus we show. Thus, we are indeed using the appropriate mutation site (see: https://www.uniprot.org/uniprotkb/Q9BV29/entry). The reviewer is correct that we have not included the extra 12 aa in our construct; however as these residues are not present in the other CFNDS mutants, we think it unlikely that they contribute to the disease phenotype. Rather, as neither of the clinically observed mutations contain the 78-98 aa sequence required for AP2 binding and CME function, we are confident that this defect contributed to the disease. Thus, we are including the data on the CCDC32(1-54) mutant, as we believe these results provide a valuable physiological context to our studies.

      3) The frameshift caused by the CFNDS mutations (especially the one studied) will likely lead to nonsense mediated RNA decay (NMD). The frameshift is well within the rules where NMD generally kicks in. Therefore, I am unsure about the functional insights of expressing a disease-related protein which is likely not present in patients.

      Response: We thank the reviewer for bringing up this concern. However, as shown in new Figure S1, the mutant protein is expressed at comparable levels as the WT, suggesting that NMD is not occurring.

      4) Coiled coils generally form stable dimers. The typically hydrophobic core of these structures is not suitable for transient interactions. This complicates the interpretation of the results regarding the role of this region as the place where the interaction to AP2 occurs. If the coiled coil holds a stable CCDC32 dimer, disrupting this dimer could reduce the affinity to AP2 (by reduced avidity) to the actual binding site. A construct with an orthogonal dimeriser or a pulldown of the delta78-98 protein with of the GST AP2a-AD could be a good way to sort this issue.

      Response: We were unable to model a stable dimer (or other oligomer) of this protein with high confidence using Alphafold 3.0. Moreover, we were unable to detect endogenous CCDC32 co-immunoprecipitating with eGFP-CCDC32 (Fig. S6C). Thus, we believe that the moniker, based solely on the alpha-helical content of the protein is a misnomer. We have explained this in the main text.

      Minor comments:

      1) The authors interchangeably use the term "flat CCPs" and "flat clathrin lattices". While these are indeed related, flat clathrin lattices have been also used to refer to "clathrin plaques". To avoid confusion, I suggest sticking to the term "flat CCPs" to refer to the CCPs which are in their early stages of maturation.

      Response: Agreed. Thank you for the suggestion. We have renamed these structures flat clathrin assemblies, as they do not acquire the curvature needed to classify them as pits, and do not grow to the size that would classify then as plaques.

      Significance

      General assessment: CME drives the internalisation of hundreds of receptors and surface proteins in practically all tissues, making it an essential process for various physiological processes. This versatility comes at the cost of a large number of molecular players and regulators. To understand this complexity, unravelling all the components of this process is vital. The manuscript by Yang et al. gives an important contribution to this effort as it describes a new CME regulator, CCDC32, which acts directly at the main CME adaptor AP2. The link to disease is interesting, but the authors need to refine their experiments. The requirement for endogenous knockdown for recruitment of the tagged CCDC32 is unusual and requires further exploration.

      Advance: The increased frequency of abortive events presented by CCDC32 knockdown cells is very interesting, as it hints to an active mechanism that regulates the stabilisation and growth of clathrin coated pits. The exact way clathrin coated pits are stabilised is still an open question in the field.

      Audience: This is a basic research manuscript. However, given the essential role of CME in physiology and the growing number of CME players involved in disease, this manuscript can reach broader audiences.

      Response: We thank the referee for recognizing the 'interesting' advances our studies have made and for considering these studies as 'an important contribution' to 'an essential process for various physiological processes' and able 'to reach broader audiences'. We have addressed and reconciled the reviewer's concerns in our revised manuscript.

      Field of expertise of the reviewer: Clathrin mediated endocytosis, cell biology, microscopy, biochemistry.


      Reviewer #2

      Evidence, reproducibility and clarity

      In this manuscript, the authors demonstrate that CCDC32 regulates clathrin-mediated endocytosis (CME). Some of the findings are consistent with a recent report by Wan et al. (2024 PNAS), such as the observation that CCDC32 depletion reduces transferrin uptake and diminishes the formation of clathrin-coated pits. The primary function of CCDC32 is to regulate AP2 assembly, and its depletion leads to AP2 degradation. However, this study did not examine AP2 expression levels. CCDC32 may bind to the appendage domain of AP2 alpha, but it also binds to the core domain of AP2 alpha. Overall, while this work presents some interesting ideas, it remains unclear whether CCDC32 regulates AP2 beyond the assembly step.

      Response: We thank the reviewer for drawing our attention to the Wan et al. paper, that appeared while this work was under review. However, our in vivo data are not fully consistent with the report from Wan et al. The discrepancies reveal a dual function of CCDC32 in CME that was masked by complete knockout vs siRNA knockdown of the protein, and also likely affected by the position of the GFP-tag (C- vs N-terminal) on this small protein. Thus:

      • Contrary to Wan et al., we do not detect any loss of AP2 expression (see new Figure S3A-B) upon siRNA knockdown. Most likely the ~40% residual CCDC32 present after siRNA knockdown is sufficient to fulfill its catalytic chaperone function but not its structural role in regulating CME beyond the AP2 assembly step.
      • Contrary to Wan et al., we have shown that CCDC32 indeed interacts with intact AP2 complex (Figure S3C and 6B,C) showing that all 4 subunits of the AP2 complex co-IP with full length eGFP-CCDC32. Interestingly, whereas the full length CCDC32 pulls down the intact AP2 complex, co-IP of the ∆78-98 mutant retains its ability to pull down the b2-µ2 hemicomplex, its interactions with α:σ2 are severely reduced. While this result is consistent with the report of Wan et al that CCDC32 binds to the α:σ2 hemi-complex, it also suggests that the interactions between CCDC32 and AP2 are more complex and will require further studies.
      • Contrary to Wan et al., we provide strong evidence that CCDC32 is recruited to CCPs. Interestingly, modeling with AlphaFold 3.0 identifies a highly probably interaction between alpha helices encoded by residues 66-91 on CCDC32 and residues 418-438 on a. The latter are masked by µ2-C in the closed confirmation of the AP2 core, but exposed in the open confirmation triggered by cargo binding, suggesting that CCDC32 might only bind to membrane-bound AP2. Thus, our findings are indeed novel and indicate striking multifunctional roles for CCDC32 in CME, making the protein well worth further study.

      • Besides its role in AP2 assembly, CCDC32 may potentially have another function on the membrane. However, there is no direct evidence showing that CCDC32 associates with the plasma membrane.

      Response: We disagree, our data clearly shows that CCDC32 is recruited to CCPs (Fig. 1B) and that CCPs that fail to recruit CCDC32 are short-lived and likely abortive (Fig. 1C). Wan et al. did not observe any colocalization of C-terminally tagged CCDC32 to CCPs, whereas we detect recruitment of our N-terminally tagged construct, which we also show is functional (Fig. 6F). Further, we have demonstrated the importance of the C-terminal region of CCDC32 in membrane association (see new Fig. S7). Thus, we speculate that a C-terminally tagged CCDC32 might not be fully functional. Indeed, SIM images of the C-terminally-tagged CCDC32 in Wan et al., show large (~100 nm) structures in the cytosol, which may reflect aggregation.

      CCDC32 binds to multiple regions on AP2, including the core domain. It is important to distinguish the functional roles of these different binding sites.

      Response: We have localized the AP2-ear binding region to residues 78-99 and shown these to be critical for the functions we have identified. As described above we now include data that are complementary to those of Wan et al. However, our data also clearly points to additional binding modalities. We agree that it will be important and map these additional interactions and identify their functional roles, but this is beyond the scope of this paper.

      AP2 expression levels should be examined in CCDC32 depleted cells. If AP2 is gone, it is not surprising that clathrin-coated pits are defective.

      Response: Agreed and we have confirmed this by western blotting (Figure S3A-B) and detect no reduction in levels of any of the AP2 subunits in CCDC32 siRNA knockdown cells. As stated above this could be due to residual CCDC32 present in the siRNA KD vs the CRISPR-mediated gene KO.

      If the authors aim to establish a secondary function for CCDC32, they need to thoroughly discuss the known chaperone function of CCDC32 and consider whether and how CCDC32 regulates a downstream step in CME.

      Response: Agreed. We have described the Wan et al paper, which came out while our manuscript was in review, in our Introduction. As described above, there are areas of agreement and of discrepancies, which are thoroughly documented and discussed throughout the revised manuscript.

      The quality of Figure 1A is very low, making it difficult to assess the localization and quantify the data.

      Response: The low signal:noise in Fig. 1A the reviewer is concerned about is due to a diffuse distribution of CCDC32 on the inner surface of the plasma membrane. We now, more explicitly describe this binding, which we believe reflects a specific interaction mediated by the C-terminus of CCDC32; thus the degree of diffuse membrane binding we observe follows: eGFP-CCDC32(FL)> eGFP-CCDC32(∆78-98)>eGFP-CCDC32(1-54)~eGFP/background (see new Fig. S7). Importantly, the colocalization of CCDC32 at CCPs is confirmed by the dynamic imaging of CCPs (Fig 1B).

      In Figure 6, why aren't AP2 mu and sigma subunits shown?

      Response: Agreed. Not being aware of CCDC32's possible dual role as a chaperone, we had assumed that the AP2 complex was intact. We have now added this data in Figure 6 B,C and Fig. S3C, as discussed above.

      Page 5, top, this sentence is confusing: "their surface area (~17 x 10 nm2) remains significantly less than that required for the average 100 nm diameter CCV (~3.2 x 103 nm2)."

      Response: Thank you for the criticism. We have clarified the sentence and corrected a typo, which would definitely be confusing. The section now reads, "While the flat CCSs we detected in CCDC32 knockdown cells were significantly larger than in control cells (Fig. 4D, mean diameter of 147 nm vs. 127 nm, respectively), they are much smaller than typical long-lived flat clathrin lattices (d{greater than or equal to}300 nm)(Grove et al., 2014). Indeed, the surface area of the flat CCSs that accumulate in CCDC32 KD cells (mean ~1.69 x 104 nm2) remains significantly less than the surface area of an average 100 nm diameter CCV (~3.14 x 104 nm2). Thus, we refer to these structures as 'flat clathrin assemblies' because they are neither curved 'pits' nor large 'lattices'. Rather, the flat clathrin assemblies represent early, likely defective, intermediates in CCP formation."

      Significance

      Please see above.(from above: Overall, while this work presents some interesting ideas, it remains unclear whether CCDC32 regulates AP2 beyond the assembly step)

      Response: Our responses above argue that we have indeed established that CCDC32 regulates AP2 beyond the assembly step. We have also identified several discrepancies between our findings and those reported by Wan et al., most notably binding between CCDC32 and mature AP2 complexes and the AP2-dependent recruitment of CCDC32 to CCPs. It is possible that these discrepancies may be due to the position of the GFP tag (ours is N-terminal, theirs is C-terminal; we show that the N-terminal tagged CCDC32 rescues the knockdown phenotype, while Wan et al., do not provide evidence for functionality of the C-terminal construct).

      __Reviewer #3 __

      Evidence, reproducibility and clarity (Required):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, known to play a role in CFNDS, is also addressed in this study and shown to have endocytic defects.

      Response: We thank the reviewer for their positive remarks regarding the quality of our data and the strength of our conclusions.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2, whereby the following major and minor points remain to be addressed:

      • The authors show that CCDC32 depletion leads to the formation of brighter and static clathrin coated structures (Figure 2), but that these were only prevalent to 7.8% and masked the 'normal' dynamic CCPs. At the same time, the authors show that the absence of CCDC32 induces pits with shorter life times (Figure 1 and Figure 2), the 'majority' of the pits. Clarification is needed as to how the authors arrive at these conclusions and these numbers. The authors should also provide (and visualize) the corresponding statistics. The same statement is made again later on in the manuscript, where the authors explain their electron microscopy data. Was the number derived from there?

      These points are critical to understanding CCDC32's role in endocytosis and is key to understanding the model presented in Figure 8. The numbers of how many pits accumulate in flat lattices versus normal endocytosis progression and the actual time scales could be included in this model and would make the figure much stronger.

      Response: Thank you for these comments. We understand the paradox between the visual impression and the reality of our dynamic measurements. We have been visually misled by this in previous work (Chen et al., 2020), which emphasizes the importance of unbiased image analysis afforded to us through the well-documented cmeAnalysis pipeline, developed by us (Aguet et al., 2013) and now used by many others (e.g. (He et al., 2020)).

      The % of static structures was not derived from electron microscopy data, but quantified using cmeAnalysis, which automatedly provides the lifetime distribution of CCPs. We have now clarified this in the manuscript and added a histogram (Fig. S4) quantifying the fraction of CCPs in lifetime cohorts 150s (static).

      • In relation to the above point, the statistics of Figure 2E-G and the analysis leading there should also be explained in more detail: For example, what are the individual points in the plot (also in Figures 6G and 7G)? The authors should also use a few phrases to explain software they use, for example DASC, in the main text.

      Response: Each point in these bar graphs represents a movie, where n{greater than or equal to}12. These details have been added to the respective figure legend. We have also added a brief description of DASC analysis in the text.

      • There are several questions related to the knock-down experiments that need to be addressed:

      Firstly, knock-down of CCDC32 does not seem to be very strong (Figure S2B). Can the level of knock-down be quantified?

      Response: We have now quantified the KD efficiency. It is ~60%. This turns out to be fortuitous (see responses to reviewer 2), as a recent publication, which came out after we completed our study, has shown by CRISPR-mediated knockout, that CCD32 also plays an essential chaperone function required for AP2 assembly. We do not see any reduction in AP2 levels or its complex formation under our conditions (see new Supplemental Figure S3), which suggests that the effects of CCDC32 on CCP dynamics are more sensitive to CCDC32 concentration than its roles as a chaperone. Our phenotypes would have been masked by more efficient depletion of CCDC32.

      In page 6 it is indicated that the eGFP-CCDC32(1-54) and eGFP-CCDC32(∆78-98) constructs are siRNA-resistant. However in Fig S2B, these proteins do not show any signal in the western blot, so it is not clear if they are expressed or simply not detected by the antibody. The presence of these proteins after silencing endogenous CCDC32 needs to be confirmed to support Figures 6 and Figures 7, which critically rely on the presence of the CCDC32 mutants.

      Response: Unfortunately, the C-terminally truncated CCDC32 proteins are not detected because they lack the antibody epitope, indeed even the D78-98 deletion is poorly detected (compare the GFP blot in new S1A with the anti-CCDC32 blot in S1B). However, these constructs contain the same siRNA-resistance mutation as the full length protein. That they are expressed and siRNA resistant can be seen in Fig. S2A (now Fig. S1A) blotting for GFP.

      In Figures 6 and 7, siRNA knock-down of CCDC32 is only indicated for sub-figures F to G. Is this really the case? If not, the authors should clarify. The siRNA knock-down in Figure 1 is also only mentioned in the text, not in the figure legend. The authors should pay attention to make their figure legends easy to understand and unambiguous.

      Response: No, it is not the case. Thank you for pointing out the uncertainty. We have added these details to the Figure legends and checked all Figure legends to ensure that they clearly describe the data shown.

      • It is not exactly clear how the curves in Figure 3C (lower panel) on the invagination depth were obtained. Can the authors clarify this a bit more? For example, what are kT and kE in Figure 3A? What is I0? And how did the authors derive the logarithmic function used to quantify the invagination depth? In the main text, the authors say that the traces were 'logarithmically transformed'. This is not a technical term. The authors should refer to the actual equation used in the figure.

      Response: This analysis was developed by the Kirchhausen lab (Saffarian and Kirchhausen, 2008). We have added these details and reference them in the Figure legend and in the text. We also now use the more accurate descriptor 'log-transformed'.

      • In the discussion, the claim 'The resulting dysregulation of AP2 inhibits CME, which further results in the development of CFNDS.' is maybe a bit too strong of a statement. Firstly, because the authors show themselves that CME is perturbed, but by no means inhibited. Secondly, the molecular link to CFNDS remains unclear. Even though CCDC32 mutants seem to be responsible for CFNDS and one of the mutant has been shown in this study to have a defect in endocytosis and AP2 binding, a direct link between CCDC32's function in endocytosis and CFNDS remains elusive. The authors should thus provide a more balanced discussion on this topic.

      Response: We have modified and softened our conclusions, which now read that the phenotypes we see likely "contribute to" rather than "cause" the disease.

      • In Figure S1, the authors annotate the presence of a coiled-coil domain, which they also use later on in the manuscript to generate mutations. Could the authors specify (and cite) where and how this coiled-coil domain has been identified? Is this predicted helix indeed a coiled-coil domain, or just a helix, as indicated by the authors in the discussion?

      Response: See response to Reviewer 1, point 4. We have changed this wording to alpha-helix. The 'coiled-coil' reference is historical and unlikely a true reflection of CCDC32 structure. AlphaFold 3.0 predictions were unable to identify with certainly any coiled-coil structures, even if we modelled potential dimers or trimers; and we find no evidence of dimerization of CCDC32 in vivo. We have clarified this in the text.

      Minor comments

      • In general, a more detailed explanation of the microscopy techniques used and the information they report would be beneficial to provide access to the article also to non-expert readers in the field. This concerns particularly the analysis methods used, for example: How were the cohort-averaged fluorescence intensity and lifetime traces obtained? How do the tools cmeAnalysis and DASC work? A brief explanation would be helpful.

      Response: We have expanded Methods to add these details, and also described them in the main text.

      • The axis label of Figure 2B is not quite clear. What does 'TfnR uptake % of surface bound' mean? Maybe the authors could explain this in more detail in the figure legend? Is the drop in uptake efficiency also accessible by visual inspection of the images? It would be interesting to see that.

      Response: This is a standard measure of CME efficiency. 'TfnR uptake % of surface bound' = Internalized TfnR/Surface bound TfnR. Again, images may be misleading as defects in CME lead to increased levels of TfnR on the cell surface, which in turn would result in more Tfn uptake even if the rate of CME is decreased.

      • Figure 4: How is the occupancy of CCPs in the plasma membrane measured? What are the criteria used to divide CCSs into Flat, Dome or Sphere categories?

      Response: We have expanded Methods to add these details. Based on the degree of invagination, the shapes of CCSs were classified as either: flat CCSs with no obvious invagination; dome-shaped CCSs that had a hemispherical or less invaginated shape with visible edges of the clathrin lattice; and spherical CCSs that had a round shape with the invisible edges of clathrin lattice in 2D projection images. In most cases, the shapes were obvious in 2D PREM images. In uncertain cases, the degree of CCS invagination was determined using images tilted at {plus minus}10-20 degrees. The area of CCSs were measured using ImageJ and used for the calculation of the CCS occupancy on the plasma membrane.

      • Figure 5B: Can the authors explain, where exactly the GFP was engineered into AP2 alpha? This construct does not seem to be explained in the methods section.

      Response: We have added this information. The construct, which corresponds to an insertion of GFP into the flexible hinge region of AP2, at aa649, was first described by (Mino et al., 2020) and shown to be fully functional. This information has been added to the Methods section.

      • Figure S1B: The authors should indicate the colour code used for the structural model.

      Response: We have expanded our structural modeling using AlphaFold 3.0 in light of the recent publication suggesting the CCDC32 interacts with the µ2 subunit and does not bind full length AP2. These results are described in the text. The color coding now reflects certainty values given by AlphaFold 3.0 (Fig. S6B, D).

      • The list of primers referred to in the materials and methods section does not exist. There is a Table S1, but this contains different data. The actual Table S1 is not referenced in the main text. This should be done.

      Response: We apologize for this error. We have now added this information in Table S2.

      __ Significance (Required):__

      In this study, the authors analyse a so-far poorly understood endocytic accessory protein, CCDC32, and its implication for endocytosis. The experimental tool set used, allowing to quantify CCP dynamics and invagination is clearly a strength of the article that allows assessing the impact of an accessory protein towards the endocytic uptake mechanism, which is normally very robust towards mutations. Only through this detailed analysis of endocytosis progression could the authors detect clear differences in the presence and absence of CCDC32 and its mutants. If the above points are successfully addressed, the study will provide very interesting and highly relevant work allowing a better understanding of the early phases in CME with implication for disease.

      The study is thus of potential interest to an audience interested in CME, in disease and its molecular reasons, as well as for readers interested in intrinsically disordered proteins to a certain extent, claiming thus a relatively broad audience. The presented results may initiate further studies of the so-far poorly understood and less well known accessory protein CCDC32.

      Response: We thank the reviewer for their positive comments on the significance of our findings and the importance of our detailed phenotypic analysis made possible by quantitative live cell microscopy. We also believe that our new structural modeling of CCDC32 and our findings of complex and extensive interactions with AP2 make the reviewers point regarding intrinsically disordered proteins even more interesting and relevant to a broad audience. We trust that our revisions indeed address the reviewer's concerns.

      The field of expertise of the reviewer is structural biology, biochemistry and clathrin mediated endocytosis. Expertise in cell biology is rather superficial.


      References:

      Aguet, F., Costin N. Antonescu, M. Mettlen, Sandra L. Schmid, and G. Danuser. 2013. Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. Developmental Cell. 26:279-291.

      Chen, Z., R.E. Mino, M. Mettlen, P. Michaely, M. Bhave, D.K. Reed, and S.L. Schmid. 2020. Wbox2: A clathrin terminal domain-derived peptide inhibitor of clathrin-mediated endocytosis. Journal of Cell Biology. 219.

      Grove, J., D.J. Metcalf, A.E. Knight, S.T. Wavre-Shapton, T. Sun, E.D. Protonotarios, L.D. Griffin, J. Lippincott-Schwartz, and M. Marsh. 2014. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell. 25:3581-3594.

      He, K., E. Song, S. Upadhyayula, S. Dang, R. Gaudin, W. Skillern, K. Bu, B.R. Capraro, I. Rapoport, I. Kusters, M. Ma, and T. Kirchhausen. 2020. Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. J Cell Biol. 219.

      Mino, R.E., Z. Chen, M. Mettlen, and S.L. Schmid. 2020. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic. 21:603-616.

      Saffarian, S., and T. Kirchhausen. 2008. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J. 94:2333-2342.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      The manuscript by Yang et al. describes a new CME accessory protein. CCDC32 has been previously suggested to interact with AP2 and in the present work the authors confirm this interaction and show that it is a bona fide CME regulator. I agreement with its interaction with AP2, CCDC32 recruitment to CCPs mirrors the accumulation of clathrin. Knockdown of CCDC32 reduces the amount of productive CCPs, suggestive of a stabilisation role in early clathrin assemblies. Immunoprecipitation experiments mapped the interaction of CCDC42 to the α-appendage of the AP2 complex α-subunit. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome disrupt the interaction of this protein to the AP2 complex. The manuscript is well written and the conclusions regarding the role of CCDC32 in CME are supported by good quality data. As detailed below, a few improvements/clarifications are needed to reinforce some of the conclusions, especially the ones regarding CFNDS.

      Major comments:

      1. Why did the protein could just be visualized at CCPs after knockdown of the endogenous protein? This is highly unusual, especially on stable cell lines. Could this be that the tag is interfering with the expressed protein function rendering it incapable of outcompeting the endogenous? Does this points to a regulated recruitment?
      2. The disease mutation used in the paper does not correspond to the truncation found in patients. The authors use an 1-54 truncation, but the patients described in Harel et al. have frame shifts at the positions 19 (Thr19Tyrfs12) and 64 (Glu64Glyfs12), while the patient described in Abdalla et al. have the deletion of two introns, leading to a frameshift around amino acid 90. Moreover, to be precisely test the function of these disease mutations, one would need to add the extra amino acids generated by the frame shift. For example, as denoted in the mutation description in Harel et al., the frameshift at position 19 changes the Threonine 19 to a Tyrosine and ads a run of 12 extra amino acids (Thr19Tyrfs*12).
      3. The frameshift caused by the CFNDS mutations (especially the one studied) will likely lead to nonsense mediated RNA decay (NMD). The frameshift is well within the rules where NMD generally kicks in. Therefore, I am unsure about the functional insights of expressing a disease-related protein which is likely not present in patients.
      4. Coiled coils generally form stable dimers. The typically hydrophobic core of these structures is not suitable for transient interactions. This complicates the interpretation of the results regarding the role of this region as the place where the interaction to AP2 occurs. If the coiled coil holds a stable CCDC32 dimer, disrupting this dimer could reduce the affinity to AP2 (by reduced avidity) to the actual binding site. A construct with an orthogonal dimeriser or a pulldown of the delta78-98 protein with of the GST AP2a-AD could be a good way to sort this issue.

      Minor comments:

      1. The authors interchangeably use the term "flat CCPs" and "flat clathrin lattices". While these are indeed related, flat clathrin lattices have been also used to refer to "clathrin plaques". To avoid confusion, I suggest sticking to the term "flat CCPs" to refer to the CCPs which are in their early stages of maturation.

      Significance

      General assessment:

      CME drives the internalisation of hundreds of receptors and surface proteins in practically all tissues, making it an essential process for various physiological processes. This versatility comes at the cost of a large number of molecular players and regulators. To understand this complexity, unravelling all the components of this process is vital. The manuscript by Yang et al. gives an important contribution to this effort as it describes a new CME regulator, CCDC32, which acts directly at the main CME adaptor AP2. The link to disease is interesting, but the authors need to refine their experiments. The requirement for endogenous knockdown for recruitment of the tagged CCDC32 is unusual and requires further exploration.

      Advance:

      The increased frequency of abortive events presented by CCDC32 knockdown cells is very interesting, as it hints to an active mechanism that regulates the stabilisation and growth of clathrin coated pits. The exact way clathrin coated pits are stabilised is still an open question in the field.

      Audience:

      This is a basic research manuscript. However, given the essential role of CME in physiology and the growing number of CME players involved in disease, this manuscript can reach broader audiences.

      Field of expertise of the reviewer:

      Clathrin mediated endocytosis, cell biology, microscopy, biochemistry.

    1. Author response:

      We thank all the reviewers for their insightful comments on this work.

      Response to Reviewer #1:

      We greatly appreciate your comments on the general reliability and significance of our work. We fully agree that it would have been ideal to have additional evidence related to the role of PEBP1 in HRI activation. Unfortunately, we have not been able to find phospho-HRI antibodies that work reliably. The literature seems to agree with this as a band shift using total-HRI antibodies is usually used to study HRI activation. However, with the cell lines showing the most robust effect with PEBP1 knockout or knockdown, we are yet to convince ourselves with the band shifts we see. This could be addressed by optimizing phos-tag gels although these gels can be a bit tricky with complex samples such as cell lysates which contain many phosphoproteins.

      To address the interaction between PEBP1 and eIF2alpha more rigorously we were inspired by the insights you and reviewer #2 provided. While we are unable to do further experiments, we now think it would indeed be possible to do this with either using the purified proteins and/or CETSA WB. These experiments could also provide further evidence for the role of PEBP1 phosphorylation. Although phosphorylation of PEBP1 at S153 has been implicated as being important for other functions of PEBP1, we are not sure about its role here. It may indeed have little relevance for ISR signalling.

      For the in vitro thermal shift assay, we have performed two independent experiments. While it appears that there is a slight destabilization of PEBP1 by oligomycin, the ultimate conclusion of this experiment remains incomplete as there could be alternative explanations despite the apparent simplicity of the assay due the fluorescence background by oligomycin only. We now provide a lysate based CETSA analysis which does not display the same PEBP1 stabilization as the intact cell experiment. As for the signal saturation in ATF4-luciferase reporter assay, this is a valid point.

      Response to Reviewer #2:

      We strongly agree that CETSA has a lot of potential to inform us about cellular state changes and this was indeed the starting point for this project. We apologize for being (too) brief with the explanations of the TPP/MS-CETSA approach and we have now added a bit more detail. With regard to the cut-offs used for the mass spectrometry analysis, you are absolutely right that we did not establish a stringent cut-off that would show the specificity of each drug treatment. Our take on the data was that using the p values (and ignoring the fold-changes) of individual protein changes as in Fig 1D, we can see that mitochondrial perturbations display a coordinated response. We now realize that the downside of this representation is that it obscures the largest and specific drug effects. As mentioned in the response to Reviewer #1, we now also think that it would be possible to obtain more evidence for the potential interaction between PEBP1 and eIF2alpha using CETSA-based assays.

      Response to Reviewer #3:

      Thank you for your assessment, we agree that this manuscript would have been made much stronger by having clearer mechanistic insights. As mentioned in the responses to other reviewers above, we aim to address this limitation in part by looking at the putative interaction between PEBP1 and eIF2alpha with orthogonal approaches. However, we do realize that analysis of protein-protein interactions can be notoriously challenging due to false negative and false positive findings. As with any scientific endeavor, we will keep in mind alternative explanations to the observations, which could eventually provide that cohesive model explaining how precisely PEBP1, directly or indirectly, influences ISR signalling.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      The data overall are very solid, and I would only recommend the following minor changes: 

      (1) Line 187 and line 268: there is perhaps a trend towards slightly increased ATF4-luc reporter with PEBP1-S153D, but it is not statistically significant, so I would tone down the wording here. 

      We now modified this part to "This data is consistent with the modest increase…" .

      (2) The recently discovered SIFI complex (Haakonsen 2024, https://doi.org/10.1038/s41586023-06985-7) regulates both HRI and DELE1 through bifunctional localization/degron motifs. It seems like PEBP1 also contains such a motif, which suggests a potential mechanism for enrichment near mitochondria, perhaps even in response to stress. Maybe the authors could further speculate on this in the discussion. 

      While working on the manuscript, we considered the possibility that PEBP1 function could be related to SIFI complex and concluded that here is a critical difference: while  SIFI specifically acts to turn off stress response signalling, loss of PEBP1 prevents eIF2alpha phosphorylation. We did not however consider that PEBP1 could have a localization/degron motif. Motif analysis by deepmito (busca.biocomp.unibo.it) and similar tools did not identify any conventional mitochondrial targeting signal although we acknowledge that PEBP1 has a terminal alpha-helix which was identified for SIFI complex recognition. We are not sure why you think PEBP1 contains such a motif and therefore are hesitant to speculate on this further in the manuscript.

      (3) Line 358: references 50 and 45 are identical. 

      Thank you for spotting this. Corrected now. 

      (4) Figure S1D: it looks like Oligomycin has a significant background fluorescence, which makes interpretation of these graphs difficult - do you have measurements of the compound alone that can be used to subtract this background from the data? Based on the Tm I would say it does stabilize recombinant PEBP1, and there is no quantification of the variance across the 3 replicates to say there is no difference. 

      You are right, this assay is problematic due to the background fluorescence. The measurements with oligomycin only and subtracting this background results in slightly negative values and nonsensical thermal shift curves. We now additionally show quantification from two different experiments (unfortunately we ran out of reagents for further experiments), and this quantification shows that if anything, oligomycin causes mild destabilization of recombinant PEBP1. We also used lysate CETSA assay which does not show thermal stabilization of PEBP1 by oligomycin, ruling out a direct effect. We attempted to use ferrostatin1 as a positive control as it may bind PEBP1-ALOX protein complex, and it appeared to show marginal stabilization of PEBP1. 

      Reviewer #2 (Recommendations for the authors): 

      I have a few comments for the authors to address: 

      (1) The MS-CETSA experiment is quite briefly described and this could be expanded somewhat. Not clear if multiple biological replicates are used. Is there any cutoff in data analysis based on fold change size (which correlated to the significance of cellular effects), etc? As expected from only one early timepoint (see eg PMID: 38328090), there appear to be a limited number of significant shifts over the background (as judged from Figure S1A). In the Excel result file, however (if I read it right) there are large numbers of proteins that are assigned as stabilized or destabilized. This might be to mark the direction of potential shifts, but considering that most of these are likely not hits, this labeling could give a false impression. Could be good to revisit this and have a column for what could be considered significant hits, where a fold change cutoff could help in selecting the most biologically relevant hits. This would allow Figure 1D to be made crisper when it likely dramatically overestimates the overlap between significant CETSA shifts for these drugs.  

      Fair point, while we focused more on PEBP1, it is important to have sufficient description of the methods. We used duplicate samples for the MS, which is probably the most important point which was absent from the original submission as is now added to the methods. We also added slightly more description on the data analysis. While the AID method does not explicitly use log2 fold changes, it does consider the relative abundance of proteins under different temperature fractions. Since the Tm (melting temperature) for each protein can be at any temperature, we felt that if would be complicated to compare fractions where the protein stability is changed the most and even more so if we consider both significance and log2FC. Therefore, we used this multivariate approach which indicates the proteins with most likely changes across the range of temperatures. To acknowledge that most of the statistically significant changes are not the much over the background as you correctly pointed out, we now add to the main text that “However, most of these changes are relatively small. To focus our analysis on the most significant and biologically relevant changes…” We also agree that it may be confusing that the AID output reports de/stabilization direction for all proteins. In general, we are not big fans of cutoffs as these are always arbitrary, but with multivariate p value of 0.1 it becomes clear that there are only a relatively small number of hits with larger changes. We have now added to the guide in the data sheet that "Primarily, use the adjusted p value of the log10 Multivariate normal pvalue for selecting the overall statistically significant hits (p<0.05 equals  -1.30 or smaller; p<0.01 equals  -2 or smaller)". We have also added to the guide part of the table that “Note that this prediction does not consider whether the change is significant or not, it only shows the direction of change”

      (2) On page 4 the authors state "We reasoned that thermal stability of proteins might be particularly interesting in the context of mitochondrial metabolism as temperature-sensitive fluorescent probes suggest that mitochondrial temperature in metabolically active cells is close to 50{degree sign}C". I don't see the relevance of this statement as an argument for using TPP/CETSA. When this is also not further addressed in the work, it could be deleted.

      Deleted. We agree, while this is an interesting point, it is not that relevant in this paper. 

      (3) To exclude direct drug binding to PEBP1, a thermofluor experiment is performed (Fig S1D). However, the experiment gives a high background at the lower temperatures and it could be argued that this is due to the flouroprobe binding to a hydrophobic pocket of the protein, and that oligomycin at higher concentrations competes with this binding, attenuating fluorescence. These are complex experiments and there could be other explanations, but the authors should address this. An alternative means to provide support for non-binding would be a lysate CETSA experiment, with very short (1-3 minutes) drug exposure before heating. This would typically give a shift when the protein is indicated to be CETSA responsive as in this case. 

      Agree. However, we don't have good means to perform the thermofluor experiments to rule out alternative explanations. What we can say is (as discussed above for reviewer #1, point 4) that quantification from two different experiments shows that oligomycin is does not thermally stabilizing recombinant PEBP1. To complement this conclusion, we used lysate CETSA assay which does not show thermal stabilization of PEBP1 by oligomycin. In this assay we attempted to use ferrostatin1 as a positive control as it may bind PEBP1-ALOX protein complex, and it appeared to show marginal stabilization of PEBP1. But since we lack a robust positive control for these assays, some doubt will inevitably remain.

      (4) The authors appear to have missed that there is already a MS-CETSA study in the literature on oligomycin, from Sun et al (PMID: 30925293). Although this data is from a different cell line and at a slightly longer drug treatment and is primarily used to access intracellular effects of decreased ATP levels induced by oligomycin, the authors should refer to this data and maybe address similarities if any.  

      Apologies for the oversight, the oligomycin data from this paper eluded us at it was mainly presented in the supplementary data. We compared the two datasets and find found some overlap despite the differences in the experimental details. Both datasets share translational components (e.g. EIF6 and ribosomal proteins), but most notably our other top hit BANF1 which we mentioned in the main text was also identified by Sun et al. We have updated the manuscript text as "Other proteins affected by oligomycin included BANF1, which binds DNA in an ATP dependent manner [16], and has also identified as an oligomycin stabilized protein in a previous MS-CETA experiment [23]", citing the Sun et al paper.   

      (5) The confirmation of protein-protein interaction is notoriously prone to false positives. The authors need to use overexpression and a sensitive reporter to get positive data but collect additional data using mutants which provide further support. Typically, this would be enough to confirm an interaction in the literature, although some doubt easily lingers. When the authors already have a stringent in-cell interaction assay for PEBP1 in the CETSA thermal shift, it would be very elegant to also apply the CETSA WB assay to the overexpressed constructs and demonstrate differences in the response of oligomycin, including the mutants. I am not sure this is feasible but it should be straightforward to test. 

      This is a very good suggestion. Unfortunately, due to the time constraints of the graduate students (who must write up their thesis very soon), we are not able to perform and repeat such experiments to the level of confidence that we would like.

      (6) At places the story could be hard to follow, partly due to the frequent introduction of new compounds, with not always well-stated rationale. It could be useful to have a table also in the main manuscript with all the compounds used, with the rationale for their use stated. Although some of the cellular pathways addressed are shown in miniatures in figures, it could be useful to have an introduction figure for the known ISR pathways, at least in the supplement. There are also a number of typos to correct. 

      We agree that there are many compounds used. We have attempted to clarify their use by adding this information into the table of used compounds in the methods and adding an overall schematic to Fig S1G and a note on line 132 "(see Figure 1-figure supplement 1G for summary of drugs used to target PEBP1 and ISR in this manuscript). We have also attempted to remove typos as far as possible.

      (7) EIF2a phosphorylation in S1E does not appear to be more significant for Sodium Arsenite argued to be a positive control, than CCCP, which is argued to be negative. Maybe enough with one positive control in this figure? 

      This experiment was used as a justification for our 30 min time point for the proteomics. By showing the 30 min and 4 h time points as Fig 1G and Figure 1-figure supplement 1F, our point was to demonstrate that the kinetics of phosphorylation and dephosphorylation are relevant. As you correctly pointed out, the stress response induced by sodium arsenite, but also tunicamycin is already attenuated at the 4h time point. We prefer to keep all samples to facilitate comparisons.

      (8) Page 7 reference to Figure S2H, which doesn't exist. Should be S3H.  

      Apologies for the mistake, now corrected to Figure 2-figure supplement 1B.

      (9) Finally, although the TPP labeling of the method is used widely in the literature this is CETSA with MS detection and MS-CETSA is a better term. This is about thermal shifts of individual proteins which is a very well-established biophysical concept. In contrast, the term Thermal Proteome Profiling does not relate to any biophysical concept, or real cell biology concept, as far as I can see, and is a partly misguided term. 

      We changed the term TPP into MS-CETSA, but also include the term TPP in the introduction to facilitate finding this paper by people using the TPP term.

      Reviewer #3 (Recommendations for the authors): 

      Major Issues 

      (1) The one major issue of this work is the lack of a mechanism showing precisely how PEBP1 amplifies the mitochondrial integrated stress response. The work, as it is described, presents data suggesting PEBP1's role in the ISR but fails to present a more conclusive mechanism. The idea of mitochondrial stress causing PEBP1 to bind to eIF2a, amplifying ISR is somewhat vague. Thus, the lack of a more defined model considerably weakens the argument, as the data is largely corollary, showing KO and modulation of PEBP1 definitely has a unique effect on the ISR, however, it is not conclusive proof of what the authors claim. While KO of PEBP1 diminishes the phosphorylation of eIF2a, taken together with the binding to eIF2a, different pathways could be simultaneously activated, and it seems premature to surmise that PEBP1 is specific to mitochondrial stress. Could PEBP1 be reacting to decreased ATP? Release of a protein from the mitochondria in response to stress? Is PEBP1's primary role as a modulator of the ISR, or does it have a role in non-stress-related translation? A cohesive model would tie together these separate indirect findings and constitute a considerable discovery for the ISR field, and the mitochondrial stress field.  

      Thank you for your assessment, we agree that this manuscript would have been much stronger by having clearer mechanistic insights. As with any scientific endeavor, we will keep in mind alternative explanations to the observations, which could eventually provide that cohesive model explaining how precisely PEBP1, directly or indirectly, influences ISR signalling.

      (2) The data relies on the initial identification of PEBP1 thermal stabilization concomitant with mitochondrial ISR induction post-treatment of several small molecules. However, the experiment was performed using a single timepoint of 30 minutes. There was no specific rationale for the choice of this time point for the thermal proteome profiling. 

      The reasoning for this was explicitly stated:  "We reasoned that treating intact cells with the drugs for only 30 min would allow us to observe rapid and direct effects related to metabolic flux and/or signaling related to mitochondrial dysfunction in the absence of major changes in protein expression levels.”

      Minor Issues 

      (1) In Lines 163-166 the authors state "The cells from Pebp1 KO animals displayed reduced expression of common ISR genes (Figure 2F), despite upregulation of unfolded protein response genes Ern1 (Ire1α) and Atf6 genes. This gene expression data therefore suggests that Pebp1 knockout in vivo suppresses induction of the ISR". This statement should be reassessed. While an arm of the UPR does stimulate ISR, this arm is controlled by PERK, and canonically IRE1 and ATF6 do not typically activate the ISR, thus their upregulation is likely unrelated to ISR activation and does not contribute the evidence necessary for this statement. 

      Apologies for the confusion, we aimed to highlight that as there is an increase in the two UPR arms, it is more likely that ISR instead of UPR is reduced. We have now changed the statement to the following:

      "The cells from Pebp1 PEBP1 KO animals displayed reduced expression of common ISR genes (Figure 2F), while there was mild upregulation of the unfolded protein response genes Ern1 (Ire1α) and Atf6 genes. This gene expression data therefore suggests that the reduced expression of common ISR genes is less likely to be mediated by changes in PERK, the third UPR arm, and more likely due to suppression of ISR by Pebp1 knockout in vivo."

      (2) In Lines 169 and 170 the authors state "Western blotting indicated reduced phosphorylation of eIF2α in RPE1 cells lacking PEBP1, suggesting that PEBP1 is involved in regulating ISR signaling between mitochondria and eIF2α". This conclusion is not supported by evidence. A number of pathways could be activated in these knockout cells, and simply observing an increase in p-eIF2α after knocking out PEBP1 does not constitute an interaction, as correlation doesn't mean causation. This KO could indirectly affect the ISR, with PEBP1 having no role in the ISR. While taken together there is enough circumstantial evidence in the manuscript to suggest a role for PEBP1 in the ISR, statements such as these have to be revised so as not to overreach the conclusions that can be achieved from the data, especially with no discernible mechanism.  

      We have now revised this statement by removing the conclusion and stating only the observation:  "Western blotting indicated reduced phosphorylation of eIF2α in RPE1 cells lacking PEBP1 (Fig. 3A)."

    1. Reviewer #2 (Public Review):

      Kanie et al have recently characterized DAP protein CEP89 as important for the recruitment of the ciliary vesicle. Here, they describe a novel interacting partner for CEP89 that can bind membranes and therefore mediates its role in ciliary vesicle recruitment. An initial LAP tag pull-down and mass spectrometry experiment finds NCS-1 and C3ORF14 as CEP89 interactors. This interaction is mapped in the context of the ciliary vesicle formation. From the data presented, it is clear that, upon knockout, the function of these proteins might be compensated by others, as the phenotype can eventually recover over time.

      In terms of the biological significance of this interaction, it would be good to examine (via co-immunoprecipitation) whether the CEP89/NCS-1/C3ORF14 interaction takes place upon serum starvation. Does the complex change?

      Also, for the subdistal appendage localization of NCS-1 and C3ORF14, would this also change upon serum starvation?

      For the ciliation results and the recruitment of IFT88 in CEP89 knockout cell lines, this contradicts previous work from Tanos et al (PMID: 23348840), as well as Hou et al (PMID: 36669498). A parallel comparison using siRNA, a transient knockout system, or a degron system would help understand this. A similar point goes for Figure 4, where the effect on ciliogenesis is minimal in knockout cells, but acute siRNA has been shown to have a stronger phenotype.

      An elegant phenotype rescue is shown in Figure 5. An interesting question would be, how does this mutant and/or the myristoylation affect the recruitment of C3ORF14?

      For the EF-hand mutants, it would be good to use control mutants, from known Ca2+ binding proteins as a control for the experiment shown.

    1. Reviewer #3 (Public review):

      Summary:

      In this report, De Franceschi et al. purify components of the Cdv machinery in archaeon M. sedula and probe their interactions with membrane and with one-another in vitro using two main assays - liposome flotation and fluorescent imaging of encapsulated proteins. This has the potential to add to the field by showing how the order of protein recruitment seen in cells is related to the differential capacity of individual proteins to bind membranes when alone or when combined.

      Strengths:

      Using the floatation assay, they demonstrate that CdvA and CdvB bind liposomes when combined. While CdvB1 also binds liposomes under these conditions, in the floatation assay, CdvB2 lacking its C-terminus is not efficiently recruited to membranes unless CdvAB or CdvB1 are present. The authors then employ a clever liposome assay that generates chained spherical liposomes connected by thin membrane necks, which allows them to accurately control the buffer composition inside and outside of the liposome. With this, they show that all four proteins accumulate in necks of dumbbell-shaped liposomes that mimic the shape of constricting necks in cell division. Taken altogether, these data lead them to propose that Cdv proteins are sequentially recruited to the membrane as has also been suggested by in vivo studies of ESCRT-III dependent cell division in crenarchaea.

      Weaknesses:

      These experiments provide a good starting point for the in vitro study the interaction of Cdv system components with the membrane and their consecutive recruitment. However, several experimental controls are missing that complicate their ability to draw strong conclusions. Moreover, some results are inconsistent across the two main assays which make the findings difficult to interpret.

      (1) Missing controls.

      Various protein mixtures are assessed for their membrane-binding properties in different ways. However, it is difficult to interpret the effect of any specific protein combination, when the same experiment is not presented in a way that includes separate tests for all individual components. In this sense, the paper lacks important controls.

      For example, Fig 1C is missing the CdvB-only control. The authors remark that CdvB did not polymerise (data not shown) but do not comment on whether it binds membrane in their assays. In the introduction, Samson et al., 2011 is cited as a reference to show that CdvB does not bind membrane. However, here the authors are working with protein from a different organism in a different buffer, using a different membrane composition and a different assay. Given that so many variables are changing, it would be good to present how M. sedula CdvB behaves under these conditions.

      Similarly, there is no data showing how CdvB alone or CdvA alone behave in the dumbbell liposome assay. Without these controls, it's impossible to say whether CdvA recruits CdvB or the other way around.

      The manuscript would be much stronger if such data could be added.

      (2) Some of the discrepancies in the data generated using different assays are not discussed.

      The authors show that CdvB2∆C binds membrane and localizes to membrane necks in the dumbbell liposome assay, but no membrane binding is detected in the flotation assay. The discrepancy between these results further highlights the need for CdvB-only and CdvA-only controls.

      (3) Validation of the liposome assay.

      The experimental setup to create dumbbell-shaped liposomes seems great and is a clever novel approach pioneered by the team. Not only can the authors manipulate liposome shape, they also state that this allows them to accurately control the species present on the inside and outside of the liposome. Interpreting the results of the liposome assay, however, depends on the geometry being correct. To make this clearer, it would seem important to include controls to prove that all the protein imaged at membrane necks lie on the inside of liposomes. In the images in SFig3 there appears to be protein outside of the liposome. It would also be helpful to present data to show test whether the necks are open, as suggested in the paper, by using FRAP or some other related technique.

      (4) Quantification of results from the liposome assay.

      The paper would be strengthened by the inclusion of more quantitative data relating to the liposome assay. Firstly, only a single field of view is shown for each condition. Because of this, the reader cannot know whether this is a representative image, or an outlier? Can the authors do some quantification of the data to demonstrate this? The line scan profiles in the supplemental figures would be an example of this, but again in these Figures only a single image is analyzed.

      We would recommend that the authors present quantitative data to show the extent of co-localization at the necks in each case. They also need a metric to report instances in which protein is not seen at the neck, e.g. CdvB2 but not CdvB1 in Fig2I, which rules out a simple curvature preference for CdvB2 as stated in line 182.

      Secondly, the authors state that they see CdvB2∆C recruited to the membrane by CdvB1 (lines 184-187, Fig 2I). However, this simple conclusion is not borne out in the data. Inspecting the CdvB2∆C panels of Fig 2I, Fig3C, and Fig3D, CdvB2∆C signal can be seen at positions which don't colocalize with other proteins. The authors also observe CdvB2∆C localizing to membrane necks by itself (Fig 2E). Therefore, while CdvB1 and CdvB2∆C colocalize in the flotation assay, there is no strong evidence for CdvB2∆C recruitment by CdvB1 in dumbbells. This is further underscored by the observation that in the presented data, all Cdv proteins always appear to localize at dumbbell necks, irrespective of what other components are present inside the liposome. Although one nice control is presented (ZipA), this suggests that more work is required to be sure that the proteins are behaving properly in this assay. For example, if membrane binding surfaces of Cdv proteins are mutated, does this lead to the accumulation of proteins in the bulk of the liposome as expected?

      (5) Rings.

      The authors should comment on why they never observe large Cdv rings in their experiments. In crenarchaeal cell division, CdvA and CdvB have been observed to form large rings in the middle of the 1 micron cell, before constriction. Only in the later stages of division are the ESCRTs localized to the constricting neck, at a time when CdvA is no longer present in the ring. Therefore, if the in vitro assay used by the authors really recapitulated the biology, one would expect to see large CdvAB rings in Figs 1EF. This is ignored in the model. In the proposed model of ring assembly (line 252), CdvAB ring formation is mentioned, but authors do not discuss the fact that they do not observe CdvAB rings - only foci at membrane necks. The discussion section would benefit from the authors commenting on this.

      (6) Stoichiometry

      It is not clear why 100% of the visible CdvA and 100% of the the visible CdvB are shifted to the lipid fraction in 1C. Perhaps this is a matter of quantification. Can the authors comment on the stoichiometry here?

      (7) Significance of quantification of MBP-tagged filaments.

      Authors use tagging and removal of MBP as a convenient, controllable system to trigger polymerisation of various Cdv proteins. However, it is unclear what is the value and significance of reporting the width and length of the short linear filaments that are formed by the MBP-tagged proteins. Presumably they are artefactual assemblies generated by the presence of the tag? Similar Figure 2C doesn't seem a useful addition to the paper.

    1. The <img> tag creates a holding space for the referenced image.

      علامة img تُنشئ مساحة مخصصة لعرض الصورة المشار إليها.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This a comprehensive study that sheds light on how Wag31 functions and localises in mycobacterial cells. A clear link to interactions with CL is shown using a combination of microscopy in combination with fusion fluorescent constructs, and lipid specific dyes. Furthermore, studies using mutant versions of Wag31 shed light on the functionalities of each domain in the protein. My concerns/suggestions for the manuscript are minor:

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect on levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comments. We will improve Ln130 in the manuscript. The lipid classes that get impacted by the depletion of Wag31 vs overexpression are different. Wag31 is an adaptor protein that interacts with proteins of the ACCase complex (Meniche et al., 2014; Xu et al., 2014) that synthesize fatty acid precursors and regulate their activity (Habibi Arejan et al., 2022).

      The varied response to lipid homeostasis could be attributed to a change in the stoichiometry of these interactions with Wag31. While Wag31 depletion would prevent such interactions from occurring and might affect lipid synthesis that directly depends on Wag31-protein partner interactions, its overexpression would lead to promiscuous interactions and a change in the stoichiometry of native interactions, ultimately modulating lipid synthesis pathways.

      (2) The pulldown assays results are interesting, but links are tentative.

      The interactome of Wag31 was identified through the immunoprecipitation of Flag-tagged Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off ≥18 and unique peptides≥5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      Though we agree that the interactions can either be direct or through a third partner, the fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, we performed pulldown experiments for validation by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100, eliminating all non-specific and indirect interactions.  However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript. 

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes.  Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Public review):

      Summary

      Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.

      Strengths:

      (1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence.

      (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.

      Weaknesses:

      (1) MS experiments provide some evidence for novel protein-protein interactions. However, the pull-down experiments lack a valid negative control.

      We thank the reviewer for the comments. We will include a valid negative control in the experiment. We would choose ~2 mycobacterial proteins that are not a part of our interactome study and perform a similar pull-down experiment with them and a positive control (known interactor of Wag31).

      (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.

      Previously, we attempted to express the N-terminal (1-60 aa) and the C-terminal (60-212 aa) proteins in various mycobacterial shuttle vectors to perform MS/MS experiments. Despite numerous efforts, neither was expressed with the N/C-terminal FLAG tag nor without any tag in episomal or integrative vectors due to the instability of the protein. Eventually, we successfully expressed the C-terminal Wag31 with an N and C-terminal hexa-His tag. However, this expression was not sufficient or stable enough for us to perform Ni affinity pull-down experiments for mass spectrometry.  The N-terminal of Wag31 could not be expressed in M. smegmatis even with N and C-terminal Hexa-His tags.

      To rule out the role of the N-terminal in mediating protein-protein interactions, we plan to attempt to express N-terminal of Wag31with N and C-terminal hexa-His tag in E. coli. If this clone successfully expresses in E. coli, we will perform pull-down experiments as described in Figure 7.

      Reviewer #3 (Public review):

      Summary:

      This manuscript describes the characterization of mycobacterial cytoskeleton protein Wag31, examining its role in orchestrating protein-lipid and protein-protein interactions essential for mycobacterial survival. The most significant finding is that Wag31, which directs polar elongation and maintains the intracellular membrane domain, was revealed to have membrane tethering capabilities.

      Strengths:

      The authors provided a detailed analysis of Wag31 domain architecture, revealing distinct functional roles: the N-terminal domain facilitates lipid binding and membrane tethering, while the C-terminal domain mediates protein-protein interactions. Overall, this study offers a robust and new understanding of Wag31 function.

      Weaknesses:

      The following major concerns should be addressed.

      • Authors use 10-N-Nonyl-acridine orange (NAO) as a marker for cardiolipin localization. However, given that NAO is known to bind to various anionic phospholipids, how do the authors know that what they are seeing is specifically visualizing cardiolipin and not a different anionic phospholipid? For example, phosphatidylinositol is another abundant anionic phospholipid in mycobacterial plasma membrane.

      We thank the reviewer for the comments. Despite its promiscuous binding to other anionic phospholipids, 10-N-Nonyl-acridine orange is widely used to stain Cardiolipin and determine its localisation in bacterial cells and mitochondria of eukaryotes (Garcia Fernandez et al., 2004; Mileykovskaya & Dowhan, 2000; Renner & Weibel, 2011).  This is because it has a stronger affinity for Cardiolipin than other anionic phospholipids with the affinity constant being 2 × 10<sup>6</sup> M<sup>−1</sup> for Cardiolipin association and 7 × 10<sup>4</sup> M<sup>−1</sup> for that of phosphatidylserine and phosphatidylinositol association (Petit et al., 1992). Additionally, there is not yet another stain available for detecting Cardiolipin. Our protein-lipid binding assays suggest that Wag31 preferentially binds to Cardiolipin over other anionic phospholipids (Fig. 4b), hence it is likely that the majority of redistribution of NAO fluorescence that we observe might be contributed by Cardiolipin mislocalization due to altered Wag31 levels, with smaller degree of NAO redistribution intensity coming indirectly from other anionic phospholipids displaced from the membrane due to the loss of membrane integrity and cell shape changes due to Wag31.

      • Authors' data show that the N-terminal region of Wag31 is important for membrane tethering. The authors' data also show that the N-terminal region is important for sustaining mycobacterial morphology. However, the authors' statement in Line 256 "These results highlight the importance of tethering for sustaining mycobacterial morphology and survival" requires additional proof. It remains possible that the N-terminal region has another unknown activity, and this yet-unknown activity rather than the membrane tethering activity drives the morphological maintenance. Similarly, the N-terminal region is important for lipid homeostasis, but the statement in Line 270, "the maintenance of lipid homeostasis by Wag31 is a consequence of its tethering activity" requires additional proof. The authors should tone down these overstatements or provide additional data to support their claims.

      We agree with the reviewer that there exists a possibility for another function of the N-terminal that may contribute to sustaining mycobacterial physiology and survival. We would revise our statements in the paper to accurately reflect the data. Results shown suggest that the tethering activity of the N-terminal region may contribute to mycobacterial morphology and survival. However, additional functions of this region can’t be ruled out. Similarly, the maintenance of lipid homeostasis by Wag31 may be associated with its tethering activity, although other mechanisms could also contribute to this process. 

      • Authors suggest that Wag31 acts as a scaffold for the IMD (Fig. 8). However, Meniche et. al. has shown that MurG as well as GlfT2, two well-characterized IMD proteins, do not colocalize with Wag31 (DivIVA) (https://doi.org/10.1073/pnas.1402158111). IMD proteins are always slightly subpolar while Wag31 is located to the tip of the cell. Therefore, the authors' biochemical data cannot be easily reconciled with microscopic observations in the literature. This raises a question regarding the validity of protein-protein interaction shown in Figure 7. Since this pull-down assay was conducted by mixing E. coli lysate expressing Wag31 and Msm lysate expression Wag31 interactors like MurG, it is possible that the interactions are not direct. Authors should interpret their data more cautiously. If authors cannot provide additional data and sufficient justifications, they should avoid proposing a confusing model like Figure 8 that contradicts published observations.

      In the literature, MurG and GlfT2 have been shown to have polar localization (Freeman et al., 2023; Hayashi et al., 2016; Kado et al., 2023), and two groups have shown slightly sub-polar localization of MurG (García-Heredia et al., 2021; Meniche et al., 2014). Additionally, (Freeman et al., 2023) they showed SepIVA to be a spatio-temporal regulator of MurG. MS/MS analysis of Wag31 immunoprecipitation data yielded both MurG and SepIVA to be interactors of Wag31 (Fig. 3). Given Wag31 also displays polar localisation, it likely associates with the polar MurG. However, since a sub-polar localization of MurG has also been reported, it is possible that they do not interact directly, and another protein mediates their interaction. We will modify the model proposed in Fig. 8 based on the above.

      We agree that for validation of interaction, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer containing 1% Triton X100, which eliminates all non-specific and indirect interactions.  However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript and propose a model reflecting our results.

      References:

      Freeman, A. H., Tembiwa, K., Brenner, J. R., Chase, M. R., Fortune, S. M., Morita, Y. S., & Boutte, C. C. (2023). Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol, 119(2), 208-223. https://doi.org/10.1111/mmi.15006

      Garcia Fernandez, M. I., Ceccarelli, D., & Muscatello, U. (2004). Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem, 328(2), 174-180. https://doi.org/10.1016/j.ab.2004.01.020

      García-Heredia, A., Kado, T., Sein, C. E., Puffal, J., Osman, S. H., Judd, J., Gray, T. A., Morita, Y. S., & Siegrist, M. S. (2021). Membrane-partitioned cell wall synthesis in mycobacteria. eLife, 10. https://doi.org/10.7554/eLife.60263

      Habibi Arejan, N., Ensinck, D., Diacovich, L., Patel, P. B., Quintanilla, S. Y., Emami Saleh, A., Gramajo, H., & Boutte, C. C. (2022). Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol, 13, 1085918. https://doi.org/10.3389/fmicb.2022.1085918

      Hayashi, J. M., Luo, C. Y., Mayfield, J. A., Hsu, T., Fukuda, T., Walfield, A. L., Giffen, S. R., Leszyk, J. D., Baer, C. E., Bennion, O. T., Madduri, A., Shaffer, S. A., Aldridge, B. B., Sassetti, C. M., Sandler, S. J., Kinoshita, T., Moody, D. B., & Morita, Y. S. (2016). Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A, 113(19), 5400-5405. https://doi.org/10.1073/pnas.1525165113

      Kado, T., Akbary, Z., Motooka, D., Sparks, I. L., Melzer, E. S., Nakamura, S., Rojas, E. R., Morita, Y. S., & Siegrist, M. S. (2023). A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife, 12, e81924. https://doi.org/10.7554/eLife.81924

      Meniche, X., Otten, R., Siegrist, M. S., Baer, C. E., Murphy, K. C., Bertozzi, C. R., & Sassetti, C. M. (2014). Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A, 111(31), E3243-3251. https://doi.org/10.1073/pnas.1402158111

      Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol, 182(4), 1172-1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000

      Petit, J. M., Maftah, A., Ratinaud, M. H., & Julien, R. (1992). 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem, 209(1), 267-273. https://doi.org/10.1111/j.1432-1033.1992.tb17285.x

      Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A, 108(15), 6264-6269. https://doi.org/10.1073/pnas.1015757108

      Xu, W. X., Zhang, L., Mai, J. T., Peng, R. C., Yang, E. Z., Peng, C., & Wang, H. H. (2014). The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun, 448(3), 255-260. https://doi.org/10.1016/j.bbrc.2014.04.116

    1. pgs 34-35 Pa had nickname phrases for Laura and Mary. Pa warmed up next to them by the fire. Pa when home early played a variation of tag called "mad dog". Pa's name is Charles.

    Annotators

  3. notebooksharing.space notebooksharing.space
    1. # Your answers here # Konvertiere die Einheiten (m pro Tag -> mm pro Tag) precipitation = ds['tp'] * 1000 # Konvertiere von Meter auf Millimeter (1m = 1000mm) # Berechne den durchschnittlichen Niederschlag pro Monat monthly_precipitation = precipitation.groupby('time.month').mean(dim='time') # Monate Januar (1) und August (8) months = [1, 8] # Setze das Colormap für die Karte cmap = 'YlGnBu' # Levels für die Farbabstufung levels = [0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 40] # Erstelle die Plots für Januar und August untereinander, mit der Robinson-Projektion fig, axs = plt.subplots(2, 1, figsize=(10, 12), subplot_kw={'projection': ccrs.Robinson()}) for i, month in enumerate(months): # Wähle die Achse für den jeweiligen Plot ax = axs[i] # Erstelle die Karte für den entsprechenden Monat data = monthly_precipitation.sel(month=month) # Plot der Niederschlagskarte data.plot(ax=ax, transform=ccrs.PlateCarree(), cmap=cmap, levels=levels, cbar_kwargs={'label': 'Precipitation (mm/day)'}) # Füge Küstenlinien und Gitterlinien hinzu ax.coastlines() ax.gridlines(draw_labels=True, linewidth=0.5, color='gray', linestyle='--') # Setze den Titel je nach Monat ax.set_title(f'Average Daily Precipitation in {["January", "August"][i]}') # Zeige die Plots plt.tight_layout() plt.show()

      Looks good! ;-)

  4. docdrop.org docdrop.org
    1. When I inquire about gifted and talented (GAT or TAG) programs, many of them instinctively begin to describe, in detail, the differentiated curricu-lum, enrichment opportunities, and vastly different experiences each program entails. Children of color, boys, and students from economically exploited backgrounds are consistently excluded and underrepresented in such programs (Callahan, 2005).

      I found this especially to be true growing up in elementary school, where there were much more kids from underprivileged backgrounds in the non magnet/gifted programs. However, I did not question or understand why this was at such a young age.

    1. Example Chapter for the Open Curriculum Development Model

      Explore equity-minded design strategies and choices in this example chapter! Select a numbered tag to jump to each annotation on the page. Each annotation is accessible to people who use screen reader software.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their general comment and for the critical evaluation of our analyses and results interpretation. Their comments greatly helped us to improve the manuscript.

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: An analysis of an Arabidopsis VSP13 presumed lipid transport is provided. The analysis pretty much follows similar studies done on yeast and human homologs. Key findings are the identification of multiple products from the locus due to differential splicing, analysis of lipid binding and transport properties, subcellular location, tissue specific promoter activity, mutant analysis suggesting a role in lipid remodeling following phosphate deprivation, but no physiological or growth defects of the mutants. Major points: The paper is generally written and documented, the experiments are well conducted and follow established protocols. The following major points should be considered:

      1. There are complementary lipid binding assays that should be considered such as liposome binding assays, or lipid/western dot blots. All of these might give slightly different results and may inform a consensus. Of course, non-membrane lipids such as TAG cannot be tested in a liposome assay.

      Concerning lipid transfer proteins (LTPs), it is important to differentiate the lipid binding capacity related to the transport specificity (which lipids are transported by a LTP?) from the lipid binding capacity linked to the targeting of a LTP to a specific membrane (a LTP can bind a specific lipid via a domain distinct from the lipid transfer domain to be targeted in cells, but will not transport this lipid). Both aspects are of high interest to be determined. Our goal here was to focus on the identification of the lipids bound to AtVPS13M1 and to be likely transported, which is why we used a truncation (1-335) corresponding to the N-term part of the hydrophobic tunnel. Liposome binding assays and lipid dot blots are necessary to answer the question of the membrane binding capacity of the protein. We think that this aspect is out of the scope of the current article as it will require to express and purify other AtVPS13M1 domains that are known to bind lipids such as the two PH domains and the C2. This will be the scope of future investigations in our lab.

      Similarly, lipid transfer based only on fluorophore-labeled lipids may be misleading because the fluorophore could affect binding. It is mentioned that the protein in this assay is tethered by 3xHis to the liposomes. Un less I ma missing something, I do not understand how that should work. This needs to be better explained.

      We truly agree with Reviewer 1 that the presence of a fluorophore could affect lipid binding to the protein. In this assay, lipids are labeled on their polar head and it is therefore difficult to conclude about the specificity of our protein in term of transport. This assay is used as a qualitative assay to show that AtVPS13M1(1-335) is able to transfer lipids in vitro, and in the manuscript, we did not make any conclusion about its transport specificity based on this assay, but rather used the binding assay to assess the binding, and likely transport, specificity of AtVPS13M1. FRET-based assay is a well-accepted assay in the lipid transfer community to easily probe lipid transport in vitro and has been used in the past to assess transfer capacity of different proteins, including for VPS13 proteins (for examples, see (Kumar et al., 2018; Hanna et al., 2022; Valverde et al., 2019)).

      To be able to transfer lipids from one liposome to another, both liposomes have to be in close proximity. Therefore, we attached our protein on donor acceptors, to favor the transport of the fluorescent lipids from the donor to the acceptor liposomes. Then, we progressively increased acceptor liposomes concentration to favor liposome proximity and the chance to have lipid transfer. We added a scheme on Figure 3B of the revised version of the manuscript to clarify the principle of the assay. In addition, we provided further control experiments suggested by Reviewers 2 and 3 showing that the fluorescence signal intensity depend on AtVPS13M1(1-335) protein concentration and that no fluorescence increase is measured with a control protein (Tom20.3) (see Figure 3C-D of the revised manuscript).

      The in vivo lipid binding assay could be obscured by the fact that the protein was produced in insect cells and lipid binding occurs during the producing. What is the evidence that added plants calli lipids can replace lipids already present during isolation.

      Actually we don’t really know whether the insect cells lipids initially bound to AtVPS13M1(1-335) are replaced by calli lipids or whether they bound to still available lipid binding sites on the protein. But we have two main lines of evidence showing that our purified protein can bind plant lipids even in the presence of insect cells lipids: 1) our protein can bind SQDG and MGDG, two plants specific lipids, and 2) as explained p.8 (lines 243-254), lipids coming from both organisms have a specific acyl-chain composition, with insect cells fatty acids mainly composed of C16 and C18 with 0 or 1 unsaturation whereas plant lipids can have up to 3 unsaturations. By analyzing and presenting on the histograms lipid species from insect cells, calli and those bound to AtVPS13M1(1-335), we were able to conclude that for all the lipid classes besides PS, a wide range of lipid species deriving from both organisms was bound to our protein. The data about the lipid species bound to AtVPS13M1(1-335) are presented in Figure 2E and S2.

      The effects on lipid composition of the mutants are not very drastic from what I can tell. Furthermore, how does this fit with the lipid composition of mitochondria where the protein appears to be mostly located?

      It is true that lipid composition variations in the mutants are not drastic but still statistically significant. As a general point in the field of lipid transfer, it is not very common to have major changes in total lipidome on single mutants of lipid transfer proteins because of a high redundancy of lipid transport pathway in cells. This is particularly true for VPS13 proteins, as exemplified by multiple studies. Major lipid phenotypes can be revealed in specific conditions, such as phosphate starvation in our case, or when looking at specific organelles or specific tissues and/or developmental stages. This is explained and illustrated by examples in the discussion part p. 16 (line 526-532). In addition, as suggested by Reviewer 3, we performed further lipid analysis on calli and also on rosettes under Pi starvation and found a similar trend (Figure 4 and S4 of the revised version of the manuscript). Thus, we believe that, even if not drastic, these variations during Pi starvation are a real phenotype of our mutants.

      As we found that our protein is located at the mitochondrial surface, we agree that Reviewer 1’s suggestion to perform lipidomic analyses on isolated mitochondria will be of high interest but this will be the scope of future studies that we will performed in our lab. First, we would like to identify all the organelles at which AtVPS13M1 is localized before performing subfractionations of these different organelles from the same pool of cell cultures grown in presence or absence of phosphate.

      For the localization of the fusion protein, has it been tested whether the furoin is functional? This should be tested (e.g. by reversion of lipid composition).

      As we did not observe major developmental phenotypes in our mutants, complementation should be indeed tested by performing lipidomic analyses in calli or plants grown in presence or absence of Pi, which is a time-consuming and expensive experiment. Because we used the fusions mainly for tissue expression study and subcellular localization and not for functional analyses, we believe that this is not an essential control to be performed for this work.

      It is speculated that different splice forms are located to different compartments. Can that be tested and used to explain the observed subcellular location patterns?

      Indeed some splice forms can modify the sequence of domains putatively involved in protein localization. This could be tested by producing synthetic constructs with one specific exon organization, which is challenging according to the size of AtVPS13M1 cDNA (around 12kb). In addition, our long-read sequencing experiment and PCR analyses revealed the existence of six transcripts, a major one representing around 92% and the five others representing less than 2.5% (Figure 1D). Among the five less abundant transcripts, four produce proteins with a premature stop codon and are likely to arise from splicing defects as explained in the discussion part p. 15 (lines 488-496). One produces a full-length protein with an additional loop in the VAB domain but because of the low abundance of this alternative transcript (1.4%), we believe it does not contribute significantly to the major localization we observed in plants and did not attend to analyze its localization.

      GUS fusion data only probe promoter activity but not all levels of gene expression. That caveat should be discussed.

      We are aware of this drawback and that is the reason why we fused the GUS enzyme directly to our protein expressed under its native locus (i.e. with endogenous promoter and exons/introns) as depicted in Figure 5A. Therefore, our construction allows to assess directly AtVPS13M1 protein level in plant tissues.

      Minor points: 1. Extraplastidic DGDG and export from chloroplasts following phosphate derivation was first reported in PMID: 10973486.

      We added this reference in the text.

      Check throughout the correct usage of gene expression as genes are expressed and proteins produced.

      Many thanks for this remark, we modified the text accordingly

      In general, the paper is too long. Redundancies between introduction, results and discussion should be removed to streamline.

      We reduced the text to avoid redundancy.

      I suggest to redraw the excel graphs to increase line thickness and enlarge font size to increase presentation and readability.

      We tried as much as we can to enlarge graphs and font size increasing readability.

      Reviewer #1 (Significance (Required)):

      Significance: Interorganellar lipid trafficking is an important topic and especially under studied in plants. Identifying components involved represents significant progress in the field. Similarly, lipid remodeling following phosphate derivation is an important phenomenon and the current advances our understanding.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The manuscript "AtVPS13M1 is involved in lipid remodelling in low phosphate and is located at the mitochondria surface in plants" by Leterme et al. identifies the protein VPS13M1 as a lipid transporter in Arabidopsis thaliana with important functions during phosphate starvation. The researchers were able to localise this protein to mitochondria via GFP-targeting in Arabidopsis. Although VPS13 proteins are well described in yeast and mammals, highlighting their importance in many vital cellular processes, there is very little information on them in plants. This manuscript provides new insights into plant VPS13 proteins and contributes to a better understanding of these proteins and their role in abiotic stress responses, such as phosphate starvation.

      Major points: - Please describe and define the domains of the VPS13M1 protein in detail, providing also a figure for that. Figure 1 is mainly describing possible splice variants, whereas the characteristics of the protein are missing.

      We have added information on AtVPS13M1 domain organization in the introduction (p.4, lines 103-109) and referred to Figure 1A that described protein domain organization. We did not added too much details as plant VPS13 protein domains organization was extensively described in two previous studies cited several times in the manuscript (Leterme et al., 2023; Levine, 2022).

      • Please compare the expression level of VPS13M1 in the presence and in the absence of phosphate.

      Many thanks for this suggestion. We performed qRT-PCR analyses of AtVPS13M1 from mRNA extracted from calli grown six days in presence and absence of phosphate. The results obtained did not reveal variations in mRNA level. The results were added in Figure S1A of the revised version of the manuscript and discussed in p.5 (lines 154-156).

      • Page 9, second paragraph: Here, the lipid transport capability of AtVPS13M1 is described. Varying concentrations of this recombinant protein should be used in this test. Further, it is not highlighted, that a truncated version of VSP13M1 is able to transport lipids. This is surprising, since this truncated version is less than 10% of the total protein (only aa 1-335).

      We agree with reviewer 2 that increasing protein concentration is an important control to perform. We included an experiment with an increasing quantity of protein (2X and 4X) in the revised version of the manuscript and showed that the signal intensity increased faster when protein concentration is higher (Figure 3D of the revised manuscript). As requested by Reviewer 3, we also included a negative control with Tom20.3 to show that the signal increase after the addition of AtVPS13M1(1-335) is specific to this protein (Figure 3C of the revised manuscript).

      The transport ability of the N-terminal part of VPS13 was demonstrated in yeast and mammals VPS13D (Kumar et al., 2018; Wang et al., 2021). We highlighted this p. 7 (lines 213-218) of the revised version of the manuscript. This is explained by the inherent structure of VPS13 proteins that are composed of several repeats of the same domain type called RBG (for repeating β-groove), each forming a β-sheet with a hydrophobic surface. The higher the number of RBG repeats, the longer the hydrophobic tunnel is. The (1-335) N-terminal region corresponds to two RBG unit repeats forming a “small” tunnel able to bind and transfer lipids. The number of RBG repeats has influence on the quantity of lipids bound per protein in vitro, the longest the protein is, the highest the number of lipid molecules bound is (Kumar et al., 2018), but the effect on protein length on in vitro lipid transfer capacity has not been investigated yet to the best of our knowledge.

      • Also, for phenotype analysis, T-DNA insertion mutants are used that still contain VPS13M1 transcripts. Although protein fragments where not detected by proteomic analysis, this might be due to low sensitivity of the proteomic assay. Further the lipid transport domain of VPS13M1 (aa 1-335) might not be affected by the T-DNA insertions at all. Here more detailed analysis needs to be done to prove that indeed loss-of protein function occurs in the mutants.

      We do not have other methods than proteomic to test whether our mutants are KO or not. We tried unsuccessfully to produce antibodies. Mass spectrometry is the most sensitive method but the absence of detection indeed does not mean the absence of the protein. From proteomic data, we can conclude that at least, our mutants present a decrease in AtVPS13M1 protein level, thus we called them “knock down” in the revised version of the manuscript and added the following sentence p. 9 (lines 297-300): “As the absence of detection of a protein by mass spectrometry-based proteomics does not allow us to strictly claim the absence of this protein in the sample, we concluded that AtVPS13M1 expression in both atvps13m1-1 and atvps13m1-4 was below the detection limit and consider them as knock down (KD) for AtVPS13M1.”

      • Localisation in mitochondria: As the Yepet signal is very weak, a control image of not transfected plant tissue needs to be included. Otherwise, it might be hard to distinguish the Yepet signal from background signal. The localisation data presented in Figure 5 does not allow the conclusion that VPS13M1 is localized at the surface of mitochondria as stated in the title. It only indicates (provided respective controls see above) that VPS13M1 is in mitochondria. Please provide more detailed analysis such as targeting to tobacco protoplasts, immunoblots or in vitro protein import assays. Also test +Pi vs. -Pi to see if VPS13M1 localisation is altered in dependence of Pi.

      Indeed our Yepet signal is not very strong but on the experiments we performed on Col0 non-transformed plants, we did not very often see fluorescence background in the leaves’ vascular tissue, that is why we focused our study on this tissue. We sometimes observed some background signals in some cells that are clearly different from AtVPS13M1-3xYepet signals and never co-localized with mitochondria. Examples of these aspecific signals are presented in Figure S6E of the revised version of the manuscript.

      We agree with reviewer 2 that our confocal images suggested, but not demonstrated, a localization at the surface of mitochondria. To confirm the localization, we generated calli cell cultures from AtVPS13M1-3xYepet lines and performed subcellular fractionations and western blot analyses confirming that AtVPS13M1 was indeed enriched in mitochondria and also in microsomal fractions (Figure 6G of the revised version). Then we performed mild proteolytic digestion of the isolated mitochondria with thermolysin and show that AtVPS13M1 was degraded, as the outer membrane protein Tom20.3, but not the inner membrane protein AtMic60, showing that AtVPS13M1 is indeed at the surface of mitochondria (Figure 5H of the revised manuscript). We believe that this experiment, in addition to the confocal images showing a signal around mitochondria, convincingly demonstrates that AtVPS13M1 is located at the surface of mitochondria.

      The localization of AtVPS13M1 under Pi starvation is a very important question that we tried to investigate without success. Indeed, we intended to perform confocal imaging on seedlings grown in liquid media to easily perform Pi starvation as described for the analysis of AtVPS13M1 tissue expression with β-glucuronidase constructs. However, the level of fluorescence background was very high in seedlings and no clear differences between non-transformed and AtVPS13M1-3xYepet lines were observed, even in root tips where the protein is supposed to be the most highly expressed according to β-glucuronidase assays. Example of images obtained are presented in Figure R1. We concluded that the level of expression of our construct was too low in seedlings. The constructions of lines with a higher AtVPS13M1 expression level, by changing the promotor, to better analyze AtVPS13M1 in different tissues or in response to Pi starvation will be the scope of future work in our laboratory in order to investigate AtVPS13M1 localization under low Pi.

      Phenotype analysis needs to be done under Pi stress and not under cold stress! Further, root architecture and root growth should also be done under Pi depletion. Here the title is also misleading, it is not at all clear why the authors switch from phosphate starvation to cold stress.

      In the revised version of the manuscript, we analyzed the seedlings root growth of two mutants (atvps13m1-3 and m1-4) under low Pi and did not notice significant differences (Figure 7E, S7D of the revised version). We analyzed growth under cold stress because this stress also promotes remodeling of lipids, but we agree that it goes beyond the scope of this article that is focused on Pi starvation and we removed this part from the revised manuscript.

      Minor points: Page 3, line 1: what does the abbreviation VPS stand for?

      The definition of VPS (Vacuolar Protein Sorting) was added.

      Page 3, line 1: change "amino acids residues" to "amino acid residues"

      This was done.

      Page 3, line 8 - 12: please rewrite this sentence. You write, that because of their distribution VPS13 proteins do exhibit many important physiological roles. The opposite is true: They are widely distributed in the cell because of their involvement in many physiological processes.

      We changed the sentence to “ VPS13 proteins localize to a wide variety of membranes and membrane contact sites (MCSs) in yeast and human (Dziurdzik and Conibear, 2021). This broad distribution on different organelles and MCSs is important to sustain their important roles in numerous cellular and organellar processes such as meiosis and sporulation, maintenance of actin skeleton and cell morphology, mitochondrial function, regulation of cellular phosphatidylinositol phosphates level and biogenesis of autophagosome and acrosome (Dziurdzik and Conibear, 2021; Hanna et al., 2023; Leonzino et al., 2021).”

      Page 6, line6: change "cDNA obtained from A. thaliana" to "cDNA generated from A. thaliana.

      This was done.

      Page 6, line 10: change" 7.6kb" to "7.6 kb"

      This was done.

      Page 7: address this question: can the isoforms form functional VPS13 proteins? This might help to postulate whether these isoforms are a result of defective splicing events.

      We addressed this aspect in the discussion p.15 at lines 486-502.

      Figure 2 B: Change "AtVPS13M1"to "AtVPS13M1(1-335)"

      This was done.

      Figure 2, legend: -put a blank before µM in each case.

      This was done.

      -Change 0,125µM to 0.125 µM

      This was done.

      -what does "in absence (A-0µM)" mean?

      This means that the Acceptor liposomes are at 0 µM. To clarify, we changed it to “Acceptor 0 µM” in the revised version of the manuscript (Figure 3C).

      -Which statistical analysis was employed?

      We performed a non-parametric Mann-Whitney test in the revised version of the manuscript. This was indicated in the legend.

      -Further, rewrite the sentence "Mass spectrometry (MS) analysis of lipids bound to AtVPS13M1(1-335) or Tom20 (negative control) after incubation with calli total lipids. Results are expresses in nmol of lipids per nmol of proteins (C) or in mol% (D)". -"C" and "D" are not directly comparable, as in "C" no Tom20 was used and in "C" no insect cells were used.

      -Further, in "D" the experimental setup is not clear. AtVPS13(1-335) is supposed to be purified protein after incubation with calli lipids (figure 2, A). Further, in the same figure, lipid composition of "insect cells" and "calli-Pi" are compared àwhy? Please clarify this.

      C and D are two different representations of the same results providing different types of information. In C., the results are expressed in nmol of lipids / nmol of proteins to assess 1) that the level of lipids found in AtVPS13M1(1-335) purifications is significantly higher than what we can expect from the background (assessed using Tom20) and 2) what are the classes of lipids that associate or not to AtVPS13M1(1-335). In D. the lipid distribution in mol% is presented for AtVPS13M1(1-335) as well as for total extracts from calli and insect cells to be able to compare if one lipid class is particularly enriched or not in AtVPS13M1(1-335) purifications compared to the initial extracts with which the protein was incubated. As an example, it allows to deduce that the absence of DGDG detected in the AtVPS13M1(1-335) purifications is not linked to a low level of DGDG in the calli extract, because it represented around 15 mol%, but likely to a weak affinity of the protein for this lipid. We did not represent the Tom20 lipid distribution on this graph because it represents background of lipid binding to the purification column and might suggest that Tom20 binds lipids. We changed the legend in this way and hope that it is clearer now: “C-D. Mass spectrometry (MS) analysis of lipids bound to AtVPS13M1(1-335) or Tom20 (negative control) after incubation with calli total lipids and repurification. Results are expresses in nmol of lipids per nmol of proteins in order to analyze the absolute quantity of the different lipid classes bound to AtVPS13M1(1-335) compared to Tom20 negative control (C), and in mol% to assess the global distribution of lipid classes in AtVPS13M1(1-335) purifications compared to the total lipid extract of insect cells and calli (D).”

      Figure 3: -t-test requires a normal distribution of the data. This is not possible for an n=3. Please use an adequate analysis.

      We performed more replicates and used non-parametric Mann-Whitney analyses in the revised version of the manuscript.

      -Please clarify the meaning of the letters on the top of the bars in the legend.

      This corresponded to the significance of t-tests performed in the first version of the manuscript that were reported in Table S3. As in the new version we performed Mann-Whitney tests, we highlighted the significance by stars and in the figure legends.

      Please, make it clear that two figures belong to C.

      This was clarified in the legend.

      -Reorganise the order of figure 3 (AàBàCàD)

      Because of the configuration of the different histograms presented in the figure, we were not able to change the order but we believed that the graphs can be easily red this way.

      Page 10, 3. Paragraph: since the finding, that no peptides were found in the VSP13M1 ko lines, although transcription was not altered, is surprising, please include the proteomic data in the supplement

      Proteomic data were deposited on PRIDE with the identifier PXD052019. They will remain not publicly accessible until the acceptance of the manuscript.

      Page 11, line 17: The in vitro experiments showed a low affinity of VSP13M1 towards galactolipids. It is further claimed that this is consistent with the finding of the AtVSP13M1 Ko line in vivo, that in absence of PI, no change in DGDG content could be observed. However, the "absence" of VSP13M1 in vivo might still result in a bigger VSP13M1 protein, than the truncated form (1-335) used for the in vitro experiments

      It is true that our in vitro experiments were performed only with a portion of AtVPS13M1 and that the length of the protein could influence protein binding specificity. We removed this assessment from the manuscript.

      Page 13, lane 8: you should reconsider the use of a triple Yepet tag: If two or more identical fluorescent molecules are in close proximity, their fluorescence emission is quenched, which results in a weak signal (as the one that you obtained). See: Zhuang et al. 2000 (PNAS) Fluorescence quenching: A tool for single-molecule protein-folding study

      Many thanks to point this paper. We use a triple Yepet because AtVPS13M1 has a very low level of expression and because this strategy was used successfully to visualize proteins for which the signal was below the detection level with a single GFP (Zhou et al., 2011). The quenching of the 3xYepet might also depend on the conformation they adopt on the targeting protein.

      Page 13, line 14: change 1µm to 1 µm

      This was done.

      Page 13, line 29: please reduce the sentence to the first part: if A does not colocalize with B, it is not necessary to mention that B does not colocalise with A.

      The sentence was modified accordingly.

      Page 14, 2. Paragraph: it is not conclusive that phenotype analysis is suddenly conducted with plants under cold stress, since everything was about Pi-starvation and the role of VSP13M1. Lipid remodelling under Pi stress completely differs from the lipid remodelling under cold stress.

      We eliminated this part in the revised version of the manuscript.

      Page 14, line 20: change figure to Figure

      This was done.

      Page 07, line 17: change artifact to artefact

      This was done.

      Reviewer #2 (Significance (Required)):

      General assessment: The paper is well written and technically sound. However, some points could be identified, that definitely need a revision. Overall, we got the impression that so far, the data gathered are still quite preliminary and need some more detailed investigations prior to publication (see major points).

      Advance: The study definitely fills a gap of knowledge since not much is known on the function of plant VPS13 proteins so far.

      Audience: The study is of very high interest to the plant lipid community but as well of general interest for Plant Molecular Biology and intracellular transport.

      Our expertise: Plant membrane transport and lipid homeostasis.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Leterme et al. (2024) describes the characterization of VPS13M1 from Arabidopsis. VPS13 proteins have been analyzed in yeast and animals, where they establish lipid transfer connections between organelles, but not much is known about VPS13 proteins in plants. First, different splicing forms were characterized, and the form A was identified as the most relevant one with 92% of the transcripts. The protein (just N-terminal 335 amino acids out of ca. 3000 amino acids) was expressed in insect cells and purified. Next, the protein was used for lipid binding assays with NBD-labeled lipids followed by analysis in polyacrylamide gel electrophoresis. VPS13M1 bound to PC, PE, PS and PA. Then, the protein from insect cells was incubated with Arabidopsis callus lipids, and lipids bound to VPS13M1 analyzed by LC-MS/MS. Lipid transfer between liposomes was measured by the change in fluorescence in donor liposomes derived from two labeled lipids after addition of the protein caused by lipid transfer and dilution to acceptor liposomes. T-DNA insertion mutants were isolated and the lipids measured in callus derived from these mutants. Protein localization in different plant organs was recorded with a GUS fusion construct transferred into transgenic plants. The protein was localized to mitochondria using a VPS13M1-Yepet fusion construct transferred into mutant plants. The mutant plants show no visible difference to wild type, even when the plants were grown under stress conditions like low temperature. The main message of the title is that VPS13M1 localizes to the mitochondria which is well documented, and it is involved in lipid remodeling under low phosphate conditions.

      The lipid transfer assay shown in Figure 2F lacks a negative control. This would be the experiment with donor and acceptor liposomes in the presence of another protein like Tom20.

      Many thanks for this suggestion. In the revised version of the manuscript, we performed a fluorescent lipid transport assay with Tom20.3 in the presence of 25 µM of donor liposomes and 1.5 mM of acceptor liposomes, the condition for which we observed a maximum of transport for AtVPS13M1(1-335). As expected, no fluorescence increase was observed. The results are presented in the Figure 3C of the revised manuscript.

      The lipid data (Fig. 3 and Fig. S4) do not sufficiently support the second claim, i.e. that the protein is involved in lipid remodeling under low P. Data in Fig. 3C are derived from only 3 replicates and in Fig. S4 from only 2 replicas with considerable error bars. Having only 2 replicates is definitely not sufficient. Fig. 3C shows a suppression in the decrease in PE and PC at 4 d of P deprivation (significant for two mutants for PE, for only one for PC). Fig. S4A shows suppression of the decrease in PC at 6 d after P deprivation (significant for both mutants), but no significant effect on PE. Fig. 4SB shows no significant change in PE or PC at -P after 8 d of P deprivation. The data are not consistent. There are also problems with the statistics in Fig. 3 and Fig. S4. The authors used T-test, but place letters a, b, c on top of the bars. Usually, asterisks should be used to indicate significant differences. Data indicate medians and ranges, not mean and SD. In Fig. S4, how can you indicate median and range if you have only 2 replicates? Why did the authors use callus for lipid measurements? Why not use leaves and root tissues? What does adjusted nmol mean? What does the dashed line at 1.05 on the y axis mean? Taken together, I suggest to repeat lipid measurements with leaves and roots from plantets grown under +P and -P conditions in tissue culture with 5 replcates. Significant differences can be analyzed on the level of absolute (nmol per mg FW/DW) or relative (%) amounts.

      Here are our answers to concerns about the design of our lipidomics experiments:

      We used calli for lipid measurement because it is very easy to control growth conditions and to performed phosphate starvation from this cell cultures. The second reason is that it is a non-photosynthetic tissue with a high level of phospholipids and a low level of galactoglycerolipids and it is easier to monitor the modification of the balance phospholipids/galactoglycerolipids in this system. The lipid analysis on calli at 4 days of growth in presence or absence of Pi were performed on 3 biological replicates but on two different mutants (atvps13m-1 and m1-3) and we drew our conclusions based on variations that were significant for both mutants. In the revised version of the manuscript, we performed further lipidomic analyses on calli from Col0 and another mutant (atvps13m1-2) after 6 days of growth in presence or absence of Pi (Figure 4E, S4A-C, n=4-5) and added new data on a photosynthetic tissue (rosettes) from Col0 and atvps13m1-3 mutant. For rosettes analysis, seeds were germinated 4 days in plates with 1 mM Pi and then transferred on plates with 1 mM or 5 µM of Pi. Rosettes were harvested and lipids analyzed after 6 days (Figure 4F-G, S4D, n=4-5). All the data were represented with medians and ranges because we believe that median is less sensitive to extreme values than mean and might better represent what is occurring. Ranges highlight the minimal and maximal value of the data analyzed and we believe it is a representative view of the variability we obtained between biological samples.

      Lipid measurement are done by mass spectrometry. As it was already reported, mass spectrometry quantification is not trivial as the intensity of the response depends on the nature of the molecule (for a review, see (Jouhet et al., 2024)). To counteract this ionisation problem, we developed a method with an external standard that we called Quantified Control (QC) corresponding to an A. thaliana callus lipid extract for which the precised lipid composition was determined by TLC and GC-FID. All our MS signals were “adjusted” to the signal of this QC as described in (Jouhet et al., 2017). Therefore our lipid measurement are in adjusted nmol. In material and method we modified the sentence accordingly p22 lines 720-723: “Lipid amounts (pmol) were adjusted for response differences between internal standards and endogenous lipids and by comparison with a quality control (QC).” This allows to represent all the lipid classes on a same graph and to have an estimation of the lipid classes distribution. To assess the significance of our results, we used in the revised version of the manuscript non-parametric Mann-Whitney tests and added stars representing the p-value on charts. This was indicated in the figure legends.

      Here are our answers to concerns about the interpretation of our lipidomics experiments:

      To summarize, in the revised version of the manuscript, lipid analyses were performed in calli from 3 different mutants (two at day 4, one at day 6) and in the rosettes from one of these mutants. All the results are presented in Figure 4 and S4. In all the experiments, we found that in +Pi, there is no major modifications in the lipid content or composition. In –Pi, we found that the total glycerolipid content is always higher in the mutant compared to the Col0, whatever the tissue or mutant considered (Figure 4A and S4A, D). In calli, this higher increase in lipid content is mainly due to an accumulation of phospholipids and in rosettes, of galactolipids. Because of high variability between our biological replicates, we did not always found significant differences in the absolute amount of lipids in –Pi. However, the analysis of the fold change in lipid content in –Pi vs +Pi always pointed toward a reduced extent of phospholipid degradation. We also added in these graphs the fold change for the total phospholipids and total galactolipids contents in the revised version of the manuscript. We believe that the new analyses we performed strengthen our conclusion about the role of AtVPS13M1 in phospholipid degradation and not on the recycling of precursors backbone to feed galactoglycerolipids synthesis at the chloroplast envelope.

      Page 9, line 15: Please use the standard form of abbreviations of lipid molecular species with colon, e.g. PC32:0, not PC32-0

      The lipid species nomenclature has been changed accordingly.

      Page 11, line 4, (atvps13m1.1 and m1.3: please indicate the existence of mutant alleles with dashes, i.e. (atvps13m1-1 and atvps13m1-3

      Names of the mutants have been changed accordingly.

      Page 14, line 21: which line is indicated by atvps13m1.2-4? What does -4 indicate here?

      This indicates that mutants m1-2 to m1-4 were analyzed.

      Page 16, line 25: many abbreviations used here are very specific and not well known to the general audience e.g. ONT, IR, PTC, NMD etc. I think it is OK to mention them here, but still use the full terms, given that they are not used very frequently in the manuscript.

      We kept ONT abbreviation because it was cited many times in both the results and discussion part. IR, PTC and NMD were cited only in the discussion and were eliminated.

      Page 19, line 11. The authors cite Hsueh et al and Yang et al for LPTD1 playing a role in lipid homeostasis during P deficiency. But Yang et al. described the function of a SEC14 protein in Arabidopsis and rice during P deficiency. Is SEC14 related to LPTD1?

      Many thanks for noticing this mistake. We removed the citation Yang et al. in the revised version of the manuscript.

      Reference Tangpranomkorn et al. 2022: In the text, it says that this is a preprint, but in the Reference list, this is indicated with "Plant Biology" as Journal. In the internet, I could only find this manuscript in bioRxiv.

      This manuscript was accepted in “New Phytologist” in December 2024 and is now cited accordingly in the new version of the manuscript.

      Reviewer #3 (Significance (Required)):

      The manuscript by Leterme et al describes the characterization of the lipid binding and transport protein VTPS13M1 from Arabidopsis. I think that the liposome assay needs to be done with a negative control. Furthermore, I have major concerns with the lipid data in Fig. 3C and Fig. S4. These lipid data of the current manuscript need to be redone. I do not agree that the lipid data allow the conclusion that "AtVPS13M1 is involved in lipid remodeling in low phosphate" as stated in the title.

      References cited in this document:

      Dziurdzik, S.K., and E. Conibear. 2021. The Vps13 Family of Lipid Transporters and Its Role at Membrane Contact Sites. Int J Mol Sci. 22:2905. doi:10.3390/ijms22062905.

      Hanna, M., A. Guillén-Samander, and P. De Camilli. 2023. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol. 39:409–434. doi:10.1146/annurev-cellbio-120420-014634.

      Hanna, M.G., P.H. Suen, Y. Wu, K.M. Reinisch, and P. De Camilli. 2022. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. Journal of Cell Biology. 221:e202111018. doi:10.1083/jcb.202111018.

      Jouhet, J., E. Alves, Y. Boutté, S. Darnet, F. Domergue, T. Durand, P. Fischer, L. Fouillen, M. Grube, J. Joubès, U. Kalnenieks, J.M. Kargul, I. Khozin-Goldberg, C. Leblanc, S. Letsiou, J. Lupette, G.V. Markov, I. Medina, T. Melo, P. Mojzeš, S. Momchilova, S. Mongrand, A.S.P. Moreira, B.B. Neves, C. Oger, F. Rey, S. Santaeufemia, H. Schaller, G. Schleyer, Z. Tietel, G. Zammit, C. Ziv, and R. Domingues. 2024. Plant and algal lipidomes: Analysis, composition, and their societal significance. Progress in Lipid Research. 96:101290. doi:10.1016/j.plipres.2024.101290.

      Jouhet, J., J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme, S. Collin, S. Roy, E. Maréchal, and F. Rébeillé. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE. 12:e0182423. doi:10.1371/journal.pone.0182423.

      Kumar, N., M. Leonzino, W. Hancock-Cerutti, F.A. Horenkamp, P. Li, J.A. Lees, H. Wheeler, K.M. Reinisch, and P. De Camilli. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 217:3625–3639. doi:10.1083/jcb.201807019.

      Leonzino, M., K.M. Reinisch, and P. De Camilli. 2021. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1866:159003. doi:10.1016/j.bbalip.2021.159003.

      Leterme, S., O. Bastien, R.A. Cigliano, A. Amato, and M. Michaud. 2023. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. Contact (Thousand Oaks). 6:1–23. doi:10.1177/25152564231211976.

      Levine, T.P. 2022. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. Contact. 5:251525642211343. doi:10.1177/25152564221134328.

      Valverde, D.P., S. Yu, V. Boggavarapu, N. Kumar, J.A. Lees, T. Walz, K.M. Reinisch, and T.J. Melia. 2019. ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol. 218:1787–1798. doi:10.1083/jcb.201811139.

      Wang, J., N. Fang, J. Xiong, Y. Du, Y. Cao, and W.-K. Ji. 2021. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions. Nat Commun. 12:1252. doi:10.1038/s41467-021-21525-5.

      Zhou, R., L.M. Benavente, A.N. Stepanova, and J.M. Alonso. 2011. A recombineering-based gene tagging system for Arabidopsis. Plant J. 66:712–723. doi:10.1111/j.1365-313X.2011.04524.x.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The manuscript "AtVPS13M1 is involved in lipid remodelling in low phosphate and is located at the mitochondria surface in plants" by Leterme et al. identifies the protein VPS13M1 as a lipid transporter in Arabidopsis thaliana with important functions during phosphate starvation. The researchers were able to localise this protein to mitochondria via GFP-targeting in Arabidopsis. Although VPS13 proteins are well described in yeast and mammals, highlighting their importance in many vital cellular processes, there is very little information on them in plants. This manuscript provides new insights into plant VPS13 proteins and contributes to a better understanding of these proteins and their role in abiotic stress responses, such as phosphate starvation.

      Major points:

      • Please describe and define the domains of the VPS13M1 protein in detail, providing also a figure for that. Figure 1 is mainly describing possible splice variants, whereas the characteristics of the protein are missing.
      • Please compare the expression level of VPS13M1 in the presence and in the absence of phosphate.
      • Page 9, second paragraph: Here, the lipid transport capability of AtVPS13M1 is described. Varying concentrations of this recombinant protein should be used in this test. Further, it is not highlighted, that a truncated version of VSP13M1 is able to transport lipids. This is surprising, since this truncated version is less than 10% of the total protein (only aa 1-335).
      • Also, for phenotype analysis, T-DNA insertion mutants are used that still contain VPS13M1 transcripts. Although protein fragments where not detected by proteomic analysis, this might be due to low sensitivity of the proteomic assay. Further the lipid transport domain of VPS13M1 (aa 1-335) might not be affected by the T-DNA insertions at all. Here more detailed analysis needs to be done to prove that indeed loss-of protein function occurs in the mutants.
      • Localisation in mitochondria: As the Yepet signal is very weak, a control image of not transfected plant tissue needs to be included. Otherwise, it might be hard to distinguish the Yepet signal from background signal. The localisation data presented in Figure 5 does not allow the conclusion that VPS13M1 is localized at the surface of mitochondria as stated in the title. It only indicates (provided respective controls see above) that VPS13M1 is in mitochondria. Please provide more detailed analysis such as targeting to tobacco protoplasts, immunoblots or in vitro protein import assays. Also test +Pi vs. -Pi to see if VPS13M1 localisation is altered in dependence of Pi.
      • Phenotype analysis needs to be done under Pi stress and not under cold stress! Further, root architecture and root growth should also be done under Pi depletion. Here the title is also misleading, it is not at all clear why the authors switch from phosphate starvation to cold stress.

      Minor points:

      Page 3, line 1: what does the abbreviation VPS stand for?

      Page 3, line 1: change "amino acids residues" to "amino acid residues"

      Page 3, line 8 - 12: please rewrite this sentence. You write, that because of their distribution VPS13 proteins do exhibit many important physiological roles. The opposite is true: They are widely distributed in the cell because of their involvement in many physiological processes.

      Page 6, line6: change "cDNA obtained from A. thaliana" to "cDNA generated from A. thaliana.

      Page 6, line 10: change" 7.6kb" to "7.6 kb"

      Page 7: address this question: can the isoforms form functional VPS13 proteins? This might help to postulate whether these isoforms are a result of defective splicing events.

      Figure 2 B: Change "AtVPS13M1"to "AtVPS13M1(1-335)"

      Figure 2, legend:

      • put a blank before µM in each case.
      • Change 0,125µM to 0.125 µM
      • what does "in absence (A-0µM)" mean?
      • Which statistical analysis was employed?
      • Further, rewrite the sentence "Mass spectrometry (MS) analysis of lipids bound to AtVPS13M1(1-335) or Tom20 (negative control) after incubation with calli total lipids. Results are expresses in nmol of lipids per nmol of proteins (C) or in mol% (D)".
      • "C" and "D" are not directly comparable, as in "C" no Tom20 was used and in "C" no insect cells were used.
      • Further, in "D" the experimental setup is not clear. AtVPS13(1-335) is supposed to be purified protein after incubation with calli lipids (figure 2, A). Further, in the same figure, lipid composition of "insect cells" and "calli-Pi" are compared why? Please clarify this. Figure 3:
      • t-test requires a normal distribution of the data. This is not possible for an n=3. Please use an adequate analysis.
      • Please clarify the meaning of the letters on the top of the bars in the legend. Please, make it clear that two figures belong to C.
      • Reorganise the order of figure 3 (ABCD)

      Page 10, 3. Paragraph: since the finding, that no peptides were found in the VSP13M1 ko lines, although transcription was not altered, is surprising, please include the proteomic data in the supplement

      Page 11, line 17: The in vitro experiments showed a low affinity of VSP13M1 towards galactolipids. It is further claimed that this is consistent with the finding of the AtVSP13M1 Ko line in vivo, that in absence of PI, no change in DGDG content could be observed. However, the "absence" of VSP13M1 in vivo might still result in a bigger VSP13M1 protein, than the truncated form (1-335) used for the in vitro experiments

      Page 13, lane 8: you should reconsider the use of a triple Yepet tag: If two or more identical fluorescent molecules are in close proximity, their fluorescence emission is quenched, which results in a weak signal (as the one that you obtained). See: Zhuang et al. 2000 (PNAS) Fluorescence quenching: A tool for single-molecule protein-folding study

      Page 13, line 14: change 1µm to 1 µm

      Page 13, line 29: please reduce the sentence to the first part: if A does not colocalize with B, it is not necessary to mention that B does not colocalise with A.

      Page 14, 2. Paragraph: it is not conclusive that phenotype analysis is suddenly conducted with plants under cold stress, since everything was about Pi-starvation and the role of VSP13M1. Lipid remodelling under Pi stress completely differs from the lipid remodelling under cold stress.

      Page 14, line 20: change figure to Figure

      Page 07, line 17: change artifact to artefact

      Significance

      General assessment:

      The paper is well written and technically sound. However, some points could be identified, that definitely need a revision. Overall, we got the impression that so far, the data gathered are still quite preliminary and need some more detailed investigations prior to publication (see major points).

      Advance: The study definitely fills a gap of knowledge since not much is known on the function of plant VPS13 proteins so far.

      Audience: The study is of very high interest to the plant lipid community but as well of general interest for Plant Molecular Biology and intracellular transport.

      Our expertise: Plant membrane transport and lipid homeostasis.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: An analysis of an Arabidopsis VSP13 presumed lipid transport is provided. The analysis pretty much follows similar studies done on yeast and human homologs. Key findings are the identification of multiple products from the locus due to differential splicing, analysis of lipid binding and transport properties, subcellular location, tissue specific promoter activity, mutant analysis suggesting a role in lipid remodeling following phosphate deprivation, but no physiological or growth defects of the mutants.

      Major points: The paper is generally written and documented, the experiments are well conducted and follow established protocols. The following major points should be considered:

      1. There are complementary lipid binding assays that should be considered such as liposome binding assays, or lipid/western dot blots. All of these might give slightly different results and may inform a consensus. Of course, non-membrane lipids such as TAG cannot be tested in a liposome assay.
      2. Similarly, lipid transfer based only on fluorophore-labeled lipids may be misleading because the fluorophore could affect binding. It is mentioned that the protein in this assay is tethered by 3xHiis to the liposomes. Un less I ma missing something, I do not understand how that should work. This needs to be better explained.
      3. The in vivo lipid binding assay could be obscured by the fact that the protein was produced in insect cells and lipid binding occurs during the producing. What is the evidence that added plants calli lipids can replace lipids already present during isolation.
      4. The effects on lipid composition of the mutants are not very drastic from what I can tell. Furthermore, how does this fit with the lipid composition of mitochondria where the protein appears to be mostly located?
      5. For the localization of the fusion protein, has it been tested whether the furoin is functional? This should be tested (e.g. by reversion of lipid composition).
      6. It is speculated that different splice forms are located to different compartments. Can that be tested and used to explain the observed subcellular location patterns?
      7. GUS fusion data only probe promoter activity but not all levels of gene expression. That caveat should be discussed.

      Minor points:

      1. Extraplastidic DGDG and export from chloroplasts following phosphate derivation was first reported in PMID: 10973486.
      2. Check throughout the correct usage of gene expression as genes are expressed and proteins produced.
      3. In general, the paper is too long. Redundancies between introduction, results and discussion should be removed to streamline.
      4. I suggest to redraw the excel graphs to increase line thickness and enlarge font size to increase presentation and readability.

      Significance

      Interorganellar lipid trafficking is an important topic and especially under studied in plants. Identifying components involved represents significant progress in the field. Similarly, lipid remodeling following phosphate derivation is an important phenomenon and the current advances our understanding.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Bell et. al. describes an analysis of the effects of removing one of two mutually exclusive splice exons at two distinct sites in the Drosophila CaV2 calcium channel Cacophony (Cac). The authors perform imaging and electrophysiology, along with some behavioral analysis of larval locomotion, to determine whether these alternatively spliced variants have the potential to diversify Cac function in presynaptic output at larval neuromuscular junctions. The author provided valuable insights into how alternative splicing at two sites in the calcium channel alters its function.

      Strengths:

      The authors find that both of the second alternatively spliced exons (I-IIA and I-IIB) that are found in the intracellular loop between the 1st and second set of transmembrane domains can support Cac function. However, loss of the I-IIB isoform (predicted to alter potential beta subunit interactions) results in 50% fewer channels at active zones and a decrease in neurotransmitter release and the ability to support presynaptic homeostatic potentiation. Overall, the study provides new insights into Cac diversity at two alternatively spliced sites within the protein, adding to our understanding of how regulation of presynaptic calcium channel function can be regulated by splicing.

      Weaknesses:

      The authors find that one splice isoform (IS4B) in the first S4 voltage sensor is essential for the protein's function in promoting neurotransmitter release, while the other isoform (IS4A) is dispensable. The authors conclude that IS4B is required to localize Cac channels to active zones. However, I find it more likely that IS4B is required for channel stability and leads to the protein being degraded, rather than any effect on active zone localization. More analysis would be required to establish that as the mechanism for the unique requirement for IS4B.

      (1) We thank the reviewer for this important point. In fact, all three reviewers raised the same question, and the reviewing editor pointed out that caution or additional experiments were required to distinguish between IS4 splicing being important for cac channel localization versus channel stability/degradation. We provide multiple sets of experiments as well as text and figure revisions to strengthen our claim that the IS4B exon is required for cacophony channels to enter motoneuron presynaptic boutons and localize to active zones.

      a. If IS4B was indeed required for cac channel stability (and not for localization to active zones) IS4A channels should be instable wherever they are. This is not the case because we have recorded somatodendritic cacophony currents from IS4A expressing adult motoneurons that were devoid of cac channels with the IS4B exon. Therefore, IS4A cac channels are not instable but underlie somatodendritic voltage dependent calcium currents in these motoneurons. These new data are now shown in the revised figure 3C and referred to in the text on page 7, line 42 to page 8 line 9.

      b. Similarly, if IS4B was required for channel stability, it should not be present anywhere in the nervous system. We tested this by immunohistochemistry for GFP tagged IS4A channels in the larval CNS. Although IS4A channels are sparsely expressed, which is consistent with low expression levels seen in the Western blots (Fig. 1E), there are always defined and reproducible patterns of IS4A label in the larval brain lobes as well as in the anterior part of the VNC. This again shows that the absence of IS4A from presynaptic active zones is not caused by channel instability, because the channel is expressed in other parts of the nervous system. These data are shown in the new supplementary figure 1 and referred to in the text on page 15, lines 3 to 8.

      c. As suggested in a similar context by reviewers 1 and 2, we now show enlargements of the presence of IS4B channels in presynaptic active zones as well as enlargements of the absence of IS4A channels in presynaptic active zones in the revised figures 2A-C and 3A. In these images, no IS4A label is detectable in active zones or anywhere else throughout the axon terminals, thus indicating that IS4B is required for expressing cac channels in the axon terminal boutons and localizing it to active zones. Text and figure legends have been adjusted accordingly.

      d. Related to this, reviewer 1 also recommended to quantify the IS4A and ISB4 channel intensity and co-localization with the active zone marker brp (recommendation for authors). After following the reviewers’ suggestion to adjust the background values in IS4A and IS4B immunolabels to identical (revised Figs. 2A-C), it becomes obvious that IS4A channel are not detectable above background in presynaptic terminals or active zones, thus intensity is close to zero. We still calculated the Pearsons co-localization coefficient for both IS4 variants with the active zone marker brp. For IS4B channels the Pearson’s correlation coefficient is control like, just above 0.6, whereas for IS4A channels we do not find colocalization with brp (Pearson’s below 0.25). These new analyses are now shown in the revised figure 2D and referred to on page 6, lines 33 to 38.

      e. Consistent with our finding that IS4B is required for cac channel localization to presynaptic active zones, upon removal of IS4B we find no evoked synaptic transmission (Fig. 2 in initial submission, now Fig. 3B).

      Together these data are in line with a unique requirement of IS4B at presynaptic active zones (not excluding additional functions of IS4B), whereas IS4A containing cac isoforms are not found in presynaptic active zones and mediate different functions.

      Reviewer #2 (Public Review):

      This study by Bell et al. focuses on understanding the roles of two alternatively spliced exons in the single Drosophila Cav2 gene cac. The authors generate a series of cac alleles in which one or the other mutually exclusive exons are deleted to determine the functional consequences at the neuromuscular junction. They find alternative splicing at one exon encoding part of the voltage sensor impacts the activation voltage as well as localization to the active zone. In contrast, splicing at the second exon pair does not impact Cav2 channel localization, but it appears to determine the abundance of the channel at active zones.

      Together, the authors propose that alternative splicing at the Cac locus enables diversity in Cav2 function generated through isoform diversity generated at the single Cav2 alpha subunit gene encoded in Drosophila.

      Overall this is an excellent, rigorously validated study that defines unanticipated functions for alternative splicing in Cav2 channels. The authors have generated an important toolkit of mutually exclusive Cac splice isoforms that will be of broad utility for the field, and show convincing evidence for distinct consequences of alternative splicing of this single Cav2 channel at synapses. Importantly, the authors use electrophysiology and quantitative live sptPALM imaging to determine the impacts of Cac alternative splicing on synaptic function. There are some outstanding questions regarding the mechanisms underlying the changes in Cac localization and function, and some additional suggestions are listed below for the authors to consider in strengthening this study. Nonetheless, this is a compelling investigation of alternative splicing in Cav2 channels that should be of interest to many researchers.

      (2) We believe that the additional data on cac IS4A isoform localization and function as detailed above (response to public review 1) has strengthened the manuscript and answered some of the remaining questions the reviewer refers to. We are also grateful for the specific additional reviewer suggestions which we have addressed point-by-point and refer to below (section recommendations for authors).

      Reviewer #3 (Public Review):

      Summary:

      Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.

      Strengths:

      The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.

      Weaknesses:

      (1) Based on the data shown in Figures 2A-C, and 2H, it is difficult to judge the localization of the cac isoforms. Could they analyze cac localization with regard to Brp localization (similar to Figure 3; the term "co-localization" should be avoided for confocal data), as well as cac and Brp fluorescence intensity in the different genotypes for the experiments shown in Figure 2 and 3 (Brp intensity appears lower in the dI-IIA example shown in Figure 3G)? Furthermore, heterozygous dIS4B imaging data (Figure 2C) should be quantified and compared to heterozygous cacsfGFP/+.

      According to the reviewer’s suggestion, we have quantified cac localization relative to brp localization by computing the Pearson’s correlation coefficient for controls and IS4A as well as IS4B animals. These new data are shown in the revised Fig. 2D and referred to on page 6, lines 33-38. Furthermore, we now confirm control-like Pearson’s correlation coefficients for all exon out variants except ΔIS4B and show Pearson’s correlation coefficients for all genotypes side-by-side in the revised Fig. 4D (legend has been adjusted accordingly). In addition, in response to the recommendations to authors, we now provide selective enlargements for the co-labeling of Brp and each exon out variant in the revised figures 2-4. We have also adjusted the background in Fig. 2C (ΔIS4B) to match that in Figs. 2A and B (control and ΔIS4A). This allows a fair comparison of cac intensities following excision of IS4B versus excision of IS4A and control (see also Fig 3). Together, this demonstrates the absence of IS4A label in presynaptic active zones much clearer. As suggested, we have also quantified brp puncta intensity on m6/7 across homozygous exon excision mutants and found no differences (this is now stated for IS4A/IS4B in the results text on page 6, lines 37/38 and for I-IIA/I-IIB on page 8, lines 42-44.). We did not quantify the intensity of cacophony puncta upon excision of IS4B because the label revealed no significant difference from background (which can be seen much better in the images now), but the brp intensities remained control-like even upon excision of IS4B.

      (2) They conclude that I-II splicing is not required for cac localization (p. 13). However, cac channel number is reduced in dI-IIB. Could the channels be mis-localized (e.g., in the soma/axon)? What is their definition of localization? Could cac be also mis-localized in dIS4B? Furthermore, the Western Blots indicate a prominent decrease in cac levels in dIS4B/+ and dI-IIB (Figure 1D). How do the decreased protein levels seen in both genotypes fit to a "localization" defect? Could decreased cac expression levels explain the phenotypes alone?

      We have now precisely defined what we mean by cac localization, namely the selective label of cac channels in presynaptic active zones that are defined as brp puncta, but no cac label elsewhere in the presynaptic bouton (page 6, lines 18 to 20). On the level of CLSM microscopy this corresponds to overlapping cac puncta and brp puncta, but no cac label elsewhere in the bouton. Based on the additional analysis and data sets outlined in our response 1 (see above) we conclude that excision of IS4B does not cause channel mislocalization because we find reproducible expression patterns elsewhere in the nervous system as well as somatodendritic cac current in ΔIS4B (for detail see above). Therefore, the isoforms containing the mutually exclusive IS4A exon are expressed and mediate other functions, but cannot substitute IS4B containing isoforms at the presynaptic AZ. In fact, our Western blots are in line with reduced cac expression if all isoforms that mediate evoked release are missing, again indicating that the presynapse specific cac isoforms cannot be replaced by other cac isoforms. This is also in line with the sparse expression of IS4A throughout the CNS as seen in the new supplementary figure 1 (for detail see above).

      (3) Cac-IS4B is required for Cav2 expression, active zone localization, and synaptic transmission. Similarly, loss of cac-I-IIB reduces calcium channel expression and number. Hence, the major phenotype of the tested splice isoforms is the loss of/a reduction in Cav2 channel number. What is the physiological role of these isoforms? Is the idea that channel numbers can be regulated by splicing? Is there any data from other systems relating channel number regulation to splicing (vs. transcription or post-transcriptional regulation)?

      Our data are not consistent with the idea that splicing regulates channel numbers. Rather, splicing can be used to generate channels with specific properties that match the demand at the site of expression. For the IS4 exon pair we find differences in activation voltage between IS4A and IS4B channels (revised Fig. 3C), with IS4B being required for sustained HVA current. IS4A does not localize to presynaptic active zones at the NMJ and is only sparsely expressed elsewhere in the NS (new supplementary Fig. 1). By contrast, IS4B is abundantly expressed in many neuropils. Therefore, taking out IS4B takes out the more abundant IS4 isoform. This is consistent with different expression levels for IS4 isoforms that have different functions, but we do not find evidence for splicing regulating expression levels per se.

      Similarly, the I-II mutually exclusive exon pair differs markedly in the presence or absence of G-protein βγ binding sites that play a role in acute channel regulation as well the conservation of the sequence for β-subunit binding (see page 5, lines 9-17). Channel number reduction in active zones occurs specifically if expression of the cac channels with the G<sub>βγ</sub>-binding site as well as the more conserved β-subunit binding is prohibited by excision of the I-IIB exon (see Fig. 5F). Vice versa, excision of I-IIA does not result in reduced channel numbers. This scenario is consistent with the hypothesis that conserved β-subunit binding affects channel number in the active zone (see page 17, lines 3 to 6 and lines 33-36), but we have no evidence that I-II splicing per se affects channel number.

      (4) Although not supported by statistics, and as appreciated by the authors (p. 14), there is a slight increase in PSC amplitude in dIS4A mutants (Figure 2). Similarly, PSC amplitudes appear slightly larger (Figure 3J), and cac fluorescence intensity is slightly higher (Figure 3H) in dI-IIA mutants. Furthermore, cac intensity and PSC amplitude distributions appear larger in dI-IIA mutants (Figures 3H, J), suggesting a correlation between cac levels and release. Can they exclude that IS4A and/or I-IIA negatively regulate release? I suggest increasing the sample size for Canton S to assess whether dIS4A mutant PSCs differ from controls (Figure 2E). Experiments at lower extracellular calcium may help reveal potential increases in PSC amplitude in the two genotypes (but are not required). A potential increase in PSC amplitude in either isoform would be very interesting because it would suggest that cac splicing could negatively regulate release.

      There are several possibilities to explain this, but as none of the effects is statistically significant, we prefer to not investigate this in further depth. However, given that we cannot find IS4A in presynaptic active zones (revised figures 2C and 3A plus the new enlargements 2Ci and 3Ai, revised text page 6, lines 22 to 24 and 29 to 31, and page 7, second paragraph, same as public response 1D) IS4A channels cannot have a direct negative effect on release probability. Nonetheless, given that IS4A containing cac isoforms mediate functions in other neuronal compartments (see revised Fig. 3C) it may regulate release indirectly by affecting e.g. action potential shape. Moreover, in response to the more detailed suggestions to authors we provide new data that give additional insight.

      (5) They provide compelling evidence that IS4A is required for the amplitude of somatic sustained HVA calcium currents. However, the evidence for effects on biophysical properties and activation voltage (p. 13) is less convincing. Is the phenotype confined to the sustained phase, or are other aspects of the current also affected (Figure 2J)? Could they also show the quantification of further parameters, such as CaV2 peak current density, charge density, as well as inactivation kinetics for the two genotypes? I also suggest plotting peaknormalized HVA current density and conductance (G/Gmax) as a function of Vm. Could a decrease in current density due to decreased channel expression be the only phenotype? How would changes in the sustained phase translate into altered synaptic transmission in response to AP stimulation?

      Most importantly, sustained HVA current is abolished upon excision of IS4B (not IS4A, we think the reviewer accidentally mixed up the genotype) and presynaptic active zones at the NMJ contain only cac isoforms with the IS4B exon. This indicates that the cac isoforms that mediate evoked release encode HVA channels. The somatodendritic currents shown in the revised figure 3C (previously 2J) that remain upon excision of IS4B are mediated by IS4A containing cac isoforms. Please note that these never localize to the presynaptic active zone, and thus do not contribute to evoked release. Therefore, the interpretation is that specifically sustained HVA current encoded by IS4B cac isoforms is required for synaptic transmission. Reduced cac current density due to decreased channel expression is not the cause for impaired evoked release upon IS4B excision, but instead, the cause is the absence of any cac channels in active zones. IS4B-containing cac isoforms encode sustained HVA current, and we speculate that this might be a well suited current to minimize cacophony channel inactivation in the presynaptic active zone. Given that HVA current shows fast voltage dependent activation and fast inactivation upon repolarization, it is useful at large intraburst firing frequencies as observed during crawling (Kadas et al., 2017) without excessive cac inactivation (see page 15, Kadas, lines 16 to 20).

      However, we agree with the reviewer that a deeper electrophysiological analysis of splice isoform specific cac currents will be instructive. We have now added traces of control and ΔIS4B from a holding potential of -90 mv (revised Fig. 3C, bottom traces and revised text on page 7, line 43 to page 8, lines 1 to 10), and these are also consistent with IS4B mediating sustained HVA cac current. However, further analysis of activation and inactivation voltages and kinetics suffers form space clamp issues in recordings from the somata of such complex neurons (DLM motoneurons of the adult fly contain roughly 6000 µm of dendrites with over 4000 branches, Ryglewski et al., 2017, Neuron 93(3):632-645). Therefore, we will analyze the currents in a heterologous expression system and present these data to the scientific community as a separate study at a later time point.

      (6) Why was the STED data analysis confined to the same optical section, and not to max. intensity z-projections? How many and which optical sections were considered for each active zone? What were the criteria for choosing the optical sections? Was synapse orientation considered for the nearest neighbor Cac - Brp cluster distance analysis? How do the nearest-neighbor distances compare between "planar" and "side-view" Brp puncta?

      Maximum intensity z-projections would be imprecise because they can artificially suggest close proximity of label that is close by in x and y but far away in z. Therefore, the analysis was executed in xy-direction of various planes of entire 3D image stacks. We considered active zones of different orientations (Figs. 5C, D) to account for all planes. In fact, we searched the entire z-stacks until we found active zones of all orientations within the same boutons, as shown in figures 5C1-C6. The same active zone orientations were analyzed for all exon-out mutants with cac localization in active zones. The distance between cac and brp did not change if viewed from the side or any other orientation. We now explain this in more clarity in the results text on page 9, lines 23/24.

      (7) Cac clusters localize to the Brp center (e.g., Liu et al., 2011). They conclude that Cav2 localization within Brp is not affected in the cac variants (p. 8). However, their analysis is not informative regarding a potential offset between the central cac cluster and the Brp "ring". Did they/could they analyze cac localization with regard to Brp ring center localization of planar synapses, as well as Brp-ring dimensions?

      In the top views (planar) we did not find any clear offset in cac orientation to brp between genotypes. In such planar synapses (top views, Fig. 5D, left row) we did not find any difference in Brp ring dimensions. We did not quantify brp ring dimensions rigorously, because this study focusses on cac splice isoform-specific localization and function. Possible effects of different cac isoforms on brp-ring dimensions or other aspects of scaffold structure are not central to our study, in particular given that brp puncta are clearly present even if cac is absent from the synapse (Fig. 3A), indicating that cac is not instructive for the formation of the brp scaffold.

      (8) Given the accelerated PSC decay/ decreased half width in dI-IIA (Fig. 5Q), I recommend reporting PSC charge in Figure 3, and PPR charge in Figures 5A-D. The charge-based PPRs of dI-IIA mutants likely resemble WT more closely than the amplitude-based PPR. In addition, miniature PSC decay kinetics should be reported, as they may contribute to altered decay kinetics. How could faster cac inactivation kinetics in response to single AP stimulation result in a decreased PSC half-width? Is there any evidence for an effect of calcium current inactivation on PSC kinetics? On a similar note, is there any evidence that AP waveform changes accelerate PSC kinetics? PSC decay kinetics are mainly determined by GluR decay kinetics/desensitization. The arguments supporting the role of cac splice isoforms in PSC kinetics outlined in the discussion section are not convincing and should be revised.

      We agree that reporting charge in figure 3 is informative and do so in the revised text. Since the result (no significant difference in the PSCs between between CS, cac<sup>GFP</sup>, <sup>ΔI-IIA</sup>, and transheterozygous I-IIA/I-IIB, but significantly smaller values in ΔI-IIB) remained unchanged no matter whether charge or amplitude were analyzed, we decided to leave the figure as is and report the additional analysis in the text (page 8, lines 40 to 42). This way, both types of analysis are reported. Please note that EPSC amplitude is slightly but not significantly increased upon excision of I-IIA (Fig. 4J), whereas EPSC half amplitude width is significantly smaller (Fig. 5Q, now revised Fig 6R). Together, a tendency of increased EPSC amplitudes and smaller half amplitude width result in statistically insignificant changes in EPSC in ∆I-IIA (now discussed on page 15, lines 37 to 40). We also understand the reviewer’s concern attributing altered EPSC kinetics to presynaptic cac channel properties. We have toned down our interpretation in the discussion and list possible alterations in presynaptic AP shape or cac channel kinetics as alternative explanations (not conclusions; see revised discussion on page 15, line 40 to page 16, line 2). Moreover, we have quantified postsynaptic GluRIIA abundance to test whether altered PSC kinetics are caused by altered GluRIIA expression. In our opinion, the latter is more instructive than mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells. Although we find no difference in GluRIIA expression levels we now clearly state that we cannot exclude other changes in GluR receptor fields, which of course, could also explain altered PSC kinetics. We have updated the discussion on page 16, lines 2/3 accordingly.

      (9) Paired-pulse ratios (PPRs): On how many sweeps are the PPRs based? In which sequence were the intervals applied? Are PPR values based on the average of the second over the first PSC amplitudes of all sweeps, or on the PPRs of each sweep and then averaged? The latter calculation may result in spurious facilitation, and thus to the large PPRs seen in dI-IIB mutants (Kim & Alger, 2001; doi: 10.1523/JNEUROSCI.21-2409608.2001).

      We agree that the PP protocol and analyses had to be described more precisely in the methods and have done so on page 23, lines 31 to 37 in the methods. Mean PPR values are based on the PPRs of each sweep and then averaged. We are aware of the study of Kim and Alger 2001 and have re-analyzed the PP data in both ways outlined by the reviewer. We get identical results with either analyses method. Spurious facilitation is thus not an issue in our data. We now explain this in the methods section along with the PPR protocol. The large spread seen in dI-IIB is indeed caused by reduced calcium influx into active zones with fewer channels, as anticipated by the reviewer (see next point).

      (10) Could the dI-IIB phenotype be simply explained by a decrease in channel number/ release probability? To test this, I propose investigating PPRs and short-term dynamics during train stimulation at lower extracellular Ca2+ concentration in WT. The Ca2+ concentration could be titrated such that the first PSC amplitude is similar between WT and dI-IIB mutants. This experiment would test if the increased PPR/depression variability is a secondary consequence of a decrease in Ca2+ influx, or specific to the splice isoform.

      In fact, the interpretation that decreased PSC amplitude upon I-IIB excision is caused mainly by reduced channel number is precisely our interpretation (see discussion page 14, last paragraph to page 15, first paragraph in the original submission, now page 16, second paragraph paragraph). In addition, we are grateful for the reviewer’s suggestion to triturate the external calcium such that the first PSC amplitude in matches in ∆I-IIB and control. This experiment tests whether altered short term plasticity is solely a function of altered channel number or whether additional causes, such as altered channel properties, also play into this. We triturated the first pulse amplitude in ∆I-IIB to match control and find that paired pulse ratio and the variance thereof are not different anymore. Therefore, the differences observed in identical external calcium can be fully explained by altered channel numbers. This additional dataset is shown in the revised figures 6D and E and referred to in the results section on page 10, lines 14 to 25 and the discussion on page16, lines 36 to 38.

      (11) How were the depression kinetics analyzed? How many trains were used for each cell, and how do the tau values depend on the first PSC amplitude? Time constants in the range of a few (5-10) milliseconds are not informative for train stimulations with a frequency of 1 or 10 Hz (the unit is missing in Figure 5H). Also, the data shown in Figures 5E-K suggest slower time constants than 5-10 ms. Together, are the data indeed consistent with the idea that dIIIB does not only affect cac channel number, but also PPR/depression variability (p. 9)?

      For each animal the amplitudes of all subsequent PSCs in each train were plotted over time and fitted with a single exponential. For depression at 1 and 10 Hz, we used one train per animal, and 5-6 animals per genotype (as reflected in the data points in Figs. 6I, M). This is now explained in more detail in the revised methods section (page 23, lines 39 to 41). The tau values are not affected by the amplitude of the first PSC. First, we carefully re-fitted new and previously presented depression data and find that the taus for depression at low stimulation frequencies (1 and 10Hz) are not affected by exon excisions at the I-II site. We thank the reviewer for detecting our error in units and tau values in the previous figure panels 5H and L (this has now been corrected in the revised figure panels 6I and M). Given that PSC amplitude upon I-IIB excision is significantly smaller than in controls and following I-IIA excision, we suspected that the time course of depression at low stimulation frequency is not significantly affected by the amount of calcium influx during the first PSC. To further test this, we followed the reviewer ’s suggestion and re-measured depression at 1 and 10 Hz for cac-GFP controls and for delta I-IIB in a higher external calcium concentration (1.8 mM), so that the first PSC was increased in amplitude in both genotypes (1.8 mM external calcium triturates the PSC amplitude in delta I-IIB to match that of controls measured in 0.5 mM external calcium, see revised Figs. 6H, L). Neither in control, nor in delta I-IIB did this affect the time course of synaptic depression (see revised Figs. 6I, M). This indicates that at low stimulation frequencies (1 and 10Hz) the time course of depression is not affected by mean quantal content. This is consistent with the paired pulse ratio at 100 ms interpulse interval shown in figures 6A-D. However, for synaptic depression at 1 Hz stimulation the variability of the data is higher for delta I-IIB (independent of external calcium concentration, see rev. Fig. 6I), which might also be due to reduced channel number in this genotype. Taken together, the data are in line with the idea that altered cac channel numbers in active zones are sufficient to explain all effects that we observe upon I-IIB excision on PPRs and synaptic depression at low stimulation frequencies. This is now clarified in the revised text on page 12, lines 3 to 7.

      (12) The GFP-tagged I-IIA and mEOS4b-tagged I-IIB cac puncta shown in Figure 6N appear larger than the Brp puncta. Endogenously tagged cac puncta are typically smaller than Brp puncta (Gratz et al., 2019). Also, the I-IIA and I-IIB fluorescence sometimes appear to be partially non-overlapping. First, I suggest adding panels that show all three channels merged. Second, could they analyze the area and area overlap of I-IIA and I-IIB with regard to each other and to Brp, and compare it to cac-GFP? Any speculation as to how the different tags could affect localization? Finally, I recommend moving the dI-IIA and dI-IIB localization data shown in Figure 6N to an earlier figure (Figure 1 or Figure 3).

      We now show panels with the two I-II cac isoforms merged in the revised figure 7H (previously 6N). We also tested merging all three labels as suggested, but found this not instructive for the reader. We thank the reviewer for pointing out that the Brp puncta appeared smaller than the cac puncta in some panels. We carefully went through the data and found that the Brp puncta are not systematically smaller than the cac puncta. Please note that punctum size can appear quite differently, depending on different staining qualities as well as different laser intensities and different point spread in different imaging channels. The purpose of this figure was not to analyze punctum size and labeling intensity, but instead, to demonstrate that I-IIA and I-IIB are both present in most active zones, but some active zones show only I-IIB labeling, as quantified in figure 7I. We did not follow the suggestion to conduct additional co-localization analyses and compare it with cac-GFP controls, because Pearson co-localization coefficients for cac-GFP and all exon-out variants analyzed, including delta I-IIA and delta I-IIB are presented in the revised figure 4D. Moreover, delta I-IIA and delta I-IIB show similar Manders 1 and 2 co-localization coefficients with Brp (see Figs. 4E, F). We do not want to speculate whether the different tags have any effect on localization precision. Artificial differences in localization precision can also be suggested by different antibodies, but we know from our STED analyses with identical tags and antibodies for all isoforms that I-IIA and I-IIB co-localize identically with Brp (see Figs. 5A-E). Finally, we prefer to not move the figure because we believe it is informative to show our finding that active zones usually contain both splice I-II variants together with the finding that only I-IIB is required for PHP.

      Recommendations for the authors:

      Reviewing Editor Comments:

      We thank you for your submission. All three reviewers urge caution in interpreting the S4 splice variant playing a role specifically in Cac localization, as opposed to just leading to instability and degradation. There are other issues with the electrophysiological experiments, a need for improved imaging and analyses, and some areas of interpretation detailed in the reviews.

      We agree that additional data was required to conclude that IS4 splicing plays a specific role in cac channel localization and is not just leading to channel instability and degradation. As outlined in detail in our response to reviewer 1, comment 1, we conducted several sets of experiments to support our interpretation. First, electrophysiological experiments show that upon removal of IS4B, which eliminates synaptic transmission at the larval NMJ and cac positive label in presynaptic active zones, somatodendritic cac current is reliably recorded (new data in revised figure 3C). This is not in line with a channel instability or degradation effect, but instead with IS4B containing isoforms being required and sufficient for evoked release from NMJ motor terminals, whereas IS4A isoforms are not sufficient for evoked release from axon terminals, but IS4A isoforms alone can mediate a distinct component of somatodendritic calcium current. Second, immunohostochemical analyses reveal that IS4A, which is not present in NMJ presynaptic active zones, is expressed sparsely, but in reproducible patterns in the larval brain lobes and in specific regions of the anterior VNC parts (new supplementary figure 1). Again, the absence of a IS4A-containing cac isoform from presynaptic active zones but their simultaneous presence in other parts of the nervous system is in accord with isoform specific localization, but not with general channel isoform instability. Third, enlargements of NMJ boutons with brp positive presynaptic active zones confirm the absence of IS4A and the presence of IS4B in active zones (these enlargements are now shown in the revised figures 2A-C, 3A, and 4A-C). Fourth, as suggested we have quantified the Pearson co-localization of IS4 isoforms with Brp in presynaptic active zones (revised Fig. 2D). This confirms quantitatively similar co-localization of IS4B and control with Brp, but no co-localization of IS4A with Brp. In fact, the labeling intensity of IS4A in presynaptic active zones is quantitatively not significantly different from background, no IS4A label is detected anywhere in the axon terminals at the NMJ, but we find IS4 label in the CNS. Together, these data strongly support our interpretation that the IS4 splice site plays a distinct role in cac channel localization. Figure legends as well as results and discussion section have been modified accordingly (the respective page and line numbers are listed in our-point-by-point responses).

      In addition, we have carefully addressed all other public comments as well as all other recommendations for authors by providing multiple new data sets, new image analyses, and revising text. Addressing the insightful comments of all three reviewers and the reviewing editor has greatly helped to make the manuscript better.

      Reviewer #1 (Recommendations For The Authors):

      The conclusion that the IS4B exon controls Cac localization to active zones versus simply being required for channel abundance is not well supported. The authors need to either mention both possibilities or provide stronger support for the active zone localization model if they want to emphasize this point.

      We agree and have included several additional data sets as outlined in our response to point 1 of reviewer 1 and to the reviewing editor (see above). These new data strongly support our interpretation that the IS4B exon controls Cac localization to active zones and is not simply required for channel abundance. The additions to the figures and accompanying text (including the respective figure panel, page, and line numbers) are listed in the point-bypoint responses to the reviewers’ public suggestions.

      Figure 2C staining for Cac localization in the delta 4B line is difficult to compare to the others, as the background staining is so high (muscles are green for example). As such, it is hard to determine whether the arrows in C are just background.

      We had over-emphasized the green label to show that there really is no cacophony label in active zones. However, we agree that this hampered image interpretation. Thus, we have adjusted brightness such that it matches the other genotypes (see new figure panel 2C, and figure 3A, bottom). Revising the figure as suggested by the reviewer shows much more clearly that IS4B puncta are detected exclusively in presynaptic active zones, whereas IS4A channels are not detectable in active zones or anywhere else in the axon terminal boutons. Quantification of IS4A label in brp positive active zones confirms that labeling intensity is not significantly above background (page 6, lines 29 to 31 and page 7, lines 19 to 21). Therefore, IS4A is not detectable in active zones at the NMJ.

      It seems more likely that the removal of the 4B exon simply destabilizes the protein and causes it to be degraded (as suggested by the Western), rather than mislocalizing it away from active zones. It's hard to imagine how some residue changes in the S4 voltage sensor would control active zone localization to begin with. The authors should note that the alternative explanation is that the protein is just degraded when the 4B exon is removed.

      Based on additional data and analyses, we disagree with the interpretation that removal of IS4B disrupts protein integrity and present multiple lines of evidence that support sparse expression of IS4A channels (ΔIS4B). As outlined in our response to reviewer 1 and to the reviewing editor, we show (1) in new immunohistochemical stainings (new supplementary figure 1) that upon removal of IS4B, sparse label is detectable in the VNC and the brain lobes (for detail see above). (2) In our new figure 3C, we show cacophony-mediated somatodendritic calcium currents recorded from adult flight motoneurons in a control situation and upon removal of IS4B that leaves only IS4A channels. This clearly demonstrates that IS4A underlies a substantial component of the HVA somatodendritic calcium current, although it is absence from axon terminals. This is in line with isoform specific functions at different locations, but not with IS4A instability/degradation. (3) We do not agree with the reviewer’s interpretation of the Western Blot data in figure 1E (formerly figure 1D). Together with our immunohistochemical data that show sparse cacophony IS4A expression, we think that the faint band upon removal of IS4B in a heterozygous background (that reduces labeled channels even further) reflects the sparseness of IS4A expression. This sparseness is not due to channel instability, but to IS4A functions that are less abundant than the ubiquitously expressed cac<sup>IS4B</sup> channels at presynaptic active zones of fast chemical synapses (see page 15, lines 24 to 29).

      If they really want to claim the 4B exon governs active zone localization, much higher quality imaging is required (with enlarged views of individual boutons and their AZs, rather than the low-quality full NMJ imaging provided). Similarly, higher resolution imaging of Cac localization at Muscle 12 (Figure 2H) boutons would be very useful, as the current images are blurry and hard to interpret. Figure 6N shows beautiful high-resolution Cac and Brp imaging in single boutons for the I-II exon manipulations - the authors should do the same for the 4B line. For all immuno in Figure 2, it is important to quantify Cac intensity as well. There is no quantification provided, just a sample image. The authors should provide quantification as they do for the delta I-II exons in Figure 3.

      We did as suggested and added figure panels to figure 2A-C and to new figures 3A (formerly part of figure 2 and 4A-C (formerly figure 3) showing magnified label at the NMJ AZs to better judge on cacophony expression after exon excision. These data are now referred to in the results section on page 6, lines 22 to 24, page 7, lines 18 to 21 and page 8, lines 17/18.

      As suggested, we now also provide quantification of co-localization with brp puncta as Pearson’s correlation coefficient for control, IS4B, and IS4A in the new figure panel 2D (text on page 6, lines 34 to 38). This further underscores control-like active zone localization of IS4B but no significant active zone localization of IS4A. As suggested, we quantified now also the intensity of IS4B label in active zones, and it was not different from control (see revised figure 4H and text on page 8, lines 38/39). We did not quantify the intensity of IS4A label, because it was not over background (text, page 6, lines 30/31).

      Reviewer #2 (Recommendations For The Authors):

      (1a) Questions about the engineered Cac splice isoform alleles:

      The authors using CRISPR gene editing to selectively remove the entire alternatively spliced exons of interest. Do the authors know what happens to the cac transcript with the deleted exon? Is the deleted exon just skipped and spliced to the next exon? Or does the transcript instead undergo nonsense-mediated decay?

      We do not believe that there is nonsense mediated mRNA decay, because for all exon excisions the respective mRNA and protein are made. Protein has been detected on the level of Western blotting and immunocytochemistry. Therefore, we are certain that the mRNA is viable for each exon excision (and we have confirmed this for low abundance cac protein isoforms by rt-PCR), but only subsets of cac isoforms can be made from mRNAs that are lacking specific exons. However, we can not make any statements as to whether the lack of specific protein isoforms exerts feedback on mRNA stability, the rate of transcription and translation, or other unknown effects.

      (1b) While it is clear that the IS4 exons encode part of the voltage sensor in the first repeat, are there studies in Drosophila to support the putative Ca-beta and G-protein beta-gamma binding sites in the I-II loop? Or are these inferred from Mammalian studies?

      To the best of our knowledge, there are no studies in Drosophila that unambiguously show Caβ and Gβγ binding sites in the I-II loop of cacophony. However, sequence analysis strongly suggests that I-IIB contains both, a Caβ as well as a Gβγ binding site (AID: α-interacting domain) because the binding motif QXXER is present. In mouse Cav2.1 and Ca<sub>v</sub>2.2 channels the sequence is QQIER, while in Drosophila cacophony I-IIB it is QQLER. In the alternative IIIA, this motif is not present, strongly suggesting that G<sub>βγ</sub> subunits cannot interact at the AID. However, as already suggested by Smith et al. (1998), based on sequence analysis, Ca<sub>β</sub> should still be able to bind, although possibly with a lower affinity. We agree that this information should be given to the reader and have revised the text accordingly on page 5, lines 9 to 17.

      (1c) The authors assert that splicing of Cav2/cac in flies is a means to encode diversity, as mammals obviously have 4 Cav2 genes vs 1 in flies. However, as the authors likely know, mammalian Cav2 channels also have various splice isoforms encoded in each of the 4 Cav2 genes. The authors should discuss in more detail what is known about the splicing of individual mammalian Cav2 channels and whether there are any homologous properties in mammalian channels controlled by alternative splicing.

      We agree and now provide a more comprehensive discussion of vertebrate Ca<sub>v</sub>2 splicing and its impact on channel function. In line to what we report in Drosophila, properties like G<sub>βγ</sub> binding and activation voltage can also be affected by alternative splicing in vertebrate Ca<sub>v</sub>2 channel, through the exon patterns are quite different from Drosophila. We integrated this part on page 14, first paragraph) in the revised discussion. The respective text is below for the reviewer’s convenience:

      “However, alternative splicing increases functional diversity also in mammalian Ca<sub>v</sub>2 channels. Although the mutually exclusive splice site in the S4 segment of the first homologous repeat (IS4) is not present in vertebrate Cav channels, alternative splicing in the extracellular linker region between S3 and S4 is at a position to potentially change voltage sensor properties (Bezanilla 2002). Alternative splice sites in rat Ca<sub>v</sub>2.1 exon 24 (homologous repeat III) and in exon 31 (homologous repeat IV) within the S3-S4 loop modulate channel pharmacology, such as differences in the sensitivity of Ca<sub>v</sub>2.1 to Agatoxin. Alternative splicing is thus a potential cause for the different pharmacological profiles of P- and Q-channels (both Ca<sub>v</sub>2.1; Bourinet et al. 1999). Moreover, the intracellular loop connecting homologous repeats I and II is encoded by 3-5 exons and provides strong interaction with G<sub>βγ</sub>-subunits (Herlitze et al. 1996). In Ca<sub>v</sub>2.1 channels, binding to G<sub>βγ</sub> subunits is potentially modulated by alternative splicing of exon 10 (Bourinet et al. 1999). Moreover, whole cell currents of splice forms α1A-a (no Valine at position 421) and α1A-b (with Valine) represent alternative variants for the I-II intracellular loop in rat Ca<sub>v</sub>2.1 and Ca<sub>v</sub>2.2 channels. While α1A-a exhibits fast inactivation and more negative activation, α1A-b has delayed inactivation and a positive shift in the IV-curve (Bourinet et al. 1999). This is phenotypically similar to what we find for the mutually exclusive exons at the IS4 site, in which IS4B mediates high voltage activated cacophony currents while IS4A channels activate at more negative potentials and show transient current (Fig. 3; see also Ryglewski et al. 2012). Furthermore, altered Ca<sub>β</sub> interaction have been shown for splice isoforms in loop III (Bourinet et al. 1999), similar to what we suspect for the I-II site in cacophony. Finally, in mammalian VGCCs, the C-terminus presents a large splicing hub affecting channel function as well as coupling distance to other proteins. Taken together, Ca<sub>v</sub>2  channel diversity is greatly enhanced by alternative splicing also in vertebrates, but the specific two mutually exclusive exon pairs investigated here are not present in vertebrate Ca<sub>v</sub>2 genes.”

      (1d) In Figure 1, it would be helpful to see the entire cac genomic locus with all introns/exons and the 4 specific exons targeted for deletion.

      We agree and have changed figure 1 accordingly.

      (2a) Cav2.IS4B deletion alleles:

      More work is necessary to explain the localization of Cac controlled by the IS4B exon. First, can the authors determine whether actual Cac channels are present at NMJ boutons? The authors seem to indicate that in the IS4B deletion mutants, some Cac (GFP) signal remains in a diffuse pattern across NMJ boutons. However, from the imaging of wild-type Cac-GFP (and previous studies), there is no Cac signal outside of active zones defined by the BRP signal. It would benefit the study to a) take additional, higher resolution images of the remaining Cac signal at NMJs in IS4B deletion mutants, and b) comment on whether the apparent remaining signal in these mutants is only observed in the absence of IS4Bcontaining Cac channels, or if the IS4A-positive channels are normally observed (but perhaps mis-localized?).

      We have conducted additional analyses to show convincingly that IS4A channels (that remain upon IS4B deletion) are absent from presynaptic active zone. Please see also responses to reviewers 1 and 3. By adjusting the background values in of CLSM images to identical values in control, delta IS4A, and delta IS4B, as well as by providing selective enlargements as suggested, the figure panels 2C, Ci and 3A now show much clearer, that upon deletion of IS4B no cac label remains in active zones or anywhere else in the axon terminal boutons (see text on page 6, lines 22 to 24). This is further confirmed by quantification showing the in IS4B mutants cac labeling intensity in active zones is not above background (see text on page 6, lines 27 to 31). We never intended to indicate that there was cac signal outside of active zones defined by the brp signal, and we now carefully went through the text to not indicate this possibility unintentionally anywhere in the manuscript.

      (2b) Do the authors know whether any presynaptic Ca2+ influx is contributed by IS4Apositive Cac channels at boutons, given the potential diffuse localization? There are various approaches for doing presynaptic Ca2+ imaging that could provide insight into this question.

      We agree that this is an interesting question. However, based on the revisions made, we now show with more clarity that IS4A channels are absent from the presynaptic terminal at the NMJ. IS4A labeling intensities within active zones and anywhere else in the axon terminals are not different from background (see text on page 6, lines 27 to 31 and revised Figs. 2C, Ci, and 3A with new selective enlargements in response to comments of both other reviewers). This is in line with our finding that evoked synaptic transmission from NMJ axon terminals to muscle cells is mostly absent upon excision of IS4B (see Fig. 3B). The very small amplitude EPSC (below 5 % of the normal amplitude of evoked EPSCs) that can still be recorded in the absence of IS4B is similar to what is observed in cac null mutant junctions and is mediated by calcium influx through another voltage gated calcium channels, a Ca<sub>v</sub>1 homolog named Dmca1D, as we have previously published (Krick et al., 2021, PNAS 118(28):e2106621118. Gathering additional support for the absence of IS4A from presynaptic terminals by calcium imaging experiments would suffer significantly from the presence of additional types of VGCCs in presynaptic terminals (for sure Dmca1D (Krick et al., 2021) and potentially also the Ca<sub>v</sub>3 homolog DmαG or Dm-α1T). Such experiments would require mosaic null mutants for cac and DmαG channels in a mosaic IS4B excision mutant, which, if feasible at all, would be very hard and time consuming to generate. In the light of the additional clarification that IS4A is not located in NMJ axon terminal boutons, as shown by additional labeling intensity analysis, revised figures with selective enlargement, and revised text, we feel confident to state that IS4A is not sufficient for evoked SV release.

      (2c) Mechanistically, how are amino acid changes in one of the voltage sensing domains in Cac related to trafficking/stabilization/localization of Cac to AZs?

      This is an exciting question that has occupied our discussions a lot. Some sorting mechanism must exist that recognizes the correct protein isoforms, just as sorting and transport mechanisms exist that transport other synaptic proteins to the synapse. We do not think that the few amino acid changes in the voltage sensor are directly involved in protein targeting. We rather believe that the cacophony variants that happen to contain this specific voltage sensor are selected for transport out to the synapse. There are possibilities to achieve this cell biological, but we have not further addressed potential mechanisms because we do not want enter the realms of speculation.

      (3) How are auxiliary subunits impacted in the Cac isoform mutants?

      Recent work by Kate O'Connor-Giles has shown that both Stj and Ca-Beta subunits localize to active zones along with Cac at the Drosophila NMJ. Endogenously tagged Stj and CaBeta alleles are now available, so it would be of interest to determine if Stj and particular Cabeta levels or localization change in the various Cac isoform alleles. This would be particularly interesting given the putative binding site for Ca-beta encoded in the I-II linker.

      We agree that the synthesis of the work of Kate O'Connor-Giles group and our study open up new avenues to explore exciting hypotheses about differential coupling of specific cacophony splice isoforms with distinct accessory proteins such as Caβ and α<sub>2</sub>δ subunits. However, this requires numerous full sets of additional experiments and is beyond the scope of this study.

      (4a) Interpretation of short-term plasticity in the I-IIB exon deletion:

      The changes in short-term plasticity presented in Figure 5 are interpreted as an additional phenotype due to the loss of the I-IIB exon, but it seems this might be entirely explained simply due to the reduced Cac levels. Reduced Cac levels at active zones will obviously reduce Ca2+ influx and neurotransmitter release. This may be really the only phenotype/function of the I-IIB exon. Hence, to determine whether loss of the I-IIB exon encodes any functions in short-term plasticity, separate from reduced Cac levels, the authors should compare short-term plasticity in I-IIB loss alleles compared to wild type with starting EPSC amplitudes are equal (for example by reducing extracellular Ca2+ levels in wild type to achieve the same levels at in Cac I-IIB exon deleted alleles). Reduced release probability, simply by reduced Ca2+ influx (either by reduced Cac abundance or extracellular Ca2+) should result in more variability in transmission, so I am not sure there is any particular function of the I-IIB exon in maintaining transmission variability beyond controlling Cac abundance at active zones.

      For two reasons we are particularly grateful for this comment. First, it shows us that we needed to explain much clearer that our interpretation is that changes in paired pulse ratios (PPRs) and in depression at low stimulation frequencies are a causal consequence of lower channel numbers upon I-IIB exon deletion, precisely as pointed out by the reviewer. We have carefully revised the text accordingly on page 10, lines 14-25, page 11, lines 3-7 and 22-28; page 16, lines 36-38. Second, the experiment suggested by the reviewer is superb to provide additional evidence that the cause of altered PPRs is in fact reduced channel number, but not altered channel properties. Accordingly, we have conducted additional TEVC recordings in elevated external calcium (1.8 mM) so that the single PSC amplitudes in I-IIB excision animals match those of controls in 0.5 mM extracellular calcium. This makes the amplitudes and the variance of PPR for all interpulse intervals tested control-like (see revised Figs. 6D, E). This strongly indicates that differences observed in PPRs as well as the variance thereof were caused by the amount of calcium influx during the first EPSC, and thus by different channel numbers in active zones.

      (4b) Another point about the data in Figure 5: If "behaviorally relevant" motor neuron stimulation and recordings are the goal, the authors should also record under physiological Ca2+ conditions (1.8 mM), rather than the highly reduced Ca2+ levels (0.5 mM) they are using in their protocols.

      Although we doubt that the effective extracellular calcium concentration that determines the electromotoric force for calcium to enter the ensheathed motoneuron terminals in vivo during crawling is known, we followed the reviewer’s suggestion partly and have repeated the high frequency stimulation trains for ΔI-IIB in 1.8 mM calcium. As for short-term plasticity this brings the charge conducted to values as observed in control and in ΔI-IIA in 0.5 mM calcium. Therefore, all difference observed in previous figure 5 (now revised figure 6) can be accounted to different channel numbers in presynaptic active zones. This is now explained on page 11, lines 19-28. For controls recordings at high frequency stimulation in higher external calcium (e.g. 2 mM) have previously been published and show significant synaptic depression (e.g. Krick et al., 2021, PNAS). Given that in the exon out variants we do not expect any differences except from those caused by different channel numbers, we did not repeat these experiments for control and ΔI-IIA.

      (5a) Mechanism of Cac's role in PHP :

      As the authors likely know, mutations in Cac were previously reported to disrupt PHP expression (see Frank et al., 2006 Neuron). Inexplicably, this finding and publication were not cited anywhere in this manuscript (this paper should also be cited when introducing PhTx, as it was the first to characterize PhTx as a means of acutely inducing PHP). In the Frank et al. paper (and in several subsequent studies), PHP was shown to be blocked in mutations in Cac, namely the CacS allele. This allele, like the I-IIB excision allele, reduces baseline transmission presumably due to reduced Ca2+ influx through Cac. The authors should at a minimum discuss these previous findings and how they relate to what they find in Figure 6 regarding the block in PHP in the Cac I-IIB excision allele.

      We thank the reviewer for pointing this out and apologize for this oversight. We agree that it is imperative to cite the 2006 paper by Frank et al. when introducing PhTx mediated PHP as well as when discussing cac the effects of cac mutants on PHP together with other published work. We have revised the text accordingly on page 12, lines 9-11 and 21-23 and on page 17, lines 29-33.

      In terms of data presentation in Fig. 6, as is typical in the field, the authors should normalize their mEPSC/QC data as a percentage of baseline (+PhTx/-PhTx). This makes it easier to see the reduction in mEPSC values (the "homeostatic pressure" on the system) and then the homeostatic enhancement in QC. Similarly, in Fig. 6M, the authors should show both mEPSC and QC as a percentage of baseline (wild type or non-GluRIIA mutant background).

      We agree and have changed figure presentation accordingly. Figure 7 (formerly figure 6) was updated as was the accompanying results text on page 12, lines 23-40.

      (6) Cac I-IIA and I-IIB excision allele colocalization at AZs:

      These are very nice and important experiments shown in Figures 6N and O, which I suggest the authors consider analyzing in further detail. Most significantly:

      (6i) The authors nicely show that most AZs have a mix of both Cac IIA and IIB isoforms. Using simple intensity analysis, can the authors say anything about whether there is a consistent stoichiometric ratio of IIA vs IIB at single AZs? It is difficult to extract actual numbers of IIA vs IIB at individual AZs without having both isoforms labeled mEOS4b, but as a rough estimate can the authors say whether the immunofluorescence intensity of IIA:IIB is similar across each AZ? Or is there broad heterogeneity, with some AZs having low vs high ratios of each isoform (as the authors suggest across proximal to distal NMJ AZs)?

      We agree and have conducted experiments and analyses to provide these data. We measured the cac puncta fluorescence intensities for heterozygous cac<sup>sfGFP</sup>/cac, cacIIIA<sup>sfGFP</sup>/cacI-IIB, and cacI-IIB<sup>sfGFP</sup>/cacI-IIA animals. We preferred this strategy, because intensity was always measured from cac puncta with the same GFP tag. Next, we normalized all values to the intensities obtained in active zones from heterozygous cac<sup>sfGFP</sup>/cac controls and then plotted the intensities of I-IIA versus I-IIB containing active zones side by side. Across junctions and animals, we find a consistent ratio 2:1 in the relative intensities of I-IIB and I-IIA, thus indicating on average roughly twice as many I-IIB as compared to I-IIA channels across active zones. This is consistent with the counts in our STED analysis (see Fig. 5F). These new data are shown in the new figure panel 7J and referred to on page 13, lines 10-16 in the revised text.

      (6ii) Intensity analysis of Cac IIA vs IIB after PHP: Previous studies have shown Cac abundance increases at NMJ AZs after PHP. Can the authors determine whether both Cac IIA vs IIB isoforms increase after PHP or whether just one isoform is targeted for this enhancement?

      We already show that PHP is not possible in the absence of I-IIB channels (see figure 7). However, we agree that it is an interesting question to test whether I-IIA channel are added in the presence of I-IIB channels during PHP, but we consider this a detail beyond the scope of this study.

      Minor points:

      (1) Including line numbers in the manuscript would help to make reviewing easier.

      We agree and now provide line numbers.

      (2) Several typos (abstract "The By contrast", etc).

      We carefully double checked for typos.

      (3) Throughout the manuscript, the authors refer to Cac alleles and channels as "Cav2", which is unconventional in the field. Unless there is a compelling reason to deviate, I suggest the authors stick to referring to "Cac" (i.e. cacdIS4B, etc) rather than Cav2. The authors make clear in the introduction that Cac is the sole fly Cav2 channel, so there shouldn't be a need to constantly reinforce that cac=Cav2.

      We agree and have changed all fly Ca<sub>v</sub>2 reference to cac.

      (4) In some figures/text the authors use "PSC" to refer to "postsynaptic current", while in others (i.e. Figure 6) they switch to the more conventional terms of mEPSC or EPSC. I suggest the authors stick to a common convention (mEPSC and EPSC).

      We have changed PSC to EPSC throughout.

      Reviewer #3 (Recommendations For The Authors):

      (1) The abstract could focus more on the results at the expense of the background.

      We agree and have deleted the second introductory background sentence and added information on PPRs and depression during low frequency stimulation.

      (2) What does "strict" active zone localization refer to? Could they please define the term strict?

      Strict active zone localization means that cac puncta are detected in active zones but no cac label above background is found anywhere else throughout the presynaptic terminal, now defined on page 6, lines 27-29.

      (3) Single boutons/zoomed versions of the confocal images shown in Figures 2A-C, 2H, and 3A-C would be very helpful.

      We have provided these panels as suggested (see above and revised figures 2-4). Figure 3 is now figure 4.

      (4) The authors cite Ghelani et al. (2023) for increased cac levels during homeostatic plasticity. I recommend citing earlier work making similar observations (Gratz et al., 2019; DOI: 10.1523/JNEUROSCI.3068-18.2019), and linking them to increased presynaptic calcium influx (Müller & Davis, 2012; DOI: 10.1016/j.cub.2012.04.018).

      We agree and have added Gratz et al. 2019 and Davis and Müller 2012 to the results section on page 12, lines 17/18 and lines 21-23, in the discussion on page 17, lines 29-33.

      (5) The data shown in Figure 3 does not directly support the conclusion of altered release probability in dI-IIB. I therefore suggest changing the legend's title.

      We have reworded to “Excisions at the I-II exon do not affect active zone cacophony localization but can alter cacsfGFP label intensity in active zones and PSC amplitude” as this is reflecting the data shown in the figure panels more directly.

      (6) It would be helpful to specify "adult flight muscle" in Figure 2J.

      We agree that it is helpful to specify in the figure (now revised figure 3C) that the voltage clamp recordings of somatodendritic calcium current were conducted in adult flight motoneurons and have revised the headline of figure panel 3C and the legend accordingly. Please note, these are not muscle cells but central neurons.

      (7) Do dIS4B/Cav2null MNs indeed show an inward or outward current at -90 to -70 mV/-40 and -50 mV, or is this an analysis artifact?

      No, this is due to baseline fluctuations as typical for voltage clamp in central neurons with more than 6000 µm dendritic length and more than 4000 dendritic branches.

      (8) Loss of several presynaptic proteins, including Brp (Kittel et al., 2006), and RBP (Liu et al., 2011), induce changes in GluR field size (without apparent changes in miniature amplitude). The statement regarding the Cav2 isoform and possible effects on GluR number (p. 8) should be revised accordingly.

      We understand and have done two things. First, we measured the intensity of GluRIIA immunolabel in ΔI-IIA, ΔI-IIB, and controls and found no differences. Second, we reworded the statement. It now reads on page 9, lines 1-6: “It seems unlikely that presynaptic cac channel isoform type affects glutamate receptor types or numbers, because the amplitude of spontaneous miniature postsynaptic currents (mEPSCs, Fig. 4K) and the labeling intensity of postsynaptic GluRIIA receptors are not significantly different between controls, I-IIA, and I-IIB junctions (see suppl. Fig. 2, p = 0.48, ordinary one-way ANOVA, mean and SD intensity values are 61.0 ± 6.9 (control), 55.8 ± 8.5 (∆I-IIA), 61.1 ± 17.3 (∆I-IIB)). However, we cannot exclude altered GluRIIB numbers and have not quantified GluR receptor field sizes.”

      (9) The statement relating miniature frequency to RRP size is unclear (p. 8). Is there any evidence for a correlation between miniature frequency to RRP size? Could the authors please clarify?

      We agree that this statement requires caution. Although there is some published evidence for a correlation of RRP size and mini frequency (Neuron, 2009 61(3):412-24. doi: 10.1016/j.neuron.2008.12.029 and Journal of Neuroscience 44 (18) e1253232024; doi: 10.1523/JNEUROSCI.1253-23.2024), which we now refer to on page 9, it is not clear whether this is true for all synapses and how linear such a relationship may be. Therefore, we have revised the text on page 9, lines 6-9. It now reads: “Similarly, the frequency of miniature postsynaptic currents (mEPSCs) remains unaltered. Since mEPSCs frequency has been related to RRP size at some synapses (Pan et al., 2009; Ralowicz et al., 2024) this indicates unaltered RRP size upon I-IIB excision, but we have not directly measured RRP size.”

      (10) Please define the "strict top view" of synapses (p. 8).

      Top view is what this reviewer referred to as “planar view” in the public review points 6 and 7. In our responses to these public review points we now also define “strict top view”, see page 9, lines 17-19.

      (11) Two papers are cited regarding a linear relationship between calcium channel number and release probability (p. 15). Many more papers could be cited to demonstrate a supralinear relationship (e.g., Dodge & Rahaminoff, 1967; Weyhersmüller et al., 2011 doi: 10.1523/JNEUROSCI.6698-10.2011). The data of the present study were collected at an extracellular calcium concentration of 0.5 mM, whereas Meideiros et al. (2023) used 1.5 mM. The relationship between calcium and release is supra-linear around 0.5 mM extracellular calcium (Weyhersmüller et al. 2011). This should be discussed/the statements be revised. Also, the reference to Meideiros et al. (2023) should be included in the reference list.

      We have now updated the Medeiros reference (updated version of that paper appeared in eLife in 2024) in the text and reference list. We agree that the relationship of the calcium concentration and P<sub>r</sub> can also be non-linear and refer to this on page 16, lines 26-32, but the point we want to make is to relate defined changes in calcium channel number (not calcium influx) as assessed by multiple methods (CLSM intensity measures and sptPALM channel counting) to release probability. We now also clearly state that we measured at 0.5 mM external calcium (page 16, lines 27/28) whereas Medeiros et al. 2024 measured at 1.5 mM calcium (page 16, lines 31/32).

      (12) Figure 6: Quantal content does not have any units - please remove "n vesicles".

      We have revised this figure in response to reviewer 2 (comment 5) and quantal content is now expressed as percent baseline, thus without units (see revised figure 7).

      (13) Figure 6C should be auto-scaled from zero.

      This has been fixed by revising that figure in response to reviewer 2 (comment 5)

      (14) The data supporting the statement on impaired motor behavior and reduced vitality of adult IS4A should be either shown, or the statement should be removed (p. 13). Any hypotheses as to why IS4A is important for behavior and or viability?

      As suggested, we have removed that statement.

      (15) They do not provide any data supporting the statement that changes in PSC decay kinetics "counteract" the increase in PSC amplitude (p. 14). The sentence should be changed accordingly.

      We agree and have down toned. It now reads on page 16, lines 7-9: “During repetitive firing, the median increase of PSC amplitude by ~10 % is potentially counteracted by the significant decrease in PSC half amplitude width by ~25 %...”.

      (16) How do they explain the net locomotion speed increase in dI    -IIA larvae? Although the overall charge transfer is not affected during the stimulus protocols used, could the accelerated PSC decay affect PSP summation (I would actually expect a decrease in summation/slower speed)? Independent of the voltage-clamp data, is muscle input resistance changed in dI-IIA mutants?

      Muscle input resistance is not altered in I-II mutants. We refer to potential causes of the locomotion effects of I-IIA excision in the discussion. On page 16, lines 12 to 21 it reads: “there is no difference in charge transfer from the motoneuron axon terminal to the postsynaptic muscle cell between ∆I-IIA and control. Surprisingly, crawling is significantly affected by the removal of I-IIA, in that the animals show a significantly increased mean crawling speed but no significant change in the number of stops. Given that the presynaptic function at the NMJ is not strongly altered upon I-IIA excision, and that I-IIA likely mediates also Ca<sub>v</sub>2 functions outside presynaptic AZs (see above) and in other neuron types than motoneurons, and that the muscle calcium current is mediated by Ca<sub>v</sub>1>/i> and Ca<sub>v</sub>3, the effects of I-IIA excision of increasing crawling speed is unlikely caused by altered pre- or postsynaptic function at the NMJ. We judge it more likely that excision of I-IIA has multiple effects on sensory and pre-motor processing, but identification of these functions is beyond the scope of this study.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Comments on the revised version:

      Concerns flagged about using CRISPR -guide RNA mediated knockdown of viral has yet to be addressed entirely. I understand that the authors could not get knock out despite attempts and hence they have guide RNA mediated knockdown strategy. However, I wondered if the authors looked at the levels of the downstream genes in this knockdown.

      We thank the reviewer for bringing this up since it is known that certain artifacts derived from this approach may be related with changes in expression of downstream genes. We run a qPCR of Rv0432 and Rv0433 and confirmed that no significant differences in expression of virR downstream genes were detected in the virR mutant or the complemented strains relative to WT. This is now indicated in the method section on Generation of the CRISPR mutants. The data is now presented as Supplementary Figure 13.

      Authors have used the virmut-Comp strain for some of the experiments. However, the materials and methods must describe how this strain was generated. Given the mutant is a CRISPR-guide RNA mediated knockdown. The CRISPR construct may have taken up the L5 loci. Did authors use episomal construct for complementation? If so, what is the expression level of virR in the complementation construct? What are the expression levels of downstream genes in mutant and complementation strains? This is important because the transcriptome analysis was redone by considering complementation strain. The complemented strain is written as virmut-C or virmut-Comp. This has to be consistent.

      We apologize for not having included the information about the generation of the complemented strain in our last version of the manuscript. We took the complementing vector from a previous paper on VirR (Rath et al., (2013) PNAS 110(49):E4790). This vector was constructed as follows: Complementation plasmids were cloned using Gateway® Cloning Technology (Invitrogen). E. coli strains expressing the following Gateway vectors were kindly provided by Dirk Schnappinger and Sabine Ehrt: pDO221A, pDO23A, pEN23A-linker1, pEN41A-TO2, pEN21A-Hsp60, pDE43-MEH. PCR was used to amplify the following target sequences from H37Rvgenomic DNA: coding sequence of Rv0431, coding sequence of Rv0431 with a FLAG tag either in its C-terminus or its N-terminus, and the predicted cytosolic sequence of Rv0431 with a FLAG tag in its new C-terminus. The primers used for PCR were designed such that the amplicons would be flanked with Gateway® cloning- specific attachment (att) sites. These PCR products were recombined into Gateway® donor vectors using bacteriophage-derived integrase and integration host factor, resulting in entry vectors. The recombination events are specific to the attB sites on the PCR products and to the attP sequences on the donor vectors, such that the orientation of the target sequence is maintained during the recombination reaction, also known as the BP reaction, for attB-attP recombination. Using the MultiSite Gateway® system, three DNA fragments, derived from each of three distinct entry vectors, can be simultaneously inserted into a final complementation vector called the destination vector in a specific order and orientation. Multisite recombination events are mediated by Integrase and Integrase Host Factor, in a process called the LR reaction (for the attL and attR sites in the entry and destination vectors). The Gateway® entry vectors thus generated were recombined with another entry vector containing either the Hsp60 promoter, an empty entry vector, and a complementation vector (episomal) to give rise to the final destination vector. The destination vector (episomal) was engineered to contain a hygromycin resistance cassette. These vectors were used to transform competent Rv0431-deficient Mtb. The transformation mixture was plated on 7H11 plates containing OADC and hygromycin (50 μg/ml). Colonies, typically observed 3-5 weeks later, were isolated and grown in 7H9 media and characterized.

      For simplicity, we have just referenced our previous paper to indicate that the complementing plasmid is the same used in that study.

      Regarding the virR expression levels in the WT, virR<sup>mut</sup> and complemented virR strains please see previous Figure 6 C.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The authors have revised the manuscript in light of previous reviews. The authors have addressed some of my concerns appropriately. However, the specific dataset remains unchanged and unclear.

      Fig 8G and H: In response to a comment on the mechanism of how VirR mediates EV release, the authors have added new data showing an increase in the abundance of deacetylated muropeptides in the mutant. This observation is linked to altered lysozyme activity or PG fragility. In my opinion, this is another indirect observation. More concerning is the complemented strain, which also showed a comparable increase in deacetylated muropeptides, indicating that the altered muropeptides could be unrelated to VirR.

      We must disagree here with the reviewer assessment about the fact that the abundance of deacetylated muropeptides is an indirect indication of PG fragility. We consider that this observation and quantitative fact is another additional evidence that indicate a more fragile PG. We believe that considering each of the supporting facts individually may be seen as indirect, but we would like that the reviewer take all the evidence together: (i) sensitivity to lysozyme; (ii) enlargement and altered physicochemical morphological characteristics including porosity or thickness; (iii) altered penetrance of FDAAs; and (iv) increased released of muropeptides. In this later fact, the complemented strain may not display the WT features, but this may be due to some artifacts derived from the complementation.

      Taking all together, we believe that the PG of virR<sup>mut</sup> is more fragile than that of the WT and the complemented strains based on a series of evidence. We hope the reviewer may consider this perspective when analyzing such a complex feature like PG fragility. So far, there is not a direct method to assess this condition.

      Lipid analyses are not comprehensive. The issue related to the need for more clarity of DIMA and DIMB still needs to be addressed. I understand that the authors do not have facilities to perform radioactive assays. However, they could have repeated the experiment to generate a better-quality image. Similarly, the newly generated SL-1, PAT, and DAT TLC could be of better quality. Bands still need to be resolved. The solvent front is irregular. The same is true for PIMs and DPG TLCs. With the evidence provided, the deregulation of cell wall lipids is incomplete.

      We agree with the reviewer that the quality of the TLC is not appropriate. We have no repeated the PDIM TLC (new Fig 7D). In addition, we have repeated the TLCs resolving sulfolipids in a 2D mode. For simplicity we just run the glycerol condition including the three strains. This is now part of a new Supplementary figure 8 B. For PIMs, we have a 1D and a 2D analysis that, after checking previous papers using similar approaches with no radioactivity, we consider that it has the desired quality to identify the indicated lipids.

      We hope this new data and repeated experiments satisfy the reviewer concerns.

      Thank you very much for your assessment and time to review this paper.

  5. Dec 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study reveals how a rhizobial effector protein cleaves and inhibits a key plant receptor for symbiosis signaling, while the host plant counters by phosphorylating the effector. The molecular evidence for the protein-protein interaction and modification is solid, though biological evidence directly linking effector cleavage to rhizobial infection is incomplete. With additional functional data, this work could have implications for understanding intricate plant-microbe dynamics during mutualistic interactions.

      Thank you for this positive comment. Our data strongly support the view that NFR5 cleavage by NopT impairs Nod factor signaling resulting in reduced rhizobial infection. However, other mechanisms may also have an effect on the symbiosis, as NopT targets other proteins in addition to NFR5. In our revised manuscript version, we discuss the possibility that negative NopT effects on symbiosis could be due to NopT-triggered immune responses. As mentioned in our point-by-point answers to the Reviewers, we included additional data into our manuscript. We would also like to point out that we are generally more cautious in our revised version in order to avoid over-interpreting the data obtained.

      Public Reviews:

      Reviewer #1 (Public Review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

      Thank you for highlighting the broad significance of rhizobial effectors in understanding legume-rhizobia interactions. We fully agree with your assessment and have expanded our Discussion (and Abstract) regarding the potential implications of our findings beyond bacterial interactions with plants. We mention the prospect of developing specific kinase-interacting proteases to fine-tune cellular signaling processes in general.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Thank you for your positive feedback.  We have now emphasized the interdisciplinary significance of our work in the Introduction and Discussion of our revised manuscript. We highlight how the insights gained from our study can contribute to a better understanding of microbial interactions with eukaryotic hosts in general, and hope that our findings could benefit future research in the fields of pathogenesis, immunity, and symbiosis.

      We appreciate your detailed summary of our work, which is focused on NopT and its interaction with Nod factor receptors. To ensure that the readers can easily follow the rationale behind our work, we have included a more detailed explanation of how NopT was identified to target Nod factor receptors. In particular, we now better describe the test system (Nicotiana benthamiana cells co-expressing NFR1/NFR5 with a given effector of Sinorhizobium fredii NGR234). In addition, we provide now a more thorough background on the roles of NFR1 and NFR5 in symbiotic signaling and refer to the two Nature papers from 2003 on NFR1 and NFR5 (Madsen et al., 2003; Radutoiu et al., 2003).

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      We appreciate your recognition of the robustness of our conclusions. In the context of your comments, we made the following improvements to our manuscript:

      We included a more detailed description of the experimental conditions under which the cleavage of NFR5 by NopT was observed in vitro and in vivo. Furthermore, additional experiments were added to strengthen the evidence for NFR5 cleavage by NopT (Fig 3, S3, S6, and S14).

      We provided more comprehensive data on the phosphorylation of NopT by NFR1, including phosphorylation assays (Fig. 4) and mass spectrometry results (Fig. S7 and Table S1). These data provide additional information on the mechanism by which NFR1 inhibits the proteolytic activity of NopT.

      We expanded the discussion on the cell death response induced by ectopic expression of NFR1 and NFR5 in Nicotiana benthamiana. We also included further details from Madsen et al. (2011) to contextualize our findings within the known literature.

      We believe that these additions and clarifications have improved the significance and impact of our study.

      The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium, might increase defense related proteolytic activity in the plant host cells.

      We appreciate your recognition of the importance of appropriate controls in our experimental design. In response to your comments, we revised our manuscript to ensure that the figures and legends provide a clear description of the controls used. We also included a more detailed description of our experimental design at several places. In particular, we have highlighted the use of the protease-dead version of NopT as a control (NopT<sup>C93S</sup>). Therefore, NFR5-GFP cleavage in N. benthamiana clearly depended on protease activity of NopT and not on Agrobacterium (Fig. 3A). In the revised text, we are now more cautious in our wording and don’t conclude at this stage that NopT proteolyzes NFR5. However, our subsequent experiments, including in vitro experiments, clearly show that NopT is able to proteolyze NFR5.

      We are convinced that these changes have improved the quality of our work.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      Thank you for your comments regarding the cleavage of NFR5 by NopT and its functional implications. We acknowledge that our immunoblots indicate only a relatively small proportion of  the NFR5 cleavage product.  Possible explanations could be as follows:

      (1) The presence of full-length NFR5 does not preclude a significant impact of NopT on function of NFR5, as NopT is able to bind to NFR5. In other words, the NopT-NFR5 and NopT-NFR1 interactions at the plasmamembrane might influence the function of the NFR1/NFR5 receptor without proteolytic cleavage of NFR5. In fact, protease-dead NopT<sup>C93S</sup> expressed in NGR234Δ_nopT_ showed certain effects in L. japonicus (less infection foci were formed compared to NGR234Δ_nopT_ Fig. 5E).  In this context, it is worth mentioning that the non-acylated NopT<sup>C93S</sup> (Fig. 1B) and not<sub>USDA257</sub> (Fig. 6B) proteins were unable to suppress NFR1/NFR5-induced cell death in N. benthamina, but this could be explained by the lack of acylation and altered subcellular localization.

      (2) The cleaved NFR5 fraction, although small, may be sufficient to disrupt signaling pathways, leading to the observed phenotypic changes  (loss of cell death in N. benthamiana; altered infection in L. japonicus).

      (3) The used expression systems produce high levels of proteins in the cell. This may not reflect the natural situation in L. japonicus cells.

      (4) Cellular conditions could impair cleavage of NFR5 by NopT.  Expression of proteins in E. coli may partially result in formation of protein aggregates (inactive NopT; NFR5 resistant to proteolysis).

      (5) In N. benthamiana co-expressing NFR1/NFR5, the NFR1 kinase activity is constitutively active (i.e., does not require Nod factors), suggesting an altered protein conformation of the receptor complex, which may influence the proteolytic susceptibility of NFR5.

      (6) The proteolytic activity of NopT may be reduced by the interaction of NopT with other proteins such as NFR1, which phosphorylates NopT and inactivates its protease activity.

      In our revised manuscript version, we provide now quantitative data for the efficiency of NFR5 cleavage by NopT in different expression systems used (Supplemental Fig.  14).  We have also improved our Discussion in this context. Future research will be necessary to better understand loss of NFR5 function by NopT. 

      It is also difficult to evaluate how the ratios of cleaved and full-length protein change when different versions of NopT are present without a quantification of band strengths normalized to loading controls (Figure 3C, 3D, 3F). The same is true for the blots supporting NFR1 phosphorylation of NopT (Figure 4A).

      Thank you for pointing out this. Following your suggestions, we quantified the band intensities for cleaved and full-length NFR5 in our different expression systems (N. benthamiana, L. japonicus and E. coli). The protein bands were normalized to loading controls. The data are shown in the new Supplemental Fig. 14. Similarly, the bands of immunoblots supporting phosphorylation of NopT by NFR1 were quantified. The data on band intensities are shown in Fig.  4B of our revised manuscript. These improvements provide a clearer understanding of how the ratios of cleaved to full-length proteins change in different protein expression systems, and to which extent NopT was phosphorylated by NFR1.

      Nodule primordia and infection threads are still formed when L. japonicus plants are inoculated with ∆nopT mutant bacteria, but it is not clear if these primordia are infected or develop into fully functional nodules (Figure 5). A quantification of the ratio of infected and non-infected nodules and primordia would reveal whether NopT is only active at the transition from infection focus to thread or perhaps also later in the bacterial infection process of the developing root nodule.

      Thank you for highlighting this aspect of our study. In response to your comment, we have conducted additional inoculation experiments with L. japonicus plants inoculated with NGR234 and NGR234_ΔnopT_ mutant. The new data are shown in Fig 5A, 5E, and 5G. However, we could not find any uninfected nodules (empty) nodules when roots were inoculated with these strains and mention this observation in the Results section of our revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

      Strengths:

      The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

      Weaknesses:

      (1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

      We appreciate your attention to these plant-specific differences. Previous studies showed that NopT expressed in tobacco (N. tabacum) or in specific Arabidopsis ecotypes (with PBS1/RPS5 genes) causes rapid cell death (Dai et al. 2008; Khan et al. 2022). Khan et al. 2022 reported recently that cell death does not occur in N. benthamiana unless the leaves were transformed with PBS1/RPS5 constructs. Our data shown in Fig. S15 confirm these findings. As cell death (effector triggered immunity) is usually associated with induction of plant protease activities, we considered N. tabacum and A. thaliana plants as not suitable for testing NFR5 cleavage by NopT. In fact, no NopT/NFR5 experiments were not performed with these plants in our study.  In response to your comment, we now better describe the N. benthamiana expression system and cite the previous articles_. Furthermore,  We have revised the Discussion section to better emphasize effector-induced immunity in non-host plants and the negative effect of rhizobial effectors during symbiosis. Our revisions certainly provide a clearer understanding of the advantages and limitations of the _N.  benthamiana expression system.

      (2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

      Thank you for this comment, which points out that we did not address this aspect precisely enough in the original manuscript version.  We improved our manuscript and now write that nfr1 and nfr5 mutants do not produce nodules (Madsen et al., 2003; Radutoiu et al., 2003) and that over-expression of either NFR1 or NFR5 can activate NF signaling, resulting in formation of spontaneous nodules in the absence of rhizobia (Ried et al., 2014). In fact, compared to the nopT knockout mutant NGR234_ΔnopT_, wildtype NGR234 (with NopT) is less successful in inducing infection foci in root hairs of L. japonicus (Fig. 5). With respect to formation of nodule primordia, we repeated our inoculation experiments with NGR234_ΔnopT_ and wildtype NGR234 and also included a nopT over-expressing NGR234 strain into the analysis. Our data clearly showed that nodule primordium formation was negatively affected by NopT. The new data are shown in Fig. 5 of our revised version. Our data show that NGR234's infection is not really successful, especially when NopT is over-expressed. This is consistent  with our observations that NopT targets Nod factor receptors in L. japonicus and inhibits NF signaling (NIN promoter-GUS experiments). Our findings indicate that NopT is an “Avr effector” for L. japonicus.  However, in other host plants of NGR234, NopT possesses a symbiosis-promoting role (Dai et al. 2008; Kambara et al. 2009). Such differences could be explained by different NopT targets in different plants (in addition to Nod factor receptors), which may influence the outcome of the infection process. Indeed, our work shows hat NopT can interact with various kinase-dead LysM domain receptors, suggesting a role of NopT in suppression or activation of plant immunity responses depending on the host plant. We discuss such alternative mechanisms in our revised manuscript version and emphasize the need for further investigation to elucidate the precise mechanisms underlying the observed infection phenotype and the role of NopT in modulating symbiotic signaling pathways. In this context, we would also like to mention the two new figures of our manuscript which are showing (i) the efficiency of NFR5 cleavage by NopT in different expression systems, (ii) the interaction between NopT<sup>C93S</sup> and His-SUMO-NFR5<sup>JM</sup>-GFP, and (iii) cleavage of His-SUMO-NFP<sup>JM</sup>-GFP by NopT (Supplementary Figs. S8 and S9).

      (3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

      Thank you for mentioning this point. We are aware of the possible paradox that the broad-host-range strain NGR234 produces an effector that appears to restrict its infection of host plants. As mentioned in our answer to the previous comment, NopT could have additional functions beyond the regulation of Nod factor signaling. In our revised manuscript version, we have modified our text as follows:

      (1) We mention the potential evolutionary aspects of NopT-mediated regulation of rhizobial infection and discuss the possibility that interactions between NopT and Nod factor receptors may have evolved to fine-tune Nod factor signaling to avoid rhizobial hyperinfection in certain host legumes.

      (2) We also emphasize that the presence of NopT may confer selective advantages in other host plants than L. japonicus due to interactions with proteins related to plant immunity. Like other effectors, NopT could suppress activation of immune responses (suppression of PTI) or cause effector-triggered immunity (ETI) responses, thereby modulating rhizobial infection and nodule formation. Interactions between NopT and proteins related to the plant immune system may represent an important evolutionary driving force for host-specific nodulation and explain why the presence of NopT in NGR234 has a negative effect on symbiosis with L. japonicus but a positive one with other legumes.

      (4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

      We also thank for this comment. We have revised the Discussion section of our manuscript and discuss now our failure to generate stable transgenic L. japonicus plants expressing NopT. We observed that the protease activity of NopT in aerial parts of L. japonicus had a negative effect on plant development, whereas NopT expression in hairy roots was possible. Such differences may be explained by different NopT substrates in roots and aerial parts of the plant. In this context, we also discuss our finding that NopT not only cleaves NFR5 but is also able to proteolyze other proteins of L. japonicus such as LjLYS11, suggesting that NopT not only suppresses Nod factor signaling, but may also interfere with signal transduction pathways related to plant immunity. We speculate that, depending on the host legume species, NopT could suppress PTI or induce ETI, thereby modulating rhizobial infection and nodule formation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Overall the text and figure legends must be double-checked for correctness of scientific statements. The few listed here are just examples. There are more that are potentially damaging the perception by the readers and thus the value of the manuscript.

      The nopT mutant leads to more infections. In line 358 the statement: "...and the proteolysis of NFR5 are important for rhizobial infection", is wrong, as the infection works even better without it. It is, according to my interpretation of the results, important for the regulation of infection. Sounds a small difference, but it completely changes the meaning.

      We appreciate your thorough review and have taken the opportunity to correct this error. Following your suggestions, we carefully rephrased the whole text and figure legends to ensure that the scientific statements accurately reflect the findings of our study. We are convinced that these changed have increased the value of this study.

      In line 905 the authors state that NopTC indicates the truncated version of NopT after autocleavage by releasing about 50 a.a. at its N-terminus.

      They do not analyse this cleavage product to support this claim. So better rephrase.

      According to Dai et al. (2008), NopT expressed in E. coli is autocleaved. The N-terminal sequence GCCA obtained by Edman sequencing suggests that NopT was cleaved between M49 and G50.  We improved our manuscript and now write:

      (1) “A previous study has shown that NopT is autocleaved at its N-terminus to form a processed protein that lacks the first 49 amino acid residues (Dai et al., 2008)”

      (2) “However, NopT<sup>ΔN50</sup>, which is similar to autocleaved NopT, retained the ability to interact with NFR5 but not with NFR1 (Fig. S2D).”.

      In line 967: "Both NopT and NopTC after autocleavage exert proteolytic activities" This is confusing as it was suggested earlier that NopTc is a product of the autocleavage. There is no indication of another round of NopTc autocleavage or did I miss something?

      Thank you for bringing this inaccuracy to our attention. There is no second round of NopT autocleavage. We have corrected the text and write: “NopT and not<sup>C</sup> (autocleaved NopT) proteolytically cleave NFR5 at the juxtamembrane domain to release the intracellular domain of NFR5”

      Given the amount of work that went into the research, the presentation of the figures should be considerably improved. For example, in Figure 3F the mutant is not correctly annotated. In figure 5 the term infection foci and IT occur but it is not explained in the legend what these are, where they can be seen in the figure and how the researchers discriminated between the two events.

      In general, the labeling of the figure panels should be improved to facilitate the understanding. For example, in Figure 3 the panels switch between different host plant systems. The plant could be clarified for each panel to aid the reader. The asterisks are not in line with the signal that is supposed to be marked. And so on. I strongly advise to improve the figures.

      Thank you for your valuable suggestions. We acknowledge the importance of clear and informative figure presentation to enhance the understanding of our research findings. In response to your comments, we made a comprehensive revision of the figures to address the mentioned issues:

      (1) We corrected annotations of the mutant in Figure 3F to accurately represent the experimental conditions.

      (2) We revised the legend of Figure 5 and provide clear explanations of the terms "infection foci" and "IT" (infection threads) in the Methods section.

      (3) We improved the labeling of figure panels and improved the writing of the figure legend specifying the protein expression system (N. benthamiana, L. japonicus and E. coli, respectively). . We ensured that the asterisks indicating statistically significant results are properly aligned.

      Furthermore, we carefully reviewed each figure to enhance clarity and readability, including optimizing font size and line thickness. Captions and annotations were also revised.

      Figure 1

      • To verify that the lack of observed cell death is not linked to differential expression levels, an expression control Western blot is essential. In the expression control Western blot given in the supplemental materials (Supplemental fig. 1E), NFR5 is not visible in the first lane.

      We appreciate your comments on the control immunoblot which were made to verify the presence of NFR1, NFR5 and NopT in N. benthamiana.  However, as shown in Supplemental Fig. 1E, the intact NFR5 could not be immuno-detected when co-expressed with NFR1 and NopT. To ensure co-expression of NFR1/NFR5, A. tumefaciens carrying a binary vector with both NFR1 and NFR5 was used. In the revised version, we modified the figure legend accordingly and also included a detailed description of the procedure at lines 165-166

      • Labeling of NFR1/LjNFR1 should be kept consistent between the text and the figures. Currently, the text refers to both NFR1 and LjNFR1 and figures are labelled NFR1. The same is true for NFR5.

      Thank you for pointing out this inconsistency. We revised our manuscript and use now consistently NFR1 and NFR5 without a prefix to avoid any confusions.

      • A clearer description of how cell death was determined would be useful. In the selected pictures in panel D, leaves coexpressing nopT with Bax1 or Cerk1 appear very different from the pictures selected for NopM and AVr3a/R3a.

      We agree that a clearer description of our cell death experiments with N. benthamiana was necessary. We have re-worded the figure legend to provide more detailed information on the criteria used for assessing cell death. Additionally, we show now our images at higher resolution.

      • In panel D, the "Death/Total" ratio is only shown for leaf discs where nopT was coexpressed with the cell-death triggering proteins. Including the ratio for leaf discs where only the cell-death triggering protein (without nopT ) was expressed would make the figure more clear.

      Thank you for this suggestion. To provide a more comprehensive comparison, we included the "Cell death/Total" ratio for all leaf disc images shown in Fig. 1D. 

      Figure 2:

      • A: Split-YFP is not ideal as evidence for colocalization because of the chemical bond formed between the YFP fragments that may lead to artificial trapping/accumulation outside the main expression domains. Overall, the authors should revise if this figure aims to show colocalization or interaction. In the current text, both terms are used, but these are different interpretations.

      We appreciate your concern regarding the use of Split-YFP for colocalization analysis. We carefully reviewed the figure and corresponding text to ensure clarity in the interpretation of the results. The primary aim of this figure was to explore protein-protein interactions rather than strict colocalization. Protein-protein interactions have also been validated by other experiments of our work. We have revised the text accordingly and no longer emphasize on “co-localization”.

      • Given the focus on proteolytic activity in this paper, all blots need to be clearly labeled with size markers, and it would be good to include a supplemental figure with all other bands produced in the Western blot, regardless of their size. Without this, the results in panel 2D seem inconsistent with results presented in figure 3A, since NFR5 does not appear to be cleaved in the Western blot in 2D, but 3A shows cleavage when the same proteins (with different tags) are coexpressed in the same system.

      Thank you for bringing up this point. We ensured that all immunoblots are clearly labeled with size markers in our revised manuscript. We also carefully checked the consistency of the results presented in Figures 2D and Figure 3A and included appropriate clarifications in the revised manuscript. In Figure 2D, we show the bands at around 75 kD  (multi-bands would be detected below, including cleaved NFR5 by NopT, but also other non-specific bands).

      Figure 3:

      • In panel E, NopTC93S cannot cleave His-Sumo-NFR5JM-GFP, but it would be interesting to also show if NopTC93S can bind the NFR5JM fragment. It would also be useful to see this experiment done with the JM of NFP.

      Thank you for the suggestion. We agree that investigating the binding of NopT<sup>C93S</sup> to the NFR5<sup>JM</sup> fragment provides valuable insights into the interaction between NopT and NFR5. In our revised version, we show in the new Supplemental Fig. S4 that NopT interacts with NFR5JM and cleaves NFP<sup>JM</sup>. The Results section has been modified accordingly.

      • The panels in this figure require better labeling. In many panels, asterisks are misplaced relative to the bands they should highlight, and not all blots have size markers or loading controls.

      Thank you for bringing this to our attention. We carefully reviewed the labeling of all panels in Figure 3 to ensure accuracy and clarity. We ensured that asterisks are correctly placed in the figures. We also included size markers and loading controls to improve the quality of the shown immunoblots.

      • Since there is no clear evidence in this figure that the smear in the blot in panel C is phosphorylated NopT, it is recommended to provide a less interpretative label on the blot, and explain the label in the text.

      We appreciate your suggestion regarding the labeling of the blot in panel C of Fig. 3. We revised the label and provided a less interpretative designation in Fig. 3C. We also rephrased the figure legend and the text in the Results section as recommended.

      Figure 4

      • In B, a brief introduction in the text to the function of the Zn-phostag would make the figure easier to understand for more readers.

      Thank you for the suggestion. We agree and have provided a brief explanation in the Results section: “On such gels, a Zn<sup>2+</sup>-Phos-tag bound phosphorylated protein migrates slower than its unbound nonphosphorylated form. Furthermore, we have included the reference (Kato & Sakamoto, 2019) into the Methods section.

      Figure 5:

      • Change "Scar bar" to "Scale bar" in the figure captions

      Thank you for spotting that typo. We have corrected it.

      • Correct the references to the figures in the text

      We carefully reviewed the Figure 5 and made corresponding corrections to improve the quality of our manuscript Please check line 394-451.

      • It should be clarified what was quantified as "infection foci" (C, F, G)

      We revised the legend of Figure 5 and provide now explanations of the terms "infection foci" and "IT" (infection threads) in the Methods section.  Please check line 399-451.

      • It is recommended to use pictures that are from the same region of the plant root (the susceptible zone). The pictures in panel A appear to be from different regions, since the density of root hairs is different.

      Thank you for bringing this to our attention. We ensured that the images selected for panel A were from the same region of the plant root to guarantee consistency and accuracy of the comparison.

      • Panel G should be labeled so it is clearer that nopT is being expressed in L. japonicus transgenic roots.

      We have labeled this panel more clearly to help the reader understand that nopT was expressed in transgenic L. japonicus roots.

      • Panel F is missing statistical tests for ITs

      We apologize and have included the results of our statistical tests for ITs.

      Figure 6:

      • The model presented in panel E misrepresents the role of NFR5 according to the results in the paper. From the evidence presented, it is not clear if the observed rhizobial infection phenotype is due to reduced abundance of full-length NFR5, or if the cleaved NFR5 fragment is suppressing infection. Additionally, S. fredii should not be drawn so close to the plasma membrane, since the bacteria are located outside the cell wall when the T3SS is active.

      We appreciate your comment which helps us to improve the interpretation of our results. We agree that the model should accurately reflect the uncertainties regarding the role of NFR5. We revised the model (positioning of S. fredii etc.) and write in the Discussion:

      “NopT impairs the function of the NFR1/NFR5 receptor complex. Cleavage of NFR5 by NopT reduces its protein levels. Possible inhibitory effects of NFR5 cleavage products on NF signaling are unknown but cannot be excluded.”

      Reviewer #2 (Recommendations For The Authors):

      (1) Some minor weaknesses need addressing: In Figure 5A, the root hair density in the two images appears significantly different. Are these images representative of each treatment?

      We appreciate your attention to detail and the importance of ensuring that the images in Figure 5A are representative. We carefully reviewed our image selection process and confirm that the shown images are indeed representative of each treatment group. In our revised version, we show additional images and also improved the text in the figure legend. Furthermore, we performed additional GUS staining tests and the new data are shown in Fig 5A abd 5B.

      (2) Additionally, please ensure consistency in the format of genotype names throughout the manuscript. For instance, in Line 897, "Italy" should be used in place of "N. benthamiana."

      We thank you for pointing out the format of genotype names and corrected our manuscript as requested.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review): 

      Summary: 

      The authors introduced their previous paper with the concise statement that "the relationships between lineage-specific attributes and genotypic differences of tumors are not understood" (Chen et al., JEM 2019, PMID: 30737256). For example, it is not clear why combined loss of RB1 and TP53 is required for tumorigenesis in SCLC or other aggressive neuroendocrine (NE) cancers, or why the oncogenic mutations in KRAS or EGFR that drive NSCLC tumorigenesis are found so infrequently in SCLC. This is the main question addressed by the previous and current papers. 

      One approach to this question is to identify a discrete set of genetic/biochemical manipulations that are sufficient to transform non-malignant human cells into SCLC-like tumors. One group reported the transformation of primary human bronchial epithelial cells into NE tumors through a complex lentiviral cocktail involving the inactivation of pRB and p53 and activation of AKT, cMYC, and BCL2 (PARCB) (Park et al., Science 2018, PMID: 30287662). The cocktail previously reported by Chen and colleagues to transform human pluripotent stem-cell (hPSC)-derived lung progenitors (LPs) into NE xenografts was more concise: DAPT to inactivate NOTCH signaling combined with shRNAs against RB1 and TP53. However, the resulting RP xenografts lacked important characteristics of SCLC. Unlike SCLC, these tumors proliferated slowly and did not metastasize, and although small subpopulations expressed MYC or MYCL, none expressed NEUROD1. 

      MYC is frequently amplified or expressed at high levels in SCLC, and here, the authors have tested whether inducible expression of MYC could increase the resemblance of their hPSC-derived NE tumors to SCLC. These RPM cells (or RPM T58A with stabilized cMYC) engrafted more consistently and grew more rapidly than RP cells, and unlike RP cells, formed liver metastases when injected into the renal capsule. Gene expression analyses revealed that RPM tumor subpopulations expressed NEUROD1, ASCL1, and/or YAP1. 

      The hPSC-derived RPM model is a major advance over the previous RP model. This may become a powerful tool for understanding SCLC tumorigenesis and progression and for discovering gene dependencies and molecular targets for novel therapies. However, the specific role of cMYC in this model needs to be clarified. 

      cMYC can drive proliferation, tumorigenesis, or apoptosis in a variety of lineages depending on concurrent mutations. For example, in the Park et al., study, normal human prostate cells could be reprogrammed to form adenocarcinoma-like tumors by activation of cMYC and AKT alone, without manipulation of TP53 or RB1. In their previous manuscript, the authors carefully showed the role of each molecular manipulation in NE tumorigenesis. DAPT was required for NE differentiation of LPs to PNECs, shRB1 was required for expansion of the PNECs, and shTP53 was required for xenograft formation. cMYC expression could influence each of these steps, and importantly, could render some steps dispensable. For example, shRB1 was previously necessary to expand the DAPT-induced PNECs, as neither shTP53 nor activation of KRAS or EGFR had no effect on this population, but perhaps cMYC overexpression could expand PNECs even in the presence of pRB, or even induce LPs to become PNECs without DAPT. Similarly, both shRB1 and shTP53 were necessary for xenograft formation, but maybe not if cMYC is overexpressed. If a molecular hallmark of SCLC, such as loss of RB1 or TP53, has become dispensable with the addition of cMYC, this information is critically important in interpreting this as a model of SCLC tumorigenesis.  

      The reviewer’s suggestion may be possible; indeed, in a recent report from our group (Gardner EE, et al., Science 2024) we have shown, using genetically engineered mouse modeling coupled with lineage tracing, that the cMyc oncogene can selectively expand Ascl1+ PNECs in the lung.

      We agree with the reviewer that not having a better understanding of the individual components necessary and/or sufficient to transform hESC-derived LPs is an important shortcoming of this current work. However, we would like to stress three important points about the comments:  1) tumors were reviewed and the histological diagnoses were certified by a practicing pulmonary pathologist at WCM (our co-author, C. Zhang); 2 )the observed  transcriptional programs were consistent with primary human SCLC; and 3) RB1-proficient SCLC is now recognized as a rare presentation of SCLC (Febrese-Aldana CA, et al., Clin. Can. Res. 2022. PMID: 35792876).

      To interpret the role of cMYC expression in hPSC-derived RPM tumors, we need to know what this manipulation does without manipulation of pRB, p53, or NOTCH, alone or in combination. Seven relevant combinations should be presented in this manuscript: (1) cMYC alone in LPs, (2) cMYC + DAPT, (3) cMYC + shRB1, (4) cMYC + DAPT + shRB1, (5) cMYC + shTP53, (6) cMYC + DAPT + shTP53, and (7) cMYC + shRB1 + shTP53. Wildtype cMYC is sufficient; further exploration with the T58A mutant would not be necessary. 

      We respectfully disagree that an interrogation of the differences between the phenotypes produced by wildtype and Myc(T58A) would not be informative. (Our view is confirmed by the second reviewer; see below.)    It is well established that Myc gene or protein dosage can have profound effects on in vivo phenotypes (Murphy DJ, et al., Cancer Cell 2008. PMID: 19061836). The “RPM” model of variant SCLC developed by Trudy Oliver’s lab relied on the conditional T58A point mutant of cMyc, originally made by Rob Wechsler-Reya. While we do not discuss the differences between Myc and Myc(T58A), it is nonetheless important to present our results with both the WT and mutant MYC constructs, as we are aware of others actively investigating differences between them in GEMM models of SCLC tumor development.

      We agree with the reviewer about the virtues of trying to identify the effects of individual gene manipulations; indeed our original paper (Chen et al., J. Expt. Med. 2019), describing the RUES2derived model of SCLC did just that, carefully dissecting events required to transform LPs towards a SCLC-like state. The central  purpose of the current study was to determine the effects of adding cMyc on the behavior of weakly tumorigenic SCLC-like cells cMyc.  Presenting data with these two alleles to seek effects of different doses of MYC protein seems reasonable.

      This reviewer considers that there should be a presentation of the effects of these combinations on LP differentiation to PNECs, expansion of PNECs as well as other lung cells, xenograft formation and histology, and xenograft growth rate and capacity for metastasis. If this could be clarified experimentally, and the results discussed in the context of other similar approaches such as the Park et al., paper, this study would be a major addition to the field.  

      Reviewer #2 (Public Review): 

      Summary: 

      Chen et al use human embryonic stem cells (ESCs) to determine the impact of wildtype MYC and a point mutant stable form of MYC (MYC-T58A) in the transformation of induced pulmonary neuroendocrine cells (PNEC) in the context of RB1/P53 (RP) loss (tumor suppressors that are nearly universally lost in small cell lung cancer (SCLC)). Upon transplant into immune-deficient mice, they find that RP-MYC and RP-MYC-T58A cells grow more rapidly, and are more likely to be metastatic when transplanted into the kidney capsule, than RP controls. Through single-cell RNA sequencing and immunostaining approaches, they find that these RPM tumors and their metastases express NEUROD1, which is a transcription factor whose expression marks a distinct molecular state of SCLC. While MYC is already known to promote aggressive NEUROD1+ SCLC in other models, these data demonstrate its capacity in a human setting that provides a rationale for further use of the ESC-based model going forward. Overall, these findings provide a minor advance over the previous characterization of this ESC-based model of SCLC published in Chen et al, J Exp Med, 2019. 

      We consider the findings more than a “minor” advance in the development of the model, since any useful model for SCLC would need to form aggressive and metastatic tumors.

      The major conclusion of the paper is generally well supported, but some minor conclusions are inadequate and require important controls and more careful analysis. 

      Strengths:

      (1) Both MYC and MYC-T58A yield similar results when RP-MYC and RP-MYCT58A PNEC ESCs are injected subcutaneously, or into the renal capsule, of immune-deficient mice, leading to the conclusion that MYC promotes faster growth and more metastases than RP controls. 

      (2) Consistent with numerous prior studies in mice with a neuroendocrine (NE) cell of origin (Mollaoglu et al, Cancer Cell, 2017; Ireland et al, Cancer Cell, 2020; Olsen et al, Genes Dev, 2021), MYC appears sufficient in the context of RB/P53 loss to induce the NEUROD1 state. Prior studies also show that MYC can convert human ASCL1+ neuroendocrine SCLC cell lines to a NEUROD1 state (Patel et al, Sci Advances, 2021); this study for the first time demonstrates that RB/P53/MYC from a human neuroendocrine cell of origin is sufficient to transform a NE state to aggressive NEUROD1+ SCLC. This finding provides a solid rationale for using the human ESC system to better understand the function of human oncogenes and tumor suppressors from a neuroendocrine origin. 

      Weaknesses:

      (1) There is a major concern about the conclusion that MYC "yields a larger neuroendocrine compartment" related to Figures 4C and 4G, which is inadequately supported and likely inaccurate. There is overwhelming published data that while MYC can promote NEUROD1, it also tends to correlate with reduced ASCL1 and reduced NE fate (Mollaoglu et al, Cancer Cell, 2017; Zhang et al, TLCR, 2018; Ireland et al, Cancer Cell, 2020; Patel et al, Sci Advances, 2021). Most importantly, there is a lack of in vivo RP tumor controls to make the proper comparison to judge MYC's impact on neuroendocrine identity. RPM tumors are largely neuroendocrine compared to in vitro conditions, but since RP control tumors (in vivo) are missing, it is impossible to determine whether MYC promotes more or less neuroendocrine fate than RP controls. It is not appropriate to compare RPM tumors to in vitro RP cells when it comes to cell fate. Upon inspection of the sample identity in S1B, the fibroblast and basal-like cells appear to only grow in vitro and are not well represented in vivo; it is, therefore, unclear whether these are transformed or even lack RB/P53 or express MYC. Indeed, a close inspection of Figure S1B shows that RPM tumor cells have little ASCL1 expression, consistent with lower NE fate than expected in control RP tumors. 

      We would like to clarify two points related to the conclusions that we draw about MYC’s ability to promote an increase in the neuroendocrine fraction in hESC-derived cultures:  1) The comparisons in Figures 4C were made between cells isolated in culture following the standard 50 day differentiation protocol, where, following generation of LPs around day 25, MYC was added to the other factors previously shown to enrich for a PNEC phenotype (shRB1, shTP53, and DAPT). Therefore, the argument that MYC increased the frequency of “neuroendocrine cells” (which we define by a gene expression signature) is a reasonable conclusion in the system we are using; and 2) following injection of these cells into immunocompromised mice, an ASCL1-low / NEUROD1-high presentation is noted (Supplemental Figures 1F-G). In the few metastases that we were able use to sequence bulk RNA, there is an even more pronounced increase in expression of NEUROD1 with a decrease in ASCL1.

      Some confusion may have arisen from our previous characterization of neuroendocrine (NE) cells using either ASCL1 or NEUROD1 as markers. To clarify, we have now designated cells positive for ASCL1 as classical NE cells and those positive for NEUROD1 as the NE variant. According to this revised classification, our findings indicate that MYC expression leads to an increase in the NEUROD1+ NE variant and a decrease in ASCL1+ classical NE cells. This adjustment has been reflected on the results section titled, “Inoculation of the renal capsule facilitates metastasis of the RUES2-derived RPM tumors” of the manuscript.  

      From the limited samples in hand, we compared the expression of ASCL1 and NEUROD1 in the weakly tumorigenic hESC RP cells after successful primary engraftment into immunocompromised mice. As expected, the RP tumors were distinguished by the lack of expression of NEUROD1, compared to levels observed in the RPM tumors.

      In addition, since MYC appears to require Notch signaling to induce  NE fate (cf Ireland et al), the presence of DAPT in culture could enrich for NE fate despite MYC's presence. It's important to clarify in the legend of Fig 4A which samples are used in the scRNA-seq data and whether they were derived from in vitro or in vivo conditions (as such, Supplementary Figure S1B should be provided in the main figure). Given their conclusion is confusing and challenges robustly supported data in other models, it is critical to resolve this issue properly. I suspect when properly resolved, MYC actually consistently does reduce NE fate compared to RP controls, even though tumors are still relatively NE compared to completely distinct cellular identities such as fibroblasts.

      We have clarified the source of tumor sequencing data and the platform (single cell or bulk) in Figure 4 and Supplemental Figure 1. To reiterate – the RNA sequencing results from paired metastatic and primary tumors from the RPM model are derived from bulk RNA;  the single cell RNA data in RP or RPM datasets are from cells in culture.  These distinctions are clarified in the legend to Supplemental Figure 1.

      (2) The rigor of the conclusions in Figure 1 would be strengthened by comparing an equivalent number of RP animals in the renal capsule assay, which is n = 6 compared to n = 11-14 in the MYC conditions.

      As we did not perform a power calculation to determine a sample size required to draw a level of statistical significance from our conclusions, this comment is not entirely accurate. Our statistical rigor was limited by the availability of samples from the RP tumor model.

      (3) Statistical analysis is not provided for Figures 2A-2B, and while the results are compelling, may be strengthened by additional samples due to the variability observed. 

      We acknowledge that the cohorts are relatively small but we have added statistical comparisons in Figure 2B. 

      (4a) Related to Figure 3, primary tumors and liver metastases from RPM or RPM-T58A-expressing cells express NEUROD1 by immunohistochemistry (IHC) but the putative negative controls (RP) are not shown, and there is no assessment of variability from tumor to tumor, ie, this is not quantified across multiple animals. 

      The results of H&E and IF staining for ASCL1, NEUROD1, CGRP, and CD56 in negative control (RP tumors) are presented in the updated Figure 3F-G.

      (4b) Relatedly, MYC has been shown to be able to push cells beyond NEUROD1 to a double-negative or YAP1+ state (Mollaoglu et al, Cancer Cell, 2017; Ireland et al, Cancer Cell, 2020), but the authors do not assess subtype markers by IHC. They do show subtype markers by mRNA levels in Fig 4B, and since there is expression of ASCL1, and potentially expression of YAP1 and POU2F3, it would be valuable to examine the protein levels by IHC in control RP vs. RPM samples.

      YAP1 positive SCLC is still somewhat controversial, so it is not clear what value staining for YAP1 offers beyond showing the well-established markers, ASCL1 and NEUROD1.  

      (5) Given that MYC has been shown to function distinctly from MYCL in SCLC models, it would have raised the impact and value of the study if MYC was compared to MYCL or MYCL fusions in this context since generally, SCLC expresses a MYC family member. However, it is quite possible that the control RP cells do express MYCL, and as such, it would be useful to show. 

      We now include Supplemental Figure S2 to illustrate four important points raised by this reviewer and others:  1) expression of MYC family members in the merged dataset (RP and RPM) is low or undetectable in the basal/fibroblast cultures; 2) MYC does have a weak correlation with EGFP in the neuroendocrine cluster when either WT MYC or T58A MYC is overexpressed; 3) MYCL and MYCN are detectable, but at low levels compared to CMYC; and 4) Expression of  ASCL1 is anticorrelated with MYC expression across the merged single cell datasets using RP and RPM models.

      Reviewer #3 (Public Review): 

      Summary: 

      The authors continue their study of the experimental model of small cell lung cancer (SCLC) they created from human embryonic stem cells (hESCs) using a protocol for differentiating the hESCs into pulmonary lineages followed by NOTCH signaling inactivation with DAPT, and then knockdown of TP53 and RB1 (RP models) with DOX inducible shRNAs. To this published model, they now add DOX-controlled activation of expression of a MYC or T58A MYC transgenes (RPM and RPMT58A models) and study the impact of this on xenograft tumor growth and metastases. Their major findings are that the addition of MYC increased dramatically subcutaneous tumor growth and also the growth of tumors implanted into the renal capsule. In addition, they only found liver and occasional lung metastases with renal capsule implantation. Molecular studies including scRNAseq showed that tumor lines with MYC or T58A MYC led surprisingly to more neuroendocrine differentiation, and (not surprisingly) that MYC expression was most highly correlated with NEUROD1 expression. Of interest, many of the hESCs with RPM/RPMT58A expressed ASCL1. Of note, even in the renal capsule RPM/RPMT58A models only 6/12 and 4/9 mice developed metastases (mainly liver with one lung metastasis) and a few mice of each type did not even develop a renal sub capsule tumor. The authors start their Discussion by concluding: " In this report, we show that the addition of an efficiently expressed transgene encoding normal or mutant human cMYC can convert weakly tumorigenic human PNEC cells, derived from a human ESC line and depleted of tumor suppressors RB1 and TP53, into highly malignant, metastatic SCLC-like cancers after implantation into the renal capsule of immunodeficient mice.". 

      Strengths: 

      The in vivo study of a human preclinical model of SCLC demonstrates the important role of c-Myc in the development of a malignant phenotype and metastases. Also the role of c-Myc in selecting for expression of NEUROD1 lineage oncogene expression. 

      Weaknesses: 

      There are no data on results from an orthotopic (pulmonary) implantation on generation of metastases; no comparative study of other myc family members (MYCL, MYCN); no indication of analyses of other common metastatic sites found in SCLC (e.g. brain, adrenal gland, lymph nodes, bone marrow); no studies of response to standard platin-etoposide doublet chemotherapy; no data on the status of NEUROD1 and ASCL1 expression in the individual metastatic lesions they identified. 

      We have acknowledged from the outset that our study has significant limitations, as noted by this reviewer, and we explained in our initial letter of response why we need to present this limited, but still consequential, story at this time. 

      In particular, while we have attempted orthotopic transplantations of RPM tumor cells into NSG mice (by tail vein or intra-pulmonary injection, or intra-tracheal instillation of tumor cells), these methods were not successful in colonizing the lung. Additionally, we have compared the efficacy of platinum/etoposide to that of removing DOX in established RPM subcutaneous tumors, but we chose not to include these data as we lacked a chemotherapy responsive tumor model, and thus could not say with confidence that the chemotherapeutic agants were active and that the RPM models were truly resistant to standard SCLC chemotherapy. In a discussion about other metastatic sites, we have now included the following text: 

      “In animals administered DOX, histological examinations showed that approximately half developed metastases in distant organs, including the liver or lung (Figure 1D). No metastases were observed in the bone, brain, or lymph nodes. For a more detailed assessment, future studies could employ more sensitive imaging methods, such as luciferase imaging.”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors): 

      Technical points related to Major Weakness #1: 

      For Figure 4: Cells were enriched for EGFP-high cells only, under the hypothesis that cells with lower EGFP may have silenced expression of the integrated vector. Since EGFP is expressed only in the shRB1 construct, selection for high EGFP may inadvertently alter/exclude heterogeneity within the transformed population for the other transgenes (shP53, shMYC/MYC-T58A). Can authors include data to show the expression of MYC/MYC T58A in EGFP-high v -med v-low cells? MYC levels may alter the NEdifferentiation status of tumor cells. 

      Please now refer to Supplemental Figure S2.

      Related to the appropriateness of the methods for Figure 4C, the authors state, "We performed differential cluster abundance analysis after accounting for the fraction of cells that were EGFP+". If only EGFP+ cells were accounted for in the analysis for 4C, the majority of RP cells in the "Neuroendocrine differentiated" cluster would not be included in the analysis (according to EGFP expression in Fig S1A-B), and therefore inappropriately reduce NE identity compared to RPM samples that have higher levels of EGFP. 

      There is no consideration or analysis of cell cycling/proliferation until after the conclusion is stated. Yet, increased proliferation of MYC-high vs MYC-low cultures would enhance selection for more tumors (termed "NE-diff") than non-tumors (basal/fibroblast) in 2D cultures. 

      The expression of MYC itself isn't assessed for this analysis but assumed, and whether higher levels of MYC/MYC-T58A may be present in EGFP+ tumor cells that are in the NE-low populations isn't clear. Can MYC-T58A/HA also be included in the reference genome? 

      We did not include an HA tag in our reference transcriptome. For [some] answers to this and other related questions, please refer to Supplemental Figure S2.

      Reviewer #3 (Recommendations For The Authors): 

      (1) The experiments are all technically well done and clearly presented and represent a logical extension exploring the role of c-Myc in the hESC experimental model system. 

      We appreciate this supportive comment!

      (2) It is of great interest that both the initial RP model only forms "benign" tumors and that with the addition of a strong oncogene like c-myc, where expression is known to be associated with a very bad prognosis in SCLC, that while one gets tumor formation there are still occasional mice both for subcutaneous and renal capsule test sites that don't get tumors even with the injection of 500,000 RPM/RPMT58A cells. In addition, of the mice that do form tumors, only ~50% exhibit metastases from the renal sub-capsule site. The authors need to comment on this further in their Discussion. To me, this illustrates both how incredibly resistant/difficult it is to form metastases, thus indicating the need for other pathways to be activated to achieve such spread, and also represents an opportunity for further functional genomic tests using their preclinical model to systematically attack this problem. Obvious candidate genes are those recently identified in genetically engineered mouse models (GEMMs) related to neuronal behavior. In addition, we already know that full-fledged patient-derived SCLC when injected subcutaneously into immune-deprived mice don't exhibit metastases - thus, while the hESC RPM result is not surprising, it indicates to me the power of their model (logs less complicated genetically than a patient SCLC) to sort through a mechanism that would allow metastases to develop from subcutaneous sites. The authors can point these things out in their Discussion section to provide a "roadmap" for future research. 

      Although we remain mindful of the relatively small cohorts we have studied, the thrust of Reviewer #3’s comments is now included in the Discussion. And there is, of course, a lot more to do, and it has taken several years already to get to this point. Additional information about the prolonged gestation of this project and about the difficulties of doing more in the near future was described in our initial response to reviewers/Editor, included near the start of this letter.    

      (3) I will state the obvious that this paper would be much more valuable if they had compared and contrasted at least one of the myc family members (MYCL or MYCN) with the CMYC findings whatever the results would be. Most SCLC patients develop metastases, and most of their tumors don't express high levels of CMYC (and often use MYCL). In any event, as the authors Discuss, this will be an important next stage to test.

      We have acknowledged and explained the limitations of the work in several ways. Further, we were unaware of the relationship between metastases and the expression of MYC and MYCL1 noted by the reviewer; we will look for confirmation of this association in any future studies, although we have not encountered it in current literature.

      (4) Their assays for metastases involved looking for anatomically "gross" lesions. While that is fine, particularly given that the "gross" lesions they show in figures are actually pretty small, we still need to know if they performed straightforward autopsies on mice and looked for other well-known sites of metastases in SCLC patients besides liver and lung - namely lymph nodes, adrenal, bone marrow, and brain. I would guess these would probably not show metastatic growth but with the current report, we don't know if these were looked for or not. Again, while this could be a "negative" result, the paper's value would be increased by these simple data. Let's assume no metastases are seen, then the authors could further strengthen the case for the value of their hESC model in systematically exploring with functional genomics the requirements to achieve metastases to these other sites.

      We have included descriptions of what we found and didn’t find at other potential sites of metastasis in the results section, with the following sentences: 

      “In animals administered DOX, histological examinations showed that approximately half developed metastases in distant organs, including the liver or lung (Figure 1D). No metastases were observed in the bone, brain, or lymph nodes. For a more detailed assessment, future studies could employ more sensitive imaging methods, such as luciferase imaging.”

      (5) Related to this, we have no idea if the mice that developed liver metastases (or the one mouse with lung metastasis) had more than one metastatic site. They will know this and should report it. Again, my guess is that these were isolated metastases in each mouse. Again, they can indicate the value of their model in searching for programs that would increase the number of the various organs. 

      We appreciate the suggestion. We observed that one of the mice developed metastatic tumors in both the liver and lungs. This information has been incorporated into the Results section.

      (6) While renal capsule implantation for testing growth and metastatic behavior is reasonable and based on substantial literature using this site for implantation of patient tumor specimens, what would have increased the value of the paper is knowing the results from orthotopic (lung implantation). Whatever the results were (they occurred or did not occur) they will be important to know. I understand the "future experiments" argument, but in reading the manuscript this jumped out at me as an obvious thing for the authors to try. 

      We conducted orthotopic implantation several ways, including via intra-tracheal instillation of 0.5 million RP or RPM cells in PBS per mouse. However, none of the subjects (0/5 mice) developed tumor-like growths and the number of animals used was small. Further, this outcome could be attributed to biological or physical factors. For instance, the conducting airway is coated with secretory cells producing protective mucins and may not have retained the 0.5 million cells. This is one example that may have hindered effective colonization. Future adjustments, such as increasing the number of cells, embedding them in Matrigel, or damaging the airway to denude secretory cells and trigger regeneration might alter the outcomes. These ideas might guide future work to strengthen the utility of the models.

      (7) Another obvious piece of data that would have improved the value of this manuscript would be to know whether the RPM tumors responded to platin-etoposide chemotherapy. Such data was not presented in their first RP hESC notch inhibition paper (which we now know generated what the authors call "benign" tumors). While I realize chemotherapy responses represent other types of experiments, as the authors point out one of the main reasons they developed their new human model was for therapy testing. Two papers in and we are all still asking - does their model respond or not respond dramatically to platin-etoposide therapy? Whatever the results are they are a vital next step in considering the use of their model. 

      Please see the comments above regarding our decision not to include data from a clinical trial that lacked appropriate controls.

      (8) The finding of RPM cells that expressed NEUROD1, ASCL1, or both was interesting. From the way the data were presented, I don't have a clear idea which of these lineage oncogenes the metastatic lesions from ~11 different mice expressed. Whatever the result is it would be useful to know - all NEUROD1, some ASCL1, some mixed etc.

      Based on the bulk RNA-sequencing of a few metastatic sites (Figure 4H), what we can demonstrate is that all sites were NEUROD1 and expressed low or no detectable  ASCL1.

      (9) While several H&E histologic images were presented, even when I enlarged them to 400% I couldn't clearly see most of them. For future reference, I think it would be important to have several high-quality images of the RP, RPM, RPMT58A subcutaneous tumors, sub-renal capsule tumors, and liver and lung metastatic lesions. If there is heterogeneity in the primary tumors or the metastases it would be important to show this. The quality of the images they have in the pdf file is suboptimal. If they have already provided higher-quality images - great. If not, I think in the long run as people come back to this paper, it will help both the field and the authors to have really great images of their tumors and metastases. 

      We have attempted to improve the quality of the embedded images. Digital resolution is a tradeoff with data size – higher resolution images are always available upon request, but may not be suitable  for generation of figures in a manuscript viewed on-line.

    1. Reviewer #1 (Public review):

      The aim of this paper is to describe a novel method for genetic labelling of animals or cell populations, using a system of DNA/RNA barcodes.

      Strengths:

      • The author's attempt at providing a straightforward method for multiplexing Drosophila samples prior to scRNA-seq is commendable. The perspective of being able to load multiple samples on a 10X Chromium without antibody labelling is appealing.<br /> • The authors are generally honest about potential issues in their method, and areas that would benefit from future improvement.<br /> • The article reads well. Graphs and figures are clear and easy to understand.

      Weaknesses:

      • The usefulness of TaG-EM for phototaxis, egg laying or fecundity experiments is questionable. The behaviours presented here are all easily quantifiable, either manually or using automated image-based quantification, even when they include a relatively large number of groups and replicates. Despite their claims (e.g., L311-313), the authors do not present any real evidence about the cost- or time-effectiveness of their method in comparison to existing quantification methods.<br /> • Behavioural assays presented in this article have clear outcomes, with large effect sizes, and therefore do not really challenge the efficiency of TaG-EM. By showing a T-maze in Fig 1B, the authors suggest that their method could be used to quantify more complex behaviours. Not exploring this possibility in this manuscript seems like a missed opportunity.<br /> • Experiments in Figs S3 and S6 suggest that some tags have a detrimental effect on certain behaviours or on GFP expression. Whereas the authors rightly acknowledge these issues, they do not investigate their causes. Unfortunately, this question the overall suitability of TaG-EM, as other barcodes may also affect certain aspects of the animal's physiology or behaviour. Revising barcode design will be crucial to make sure that sequences with potential regulatory function are excluded.<br /> • For their single-cell experiments, the authors have used the 10X Genomics method, which relies on sequencing just a short segment of each transcript (usually 50-250bp - unknown for this study as read length information was not provided) to enable its identification, with the matching paired-end read providing cell barcode and UMI information (Macosko et al., 2015). With average fragment length after tagmentation usually ranging from 300-700bp, a large number of GFP reads will likely not include the 14bp TaG-EM barcode. When a given cell barcode is not associated with any TaG-EM barcode, then demultiplexing is impossible. This is a major problem, which is particularly visible in Figs 5 and S13. In 5F, BC4 is only detected in a couple of dozen cells, even though the Jon99Ciii marker of enterocytes is present in a much larger population (Fig 5C). Therefore, in this particular case, TaG-EM fails to detect most of the GFP-expressing cells. Similarly, in S13, most cells should express one of the four barcodes, however many of them (maybe up to half - this should be quantified) do not. Therefore, the claim (L277-278) that "the pan-midgut driver were broadly distributed across the cell clusters" is misleading. Moreover, the hypothesis that "low expressing driver lines may result in particularly sparse labelling" (L331-333) is at least partially wrong, as Fig S13 shows that the same Gal4 driver can lead to very different levels of barcode coverage.<br /> • Comparisons between TaG-EM and other, simpler methods for labelling individual cell populations are missing. For example, how would TaG-EM compare with expression of different fluorescent reporters, or a strategy based on the brainbow/flybow principle?<br /> • FACS data is missing throughout the paper. The authors should include data from their comparative flow cytometry experiment of TaG-EM cells with or without additional hexameric GFP, as well as FSC/SSC and fluorescence scatter plots for the FACS steps that they performed prior to scRNA-seq, at least in supplementary figures.<br /> • The authors should show the whole data described in L229, including the cluster that they chose to delete. At least, they should provide more information about how many cells were removed. In any case, the fact that their data still contains a large number of debris and dead cells despite sorting out PI negative cells with FACS and filtering low abundance barcodes with Cellranger is concerning.

      Overall, although a method for genetic tagging cell populations prior to multiplexing in single-cell experiments would be extremely useful, the method presented here is inadequate. However, despite all the weaknesses listed above, the idea of barcodes expressed specifically in cells of interest deserves more consideration. If the authors manage to improve their design to resolve the major issues and demonstrate the benefits of their method more clearly, then TaG-EM could become an interesting option for certain applications.

      Comments on revisions:

      The authors have addressed many important points, providing reassurances about the initial weaknesses of their work. Although the TaG-EM is unlikely to have a significant influence on the field due to its limited benefits, the results are now sound and provide the reader with an unbiased view of the possibilities and limitations of the method.

    2. Reviewer #2 (Public review):

      The authors developed the TaG-EM system to address challenges in multiplexing Drosophila samples for behavioral and transcriptomic studies. This system integrates DNA barcodes upstream of the polyadenylation site in a UAS-GFP construct, enabling pooled behavioral measurements and cell type tracking in scRNA-seq experiments. The revised manuscript expands on the utility of TaG-EM by demonstrating its application to complex assays, such as larval gut motility, and provides a refined analysis of its limitations and cost-effectiveness.

      Strengths

      (1) Novelty and Scope: The study demonstrates the potential for TaG-EM to streamline multiplexing in both behavioral and transcriptomic contexts. The additional application to labor-intensive larval gut motility assays highlights its scalability and practical utility.

      (2) Data Quality and Clarity: Figures and supplemental data are mostly clear and significantly enhanced in the revised manuscript. The addition of Supplemental Figures 18-21 addresses initial concerns about scRNA-seq data and driver characterization.

      (3) Cost-Effectiveness Analysis: New analyses of labor and cost savings (e.g., Supplemental Figure 8) provide a practical perspective.

      (4) Improvements in Barcode Detection and Analysis: Enhanced enrichment protocols (Supplemental Figures 18-19) demonstrate progress in addressing limitations of barcode detection and increase the detection rate of labeled cells.

      Weaknesses

      (1) Barcode Detection Efficiency: While improvements are noted, the low barcode detection rate (~37% in optimized conditions) limits the method's scalability in some applications, such as single-cell sequencing experiments with complex cell populations.

      (2) Sparse Labeling: Sparse labeling of cell populations, particularly in scRNA-seq assays, remains a concern. Variability in driver strength and regional expression introduces inconsistencies in labeling density.

      (3) Behavioral Applications: The utility of TaG-EM in quantifying more complex behaviors remains underexplored, limiting the generalizability of the method beyond simpler assays like phototaxis and oviposition.

      (4) Driver Line Characterization: While improvements in driver line characterization were made, variability in expression patterns and sparse labeling emphasize the need for further refinement of constructs and systematic backcrossing to standardize the genetic background.

    1. typedef struct node* Address;typedef struct node { ElType info; Address next; } Node;

      Oke, kita sederhanakan ya! 😊

      Kenapa ADT List Linear Pakai Tag (tNode):

      • Karena ada pointer ke dirinya sendiri!
      • Di list linear, next itu adalah pointer yang menunjuk ke struct yang sama (struct tNode).
      • Compiler butuh nama/tag (tNode) untuk ngerti kalau next menunjuk ke dirinya sendiri.

      Contoh: c typedef struct tNode { ElType info; // Data di node Address next; // Pointer ke struct tNode lain } Node; Kalau tanpa tag, compiler bingung karena belum selesai baca tipe struct-nya.


      Kenapa ADT Stack Nggak Butuh Tag:

      • Karena nggak ada pointer ke dirinya sendiri.
      • Stack cuma punya array (buffer) dan variabel biasa (idxTop), nggak ada elemen yang menunjuk ke struct Stack.
      • Jadi, tag nggak diperlukan.

      Contoh: c typedef struct { ElType buffer[CAPACITY]; // Array penyimpan elemen int idxTop; // Penunjuk elemen teratas } Stack;


      Perbedaannya:

      • List Linear: Pakai pointer ke struct yang sama → butuh tag.
      • Stack: Nggak pakai pointer ke dirinya sendiri → nggak butuh tag.

      Udah lebih jelas, kan? 😄

    Annotators

    1. Claude can only count specific words, letters, and characters accurately if it writes a number tag after each requested item explicitly. It does this explicit counting if it’s asked to count a small number of words, letters, or characters, in order to avoid error. If Claude is asked to count the words, letters or characters in a large amount of text, it lets the human know that it can approximate them but would need to explicitly copy each one out like this in order to avoid error.

      It is very funny that they added this to respond to how shit these systems are at this, as though, well, now we've covered the One Problem it has, good job all!

    1. Author response:

      We would like to extend our sincere thanks to you and reviewers at eLife for their thoughtful handling of our manuscript and their valuable feedback, which will greatly improve our study.

      We are committed to performing the additional experiments as recommended by the reviewers. However, we would like to clarify our study's focus. 

      The novelty of our study lies in the highlights of our manuscript:

      • The formation of HIV-induced CPSF6 puncta is critical for restoring HIV-1 nuclear reverse transcription (RT).

      • CPSF6 protein lacking the FG peptide cannot bind to the viral core, thereby failing to form HIVinduced CPSF6 puncta.

      • The FG peptide, rather than low-complexity regions (LCRs) or the mixed charge domains (MCDs) of the CPSF6 protein, drives the formation of HIV-induced CPSF6 puncta.

      • HIV-induced CPSF6 puncta form individually and later fuse with nuclear speckles (NS) via the intrinsically disordered region (IDR) of SRRM2.

      By focusing on these processes, we believe our study provides a critical perspective on the molecular interactions that mediate the formation of HIV-induced CPSF6 puncta and broadens the understanding of how HIV manipulates host nuclear architecture.

      Public Reviews: 

      Reviewer #1 (Public review): 

      In recent years, our understanding of the nuclear steps of the HIV-1 life cycle has made significant advances. It has emerged that HIV-1 completes reverse transcription in the nucleus and that the host factor CPSF6 forms condensates around the viral capsid. The precise function of these CPSF6 condensates is under investigation, but it is clear that the HIV-1 capsid protein is required for their formation. This study by Tomasini et al. investigates the genesis of the CPSF6 condensates induced by HIV-1 capsid, what other co-factors may be required, and their relationship with nuclear speckels (NS). The authors show that disruption of the condensates by the drug PF74, added post-nuclear entry, blocks HIV-1 infection, which supports their functional role. They generated CPSF6 KO THP-1 cell lines, in which they expressed exogenous CPSF6 constructs to map by microscopy and pull down assays of the regions critical for the formation of condensates. This approach revealed that the LCR region of CPSF6 is required for capsid binding but not for condensates whereas the FG region is essential for both. Using SON and SRRM2 as markers of NS, the authors show that CPSF6 condensates precede their merging with NS but that depletion of SRRM2, or SRRM2 lacking the IDR domain, delays the genesis of condensates, which are also smaller. 

      The study is interesting and well conducted and defines some characteristics of the CPSF6-HIV-1 condensates. Their results on the NS are valuable. The data presented are convincing. 

      I have two main concerns. Firstly, the functional outcome of the various protein mutants and KOs is not evaluated. Although Figure 1 shows that disruption of the CPSF6 puncta by PF74 impairs HIV-1 infection, it is not clear if HIV-1 infection is at all affected by expression of the mutant CPSF6 forms (and SRRM2 mutants) or KO/KD of the various host factors. The cell lines are available, so it should be possible to measure HIV-1 infection and reverse transcription. Secondly, the authors have not assessed if the effects observed on the NS impact HIV-1 gene expression, which would be interesting to know given that NS are sites of highly active gene transcription. With the reagents at hand, it should be possible to investigate this too. 

      We thank the reviewer for her/his valuable feedback on our manuscript. We are pleased to see her/his appreciation of our results, and we will do our utmost to address the highlighted points to further improve our work.

      Reviewer #2 (Public review): 

      Summary: 

      HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the alreadyknown FG region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2). 

      Strengths: 

      The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation. 

      Weaknesses: 

      Some of the results presented in this manuscript, in particular the kinetics of fusion between CPSF6aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983). 

      The observations of the different effects of CPSF6 mutants, as well as SRRM2/SUN2 silencing experiments are not complemented by infection data which would have linked morphological changes in nuclear aggregates to function during viral infection. More importantly, these functional data could have helped stratify otherwise similar morphological appearances in CPSF6 aggregates. 

      Overall, the results could be presented in a more concise and ordered manner to help focus the attention of the reader on the most important issues. Most of the figures extend to 3-4 different pages and some information could be clearly either aggregated or moved to supplementary data. 

      First, we thank the reviewer for her/his appreciation of our study and to give to us the opportunity to better explain our results and to improve our manuscript. We appreciate the reviewer’s positive feedback on our study, and we will do our best to address her/his concerns. In the meantime, we would like to clarify the focus of our study. Our research does not aim to demonstrate an association between CPSF6 condensates (we use the term "condensates" rather than "aggregates," as aggregates are generally non-dynamic (Alberti & Hyman, 2021; Banani et al., 2017), and our work specifically examines the dynamic behavior of CPSF6 during infection, as shown in Scoca et al., JMCB 2022) and SC35 nuclear speckles. This association has already been established in previous studies, as noted in the manuscript.

      About the point highlighted by the reviewer: "Kinetics of fusion between CPSF6-aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983)."

      Our study differs from prior work PMID 32665593 because we utilize a full-length HIV genome and we did not follow the integrase (IN) fluorescence in trans and its association with CPSF6 but we specifically assess if CPSF6 clusters form in the nucleus independently of NS factors and next to fuse with them. In the current study we evaluated the dynamics of formation of CPSF6/NS puncta, which it has not been explored before. Given this focus, we believe that our work offers a novel perspective on the molecular interactions that facilitate HIV / CPSF6-NS fusion.

      For better clarity, we would like to specify that our study focuses on the role of SON, a scaffold factor of nuclear speckles, rather than SUN2 (SUN domain-containing protein 2), which is a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex.

      As suggested by the reviewer, we will keep key information in the main figure and move additional details to the supplementary material.

      Reviewer #3 (Public review): 

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (doi.org/10.1093/nar/gkae769). 

      We thank the reviewer for her/his thoughtful feedback and the opportunity to elaborate on why our findings provide a distinct perspective compared to those of Jang et al. (doi.org/10.1093/nar/gkae769), while aligning with the results of Rohlfes et al. (doi.org/10.1101/2024.06.20.599834).

      One potential reason for the differences between our findings and those of Jang et al. could be the choice of experimental systems. Jang et al. conducted their study in HEK293T cells with CPSF6 knockouts, as described in Sowd et al., 2016 (doi.org/10.1073/pnas.1524213113). In contrast, our work focused on macrophage-like THP-1 cells, which share closer characteristics with HIV-1’s natural target cells. 

      Our approach utilized a complete CPSF6 knockout in THP-1 cells, enabling us to reintroduce untagged versions of CPSF6, such as wild-type and deletion mutants, to avoid potential artifacts from tagging. Jang et al. employed HA-tagged CPSF6 constructs, which may lead to subtle differences in experimental outcomes due to the presence of the tag.

      Finally, our investigation into the IDR of SRRM2 relied on CRISPR-PAINT to generate targeted deletions directly in the endogenous gene (Lester et al., 2021, DOI: 10.1016/j.neuron.2021.03.026). This approach provided a native context for studying SRRM2’s role.

      We will incorporate these clarifications into the discussion section of the revised manuscript.

    1. I haven't researched where the color-coding thing started, though I suspect content creators/influencers online in the last decades as a means of making their content "pretty" rather than necessarily functional.

      Historically commonplaces were based on huge varieties of topics/subject headings, so colors and symbols were not frequently used. Most who needed greater organization or search capabilities indexed their commonplaces. One of the most popular means was detailed by philosopher John Locke in 1685. Here's some pointers to his work in this area in my own digital commonplace using Hypothesis: https://hypothes.is/users/chrisaldrich?q=tag%3A%22commonplace+books%22+tag%3A%22John+Locke%22


      reply to u/_cold_one at https://old.reddit.com/r/commonplacebook/comments/1hhavye/20_topics_colour_coding/

    1. Reviewer #1 (Public Review):

      Summary

      The authors asked if parabrachial CGRP neurons were only necessary for a threat alarm to promote freezing or were necessary for a threat alarm to promote a wider range of defensive behaviors, most prominently flight.

      Major Strengths of Methods and Results

      The authors performed careful single-unit recording and applied rigorous methodologies to optogenetically tag CGRP neurons within the PBN. Careful analyses show that single-units and the wider CGRP neuron population increases firing to a range of unconditioned stimuli. The optogenetic stimulation of experiment 2 was comparatively simpler but achieved its aim of determining the consequence of activating CGRP neurons in the absence of other stimuli. Experiment 3 used a very clever behavioral approach to reveal a setting in which both cue-evoked freezing and flight could be observed. This was done by having the unconditioned stimulus be a "robot" traveling along a circular path at a given speed. Subsequent cue presentation elicited mild flight in controls and optogenetic activation of CGRP neurons significantly boosted this flight response. This demonstrated for the first time that CGRP neuron activation does more than promote freezing. The authors conclude by demonstrating that bidirectional modulation of CGRP neuron activity bidirectionally affects freezing in a traditional fear conditioning setting and affects both freezing and flight in a setting in which the robot served as the unconditioned stimulus. Altogether, this is a very strong set of experiments that greatly expand the role of parabrachial CGRP neurons in threat alarm.

      Weaknesses

      In all of their conditioning studies the authors did not include a control cue. For example, a sound presented the same number of times but unrelated to US (shock or robot) presentation. This does not detract from their behavioral findings. However, it means the authors do not know if the observed behavior is a consequence of pairing. Or is a behavior that would be observed to any cue played in the setting? This is particularly important for the experiments using the robot US.

      The authors make claims about the contribution of CGRP neurons to freezing and fleeing behavior, however, all of the optogenetic manipulations are centered on the US presentation period. Presently, the experiments show a role for these neurons in processing aversive outcomes but show little role for these neurons in cue responding or behavior organizing. Claims of contributions to behavior should be substantiated by manipulations targeting the cue period.

      Appraisal

      The authors achieved their aims and have revealed a much greater role for parabrachial CGRP neurons in threat alarm.

      Discussion

      Understanding neural circuits for threat requires us (as a field) to examine diverse threat settings and behavioral outcomes. A commendable and rigorous aspect of this manuscript was the authors decision to use a new behavioral paradigm and measure multiple behavioral outcomes. Indeed, this manuscript would not have been nearly as impactful had they not done that. This novel behavior was combined with excellent recording and optogenetic manipulations - a standard the field should aspire to. Studies like this are the only way that we as a field will map complete neural circuits for threat.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank reviewers for their comments and constructive criticisms of our study. We have implemented corrections* that were suggested for the manuscript, and we have also clarified any concerns that were raised in our responses below. *

      *Reviewer #1 *

      Overall technology development is good though as they claim that they are first is not true as it has been used earlier by https://doi.org/10.1128/msphere.00160-22. Hence may be that they have used to decipher the cell cycle.

      The cited paper used FUCCI in the host cells and not in the parasites themselves. Our study thus reports the first FUCCI model in a unicellular *eukaryote. *

      • *

      The manuscript is extremely dense and at times very difficult to read and to be clear if they are focussing on the technology or cell cycle. The technology may be a better part of manuscript but the dissection of cell cycle is not very novel and at times very confusing to follow. Many of these aspects has been dissected out previously from their own group and many group in Toxoplasma and Plasmodium and it is quite known about that the cell cycle in Apicomplexa is very complex.

      We adapted FUCCI to the Toxoplasma model to help dissect the organization of its cell cycle, which as the reviewer noted, is highly complex. While overlaps between some phases were anticipated based on prior data, these overlaps had not been measured. We were able to determine the extent of these overlaps in the post-G1 period and describe the organization of the non-conventional cell cycle of T. gondii.

      Another aspect that most FUCCI use Geminin and CDT1 factors and since Geminin is not present it would have been better to validate that with CDT1 that is present in Apicomplexa and may be more relevant than PCNA1.

      Unfortunately, the Toxoplasma ortholog of CDT1 (TgiRD1) cannot be used as a FUCCI marker for the reasons stated in lines 116-117; the expression of TgiRD1 is not limited to a specific cell cycle phase (Hawkins et al., 2024). PCNA1 can be (and has been) used as a FUCCI marker, but it was not considered an ideal marker in mammalian cells due to its relatively low expression levels. However, Toxoplasma PCNA1 is highly abundant in tachyzoites, and its expression correlates with the period of DNA replication. Furthermore, Plasmodium ortholog of PCNA1 had been used as a DNA replication sensor in the recent studies (35353560). *Altogether, it validates PCNA1 as an appropriate S-phase FUCCI probe. *

      The first part of the manuscript only deals with first to identify the function and localisation of PCNA1 and then develop FUCCI technology and then go on to study cell cycle. So the focus of the manuscript is not clear. It seems three different results are just assembled together in one manuscript with out clear focus. In order to get clear focus the authors should clear set out the focus as to why they developed FUCCCI and how they decipher either replication, budding, apical or basal complex, centrosome or cytokinesis as well to be used for drug discovery The way it is organised it is not flowing well and confuses the reader who may not be aware of different compartment of Toxoplasma cell or not a molecular parasitologist.

      We believe the reviewer has described the logic of our study. Our goal was to dissect the cell cycle. Consequently, we adapted a suitable technology, FUCCI. We described the relevant experiments that allowed us to produce a new molecular tool for an apicomplexan model, and illustrated how we used this tool to better understand the complicated processes of its cell division. Therefore, we organized our study accordingly and included our goal, plans, results, and conclusions that support the success of adopted technology and establishment of the cell cycle organization. We hope this brief explanation can provide some clarification for the reviewer.

      Some of the conclusion on the that Replication starts at centromere region is not novel and has been studied previously.

      We agree that the centromeric start of DNA replication is not a novel feature, which is stated in the text. This result was shown to demonstrate that Toxoplasma replicates its DNA according to the rules* conserved across eukaryotes. *

      The manuscript needs revising by writing precisely eliminating too much literature reference in the result section with clear focus. Some of these references can be elaborated in the introduction and discussion to keep the focus.

      We examined the results section, and as much as we wanted to comply with this reviewer, we found no references that could be eliminated or transferred to the introduction. We believe that to aid the reader, some foundational knowledge needs to be presented together with obtained results to support those findings.

      • *

      Some points with respect to figures: Generally with image panels, arrows don't stand out well

      We* have adjusted the images.

      *

      Fig1: no scale bars and the green arrow do not stand out. So may be to make white.

      *The scale bar can be found in the bottom right image, which applies to every image in the panel. We changed the color of the arrows. *

      Fig 2E: state the time point in the fig without IAA treatment (-IAA)

      The requested information was added to the figure legend.

      Fig4: no bell shaped curve

      We rephrased the description. The” bell-shape” analogy applies to the temporal dynamics of DNA replication, which starts with a single aggregate, expands to numerous replication foci, and is reduced to a few aggregates at the end of replication. We attempted to quantify aggregates, but their irregular shape makes this task impossible. Our statement is supported by steady-state images and real-time microscopy of the DNA replication included in the manuscript.

      Fig 5D: it isn't obvious what the numbers on the right hand side of the graph mean. If it is size, there should be a unit given

      We provided an explanation in the figure legend*.

      *

      Figure 6 - how do they determine that the tachyzoites have progressed through 61% of S phase? Make this clearer here.

      *We examined only DNA replicating parasites (S-phase) and determined the fraction of BCC0-positive (39%) and BCC0-negative (61%) tachyzoites. Quantifications can be found in Table S4, in the S-C worksheet. *

      • *

      Fig7: it a strange way of ordering the figure as FigE is after Fig F hence no logical order. Thank you, we have corrected the order of these panels*. *

      Fig 8H is not mentioned in the text

      *Thank you, we referenced the wrong panel. Fig. 8H is now included in the text. *

      Figure 9 is nice and useful but the arrows could be made proportional of time spent in each cell cycle phase. They're a little off in the conventional cell cycle at the minute

      • *These schematics are intended to illustrate the dramatic difference in cell cycle organization rather than to directly describe cell cycle organization, the latter of which can be found in Figure 6.

      Some comment on the text in the manuscript: Line 137: describing the expression pattern: the following papers first described the expression pattern of PCNA1 and 2 can be cited in the result. https://doi.org/10.1016/j.molbiopara.2005.03.020 We added the reference.

      Line 154: Provide schematic for AID HA cloning and confirmation.

      The schematics and PCR confirmations* can be found in the supplemental figure S2.

      *

      Line 157: Fig 2 after 4 h treatment FACS analysis shows more than 1 and less than 2n genomic content. Does this study have any -IAA treated control for 4h and 7h to compare as what should the standard genomic content to be there at this time point of development. At 4 h of development can the authors provide any statistical analysis with their 3 experiments to prove their point that the replication is actually stalled. Downregulation of TgPCNA1 as shown is western blot is still basal protein left to carry the genomic replication in 7 mins. Can authors also state that TgPCNA 2 which is although non-essential but has no redundant role in the replication machinery.

      The -IAA control is indicated as 0h and is shown in blue. The statistical analysis of three independent experiments showing the increase of the S-phase population is included in Table S3. The Fig. 2 WB shows over 99% TgPCNA1 degradation, and the residual >1% would be insufficient to carry out full DNA replication. This residual signal is likely due to PCNA1 remaining in complex, which would resist *proteolysis. Unfortunately, we do not feel comfortable to make the final statement suggested. We believe that the lack of TgPCNA2 complementation with yeast PCNA1 (Guerini et al, 2005) is insufficient to draw the conclusion that TgPCNA2 plays a non-redundant role in Toxoplasma replication machinery. *

      Line 178 : typing error "that that

      Thank you, this has been corrected*.

      *

      Line 179: states the role of TgPCNA 1 in DNA1 replication, however line 159 and 160 states the TgPCNA1 deficient can fulfil DNA replication. Can author confirm this contrast in the results. Results trying to illustrate the same fact TgFUCCIs or TgPCNA1ng that TgPCNA1 first aggregates at centromeres and then distributed on many replication forks and disappears late during cytokinesis. The part of the result can be merged.

      We apologize for the *confusion. We rephrased our statements and supported them by corresponding references. Although it may seem repetitive, but it was our intention to emphasize a consistent spatial-temporal expression of TgPCNA1-HA and TgPCNA1-NG. *

      Line 189: Typing error, should say "such as nucleus", currently as is missing

      Thank you, this has *been corrected.

      *

      Line 346-349: basically explaining the same thing twice.

      We apologize for the confusion, the first sentence describes compartments where MORN1 is located. The second sentence describes how MORN1 localization changes during cell cycle progression, information which is used later in our quantitative IFA of cell cycle phases*. *

      • *

      Line 347 - immunfluorescent should be immunofluorescence

      Thank you, this has been corrected*.

      *

      Line 395-399: does this study has any non-inhibited (-IAA control) at 4h and 7 h. for fig 7C & 7G. Can the authors provide any statistical analysis for the significance with their 3 experiments.

      The untreated control (7h mock) is shown as 0h treatment (first bar in each panel). The figure also shows the results of the statistical analysis (t-test, numbers above) that can also be found in Table* S7.

      *

      Line 415: Why the authors have not used the TgFUUCI sc lines which expresses the TgPCNAng and IMCmch both. This could have helped to understand the real time dynamics of DNA replication and budding initiation (cytokenesis), rather then fixing and staining with TgIMC.

      *The recent study by Gubbels lab identified the earliest known budding marker BCC0. Unfortunately, BCC0 is a low abundant factor and cannot be used in FUCCI. IMC3 emerges in the midst of budding when the daughter conoid and polar rings are assembled and thus does not signify either the beginning or the end of cytokinesis. We added IMC3 as a supporting budding marker, while our primary focus remains on the DNA replication marker PCNA1. *

      Overall good technology development as FUCCI but the rest of the manuscript is extremely dense and the focus of the study is not clear after technology part. The complexity of the cell cycle is known and hence not much novelty here and extremely descriptive and hard read. Science can be simplified.

      The reviewer agrees the apicomplexan cell cycle is highly complex, and the field has worked diligently to piece together what we can about it, which contributes to the density of the manuscript. We hope that the targeted audience will find it thoughtful, and we strove to provide sufficient information for those outside our field. We also respectfully disagree that our study offers little novelty; while it is known how complex the apicomplexan cell cycle is, there is still much to uncover. While overlapping cell cycle phases exist in other eukaryotes, there were no such studies that showed the degree of these overlaps across the entire T. gondii cell cycle. We believe there are valuable insights to be gained from the identification of the composite cell cycle phase, which in turn could help draw attention to other understudied features of the cell cycle in non-conventional eukaryotes*. *

      *Reviewer #2 *

      1. It is not always clear where apical and basal ends of the parasite are. E.g. in Fig 3F are the two parasites on the right facing down with their apical end? In Fig 4 it is even harder to see. Might be helpful to turn these images with their apical end up to make comparative interpretation of figures easier. In the text it mentions that PCNA1 concludes at the 'proximal' end of the nucleus (or with the nucleus proximal, which is not clear either??). Please define clearly where the proximal site is, as it is not clear in the figures or in the movie (the 'last focus' marker in Fig 4D??). Thank you for the suggestion. We rotated images in Fig. 3 and marked the parasite ends in Fig. 4. We also indicated parasites’ polarity in the movies.

      Synchrony of replication cycle. Tight synchronization depends on the retention of the cytoplasmic bridge, as mentioned by the authors. In larger vacuoles, it is very conceivable not all parasites are connected with each other (notably in large cysts with bradyzoites), which could lead to loss of tight synchrony. The results section states "One plausible explanation is that the rosette split shortens the communication path between tachyzoites". This is somewhat cryptic language: does a 'rosette split' imply the rupture of the cytoplasmic bridge? This statement should be clarified. Another factor could be centrosome maturation, with the mother centrosome ready sooner than the daughter, which is a model proposed in schizogony, where the nuclear cycles in a shared cytoplasm are even more asynchronous/independent.

      Yes, by ‘rosette split’, we refer to the break of the connection, or a cytoplasmic bridge. The model based on centrosome maturation is interesting, however, it does not explain the synchronization of a vacuole of 16, unless centrosome age resets at that point*. *

      Centrosome duplication. This has been documented to occur at the basal side of the nucleus (the whole nucleus rotates for centrosome duplication). The images as depicted in Fig 6 do not seem to indicate this event, possibly because it is not easy to track apical and basal end of the cell (#1 above). Please comment, as this could be an additional spatial cue to the specific stage of the cycle.

      This is a very interesting suggestion, thank you. Indeed, the centrosome often duplicates away from the apical end (disconnects from the Golgi), sometimes on the side or the basal end, but quickly rotates back to the apical position to reconnect with co-segregating organelles. Centrosome traveling is an interesting feature, and it is possible that this reorientation back to the apical end signifies budding initiation. We will explore this hypothesis in future studies.

      • Specific experimental issues that are easily addressable.

      • The term "Apicomplexan" should be spelled with a lower case "apicomplexan", which is not consistently applied throughout the manuscript. Thank you, we have corrected the spelling*. *

      * 2. Line 567 the term used in 2008 was "tightly knit" not "closely woven". We wanted to avoid the exact citation and rephrased the title of the review.

      *

      *Reviewer #3 *

      -The authors choose to describe PCNA1 and IMC3 as FUCCI markers. The efficiency of this system in mammalian cells is based on the proof that the markers are regulated through a rapid proteolysis process. However, the data available for these markers point toward a transcriptional regulation of these markers (Toxodb and (1)). In contrast, the authors do not provide any data indicating that these proteins are true FUCCI markers. Consequently, they should not use the term FUCCI throughout the paper unless they prove that the cell cycle expression depends on proteolysis. For example, the authors could express these genes with a promoter that is not cell cycle regulated.

      PCNA1 was one of the original FUCCI markers for mammalian cells, later replaced by the more abundant geminin. PCNA1 ubiquitination is well supported across all eukaryotes, and we believe there is much data to support this same turnover mechanism acts to regulate PCNA1 in Toxoplasma. Transcriptional profiles show that TgPCNA1 mRNA is constantly present in cells, never dropping below 80%, making this mRNA is among the most abundant in the cell. It also indicates that proteolysis, rather than halted transcription, controls TgPCNA1 protein levels, since TgPCNA1 protein expression drops to nearly undetectable levels in early G1 and budding (Fig. 1). In addition, TgPCNA1 is highly conserved in structure (Fig. S1) and in function (TgPCNA1 interactome, Fig. 1). The TgPCNA1 Ub sites were detected in global ubiquitome analyses (ToxoDB), supporting the fact that TgPCNA1 protein abundance is regulated by ubiquitin-dependent degradation. Furthermore, PCNA1 as a FUCCI marker in model eukaryotes was not tested for proteolysis because it was unquestionable that PCNA1 is regulated by proteolysis. In addition, Plasmodium ortholog of PCNA1 had been used as a DNA replication sensor in the recent studies (35353560), which validates PCNA1 as an appropriate S-phase FUCCI probe. The modern FUCCI probes are fragments of CDT1 and Geminin mimicking the spatiotemporal expression of the corresponding cell cycle regulators. The transcriptional profile of TgIMC3 is also largely unchanged across the cell cycle, which heavily implies that proteolysis control*s its dynamic protein expression. Therefore, we believe that the term FUCCI applies to TgPCNA1 and TgIMC3. *

      -The authors show that the localization of PCNA1 change during the cell cycle and indicate that the PCNA1 aggregates observed are replication forks. They do not provide data supporting this. They should co-localize these aggregates with other markers such as ORC, MCM proteins or DNA polymerase to better characterize these aggregates. There are number of techniques that could be used to localize the origin(s) of replication. Similarly, ExM should be used to characterize the colocalization between PCNA1 aggregates and the centromeres. As such, the images provided are of poor quality and do not support the author conclusions. The few PCNA1 aggregates toward the end of the S phase are also not characterized. Are they telomeres?

      Although this is an important point, such detailed analyses of the DNA replication machinery is out of the scope of the current study and will be examined in a follow-up study. Data that suggest the aggregates correspond to replication forks include proteomics analyses of chromatin-bound PCNA1 that identified replisome components such as the MCM, high conservation of TgPCNA1 sequence and structure (Fig. S1), and its conserved interactions (Fig. 1). Recent studies used Plasmodium ortholog of PCNA1 to trace DNA replication dynamics during schizogony (35353560), *Therefore, we doubt that TgPCNA1 would perform functions outside of its role as a DNA replication factor, which has been extensively studied in other eukaryotes. *

      • The authors characterized the proteins associated with PCNA1. All the proteins found to potentially interact are chromatin-bound and are not naturally found in other localization (2). It is unclear why the authors insist on the fact that there are two PCNA1 complexes (one chromatin-bound and one non-chromatin bound). More concerning is the lack of verification of this dataset through reciprocal IP for example.

      The PCNA IP was used to confirm its conserved function as a DNA replication factor; similarly to what was observed in other eukaryotes, we detected PCNA in both a chromatin-bound and unbound state. PCNA1 is produced in late G1 (diffuse nuclear stain) but is engaged in the replisome only upon DNA replication initiation (aggregated form). Rather than characterize the function of the highly conserved PCNA1, our primary goal was to determine the Toxoplasma cell cycle organization, which explains our choice of the experimental design.

      • Quantification of some of the phenotypes is lacking. For example, the DNA content analysis are shown but the change in number are not. Similarly, there is no quantification of the PCNA1 mutant phenotypes observed by ExM. Quantification of the bell shape observed by video-microscopy in figure 4 should also be provided.

      The quantifications supporting the main claims of our study are included in the five supplemental Tables S3-S8, including DNA content and microscopy analysis of the phenotype. *The U-ExM microscopy has been solely used to visualize details of the phenotype. *

      • The PCNA1 mutant phenotypes are not sufficiently explored by ExM. What happen to the mitotic spindle? What happens to kinetochore (CenH3 is a centromere protein and does not represent kinetochores)? Many markers for these structures have been described, see (3).

      The primary goal of our study was to examine and map out the organization of the tachyzoite cell cycle. PCNA1 deficiency was used to demonstrate that Toxoplasma PCNA1 is a conserv*ed DNA replication factor and can be used as an S-phase marker in FUCCI. Thus, we focused on the mutant-induced changes in the dynamics of DNA replication (DNA content) and arrest prior to mitosis (unresolved centrocone). *

      • TgPCNA1NG strain has a number of concerns. The localization to the daughter cells conoids seems artificial since not observed in the HA-AID mutant and the expression pattern seems different as well than the previous mutant suggesting the mNG tag is affecting the localization and expression dynamics. Did the authors explore other fluorescent proteins to verify that these discrepancies where not due to this tag ?

      The conoidal PCNA1 accumulation was detected only with NeonGreen-tagged PCNA1. We also built and examined tdTomato- and mCherry-tagged versions and detected minor accumulations in the conoid of tdTomato-tagged PCNA1, but not with the mCherry-tagged variant. We believe these aggregations could be attributed to the partially degraded PCNA1-NeonGreen having an affinity to conoidal proteins, thus producing this unexpected signal. Although not included in the manuscript, our quantifications, based on both PCNA1-HA and PCNA1-NeonGreen, showed similar cell cycle organization (G1, S and budding phases) of tachyzoites. The FUCCI probe is an indicator of the cell cycle phase. It does not have to be a functional protein. As we mentioned before, many FUCCI probes are fragments of the factors that mimic the spatiotemporal expression of the corresponding cell cycle regulators.

      -Cytokinesis seems to be only defined by the presence of IMC3. The marker appears early during the budding process and it is not normally considered as a cytokinesis marker. The author should the text to reflect this.

      We agree with the reviewer that IMC3 is not a true budding marker, which is why we used BCC0 in our quantifications. IMC3 is proven to broadly define the mid-budding stage, making it a convenient supplemental marker. We are currently exploring and testing alternative and additional FUCCI markers. It is not an easy task, since these markers are required to have high expression levels and to be localized into large organelles. For instance, BCC0 was eliminated due to low abundance.

      • Throughout the manuscript, the authors seems to ignore an essential characteristic of the tachyzoite cell cycle: the nuclear cycle and the budding cycle are independently regulated. It is therefore normal they overlap as it has been shown by the authors themselves in previous studies. This should be better described and discussed in the paper to understand the peculiarities of the parasite cell cycle.

      We apologize for the confusion, but the tachyzoite cell cycle does not contain a nuclear cycle, it consists of a single budding cycle. The nuclear cycle is only a feature in multinuclear cell cycles such as schizogony and endopolygeny. This is the main reason why the overlap between phases is so surprising.

      • l196: "The surface of the growing buds": could the authors rephrase?

      We rephrased the statement.

      -L217: proximal end of the nucleus rather than "parasite ".

      *We clarified the statement. It is, in fact, the shift of the nucleus to the proximal end of the parasite.

      *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This is a manuscript from Batra et al. entitled "A FUCCI sensor reveals complex cell cycle organization of Toxoplasma endodyogeny ". It describes the characterization of PCNA1 as cell cycle marker in the parasite Toxoplasma gondii. Tachyzoite endodyogeny is a simplified division process that is crucial for the proliferation of the parasite. Some studies have used fluorescent markers to describe the segregation of organelles and the nuclear division during endodyogeny but the production of more tools to dissect the cell cycle and better characterize mutants is timely. Most of the experiments are based on characterization of PCNA1 mutant and the use of a strain expressing a PCNA1-mNG construct. Unfortunately, there are a number of concerns in this study that need to be addressed.

      Major concerns:

      • The authors choose to describe PCNA1 and IMC3 as FUCCI markers. The efficiency of this system in mammalian cells is based on the proof that the markers are regulated through a rapid proteolysis process. However, the data available for these markers point toward a transcriptional regulation of these markers (Toxodb and (1)). In contrast, the authors do not provide any data indicating that these proteins are true FUCCI markers. Consequently, they should not use the term FUCCI throughout the paper unless they prove that the cell cycle expression depends on proteolysis. For example, the authors could express these genes with a promoter that is not cell cycle regulated.
      • The authors show that the localization of PCNA1 change during the cell cycle and indicate that the PCNA1 aggregates observed are replication forks. They do not provide data supporting this. They should co-localize these aggregates with other markers such as ORC, MCM proteins or DNA polymerase to better characterize these aggregates. There are number of techniques that could be used to localize the origin(s) of replication. Similarly, ExM should be used to characterize the colocalization between PCNA1 aggregates and the centromeres. As such, the images provided are of poor quality and do not support the author conclusions. The few PCNA1 aggregates toward the end of the S phase are also not characterized. Are they telomeres?
      • The authors characterized the proteins associated with PCNA1. All the proteins found to potentially interact are chromatin-bound and are not naturally found in other localization (2). It is unclear why the authors insist on the fact that there are two PCNA1 complexes (one chromatin-bound and one non-chromatin bound). More concerning is the lack of verification of this dataset through reciprocal IP for example.
      • Quantification of some of the phenotypes is lacking. For example, the DNA content analysis are shown but the change in number are not. Similarly, there is no quantification of the PCNA1 mutant phenotypes observed by ExM. Quantification of the bell shape observed by video-microscopy in figure 4 should also be provided.
      • The PCNA1 mutant phenotypes are not sufficiently explored by ExM. What happen to the mitotic spindle? What happens to kinetochore (CenH3 is a centromere protein and does not represent kinetochores)? Many markers for these structures have been described, see (3).
      • TgPCNA1NG strain has a number of concerns. The localization to the daughter cells conoids seems artificial since not observed in the HA-AID mutant and the expression pattern seems different as well than the previous mutant suggesting the mNG tag is affecting the localization and expression dynamics. Did the authors explore other fluorescent proteins to verify that these discrepancies where not due to this tag ? -Cytokinesis seems to be only defined by the presence of IMC3. The marker appears early during the budding process and it is not normally considered as a cytokinesis marker. The author should the text to reflect this.
      • Throughout the manuscript, the authors seems to ignore an essential characteristic of the tachyzoite cell cycle: the nuclear cycle and the budding cycle are independently regulated. It is therefore normal they overlap as it has been shown by the authors themselves in previous studies. This should be better described and discussed in the paper to understand the peculiarities of the parasite cell cycle.

      Minor

      • l196: "The surface of the growing buds": could the authors rephrase?
      • L217: proximal end of the nucleus rather than "parasite ".

      • Behnke,M.S., Wootton,J.C., Lehmann,M.M., Radke,J.B., Lucas,O., Nawas,J., Sibley,L.D. and White,M.W. (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PloS One, 5, e12354.

      • Barylyuk,K., Koreny,L., Ke,H., Butterworth,S., Crook,O.M., Lassadi,I., Gupta,V., Tromer,E., Mourier,T., Stevens,T.J., et al. (2020) A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe, 28, 752-766.e9.
      • L,B., N,D.S.P., Ec,T., D,S.-F. and M,B. (2022) Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. J. Cell Biol., 221.

      Significance

      This study provides the characterization of a new cell cycle marker to decipher the tachyzoite cell cycle of the apicomplexan parasite Toxoplasma gondii. A better understanding of the cell cycle is needed to prevent the proliferation of this parasite. This study builds on previous works characterizing organellar segregation in T. gondii. It provides data about the overlap of each cell cycle phase and the synchronicity of the cell cycle in a single vacuole. However, it is limited by the use of a single marker and more data are needed to support the conclusions of this study. This study can be of interest to a broad audience.

    1. If I tag you in this post, that means that some time since 2005 (2005!), when I created this Thought called Viz Posse, I added you to a long list of cool humans interested in maps,

      long list of cool humans interested in hypermaps

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Though the Norrin protein is structurally unrelated to the Wnt ligands, it can activate the Wnt/βcatenin pathway by binding to the canonical Wnt receptors Fzd4 and Lrp5/6, as well as the tetraspanin Tspan12 co-receptor. Understanding the biochemical mechanisms by which Norrin engages Tspan12 to initiate signaling is important, as this pathway plays an important role in regulating retinal angiogenesis and maintaining the blood-retina-barrier. Numerous mutations in this signaling pathway have also been found in human patients with ocular diseases. The overarching goal of the study is to define the biochemical mechanisms by which Tspan12 mediates Norrin signaling. Using purified Tspan12 reconstituted in lipid nanodiscs, the authors conducted detailed binding experiments to document the direct, high-affinity interactions between purified Tspan12 and Norrin. To further model this binding event, they used AlphaFold to dock Norrin and Tspan12 and identified four putative binding sites. They went on to validate these sites through mutagenesis experiments. Using the information obtained from the AlphaFold modeling and through additional binding competition experiments, it was further demonstrated that Tspan12 and Fzd4 can bind Norrin simultaneously, but Tspan12 binding to Norrin is competitive with other known co-receptors, such as HSPGs and Lrp5/6. Collectively, the authors proposed that the main function of Tspan12 is to capture low concentrations of Norrin at the early stage of signaling, and then "hand over" Norrin to Fzd4 and Lrp5/6 for further signal propagation. Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data. 

      Strengths: 

      • Biochemical reconstitution of Tspan12 and Fzd4 in lipid nanodiscs is an elegant approach for testing the direct binding interaction between Norrin and its co-receptors. The proteins used for the study seem to be of high purity and quality. 

      • The various binding experiments presented throughout the study were carried out rigorously. In particular, BLI allows accurate measurement of equilibrium binding constants as well as on and off rates. 

      • It is nice to see that the authors followed up on their AlphaFold modeling with an extensive series of mutagenesis studies to experimentally validate the potential binding sites. This adds credence to the AlphaFold models. 

      • Table S1 is a further testament to the rigor of the study. 

      • Overall, the study is comprehensive and compelling, and the conclusions are well supported by the experimental and modeling data. 

      Suggestions for improvement: 

      • It would be helpful to show Coomassie-stained gels of the key mutant Norrin and Tspan12 proteins presented in Figures 2E and 2F. 

      We have included Stain-Free SDS-PAGE gels from the purification of the Norrin and Tspan12 mutants in a new Figure S4.

      • Many Norrin and Tspan12 mutations have been identified in human patients with FEVR. It would be interesting to comment on whether any of the mutations might affect the NorrinTspan12 binding sites described in this study. 

      Thank you for this suggestion. We have inspected human mutation databases gnomAD, ClinVar, and HGMD for known mutations in the predicted Tspan12-Norrin binding interface and their occurrence in human patients with FEVR or Norrie disease.

      While a number of Tspan12 residues that we predict to interact with Norrin are impacted by rare mutations in humans (e.g., L169M, E170V, E173K, D175N, E196G, S199C, as found in the gnomAD database), these alleles are of unknown clinical significance (as found in ClinVar or HGMD databases). It is possible that mutations that slightly weaken the Norrin-Tspan12 interface may not produce a strong phenotype, especially given the avidity we expect from this system. By our examination, the missense variants of clinical significance that have been found in the Tspan12 LEL would be expected to destabilize the protein (i.e., mutations to or from cysteine or proline, or mutations to residues involved in packing interactions within the LEL fold), and therefore these mutations may produce a disease phenotype by impacting Tspan12 protein expression levels.  

      Several Norrin mutations that are associated with Norrie disease, FEVR, or other diseases of the retinal vasculature have been found in the predicted Tspan12 binding site. For example, Norrin mutations at positions L103 (L103Q, L103V), K104 (K104N, K104Q), and A105 (A105T, A105P, A105E, A105S, A105T, A105V) have been found in patients, all of which may disrupt binding to Tspan12. However, the deleterious effect of K104 mutations on Norrin-stimulated signaling could also be explained by a weakened Norrin-Fzd4 binding interface. Norrin mutations at R115 (R115L and R115Q), as well as R121 (R121L, R121G, R121Q, and R121W) have also been found in patients with various diseases of the retinal vasculature. Additionally, the Norrin mutation T119P has been found in patients with Norrie disease, but we would expect this mutation to destabilize Norrin in addition to disrupting the Tspan12 binding site. 

      While we commented briefly on mutations R115L and R121W in the original draft (page 5, paragraphs 4 and 1, respectively), we have updated the manuscript with more comments on disease-associated mutations to the predicted Tspan12 binding site on Norrin (page 5, first partial paragraph; page 9, first partial paragraph). 

      • Some of the negative conclusions (e.g. the lack of involvement of Tspan12 in the formation of the Norrin-Lrp5/6-Fzd4-Dvl signaling complex) can be difficult to interpret. There are many possible reasons as to why certain biological effects are not recapitulated in a reconstitution experiment. For instance, the recombinant proteins used in the experiment may not be presented in the correct configurations, and certain biochemical modifications, such as phosphorylation, may also be missing. 

      We agree that different Tspan12 and Fzd4 stoichiometries, lipid compositions, and posttranslational modifications could impact the results of our study, and that it is important to mention these possibilities. We have added these caveats to the discussion section (page 10, last paragraph).  

      Reviewer #2 (Public Review): 

      This is an interesting study of high quality with important and novel findings. Bruguera et al. report a biochemical and structural analysis of the Tspan12 co-receptor for norrin. Major findings are that Norrin directly binds Tspan12 with high affinity (this is consistent with a report on BioRxiv: Antibody Display of cell surface receptor Tetraspanin12 and SARS-CoV-2 spike protein) and a predicted structure of Tspan12 alone or in complex with Norrin. The

      Norrin/Tspan12 binding interface is largely verified by mutational analysis. An interaction of the Tspan12 large extracellular loop (LEL) with Fzd4 cannot be detected and interactions of fulllength Tspan12 and Fzd4 cannot be tested using nano-disc based BLI, however, Fzd4/Tspan12 heterodimers can be purified and inserted into nanodiscs when aided by split GFP tags. An analysis of a potential composite binding site of a Fzd4/Tspan12 complex is somewhat inconclusive, as no major increase in affinity is detected for the complex compared to the individual components. A caveat to this data is that affinity measurements were performed for complexes with approximately 1 molecule Tspan12 and FZD4 per nanodisc, while the composite binding site could potentially be formed only in higher order complexes, e.g., 2:2 Fzd4/Tspan12 complexes. Interestingly, the authors find that the Norrin/Tspan12 binding site and the Norrin/Lrp6 binding site partially overlap and that the Lrp6 ectodomain competes with Tspan12 for Norrin binding. This result leads the authors to propose a model according to which Tspan12 captures Norrin and then has to "hand it off" to allow for Fzd4/Lrp6 formation. By increasing the local concentration of Norrin, Tspan12 would enhance the formation of the Fzd4/Lrp5 or Fzd4/Lrp6 complex. 

      Thank you for pointing out the BioRxiv report showing Norrin-Tspan12 LEL binding. We have cited this in the introduction of our revised manuscript (page 2, paragraph 3).

      The experiments based on membrane proteins inserted into nano-discs and the structure prediction using AlphaFold yield important new insights into a protein complex that has critical roles in normal CNS vascular biology, retinal vascular disease, and is a target for therapeutic intervention. However, it remains unclear how Norrin would be "handed off" from Tspan12 or Tspan12/Fzd4 complexes to Fzd4/Lrp6 complexes, as the relatively high affinity of Norrin to Fzd4/Tspan12 dimers likely does not favor the "handing off" to Fzd4/Lrp6 complexes. 

      While the Fzd4-Tspan12 interaction is strong, our data suggest that Fzd4 and Tspan12 bind Norrin with negative cooperativity, suggesting that Fzd4 binding may enhance Norrin-Tspan12 dissociation to facilitate handoff. This model is based on 1) the dissociation of Norrin from beadbound Tspan12 in the presence of saturating Fzd4 CRD (Figure 3D), and 2) a weaker measured affinity of Norrin-Tspan12LEL in the presence of saturating Fzd4 CRD (Figure 3F). We have now added wording to emphasize this in the discussion section (page 9, end of first full paragraph).

      However, as you note, the Norrin-Tspan12 affinity that we measured in the presence of Fzd CRD (tens of nM) is still much stronger than the known Norrin-LRP6 affinity (0.5-1µM), which predicts that the efficiency of this handoff may be low. We have now commented on this in the discussion section and mentioned an alternative model in which Tspan12 presents the second Norrin protomer to LRP5/6 for signaling, instead of dissociating (page 9, paragraph 2). However, the handoff efficiency could also be impacted by other factors such as the relative abundance and surface distribution of Tspan12, Fzd4, LRP6 and HSPGs.  

      Areas that would benefit from further experiments, or a discussion, include: 

      -  The authors test a potential composite binding site of Fzd4/Tspan12 heterodimers for norrin using nanodiscs that contain on average about 1 molecule Fzd4 and 1 molecule Tspan12. The Fzd4/Tspan12 heterodimer is co-inserted into the nanodiscs supported by split-GFP tags on Fzd4 and Tspan12. The authors find no major increase in affinity, although they find changes to the Hill slope, reflecting better binding of norrin at low norrin concentrations. In 293F cells overexpressing Fzd4 and Tspan12 (which may result in a different stoichiometry) they find more pronounced effects of norrin binding to Fzd4/Tspan12. This raises the possibility that the formation of a composite binding requires Fzd4/Tspan12 complexes of higher order, for example, 2:2 Fzd4/Tspan12 complexes, where the composite binding site may involve residues of each Fzd4 and Tspan12 molecule in the complex. This could be tested in nanodiscs in which Fzd4 and Tspan12 are inserted at higher concentrations or using Fzd4 and Tspan12 that contain additional tags for oligomerization. 

      It is quite possible that Tspan12 and Fzd4 cluster into complexes with a stoichiometry greater than 1:1 in cells (this is supported by e.g., BRET experiments in (Ke et al., 2013)), and we mention in the discussion that that receptor clustering may be an additional mechanism by which Tspan12 exerts its function (page 10, paragraph 4). We would be quite interested to know the stoichiometry of Fzd4 and Tspan12 complexes in cells at endogenous expression levels, both in the presence and absence of Norrin, and to biochemically characterize these putative larger complexes in the future. We have amended the discussion to mention the caveat that our reconstitution experiments do not test higher-stoichiometry Fzd4/Tspan12 complexes (page 10, last paragraph).

      - While Tspan12 LEL does not bind to Fzd4, the successful reconstitution of GFP from Tspan12 and Fzd4 tagged with split GFP components provides evidence for Fzd4/Tspan12 complex formation. As a negative control, e.g., Fzd5, or Tspan11 with split GFP tags (Fzd5/Tspan12 or Fzd4/Tspan11) would clarify if FZD4/Tspan12 heterodimers are an artefact of the split GFP system. 

      The split-GFP system allows us to co-purify receptors that do not normally co-localize (for example, as we have shown with Fzd4 and LRP6 in the absence of ligand (Bruguera et al., 2022)) so we do not mean to claim that it provides evidence for Fzd4/Tspan12 complex formation. In fact, we were unable to co-purify co-expressed Fzd4 and Tspan12 unless they were tethered with the split GFP system, and separately-purified Fzd4 and Tspan12 did not incorporate into nanodiscs together unless they were tethered by split GFP. Based on these experiments, we expect that the purported Fzd4-Tspan12 interaction that others have found by co-IP or co-localization is easily disrupted by detergent, may require a specific lipid, and/or may not be direct.

      To clarify this point, we have noted in the results section that without the split GFP tags, Tspan12 and Fzd4 did not co-purify or co-reconstitute into nanodiscs, and that co-reconstitution was enabled by the split GFP system (page 6, first full paragraph).   

      - Fzd4/Tspan12 heterodimers stabilized by split GFP may be locked into an unfavorable orientation that does not allow for the formation of a composite binding site of FZD4 and Tspan12, this is another caveat for the interpretation that Fzd4/Tspan12 do not form a composite binding site. This is not discussed. 

      While the split GFP does enforce a Fzd4/Tspan12 dimer, the split GFP is removed by protease cleavage during the final step of the purification process, after the dimer is contained in a nanodisc. This should allow Fzd4 and Tspan12 to freely adopt any pose and to diffuse within the confines of the nanodisc lipid bilayer. However, it has been shown that the phospholipid bilayer in small nanodiscs is not as fluid as the physiological plasma membrane, and although we used the slightly larger belt protein (MSP1E3D1, 13 nm diameter nanodiscs), perhaps the receptors are indeed locked in some unfavorable state for this reason. Additionally, the nanodiscs are planar, so if the formation of a composite binding site requires membrane curvature, this would not be recapitulated in our system. We have cited these caveats in the discussion section (page 10, last paragraph).  

      - Mutations that affect the affinity of norrin/fzd4 are not used to further test if Fzd4 and Tspan12 form a composite binding site. Norrin R41E or Fzd4 M105V were previously reported to reduce norrin/frizzled4 interactions and signaling, and both interaction and signaling were restored by Tspan12 (Lai et al. 2017). Whether a Fzd4/Tspan12 heterodimer has increased affinity for Norrin R41E was not tested. Similarly, affinity of FZD4 M105V vs a Fzd4 M105V/Tspan12 heterodimer were not tested. 

      Since the high affinity of Norrin for both Fzd4 and Tspan12 may have obscured any enhancement of Norrin affinity for Fzd4/Tspan12 compared to either receptor alone, we did consider weakening Fzd-Norrin affinity to sensitize this experiment, inspired by the experiments you mention in (Lai et al., 2017). However, we suspected that the slight increase in Norrin affinity for the Fzd4/Tspan12 dimer compared to Fzd4 alone was driven mainly by increased avidity that enhanced binding of low Norrin concentrations, and this avidity effect would likely confound the interpretation of any experiment monitoring 2:2 complex formation. Additionally, on the basis that soluble Fzd4 extracellular domain and Tspan12 bind Norrin with negative cooperativity (Figures 3D and 3F), we concluded that this composite binding site was unlikely.

      - An important conclusion of the study is that Tspan12 or Lrp6 binding to Norrin is mutually exclusive. This could be corroborated by an experiment in which LRP5/6 is inserted into nanodiscs for BLI binding tests with Norrin, or Tspan12 LEL, or a combination of both. Soluble LRP6 may remove norrin from equilibrium binding/unbinding to Tspan12, therefore presenting LRP6 in a non-soluble form may yield different results. 

      We agree that testing this conclusion in an orthogonal experiment would be a valuable addition to this study. We have now performed a similar experiment to the one you described, but with Norrin immobilized on biosensors, and with LRP6 in detergent competing with Tspan12 LEL for Norrin binding (Figure S12, discussed on page 8, first full paragraph). The results of this experiment show that biosensor-immobilized Norrin will bind LRP6, and that soluble Tspan12 inhibits LRP6 binding in a concentration-dependent manner. The LRP6 construct we use (residues 20-1439) includes the transmembrane domain but has a truncated C terminus, since LRP6 constructs containing the full C terminus tend to aggregate during purification. We chose to immobilize Norrin to make the experiment as interpretable as possible, since immobilizing LRP6 and competing Norrin off with the LEL could result in an increase in signal (from the LEL binding the second available Norrin protomer) as well as a decrease (from Norrin being competed off of the immobilized LRP6). We conducted the experiment in detergent (DDM) instead of nanodiscs to be able to test higher concentrations of LRP6.

      - The authors use LRP6 instead of LRP5 for their experiments. Tspan12 is less effective in increasing the Norrin/Fzd4/Lrp6 signaling amplitude compared to Norrin/Fzd4/Lrp5 signaling, and human genetic evidence (FEVR) implicates LRP5, not LRP6, in Norrin/Frizzled4 signaling. The authors find that Norrin binding to LRP6 and Tspan12 is mutually exclusive, however this may not be the case for Lrp5. 

      This is an important point which we have now addressed in the text (page 8, end of first full paragraph). LRP5 is indeed the receptor implicated in FEVR and expressed in the relevant tissues for Tspan12/Norrin signaling. Unfortunately, LRP5 expresses poorly and we are unable to purify sufficient quantities to perform these experiments. However, LRP5 and LRP6 both transduce Tspan12-enhanced Norrin signaling in TOPFLASH assays (as you mention and as shown by (Zhou and Nathans, 2014)), bind Norrin, and are highly similar (they share 71% sequence identity overall and 73% sequence identity in the extracellular domain), so we expect their Norrin-binding sites to be conserved.

      - The biochemical data are largely not correlated with functional data. The authors suggest that the Norrin R115L FEVR mutation could be due to reduced norrin binding to tspan12, but do not test if Tspan12-mediated enhancement of the norrin signaling amplitude is reduced by the R115L mutation. Similarly, the impressive restoration of binding by charge reversal mutations in site 3 is not corroborated in signaling assays. 

      We agree that testing the impact of Norrin mutations in cell-based signaling assays would be an informative way to further test our model. However, the Norrin mutants we tested generated poor TopFlash signals in all conditions tested. This may be due to general protein instability, weakened affinity for LRP, or weaker interactions with HSPGs. Whatever the cause, the low signal made it challenging to conclusively say whether the Norrin mutations affected Tspan12mediated signaling enhancement.

      When expressed for purification, Tspan12 mutants generally expressed poorly compared to WT Tspan12, so we were concerned that differences in protein stability or trafficking would lead to lower cell-surface levels of mutant Tspan12 relative to WT in TopFlash signaling assays, which would confound interpretation of mutant Tspan’s ability to enhance Norrin signaling.

      Because of these challenges, follow-up experiments to investigate the signaling capabilities of Norrin and Tspan12 mutants were not informative and we have not included them in the revised manuscript.

      Reviewer #3 (Public Review): 

      Brugeuera et al present an impressive series of biochemical experiments that address the question of how Tspan12 acts to promote signaling by Norrin, a highly divergent TGF-beta family member that serves as a ligand for Fzd4 and Lrp5/6 to promote canonical Wnt signaling during CNS (and especially retinal) vascular development. The present study is distinguished from those of the past 15 years by its quantitative precision and its high-quality analyses of concentration dependencies, its use of well-characterized nano-disc-incorporated membrane proteins and various soluble binding partners, and its use of structure prediction (by AlphaFold) to guide experiments. The authors start by measuring the binding affinity of Norrin to Tspan12 in nanodiscs (~10 nM), and they then model this interaction with AlphaFold and test the predicted interface with various charge and size swap mutations. The test suggests that the prediction is approximately correct, but in one region (site 1) the experimental data do not support the model. [As noted by the authors, a failure of swap mutations to support a docking model is open to various interpretations. As AlphFold docking predictions come increasingly into common use, the compendium of mutational tests and their interpretations will become an important object of study.] Next, the authors show that Tspan12 and Fzd4 can simultaneously bind Norrin, with modest negative cooperativity, and that together they enhance Norrin capture by cells expressing both Tspan12 and Fzd4 compared to Fzd4 alone, an effect that is most pronounced at low Norrin concentration. Similarly, at low Norrin concentration (~1 nM), signaling is substantially enhanced by Tspan12. By contrast, the authors show that LRP6 competes with Tspan12 for Norrin binding, implying a hand-off of Norrin from a Tspan12+Fzd4+Norrin complex to a LRP5/6+Fzd4+Norrin complex. Thanks to the authors' careful dose-response analyses, they observed that Norrin-induced signaling and Tspan12 enhancement of signaling both have bell-shaped dose-response curves, with strong inhibition at higher levels of Norrin or Tspan12. The implication is that the signaling system has been built for optimal detection of low concentrations of Norrin (most likely the situation in vivo), and that excess Tspan12 can titrate Norrin at the expense of LRP5/6 binding (i.e., reduction in the formation of the LRP5/6+Fzd4+Norrin signaling complex). In the view of this reviewer, the present work represents a foundational advance in understanding Norrin signaling and the role of Tspan12. It will also serve as an important point of comparison for thinking about signaling complexes in other ligand-receptor systems. 

      Recommendations for the authors: 

      Reviewer #2 (Recommendations For The Authors):   

      - In Figure 5F high concentrations of transfected Tspan12 plasmid inhibit signaling, which the authors interpret to support the model that Tspan12/Norrin binding prevents Norrin/LRP6/FZD4 complex formation. Alternatively, the cells do not tolerate the expression of the tetraspanin at high levels, for example, due to misfolding and aggregate formation. To distinguish these possibilities: Do high levels of Tspan12 overexpression also inhibit signaling induced by Wnt3a and appropriate Frizzled receptors, even though Tspan12 has no influence on Wnt/LRP6 binding? 

      We thank the reviewer for suggesting this important control experiment. We have added the Wnt-simulated TOPFLASH values to the figure in 5F for all conditions. In repeating this experiment, we noticed that high levels of transfected Tspan12 may decrease cell viability and therefore have adjusted the range of transfected Tspan12 in the new Figure 5F (discussed on page 8, second full paragraph). Under this new protocol, both Norrin- and Wnt-stimulated signaling were inhibited by the highest amount of transfected Tspan12. However, Norrinstimulated signaling is inhibited by lower amounts of transfected Tspan12 than Wnt-stimulated signaling, and to a greater extent, supporting our proposed model that Tspan12 competes with LRP for Norrin binding.

      - Is Tspan12 with c-terminal rho-tag (the form incorporated into nanodiscs) also used for functional luciferase assays, or was untagged Tspan12 used for the luciferase assays in Fig 4D and 5F? Does the c-terminal tag interfere with Tspan12-mediated enhancement of Norrin signaling? 

      For the luciferase assays included in this manuscript, wildtype, full-length, untagged Tspan12 is used. We have clarified this in our methods section. When we tested the wildtype vs Cterminally rho1D4-tagged version of Tspan12 in TOPFLASH assays, we saw that the enhancement of Norrin signaling by Tspan12-1D4 was weaker than enhancement by untagged Tspan12. This is consistent with the finding reported in Cell Reports (Lai et al., 2017) that a chimeric Tspan12 receptor with its C-terminus replaced with that of Tspan11 was still capable of enhancing Norrin signaling, though to a lesser extent than WT Tspan12. The deficiency of signaling by our rho1D4-tagged Tspan12 could be due to a difference in receptor expression level or trafficking, but in the absence of a reliable antibody against Tspan12, we were unable to assess the expression levels or localization of the untagged Tspan12 to compare it to the rho1D4-tagged version. (For binding experiments, we reasoned that the C-terminal tag should not affect Tspan12’s ability to bind Norrin extracellularly, especially as we found that purified fulllength Tspan12 and Tspan12∆C (residues 1-252) bound Norrin equally well; we have added this comparison to table S1.)  

      Reviewer #3 (Recommendations For The Authors): 

      Minor comments. 

      Based on the Fzd4-Dvl binding experiment, the authors might state explicitly the possibility that Tspan12's relevance is entirely accounted for by extracellular ligand capture. 

      We have stated this possibility explicitly in the discussion section (page 9, last paragraph). 

      Page 4, 3rd paragraph. I suggest "To experimentally test this structural prediction..." rather than "validate". 

      Thank you for this suggestion; we have replaced this wording. 

      This next item is optional, but I hope that the authors will consider it. This manuscript provides an opportunity for the authors to be more expansive in their thinking, and to put their work into the larger context of ligand+receptor+accessory protein interactions. The authors describe the Wnt7a/7b-Gpr124-RECK system and the role of HSPs in Norrin and Wnt signaling, but perhaps they can also comment on non-Wnt ligand-receptor systems where accessory proteins are found. They might add a figure (or supplemental figure) with a schematic showing the roles of HSP and Gpr124-RECK, and some non-Wnt ligand-receptor systems. This would help to make the present work more widely influential.

      Thank you for this suggestion. We have added a figure (Figure 6, discussed on page 10, paragraphs 2 and 3) and expanded our discussion to include other co-receptor systems. We have specifically focused on co-receptors that both capture ligands and interact with their primary receptor(s), thus delivering ligands to their receptors, as we have proposed for Tspan12. Within Wnt signaling, other co-receptor systems with this mechanism are RECK/Gpr124 (for Wnt7a/b) and Glypican-3. We found it interesting that this mechanism is also shared by several growth factor pathways with cystine knot ligands (like Norrin), so we have illustrated and mentioned three of these examples.

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc is necessary for the development of continuous testes and seminal vesicle tissue essential for fertility. To do this, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility.

      Strengths:

      This is a rigorous and comprehensive study that identifies the Hamlet-dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion.

      Weaknesses:

      The image resolution and presentation of figures is a major issue in this study. As a non-expert, it is nearly impossible to see the morphological changes as described in the results. Quantification of all cell biological phenotypes is also lacking therefore reducing the impact of this study to those familiar with tissue fusion events in Drosophila development.

    2. Reviewer #2 (Public review):

      Strengths:

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain-containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream pathways they characterized, which are Wnt2 and Toll.

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as the dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level.

      Weaknesses:

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects fusion, as myotubes might create the first "bridge" bringing the epithelia together. The authors clearly showed that their driver tools do not cause expression in myoblasts/myotubes, but this does not exclude non-tissue autonomous defects in their RNAi screen. Nevertheless, this is outside the scope of this work.

      However, one point that could be addressed in this study: the RNAseq and CUT&TAG experiments would profit from adding principal component analyses, elucidating similarities and differences of the diverse biological and technical replicates.

    3. Author response:

      Thank you for reviewing our manuscript and providing constructive feedback. We are grateful that you recognize the importance of our work and find the evidences presented compelling. We will revise our manuscripts in accordance with reviewers’ recommendations. Below is our plan.

      (1) As recommended by Reviewer 1, we will improve the image resolution and presentation in the figures, by adjusting dark colors into brighter ones, including single-channel images, and incorporating schematic illustrations to dipict morphological changes.

      (2) Following the suggestions of reviewer 2, we will provide explanations and speculative insights into potential non-tissue autonomous effects.

      (3) As suggested by reviewer 2, we will perform principal component analyses on our RNA-seq and Cut&Tag data. 

      (2) Once we have addressed all the major and minor points raised by the reviewers, we will provide a detailed point-to-point response and submit the revised version of the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Bindu et al. created an AAV-based tool (GEARAOCS) to perform in vivo genome editing of mouse astrocytes. The authors engineered a versatile AAV vector that allows for gene deletion through NHNJ, site-specific knock-in by HDR, and gene trap. By utilizing this tool, the authors deleted Sparcl1 virally in subsets of astrocytes and showed that thalamocortical synapses in cortical layer IV are indeed reduced during a critical period of ocular dominance plasticity and in adulthood, whereas there is no change in excitatory synapse number in cortical layer II/III. Furthermore, the authors made a VAMP2 gene-trap AAV vector and showed that astrocyte-derived VAMP2 is required for the maintenance of both excitatory and inhibitory synapses.

      Strengths:

      This AAV-based tool is versatile for astrocytic gene manipulation in vivo. The work is innovative and exciting, given the paucity of tools available to probe astrocytes in vivo.

      Weaknesses:

      Several important considerations need to be made for the validation and usage of this tool, including:

      Major points:

      (1) Efficiency and specificity of spCas9-sgRNA mediated gene knockout in astrocytes. In Figure 3, the authors utilized Sparcl1 gene deletion as the proof-of-principle experiment. The readout for Sparcl1 KO efficiency is solely the immunoreactivity using an antibody raised against Sparcl1. As the method is based on NHEJ, the indels can be diverse and can occur in one allele or two. For the tool and proof-of-principle experiment, it will be important to know the percentage of editing near the PAM site, as well as the actual sequences of indels. This can be done by single-cell PCR of edited astrocytes, similar to the published work (Ye... Chen, Nature Biotechnology 2019).

      (2) Along the same line, the authors showed that GEARBOCS TagIn of Sparcl1 resulted in 12.49% efficiency based on the immunohistochemistry of mCherry tag. It is understandable that the knock-in efficiency is much reduced as compared to gene knockout. However, it remains unclear if those 12.49% knock-in cells represent sequence-correct ones, as spCas9-mediated HDR is also an error-prone process, and it may accidentally alter nucleotides near the PAM site without causing the frameshift. The author will need to consider the related evidence or make comments in the discussion.

      (3) What are the efficiencies of Sparcl1 GEARBOCS GeneTrap (Figure 3V) and Vamp2 GeneTrap and HA TagIn (Figure 5)?

      Minor points:

      (1) Figure 3H-J. The authors only showed the representative images of Sparcl1 KO. Please consider including the control (without gRNA), given that there are still many Sparcl1+ signals in Figure 3I (likely because of its expression in other cell types?).

      (2) In figure 3Q-T, it appears that some Cas9-EGFP+ astrocytes (Q) do not express Sparcl1 (R). Is Sparcl1 expressed in subsets of astrocytes? Does Cas9-EGFP or Sparcl1-TagIn alter Sparcl1 endogenous expression?

      (3) On Page 8, for the explanation of the design of the GEARBOCS construct, the authors have made a self-citation (#43). That was a BioRxiv paper that is being reviewed currently.

      (4) For Figures 4 and 6, the graphs seem to be made in R with the x-axis labeled as "Condition". The y-axis labels are too small to read properly, especially in print. It would be better to make the graphs clearer like Figure 2 and Figure 3.

      (5) On Page 13, "Figures 3V-Y" were referred to. However, there are no Figures 3W, X, and Y.

      (6) There are a few typos in the manuscript, including line 900 "immunofluorescence microscopy images of a Cas9-EGFP-positive astrocytes (green)".

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02465

      Corresponding author(s): Saravanan, Palani

      1. General Statements

      We would like to thank the Review Commons Team for handling our manuscript and the Reviewers for their constructive feedback and suggestions. In our revised manuscript, we have addressed and incorporated all the major suggestions of the reviewers, and we have also added new significant data on the role of Tropomyosin in regulation of endocytosis through its control over actin monomer pool maintenance and actin network homeostasis. We believe that with all these additions, our study has significantly gained in quality, strength of conclusions made, and scope for future work.

      2. Point-by-point description of the revisions

      Reviewer #1

      Evidence, reproducibility and clarity

      There are 2 Major issues -

      Having an -ala-ser- linker between the GFP and tropomyosin mimics acetylation. This is not the case, and more likely the this linker acts as a spacer that allows tropomyosin polymers to form on the actin, and without it there is steric hindrance. A similar result would be seen with a simple flexible uncharged linker. It has been shown in a number of labs that the GFP itself masks the effect of the charge on the amino terminal methionine. This is consistent with NMR, crystallographic and cryo structural studies. Biochemical studies should be presented to demonstrate that the impact of a linker for the conclusions stated to be made, which provide the basis of a major part of this study.

      Response: We would like to clarify that all mNG-Tpm constructs used in our study contain a 40 amino-acid (aa) flexible linker between the N-terminal mNG fluorescent protein and the Tpm protein as per our earlier published study (Hatano et al., 2022). During initial optimization, we have also experimented with linker length and the 40aa-linker length works optimally for clear visualization of Tpm onto actin cable structures in budding yeast, fission yeast (both S. pombe and S. japonicus), and mammalian cells (Hatano et al., 2022). These constructs have also been used since in other studies (Wirshing et al., 2023; Wirshing and Goode, 2024) and currently represents the best possible strategy to visualize Tpm isoforms in live cells. In our study, we characterized these proteins for functionality and found that both mNG-Tpm1 and mNG-Tpm2 were functional and can rescue the synthetic lethality observed in Dtpm1Dtpm2 cells. During our study, we observed that mNG-Tpm1 expression from a single-copy integration vector did not restore full length actin cables in Dtpm1 cells (Fig. 1B, 1C). We hypothesized that this could be a result of reduced binding affinity of the tagged tropomyosin due to lack of normal N-terminal acetylation which stabilizes the N-terminus. The 40aa linker is unstructured and may not be able to neutralize the charge on the N-terminal Methionine, thus, we tried to insert -Ala-Ser- dipeptide which has been routinely used in vitro biochemical studies to stabilize the N-terminal helix and impart a similar effect as the N-terminal acetylation (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) by restoring normal binding affinity of Tpm to F-actin (Monteiro et al., 1994; Greenfield et al., 1994). We observed that addition of the -Ala-Ser- dipeptide to mNG-Tpm fusion, indeed, restored full length actin cables when expressed in Dtpm1 cells, performing significantly better in our in vivo experiments (Fig. 1B, 1C). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may stabilize the N-terminus of Tpm and allow normal head-to-tail dimer formation (Greenfield et al., 1994; Monteiro et al., 1994; Frye et al., 2010). We have discussed this in our new Discussion section (Lines 350-372). Since, the addition of -AS- dipeptide was referred to as "acetyl-mimic (am)" in a previous study (Alioto et al., 2016), we continued to use the same nomenclature in our study. Now as per your suggestions and to be more accurate, we have renamed "mNG-amTpm" constructs as "mNG-ASTpm" throughout the study to not confuse or claim that -AS- addition mimics acetylation. In any case, we have not seen any other ill effect of -AS- dipeptide introduction in addition to our 40 amino acid linker suggesting that it can also be considered part of the linker. Although, we agree with the reviewer that biochemical characterization of the effect of linker would be important to determine, we strongly believe that it is currently outside the scope of this study and should be taken up for future work with these proteins. Our study has majorly aimed to understand the functionality and utility of these mNG-Tpm fusion proteins for cell biological experiments in vivo, which was not done earlier in any other model system.

      My major issue however is making the conclusions stated here, using an amino-terminal fluorescent protein tag that s likely to impact any type of isoform selection at the end of the actin polymer. Carboxyl terminal tagging may have a reduced effect, but modifying the ends of the tropomyosin, which are integral in stabilising end to end interactions with itself on the actin filament, never mind any section systems that may/maynot be present in the cell, is not appropriate.

      Response: __ We agree with the reviewer that N-terminal tagging of tropomyosin may have effects on its function, but these constructs represent the only fluorescently tagged functional tropomyosin constructs available currently while C-terminal fusions are either non-functional (we were unable to construct strains with endogenous Tpm1 gene fused C-terminally to GFP) or do not localize clearly to actin structures (See __Figure R1 showing endogenous C-terminally tagged Tpm2-yeGFP that shows almost no localization to actin cables). To our knowledge, our study represents a first effort to understand the question of spatial sorting of Tpm isoforms, Tpm1 and Tpm2, in S. cerevisiae and any future developments with better visualization strategies for Tpm isoforms without compromising native N-terminal modifications and function will help improve our understanding of these proteins in vivo. We have also discussed these possibilities in our new Discussion section (Lines 391-396).

      Significance

      This paper explores the role of formin in determining the localisation of different tropomyosins to different actin polymers and cellular locations within budding yeast. Previous studies have indicated a role for the actin nucleating proteins in recruiting different forms of tropomyosin within fission yeast. In mammalian cells there is variation in the role of formins in affiecting tropomyosin localisation - variation between cell type. There is also evidence that other actin binding proteins, and tropomyosin abundance play roles in regulating the tropomyosin-actin association according to cell type. Biochemical studies have previously been undertaken using budding yeast and fission yeast that the core actin polymerisation domain of formins do not interact with tropomyosin directly. The significance of this study, given the above, and the concerns raised is not clear to this reviewer.

      Response: __Our study explores multiple facets of Tropomyosin (Tpm) biology. The lack of functional tagged Tpm has been a major bottleneck in understanding Tpm isoform diversity and function across eukaryotes. In our study, we characterize the first functional tagged Tpm proteins (Fig. 1, Fig. S1) and use them to answer long-standing questions about localization and spatial sorting of Tpm isoforms in the model organism S. cerevisiae (Fig. 2, Fig. 3, Fig. S2, Fig. S3). We also discover that the dual Tpm isoforms, Tpm1 and Tpm2, are functionally redundant for actin cable organization and function, while having gained divergent functions in Retrograde Actin Cable Flow (RACF) (Fig. 4, Fig. 5A-D, Fig. S4, Fig. S5, Fig. S6). We have now added new data on role of global Tpm levels controlling endocytosis via maintenance of normal linear-to-branched actin network homeostasis in S. cerevisiae (Fig. 5E-G)__. We respectfully differ with the reviewer on their assessment of our study and request the reviewer to read our revised manuscript which discusses the significance, limitations, and future perspectives of our study in detail.

      Reviewer #2

      Evidence, reproducibility and clarity

      This manuscript by Dhar, Bagyashree, Palani and colleagues examines the function of the two tropomyosins, Tpm1 and Tpm2, in the budding yeast S. cerevisiae. Previous work had shown that deletion of tpm1 and tpm2 causes synthetic lethality, indicating overlapping function, but also proposed that the two tropomyosins have distinct functions, based on the observation that strong overexpression of Tpm2 causes defects in bud placement and fails to rescue tpm1∆ phenotypes (Drees et al, JCB 1995). The manuscript first describes very functional mNeonGreen tagged version of Tpm1 and Tpm2, where an alanine-serine dipeptide is inserted before the first methionine to mimic acetylation. It then proposes that the Tpm1 and Tpm2 exhibit indistinguishable localization and that low level overexpression (?) of Tpm2 can replace Tpm1 for stabilization of actin cables and cell polarization, suggesting almost completely redundant functions. They also propose on specific function of Tpm2 in regulating retrograde actin cable flow.

      Overall, the data are very clean, well presented and quantified, but in several places are not fully convincing of the claims. Because the claims that Tpm1 and Tpm2 have largely overlapping function and localization are in contradiction to previous publication in S. cerevisiae and also different from data published in other organisms, it is important to consolidate them. There are fairly simple experiments that should be done to consolidate the claims of indistinguishable localization, and levels of expression, for which the authors have excellent reagents at their disposal.

      1. Functionality of the acetyl-mimic tagged tropomyosin constructs: The overall very good functionality of the tagged Tpm constructs is convincing, but the authors should be more accurate in their description, as their data show that they are not perfectly functional. For instance, the use of "completely functional" in the discussion is excessive. In the results, the statement that mNG-Tpm1 expression restores normal growth (page 3, line 69) is inaccurate. Fig S1C shows that tpm1∆ cells expressing mNG-Tpm1 grow more slowly than WT cells. (The next part of the same sentence, stating it only partially restores length of actin cables should cite only Fig S1E, not S1F.) Similarly, the growth curve in Fig S1C suggests that mNG-amTpm1, while better than mNG-Tpm1 does not fully restore the growth defect observed in tpm1∆ (in contrast to what is stated on p. 4 line 81). A more stringent test of functionality would be to probe whether mNG-amTpm1 can rescue the synthetic lethality of the tpm1∆ tpm2∆ double mutant, which would also allow to test the functionality of mNG-amTpm2.

      __Response: __We would like to thank the reviewer for his feedback and suggestions. Based on the suggestions, we have now more accurately described the growth rescue observed by expression of mNG-ASTpm1 in Dtpm1 cells in the revised text. We have also removed the use of "completely functional" to describe mNG-Tpm functionality and corrected any errors in Figure citations in the revised manuscript.

      As per reviewers' suggestion, we have now tested rescue of synthetic lethality of Dtpm1Dtpm2 cells by expression of all mNG-Tpm variants and we find that all of them are capable of restoring the viability of Dtpm1Dtpm2 cells when expressed under their native promoters via a high-copy plasmid (pRS425) (Fig. S1E) but only mNG-Tpm1 and mNG-ASTpm1 restored viability of Dtpm1Dtpm2 cells when expressed under their native promoters via an integration plasmid (pRS305) (Fig. S1F). These results clearly suggest that while both mNG-Tpm1 and mNG-Tpm2 constructs are functional, Tpm1 tolerates the presence of the N-terminal fluorescent tag better than Tpm2. These observations now enhance our understanding of the functionality of these mNG-Tpm fusion proteins and will be a useful resource for their usage and experimental design in future studies in vivo.


      It would also be nice to comment on whether the mNG-amTpm constructs really mimicking acetylation. Given the Ala-Ser peptide ahead of the starting Met is linked N-terminally to mNG, it is not immediately clear it will have the same effect as a free acetyl group decorating the N-terminal Met.

      Response: __We agree with the reviewer's observation and for the sake of clarity and accuracy, we have now renamed "mNG-amTpm" with "mNG-ASTpm". The use of -AS- dipeptide is very routine in studies with Tpm (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) and its addition restores normal binding affinities to Tpm proteins purified from E. coli (Monteiro et al., 1994). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may help neutralize the impact of a freely protonated Met on the alpha-helical structure and stabilize the N-terminus helix of Tpm and allow normal head-to-tail dimer formation (Monteiro et al., 1994; Frye et al., 2010; Greenfield et al., 1994). Consistent with this, we also observe a highly significant improvement in actin cable length when expressing mNG-ASTpm as compared to mNG-Tpm in Dtpm1 cells, suggesting an improvement in function probably due to increased binding affinity (Fig. 1B, 1C). We have also discussed this in our answer to Question 1 of Reviewer 1 and the revised manuscript (Lines 350-372)__.

      __ Localization of Tpm1 and Tpm2:__Given the claimed full functionality of mNG-amTpm constructs and the conclusion from this section of the paper that relative local concentrations may be the major factor in determining tropomyosin localization to actin filament networks, I am concerned that the analysis of localization was done in strains expressing the mNG-amTpm construct in addition to the endogenous untagged genes. (This is not expressly stated in the manuscript, but it is my understanding from reading the strain list.) This means that there is a roughly two-fold overexpression of either tropomyosin, which may affect localization. A comparison of localization in strains where the tagged copy is the sole Tpm1 (respectively Tpm2) source would be much more conclusive. This is important as the results are making a claim in opposition to previous work and observation in other organisms.

      Response: __We thank the reviewer for this observation and their suggestions. We agree that relative concentrations of functional Tpm1 and Tpm2 in cells may influence the extent of their localizations. As per the reviewer's suggestion, we have now conducted our quantitative analysis in cells lacking endogenous Tpm1 and only expressing mNG-ASTpm1 from an integrated plasmid copy at the leu2 locus and the data is presented in new __Figure S3. We compared Tpm-bound cable length (Fig. S3A, S3B) __and Tpm-bound cable number (Fig. S3A, S3C) along with actin cable length (Fig. S3D, S3E) and actin cable number (Fig. S3D, S3F) in wildtype, Dbnr1, and Dbni1 cells. Our analysis revealed that mNG-ASTpm1 localized to actin cable structures in wildtype, Dbnr1, and Dbni1 cells and the decrease observed in Tpm-bound cable length and number upon loss of either Bnr1 or Bni1, was accompanied by a corresponding decrease in actin cable length and number upon loss of either Bnr1 or Bni1. Thus, this analysis reached the same conclusion as our earlier analysis (Fig. 2) that mNG-ASTpm1 does not show preference between Bnr1 and Bni1-made actin cables. mNG-ASTpm2 did not restore functionality, when expressed as single integrated copy, in Dtpm1Dtpm2 cells (new results in __Fig. S1E, S1F, S5A) thus, we could not conduct a similar analysis for mNG-ASTpm2. This suggests that use of mNG-ASTpm2 would be more meaningful in the presence of endogenous Tpm2 as previously done in Fig. 2D-F.

      We have now also performed additional yeast mating experiments with cells lacking bnr1 gene and expressing either mNG-ASTpm1 or mNG-ASTpm2 and the data is shown in new Figure 3. From these observations, we observe that both mNG-ASTpm1 and mNG-ASTpm2 localize to the mating fusion focus in a Bnr1-independent manner (Fig. 3B, 3D) and suggests that they bind to Bni1-made actin cables that are involved in polarized growth of the mating projection. These results also add strength to our conclusion that Tpm1 and Tpm2 localize to actin cables irrespective of which formin nucleates them. Overall, these new results highlight and reiterate our model of formin-isoform independent binding of Tpm1 and Tpm2 in S. cerevisiae.

      In fact, although the authors conclude that the tropomyosins do not exhibit preference for certain actin structures, in the images shown in Fig 2A and 2D, there seems to be a clear bias for Tpm1 to decorate cables preferentially in the bud, while Tpm2 appears to decorate them more in the mother cell. Is that a bias of these chosen images, or does this reflect a more general trend? A quantification of relative fluorescence levels in bud/mother may be indicative.

      Response: __We thank the reviewer for pointing this out. Our data and analysis do not suggest that Tpm1 and Tpm2 show any preference for decoration of cables in either mother or bud compartment. As per the reviewer's suggestion, we have now quantified the ratio of mean mNG fluorescence in the bud to the mother (Bud/Mother) and the data is shown in __Figure. S2G. The bud-to-mother ratio was similar for mNG-ASTpm1 and mNG-ASTpm2 in wildtype cells, and the ratio increased in Dbnr1 cells and decreased in Dbni1 cells for both mNG-ASTpm1 and mNG-ASTpm2 (Fig. S2G). __This is consistent with the decreased actin cable signal in the mother compartment in Dbnr1 cells and decreased actin cable signal in the bud compartment in Dbni1 cells (Fig. S2A-D). Thus, our new analysis shows that both mNG-ASTpm1 and mNG-ASTpm2 have similar changes in their concentration (mean fluorescence) upon loss of either formins Bnr1 and Bni1 and show similar ratios in wildtype cells as well, suggesting no preference for binding to actin cables in either bud or mother compartment. The preference inferred by the reviewer seems to be a bias of the current representative images and thus, we have replaced the images in __Fig. 2A, 2D to more accurately represent the population.

      The difficulty in preserving mNG-amTpm after fixation means that authors could not quantify relative Tpm/actin cable directly in single fixed cells. Did they try to label actin cables with Lifeact instead of using phalloidin, and thus perform the analysis in live cells?

      __Response: __We did not use LifeAct for our analysis as LifeAct is known to cause expression-dependent artefacts in cells (Courtemanche et al., 2016; Flores et al., 2019; Xu and Du, 2021) and it also competes with proteins that regulate normal cable organization like cofilin. Use of LifeAct would necessitate standardization of expression to avoid such artefacts in vivo. Also, phalloidin staining provides the best staining of actin cables and allows for better quantitative results in our experiments. The use of LifeAct along with mNG-Tpm would also require optimization with a red fluorescent protein which usually tend to have lower brightness and photostability. However, during the revision of our study, a new study from Prof. Goode's lab has developed and optimized expression of new LifeAct-3xmNeonGreen constructs for use in S. cerevisiae (Wirshing and Goode, 2024). Thus, a similar strategy of using tandem copies of bright and photostable red fluorescent proteins can be explored for use in combination with mNG-Tpm in the future studies.

      __ Complementation of tpm1∆ by Tpm2:__

      I am confused about the quantification of Tpm2 expression by RT-PCR shown in Fig S3F. This figure shows that tpm2 mRNA expression levels are identical in cells with an empty plasmid or with a tpm2-encoding plasmid. In both strains (which lack tpm1), as well as in the WT control, one tpm2 copy is in the genome, but only one strain has a second tpm2 copy expressed from a centromeric plasmid, yet the results of the RT-PCR are not significantly different. (If anything, the levels are lower in the tpm2 plasmid-containing strain.) The methods state that the primers were chosen in the gene, so likely do not distinguish the genomic from the plasmid allele. However, the text claims a 1-fold increase in expression, and functional experiments show a near-complete rescue of the tpm1∆ phenotype. This is surprising and confusing and should be resolved to understand whether higher levels of Tpm2 are really the cause of the observed phenotypic rescue.

      The authors could for instance probe for protein levels. I believe they have specific nanobodies against tropomyosin. If not, they could use expression of functional mNG-amTpm2 to rescue tpm1∆. Here, the expression of the protein can be directly visualized.

      Response: __We thank the reviewer for pointing this out. We would like to clarify that in our RT-qPCR experiments, the primers were chosen within the Tpm1 and Tpm2 gene and do not distinguish between transcripts from endogenous or plasmid copy. We have now mentioned this in the Materials and Methods section of the revised manuscript. So, they represent a relative estimate of the total mRNA of these genes present in cells. We were consistently able to detect ~19 fold increase in Tpm2 total mRNA levels as compared to wildtype and ∆tpm1 cells (Fig. S4D) when tpm2 was expressed from a high-copy plasmid (pRS425). This increase in Tpm2 mRNA levels was accompanied by a rescue in growth (Fig. S4A) and actin cable organization (Fig. S4B) of ∆tpm1 cells containing pRS425-ptpm2TPM2. When tpm2 was expressed from a low-copy number centromeric plasmid (pRS316), we detected a ~2 fold increase in Tpm2 transcript levels when using the tpm1 promoter and no significant change was detected when using tpm2 promoter (Fig. S4E)__. We have made sure that these results are accurately described in the revised manuscript.

      As per the reviewer's suggestion, we have now conducted a more extensive analysis to ascertain the expression levels of Tpm2 in our experiments and the data is now presented in new Figure S5. We used mNG-ASTpm1 and mNG-ASTpm2 to rescue growth of ∆tpm1 (Fig. S5A) and correlated growth rescue with protein levels using quantified fluorescence intensity (Fig. S5B, S5C) and western blotting (anti-mNG) (Fig. S5D, S5E). We find that ∆tpm1 cells containing pRS425-ptpm1mNG-ASTpm1 had the highest protein level followed by pRS425-ptpm2 mNG-ASTpm2, pRS305-ptpm1mNG-ASTpm1, and the least protein levels were found in pRS305-ptpm2 mNG-ASTpm2 containing ∆tpm1 cells in both fluorescence intensity and western blotting quantifications (Fig. S5C, S5E). Surprisingly, we were not able to detect any protein levels in ∆tpm1 cells containing pRS305-ptpm2 mNG-ASTpm2 with western blotting (Fig. S5D) which was also accompanied by a lack of growth rescue (Fig. S5A). This most likely due to weak expression from the native Tpm2 promoter which is consistent with previous literature (Drees et al., 1995). Taken together, this data clearly shows that the rescue observed in ∆tpm1 cells is caused due to increased expression of mNG-ASTpm2 in cells and supports our conclusion that increase in Tpm2 expression leads to restoration of normal growth and actin cables in ∆tpm1 cells.

      __ Specific function of Tpm2:__

      The data about the retrograde actin flow is interpreted as a specific function of Tpm2, but there is no evidence that Tpm1 does not also share this function. To reach this conclusion one would have to investigate retrograde actin flow in tpm1∆ (difficult as cables are weak) or for instance test whether Tpm1 expression restores normal retrograde flow to tpm2∆ cells.

      Response: __We agree with the reviewer and as per the reviewer's suggestion, we have performed another experiment which include wildtype, ∆tpm2 cells containing empty pRS316 vector or pRS316-ptpm2TPM1 or pRS316-ptpm1TPM1. We find that RACF rate increased in ∆tpm2 cells as compared to wildtype and was restored to wildtype levels by exogenous expression of Tpm2 but not Tpm1 (Fig. S6E, S6F). Since, actin cables were not detectable in ∆tpm1 cells, we measured RACF rates in ∆tpm1 cells expressing Tpm1 or Tpm2 from a plasmid copy, which restored actin cables as shown previously in __Fig. 5A-C. We observed that RACF rates were similar to wildtype in ∆tpm1 cells expressing either Tpm1 or Tpm2 (Fig. S6E, S6F), suggesting that Tpm1 is not involved in RACF regulation. Taken together, these results suggest a specific role for Tpm2, but not Tpm1, in RACF regulation in S. cerevisiae, consistent with previous literature (Huckaba et al., 2006).

      Minor comments: __1.__The growth of tpm1∆ with empty plasmid in Fig S3A is strangely strong (different from other figures).

      Response: __ We thank the reviewer for pointing this out. We have now repeated the drop test multiple times (__Fig. R2), but we see similar growth rates as the drop test already presented in Fig. S4A. __At this point, it would be difficult to ascertain the basis of this difference observed at 23{degree sign}C and 30{degree sign}C, but a recent study that links leucine levels to actin cable stability (Sing et al., 2022) might explain the faster growth of these ∆tpm1 cells containing a leu2 gene carrying high-copy plasmid. However, there is no effect on growth rate at 37{degree sign}C which is consistent with other spot assays shown in __Fig. S1D, S4F, S5A.


      Significance

      I am a cell biologist with expertise in both yeast and actin cytoskeleton.

      The question of how tropomyosin localizes to specific actin networks is still open and a current avenue of study. Studies in other organisms have shown that different tropomyosin isoforms, or their acetylated vs non-acetylated versions, localize to distinct actin structures. Proposed mechanisms include competition with other ABPs and preference imposed by the formin nucleator. The current study re-examines the function and localization of the two tropomyosin proteins from the budding yeast and reaches the conclusion that they co-decorate all formin-assembled structures and also share most functions, leading to the simple conclusion that the more important contribution of Tpm1 is simply linked to its higher expression. Once consolidated, the study will appeal to researchers working on the actin cytoskeleton.

      We thank the reviewer for their positive assessment of our work and the constructive feedback that has greatly improved the quality of our study. After addressing the points raised by the reviewer, we believe that our study has significantly gained in consolidating the major conclusions of our work.

      **Referees cross-commenting**

      Having read the other reviewers' comments, I do agree with reviewer 1 that it is not clear whether the Ala-Ser linker really mimics acetylation. I am less convinced than reviewer 3 that the key conclusions of the study are well supported, notably the issue of Tpm2 expression levels is not convincing to me.

      Response: __We acknowledge the reviewer's point about the effect of Ala-Ser dipeptide and would request the reviewer to refer to our response to Reviewer 1 (Question 1) for a more detailed discussion on this. We have also extensively addressed the question of Tpm2 expression levels as suggested by the reviewer (new data in __Figure S5) which has further strengthened the conclusions of our study.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:__ The study presents the first fully functional fluorescently tagged Tpm proteins, enabling detailed probing of Tpm isoform localization and functions in live cells. The authors created a modified fusion protein, mNG-amTpm, which mimicked native N-terminal acetylation and restored both normal growth and full-length actin cables in yeast cells lacking native Tpm proteins, demonstrating the constructs' full functionality. They also show that Tpm1 and Tpm2 do not have a preference for actin cables nucleated by different formins (Bnr1 and Bni1). Contrary to previous reports, the study found that overexpressing Tpm2 in Δtpm1 cells could restore growth rates and actin cable formation. Furthermore, it is shown that despite its evolutionary divergence, Tpm2 retains actin-protective functions and can compensate for the loss of Tpm1, contributing to cellular robustness.

      Major and Minor Comments: 1. The key conclusions of this paper are convincing. However, I suggest that more detail be provided regarding the image analysis used in this study. Specifically, since threshold settings can impact the quality of the generated data and, therefore, its interpretation, it would be useful to see a representative example of the quantification methods used for actin cable length/number (as in refs. 80 and 81) and mitochondria morphology. These could be presented as Supplemental Figures. Additionally, it would help to interpret the results if the authors could be more specific about the statistical tests that were used.

      Response: __We agree with the reviewer's suggestions and have now updated our Materials and Methods section to describe the image analysis pipelines used in more detail. We have also added examples of quantification procedure for actin cable length/number and mitochondrial morphology as an additional Supplementary __Figure S7. Briefly, the following pipelines were used:

      • Actin cable length and number analysis: This was done exactly as mentioned in McInally et al., 2021, McInally et al., 2022. Actin cables were manually traced in Fiji as shown in __ S7A__, and then the traces files for each cell were run through a Python script (adapted from McInally et al., 2022) that outputs mean actin cable length and number per cell.
      • Mitochondria morphology: Mitochondria Analyzer plug-in in Fiji was used to segment out the mitochondrial fragments. The parameters used for 2D segmentation of mitochondria were first optimized using "2D Threshold Optimize" to find the most accurate segmentation and then the same parameters were run on all images. After segmentation of the mitochondrial network, measurements of fragment number were done using "Analyze Particles" function in Fiji. An example of the overall process is shown in __ S7B.__ As per the reviewer's suggestion, we have now included the description of the statistical test used in the Figure Legends of each Figure in the revised manuscript. We have used One-Way Anova with Tukey's Multiple Comparison test, Kruskal-Wallis test with Dunn's Multiple Comparisons, and Unpaired Two-tailed t-test using the in-built functions in GraphPad Prism (v.6.04).

      **Referees cross-commenting**

      I agree with both reviewers 1 and 2 regarding the issues with the Ala-Ser acetylation mimic and Tpm2 expression levels, respectively. I think the authors should be more careful in how they frame the results, but I consider that these issues do not invalidate the main conclusions of this study.

      Response: __We acknowledge the reviewer's concern about the Ala-Ser dipeptide and would request them to refer our earlier discussion on this in response to Reviewer 1 (Question 1) and Reviewer 2 (Question 2). We would also request the reviewer to refer to our answer to Reviewer 2 (Question 6) where we have extensively addressed the question of Tpm2 expression levels and their effect on rescue of Dtpm1 cells. This data is now presented as new __Figure S5 in our revised manuscript.

      Reviewer#3 (Significance (Required)):

      The finding that Tpm2 can compensate for the loss of Tpm1, restoring actin cable organization and normal growth rates, challenges previous assumptions about the non-redundant functions of these isoforms in Saccharomyces cerevisiae (ref. 16). It also supports a concentration-dependent and formin-independent localization of Tpm isoforms to actin cables in this species. The development of fully functional fluorescently tagged Tpm proteins is a significant methodological advancement. This advancement overcomes previous visualization challenges and allows for accurate in vivo studies of Tpm function and regulation in S. cerevisiae.

      The findings will be of particular interest to researchers in the field of cellular and molecular biology who study actin cytoskeleton dynamics. Additionally, it will be relevant for those utilizing advanced microscopy and live-cell imaging techniques.

      As a researcher, my experience lies in cytoskeleton dynamics and protein interactions, though I do not have specific experience related to tropomyosin. I use different yeast species as models and routinely employ live-cell imaging as a tool.

      We thank the reviewer for their positive outlook and assessment of our study. We have incorporated all their suggestions, and we are confident that the revised manuscript has significantly improved in quality due to these additions.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      There are 2 Major issues:

      1. Having an -ala-ser- linker between the GFP and tropomyosin mimics acetylation. This is not the case, and more likely the this linker acts as a spacer that allows tropomyosin polymers to form on the actin, and without it there is steric hindrance. A similar result would be seen with a simple flexible uncharged linker. It has been shown in a number of labs that the GFP itself masks the effect of the charge on the amino terminal methionine. This is consistent with NMR, crystallographic and cryo structural studies. Biochemical studies should be presented to demonstrate that the impact of a linker for the conclusions stated to be made, which provide the basis of a major part of this study.
      2. My major issue however is making the conclusions stated here, using an amino-terminal fluorescent protein tag that s likely to impact any type of isoform selection at the end of the actin polymer. Carboxyl terminal tagging may have a reduced effect, but modifying the ends of the tropomyosin, which are integral in stabilising end to end interactions with itself on the actin filament, never mind any section systems that may/maynot be present in the cell, is not appropriate.

      Significance

      This paper explores the role of formin in determining the localisation of different tropomyosins to different actin polymers and cellular locations within budding yeast. Previous studies have indicated a role for the actin nucleating proteins in recruiting different forms of tropomyosin within fission yeast. In mammalian cells there is variation in the role of formins in affiecting tropomyosin localisation - variation between cell type. There is also evidence that other actin binding proteins, and tropomyosin abundance play roles in regulating the tropomyosin-actin association according to cell type. Biochemical studies have previously been undertaken using budding yeast and fission yeast that the core actin polymerisation domain of formins do not interact with tropomyosin directly.

      The significance of this study, given the above, and the concerns raised is not clear to this reviewer.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript by Bai et al concerns the expression of Scleraxis (Scx) by muscle satellite cells (SCs) and the role of that gene in regenerative myogenesis. The authors report the expression of this gene associated with tendon development in satellite cells. Genetic deletion of Scx in SCs impairs muscle regeneration, and the authors provide evidence that SCs deficient in Scx are impaired in terms of population growth and cellular differentiation. Overall, this report provides evidence of the role of this gene, unexpectedly, in SC function and adult regenerative myogenesis.

      We appreciate the comments and thank her/him for the support.

      There are a few minor points of concern.

      (1) From the data in Figure 1, it appears that all of the SCs, assessed both in vitro and in vivo, express Scx. The authors refer to a scRNA-seq dataset from their lab and one report from mdx mouse muscle that also reveals this unexpected gene expression pattern. Has this been observed in many other scRNA-seq datasets? If not, it would be important to discuss potential explanations as to why this has not been reported previously.

      Thanks for this question regarding data in Fig.1. We did initially use immunofluorescence staining of Pax7 and GFP on muscle sections and primary myoblast cultures prepared from Tg-ScxGFP mice to conclude that Scx was expressed in satellite cells (SCs). In addition to the cited mdx RNA-seq data, we have included a re-analysis of a published scRNA-seq data set in Fig.2E (Dell'Orso et al., Development, 2019), and our own scRNA-seq data (Fig.S5D, F). We have now re-examined an additional scRNA-seq data set of TA muscles at various regeneration time points (De Micheli et al., Cell Rep. 2020), in which Scx expression was detected in MuSC progenitors and mature muscle cells. We have added the De Micheli et al. reference and the re-analysis of that scRNA-seq data set for Scx expression as an additional panel in Fig. 2E, with accompanying text (p. 7, ln. 4-6). Thus, our immunostaining results are consistent with scRNA-seq data from our and two other independent scRNA-seq data sets.

      We think that Scx expression in the adult myogenic lineage was not previously reported mainly because its expression level was low, and might be dismissed as spurious detection. Additionally, detecting such low expression levels requires sophisticated detection methods with high capture efficiency. Previous studies have noted limitations in transcript capture or transcription factor dropout in 10x Genomics-based datasets (Lambert et al., Cell, 2018; Pokhilko et al., Genome Res., 2021). The most likely and straightforward reason is that Scx was simply not a focus in prior studies amid so many other genes of interest. We have now added this last explanation in the text (p.7, ln. 8-9), following the re-analyses of Scx expression in published scRNA-seq data sets.

      (2) A major point of the paper, as illustrated in Fig. 3, is that Scx-neg SCs fail to produce normal myofibers and renewed SCs following injury/regeneration. They mention in the text that there was no increased PCD by Caspase staining at 5 DPI. A failure of cell survival during the process of SC activation, proliferation, and cell fate determination (differentiation versus self-renewal) would explain most of the in vivo data. As such, this conclusion would seem to warrant a more detailed analysis in terms of at least one or two other time points and an independent method for detecting dead/dying cells (the in vitro data in Fig. 4F is also based on an assessment of activated Caspase to assess cell death). The in vitro data presented later in Fig. S4G, H do suggest an increase in cell loss during proliferative expansion of Scx-neg SCs. To what extent does cell loss (by whatever mechanism of cell death) explain both the in vivo findings of impaired regeneration and even the in vitro studies showing slower population expansion in the absence of Scx?

      We appreciate these constructive suggestions. Based on the number of available control and cKO animals, we were limited to one additional time point at 3 dpi to assess PCD by TUNEL in vivo. We were disappointed again to find no appreciable levels of PCD at 3 dpi by TUNEL (new Fig.S4I), thus no quantifications were included. We also re-did the in vitro experiment using purified SCs and monitored PCD by staining for cleaved Caspase-3 using a validated tube of antibodies (positive staining after 6 h of treatment by 1 mM staurosporine of control and ScxcKO cells; included as new Fig. S4J and legend). We were pleased to find an increase of cleaved Caspase3 stained cells, i.e. PCD, of Scx-cKO SCs at day 4 in culture, compared to that of the control. We have now replaced the old Fig. 4F with new Fig.4F and 4G to document PCD. We also provided new text/legend for these new data (p.10. ln. 2-10; new legend for Fig. 4F and 4G).

      (3) I'm not sure I understand the description of the data or the conclusions in the section titled "Basement membrane-myofiber interaction in control and Scx cKO mice". Is there something specific to the regeneration from Scx-neg myogenic progenitors, or would these findings be expected in any experimental condition in which myogenesis was significantly delayed, with much smaller fibers in the experimental group at 5 DPI?

      We very much appreciate this comment. We agree that there is unlikely anything specific about the regeneration from Scx-negative myogenic progenitors. Unfilled or empty ghost fibers (basement membrane remnant) are expected due to small fiber and poor regeneration in the ScxcKO mice at 5 dpi. We have removed the subtitle and changed the content to an expected consequence rather than something special (p. 8, ln. 19-22).

      (4) The data presented in Fig. 4B showing differences in the purity of SC populations isolated by FACS depending on the reporter used are interesting and important for the field. The authors offer the explanation of exosomal transfer of Tdt from SCs to non-SCs. The data are consistent with this explanation, but no data are presented to support this. Are there any other explanations that the authors have considered and that could be readily tested?

      Thanks for highlighting this phenomenon. We struggled with the SC purity issue for a long time. The project started with using the R26RtdT reporter for tdT’s paraformaldehyde  resistant strong fluorescence (fixation) to aid visualization in vivo. Later, when we used the tdT signal to purify SCs by FACS, we found that only 80% sorted tdT+ cells are Pax7+. We then switched to the R26RYFP reporter, from which we achieved much higher purity (95%) of SCs (Pax7+) by FACS. As such, we also repeated and confirmed many in vivo experimental results using the R26RYFP reporter (included in the manuscript). Due to the low purity of tdT+SCs by FACS, we discontinued that mouse colony after we confirmed the superior utility of the R26RYFP reporter for SC isolation.

      We sincerely apologize for not being able to conduct further testable experiments on this intriguing phenomenon. However, this issue has since been addressed and published by Murach et al., iScience, (2021). Like our experience, they found non-satellite mononuclear cells with tdT fluorescence after TMX treatment when SCs were isolated via FACS. To determine this was not due to off-target recombination or a technical artifact from tissue processing, they conducted extensive analyses. They found that the tdT+ mononuclear cells included fibrogenic cells (fibroblasts and FAPs), immune cells/macrophages, and endothelial cells. Additionally, they confirmed the significant potential of extracellular vesicle (EV)-mediated cargo transfer, which facilitates the transfer of full-length tdT transcript from lineage-marked Pax7+ cells to those mononuclear cells. We have modified the text to emphasize and acknowledge their contribution to this important point, and explained the difference between YFP and tdT reporter alleles in more detail (p.9, ln. 11-17).

      (5) The Cut&Run data of Fig. 6 certainly provide evidence of direct Scx targets, especially since the authors used a novel knock-in strain for analyses. The enrichment of E-box motifs provides support for the 207 intersecting genes (scRNA-seq and Cut&Run) being direct targets. However, the rationale elaborated in the final paragraph of the Results section proposing how 4 of these genes account for the phenotypes on the Scx-neg cells and tissues is just speculation, however reasonable. These are not data, and these considerations would be more appropriate in the Discussion in the absence of any validation studies.

      We agree with this comment and have moved speculations into the Discussion (p. 15, ln. 4-15, and from p. 18, ln. 4 to p. 19, ln. 4).

      Reviewer #2 (Public Review):

      Summary:

      Scx is a well-established marker for tenocytes, but the expression in myogenic-lineage cells was unexplored. In this study, the authors performed lineage-trace and scRNA-seq analyses and demonstrated that Scx is expressed in activated SCs. Further, the authors showed that Scx is essential for muscle regeneration using conditional KO mice and identified the target genes of Scx in myogenic cells, which differ from those of tendons.

      Strengths:

      Sometimes, lineage-trace experiments cause mis-expression and do not reflect the endogenous expression of the target gene. In this study, the authors carefully analyzed the unexpected expression of Scx in myogenic cells using some mouse lines and scRNA-seq data.

      We appreciate the comments and thank her/him for noting the strengths of our manuscript.

      Weaknesses:

      Scx protein expression has not been verified.

      We are aware of this weakness. We had previously used Western blotting (WB) using cultured SCs from control and ScxcKO mice, but did not detect endogenous Scx protein even in the control. In response to this comment, we have re-done several WB experiments using new lysates from control and ScxcKO SCs and two commercial antibodies: anti-Scx antibody 1 from Abcam (ab58655) and anti-Scx antibody 2 from Invitrogen (PA5-23943). These antibodies have been reported to detect endogenous Scx protein in tendon cells in Spang et al., BMC Musculoskelet Disord (2016) and  Bochon et al., Int J Stem Cells (2021). Despite our best efforts, we were not able to detect a reliable Scx band. We have also conducted immunofluorescence using these two antibodies. Still, we failed to detect a difference of staining signals between control and cKO SCs using these antibodies. Lastly, we conducted immunofluorescence using the ScxTy1 myoblasts and we did not find the staining signal coinciding with the Ty1 signal (by double staining). We have been very frustrated by not knowing what caused this technical difficulty in our hands. Given that these were negative data, we did not include them. However, we do hope that the combined data from scRNA-seq, ScxCreERT2 lineage-tracing, Tg-ScxGFP expression, and ScxTy1 knock-in together are deemed sufficient to make up for the deficiency of data for endogenous Scx protein in regenerative myogenic cells.

      Response to Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      p. 8: The text refers to Fig. 3I, but this should be Fig. 3H.

      We apologize for the confusion. Please note that by keeping all 14 dpi data in the same row, we placed Fig.3I at an unconventional/unexpected position, i.e., next to 3D &3E, and above 3F-H. We were aware that this unconventional placement could cause confusion, and it did. With that said, we have now re-arranged the subfigures (same data content) so that the updated Fig.3 contains subfigures in the expected and proper spatial order. We double-checked the figure referral in the text (p. 8, ln. 16-17) and the text is correct – just that the original Fig.3I should have been at the original Fig.3H position and that is now corrected.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given that Scx binds to the E-box and regulates gene expression, it is of interest to know the relevance between MyoD and Scx. If possible, the reviewer recommends to include some discussions.

      Thanks for the comment. MyoD1 is a well-known transcript factor regulating myogenesis, whereas Scx is primarily studied in tenocytes and other connective tissues. We agree that our new findings deserve a discussion regarding the relevance between MyoD1 and Scx.  We have added a description of their differences in the discussion and two new references (p.19, ln. 7-17).

      (2) Considering that Scx is a transcriptional factor, it is interesting that Scx-GFP was not detected in the nuclei of regenerated myofibers. Could the subcellular localization of Scx-GFP provide some insights into the function of Scx as a transcription factor during muscle regeneration?

      Tg-ScxGFP is a transgenic line generated by random insertion into the genome (Pryce et al., 2007; cited). The plasmid used for transgenesis was constructed by replacing most of Scx’s first exon with GFP, and including ~ 9Kb flanking regulatory sequences. As such, the ScxGFP is not a fusion gene, but rather that the GFP expression is regulated by Scx promoter and enhancer(s). This GFP reporter lacks a nuclear localization signal (NLS), hence it is mainly detected in the cytoplasm; some nuclear signal is detected, presumably due to GFP’s small size permitting passive diffusion into the nucleus. Thus, the GFP signal is used as a reporter for Scx expression, but GFP subcellular localization does not provide insight into Scx function per se. Conversely, ScxTy1/Ty1 is a knock-in allele created by fusing a triple-Ty1 tag (3XTy1) to the C-terminus of Scx, and we observed that Ty1 is located in the nucleus by the immunofluorescent staining. We used the Ty1 epitope to carry out CUT&RUN experiments to gain insight to the function of Scx as a transcription factor.

      (3) Fig1D The number of arrows in the Merge image is not matched with others. In addition, the star mark in the Pax7 image is likely an error.

      Apologies. We have now corrected these errors in the revised Fig.1D.

      (4) FigS1A Is there only one myofiber shown in the dashed line in this image? It is unclear why only this myofiber is surrounded by the dashed line.

      The dashed line encircles a single fiber because it was not visible in the provided image. However, there are 3 fibers in this image. Because we did not immuno-stain for myofibers here, we circled one fiber for illustration. For clarity, we brightened the background (of the entire original images) so the background signals from myofiber boundaries are discernable without outlines.

      (5) FigS1B There was no overlapped DAPI staining in the Myogenin+ cell. DAPI-staining should be present in Myogenin+ cells because myogenin is located in the nucleus.

      Fig.S1B is immuno-staining for MyoD , and we marked one MyoD+DAPI+GFP+ cell/nucleus. Fig.S1C is immune-staining for Myogenin, and we also marked one (cell/nucleus) that is triple positive.

      (6) The position of the asterisk for the ScxGFP in FigS1D is misaligned. In addition, the position is not matched with Fig1C. Because all myofibers are Scx-positive, it is strange that only one myofiber has an asterisk. The reviewer suggests removing the mark.

      Thank you for pointing out these errors. We have now corrected the misalignment and removed the unnecessary asterisk.

    1. I hate broccoli, chain saws, patchouli, bra- clasps that draw dents in your back, roadblocks, men in black kneesocks, sandals and shorts

      this list personalizes hatred to the speaker

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewers

      We thank all three reviewers for their time and engagement, for their generally supportive comments, and for raising some important concerns. We are pleased to submit a significantly revised manuscript where we tried to accommodate all suggested changes and extensions. Importantly, we have included additional experiments that support the relevance of FACT for the overall stability of the inner kinetochore. Below is a detailed point-to-point response. Changes to the manuscript relative to the original submission have been highlighted at the end of this response.


      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      Summary: The authors investigated molecular interactions between CCAN and FACT complexes. They revealed contact domains in FACT and the cognate subcomplexes of CCAN by in vitro reconstitution from recombinant proteins followed by SEC and pull-down assay.

      They also revealed a couple of potential means to control interactions between FACT and the CCAN. They conclude that phosphorylation of FACT by CK2 is essential for binding to the CCAN; and CENP-A nucleosomes or DNA prevent CCAN from interacting with FACT.

      Major comments:

      The authors show that phosphorylation of FACT is essential for interaction with CCAN.

      They argue that this phosphorylation is partly catalysed by CK2.

      My concerns are:

      -1- The authors assume that the sites phosphorylated in insect cell are also phosphorylated in human cells. However, it is not demonstrated which residues are phosphorylated in human cells and whether they match those from insect cells. Whether phosphorylation of recombinant proteins in insect cells is physiologically relevant to mammalian is uncertain. Kinetochore components are not very well conserved evolutionarily, thus their regulation may be different.

      We thank the reviewer for these remarks, which we answer together with point 2 below.

      -2- They identify several residues which are phosphorylated by CK2 in vitro. However, these are not necessarily the same sites as those phosphorylated in insect cells or more importantly in human cells. The in vitro phosphorylation by CK2 did not restore binding affinity in full, suggesting phosphorylation at other sites may be critical for interaction with CCAN. Further evidence is required to support the claim that those sites are phosphorylated in vivo and important for integrity of kinetochores in mitosis.

      Our analysis of FACT phosphorylation represents a relatively small part of a very data-rich paper, and was not meant to be exhaustive. Nonetheless, the reviewer's comments are important and well received. We agree that we have no definitive evidence that the same sites are phosphorylated in insect cells, in vitro, and in human cells. However, it is quite remarkable, and supports specificity, that the interaction with FACT, lost after dephosphorylation in vitro, is restored with CK2 and not with three additional mitotic kinases (CDK1, Aurora B, and PLK1 - Figure S8D). We also note that S437, S444 and S667 of SSRP1, which were phosphorylated by CK2 in vitro, were also detected as phosphorylated sites on recombinant FACT purified from insect cells (Table S1). So collectively, while we agree with the reviewer that the analysis of FACT phosphorylation is not complete, it does significantly add to the manuscript and more generally to the FACT field.

      Minor comments:

      Figure 1H

      I am confused with 4 stars shown at the top of the right plot. If the 4 stars are meant to show a significant difference, then the statement in the text (line 123) is not correct.

      "SSRP1 localization was also largely unaffected ..."

      Similar discrepancies are found in Figures 3H (line 212), Figures S2 (line 122), S5I (line 197), and S6I (line209). Figure S6H is not referred to anywhere.

      There is no description for the numbers at the top. Are they mean values? Do red bars represent S.D.?

      We thank the reviewer for these comments. In this revised version of the manuscript, we have substantially improved the quantification and statistical analysis. The main problem with the previous automated analysis is that the non-circular shape of the CREST-staining led to inconsistencies with the statistical analysis and the statement. In contrast, the same analysis works well when the CENP-C signal was used for KT identification (e.g. in Figure 3), as CENP-C staining yields well separated circular signals ideally suited for our automated identification of individual KTs and subsequent retrieval of fluorescence intensities. We have therefore modified our analysis macro for all experiments where CREST was used as a reference. We used Othsu-thresholding of the DAPI signal for generating a segmentation mask per each cell. Then, integrated cell intensities were calculated for each fluorescence channel based on the DAPI reference mask. With these adjustments, the statistical analyses (Figures 1, S2, S3) support the claim presented. We have updated the Methods and Results sections to reflect the revised analysis.

      The numbers on top of the graphs are median values, bars represent interquartile ranges. We have now included the description in figure legends.

      We appreciate your feedback, which prompted us to clarify and enhance the rigor of our approach.

      We are now referring to Fig. S6H in the text.

      Figure 1D

      There is no description of R* to the right of gels.

      We have added a description of R* to the relevant figure legend.

      Figure S2

      A 4 hour nocodazole treatment is too short to drive all cells into mitosis. Is the data taken from mitotic cells only?

      Yes, the data are taken only from the mitotic population. We have now clarified this in the figure legend.

      Reviewer #1 (Significance (Required)):

      The interaction of FACT with kinetochore components has been known for several years. However how FACT contributes to architecture or function of kinetochore is not very well understood. How the FACT complex, which is known for its established role as a histone chaperone, is involved in kinetochore assembly/architecture will attract interest in several fields of basic research including epigenetics, mitosis, structural biology.

      We are grateful to the reviewer for this supportive statement that recognizes the broad potential interest of the manuscript.

      Identification of CCAN subunits that interact with FACT is important for future analysis to understand the kinetochore function of FACT. The authors identified OPQRU and CHIKM subcomplex in addition to TW as FACT-interacting domains. These subcomplexes are geographically scattered in a 3D model of CCAN holocomplex. Stoichiometry of CCAN and FACT might be informative whether a single or multiple FACT binds to the multiple sites of CCAN. The authors do not address whether these multiple sites are occupied simultaneously, separately or sequentially.

      We thank the reviewer for raising this point. As mentioned in the discussion, we have not yet been able to perform a structural analysis of the FACT/CCAN complex to determine its stoichiometry. However, we have now added a newexperiment (Figure S1B,C) where we quantified in-gel tryptophan fluorescence after analytical size-exclusion chromatography. This strongly suggests that FACT and CCAN form a complex with a 1:1 stoichiometry. Nevertheless, we cannot comment on which sites are occupied.

      The statement at the end of Abstract (lines 23-25) is a speculative hypothesis without evidence for "a pool of CCAN that is not stably integrated into chromatin", "chaperoning CCAN", and "stabilisation of CCAN".

      We agree with the reviewer that this is speculative, and have therefore modified the Abstract to clearly indicate this point.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      FACT is a histone chaperone and is involved in various events on chromatin such as transcription and replication. In addition, FACT interacts with various kinetochore components, suggesting potential functions at the kinetochore. However, it is largely unclear how FACT functions in the kinetochore. Authors of this MS took the biochemical approach to understand roles of FACT in the kinetochore.

      Authors demonstrated that FACT forms a complex with the constitutive centromere associated network (CCAN), which contains 16 subunits on centromeric chromatin, using multiple binding sites. They also showed that casein kinase II (CK2) phosphorylated FACT and dephosphorylated FACT did not bind to CCAN. Furthermore, they displayed that DNA addition disrupt the stable FACT-CCAN complex.

      Overall, while authors have done solid and high-quality biochemical analyses (these are elegant), it is still unclear how FACT plays its roles in the kinetochore. Simple knockout or knockdown study on FACT might be complicated, because FACT has multi-functions. If authors can identify specific regions of FACT for interaction with CCAN, they would put specific mutations into FACT to analyze phenotype. Although they did not reach a high-resolution structure for the FACT-CCAN complex, they can utilize AlphaFold and test specific interaction regions, biochemically. Then, using such information, significance of FACT-CCAN interaction might be testable in cells. Such a kind of study would be expected. In summary, biochemical parts are beautiful, but the paper did not address significance of FACT-CCAN interaction.

      We thank the reviewer for praising the biochemical work in our manuscript. The reviewer, however, also underscored the limits of our functional analysis. The reviewer proposes generating separation-of-function mutants in a minimal kinetochore-binding region. Indeed, we have identified the minimal domain for the interaction of FACT with kinetochores. However, this information is insufficient for a reliable functional analysis at this stage, as the region we identified encompasses the AIDs and the phosphorylation-rich region, both of which have been previously shown to be important for transcription and other functions. Furthermore, any suitable mutant should be tested in cells devoid of endogenous FACT, raising the concern that the resulting phenotype may be indirect.

      Nonetheless, as we wanted to provide at least an initial answer to the reviewer's concern, we enriched the manuscript by adding experiments in a recently published cell line (K562-SSRP1-dTAG) where FACT levels can be controlled with a small molecule (Žumer et al. Mol Cell., 2024) and that the authors generously shared with us. In this line, which grows in suspension and that we had to adapt to grow on a substrate for imaging, we were able to deplete FACT while cells were arrested in mitosis. We are glad to report that we found a significant reduction in the kinetochore levels of CENP-TW after this treatment, which is consistent with other conclusions from our study. These experiments add an initial functional characterization of the interaction of FACT with kinetochores, and extend the significance of the manuscript. We refer to these results again below in response to specific point 5.

      Specific point

      Authors showed nice mitotic localization of FACT. Can they observe this localization by a usual IF? Using GFP fusion, do they observe kinetochore localization like IF experiments?

      The localization of FACT was observed using pre-extraction and fixation followed by antibody staining. We have now added a panel demonstrating mitotic localization of GFP-SSRP1 at the kinetochore in transiently transfected RPE-1 cells (Fig. S2A).

      On page 7, authors tested CENP-C binding to FACT and they conclude that C-teminal region of CENP-C preferentially binds to FACT. However, they used N-terminal region of CENP-C (2-545) for CCAN-FACT complex formation in entire MS. therefore, this is complicated, and story on CENP-C N-terminal region can be removed from this MS.

      We were only able to purify full-length CENP-C with tags at the N- and C-terminus, including an MBP tag with a stabilizing effect. At the time of our first successful purification of full-length CENP-C, we had already established the solid phase assay using MBPFACT as a bait on amylose beads and CENP-C2-545HIKM as one of the preys. As we cannot obtain stable full-length CENP-C without MBP, this form of CENP-C is incompatible with our pull-down assay. Nevertheless, CENP-C2-545 still has low affinity for FACT, influencing the FACT/CCAN interaction independent of the PEST-rich region. We, therefore, opted for keeping this information in the manuscript.

      On page 9, authors suddenly focus on N-terminal tails of CENP-Q and CENP-U. Why did they focus on this region. They should explain this. If they perform a structural prediction, they should describe this point.

      Thanks for raising this point. We focused on the N-terminal tails of CENP-QU because they are known interaction hubs. We have now added a sentence to introduce this concept and citing the appropriate literature.

      I agree the fact that FACT phosphorylation is required for FACT-CCAN interaction. They may explain how the phosphorylation contributes to stable FACT-CCAN interaction.

      We have added a sentence explaining that FACT is known to mimic DNA, and negative charges due to phosphorylation could drive this effect. A more detailed mechanistic understanding will require identifying specific phosphorylation sites required for the interaction.

      Readers really want to know phenotype, if FACT-CCAN interaction was compromised without disruption pf CCAN assembly in cells. Although I agree that FACT has some functions in the kinetochore, it is still unclear what FACT does in the kinetochore.

      We wholeheartedly agree with the reviewer. As depletion of FACT by RNAi required 48 h, an unreasonably long time for this multifunctional protein. We therefore turned to engineering RPE-1 cells for rapid degradation of SSRP1. While these attempts were unsucessful, earlier this year, Žumer et al. Mol Cell., 2024 reported generating a K562-SSRP1-dTAG cell line growing in suspension. As already reported, this cell line now allowed to demonstrate a significant effect on the kinetochore stability of CENP-TW upon mitotic depletion of FACT.

      Reviewer #2 (Significance (Required)):

      As mentioned above, biochemical parts are beautiful, but the paper did not address significance of FACT-CCAN interaction.

      We thank the reviewer for this positive assessment. In this revision, we have obtained initial evidence that FACT contributes to kinetochore stability.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Main findings:

      The major findings of this paper are:

      Detailed dissection of CCAN subunit interactions and requirements to bind the FACT complex using in vitro reconstituted components Binding of FACT and nucleosomes to CENP-C are mutually exclusive FACT phosphorylation by CK2 enhances interaction with CCAN FACT localization in mitosis depends on the CCAN CCAN binding to FACT is outcompeted by DNA and CENP-A nucleosomes The claims and conclusions of the paper are supported by the data and do not require additional experiments. All experiments include biological replicates and appropriate controls.

      We are thankful to the reviewer for this very positive assessment of our work.

      Minor comments

      Intro: • Line 81: In humans [...], here it is worth mentioning that in Drosophila, FACT subunits have been shown to interact directly with the CENP-A assembly factor CAL1 (Ref 61). This paper is perfunctorily cited once in the context of its implication of FACT in CENP-A deposition, but it merits more consideration when setting up the foundational context for the present work.

      We have extended the Introduction and discuss the specified paper more thoroughly.

      Figure 1:

      1F: Add insets.

      Done.

      1G and all other figures containing IFs: Avoid red/green color scheme (red-green colorblindness is fairly common, affecting about 8% of men).

      Done.

      1E: Please add a table summarizing interactions.

      We have included this table as Fig. S1E.

      Results: • It's fine to direct readers to previous work in which you reconstituted the CCAN, but the text should mention how proteins are exogenously expressed and purified (as done for FACT in line 247).

      Done.

      Line 113: FACT has been shown to localize to the mitotic kinetochore also in Drosophila (Ref 61).

      We have included this information now.

      Line 132: The authors should cite work from the Drosophila system as well when they mention centromere transcriptional activity in mitosis (e.g. https://doi.org/10.1083/jcb.201404097; https://doi.org/10.1083/jcb.201611087; and Ref 61).

      We have added these citations.

      Figure 2F: The authors could use a line to mark the region interacting with FACT and that interacting with CENP-A to help summarize the data in this diagram.

      Done.

      Figure 4: Highlight constructs n.2 (FACT^TRUNC) since these are sufficient for interaction (e.g., use a box around them).

      Done.

      Line 276: "CCAN decodes CENP-A^NCP..." What do the authors mean by "decodes"? This whole sentence would benefit from clearer language.

      We thank the reviewer for this suggestion and have aimed for clearer language.

      Figure 6: There's a lot of information in these experiments that would benefit from two schematics, one showing the mechanism of FACT + CCAN binding with DNA and one with CENP-A nucleosomes.

      Done.

      Discussion: The authors discuss FACT localization at kinetochores in mitosis. In Drosophila Schneider cells, FACT is observed enriched at the centromeres in both mitosis and interphase (Ref 61). The authors mention their inability to detect FACT in interphase in the discussion, but I did not find this mentioned in the results. The authors state that FACT "redistributes to the entire chromosome" upon entry into interphase. They cite Figure 1F in reference to this statement, but the staining in the early G1 panel is difficult to interpret with the low signal/noise scaling of CENP-C and the lack of zoom insets. Their protocol uses a pre-extraction step with Triton prior to fixation. Apparently, this was not enough to reveal FACT in interphase, but better images and a brief description are warranted.

      We have now added a staining of SSRP1 in interphase in the panel.

      It is unlikely that FACT would change its localization pattern in mitosis. A more likely possibility is that in mitosis FACT is not redistributed, but rather more tightly bound (and thus less easily extracted by Triton treatment) at kinetochores, while along the arms FACT is more readily removed by extraction because at this time transcription is repressed and FACT is likely less engaged in transcription-mediated histone destabilization.

      We thank the reviewer for these remarks and have updated the Discussion.

      Given the well-known function of FACT in transcription and the many studies linking transcription to centromere maintenance, including with the involvement of FACT, the model that "the localization of FACT at the kinetochore coincides with active centromeric transcription in mitosis and interphase" is very tempting. A speculative model would go a long way to help the reader visualize all these complex aspects of FACT's interactions and possible functions.

      We agree with the reviewer that such a model is tempting. However, we also feel that it would be rather speculative at this stage and we feel that the manuscript does not provide sufficient data to support the model.

      Reviewer #3 (Significance (Required)):

      The strongest aspect of the study is the detailed characterization of protein-protein interactions, as well as competition with DNA and CENP-A nucleosomes. The siRNA experiments in cells complement this largely in vitro study. However, a limitation of the study is that it does not shed light on what FACT might be doing at the centromere. Additionally, it does not sufficiently provide context for these findings in relation to previous studies that have demonstrated the roles of FACT at the centromere in budding yeast, fission yeast, and Drosophila. Nonetheless, this study provides valuable insights into the details of FACT interactions at the kinetochore and will be of interest to readers interested in centromeres and kinetochore. I am a centromere biologist with molecular and cell biology expertise.

      We are very grateful to the reviewer for his/her support.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      (1) The technology requires a halo-tagged derivation of the active compound, and the linked position will have a huge impact on the potential "target hits" of the molecules. Given the fact that most of the active molecules lack of structure-activity relationship information, it is very challenging to identify the optimal position of the halo tag linkage.

      We appreciate your insightful comment. While finding the optimal position to attach a chemical linker to a small molecule of interest is indeed a challenging but necessary step, this is a common difficulty across all target-ID methods, except for those that are modification-free, as we described in Discussion. However, modification-free approaches such as DARTS, CETSA, and TPP have their own limitations, such as low sensitivity and a high false-positive rate. Additionally, DARTS and SPROX are limited to use with cell lysates. Please refer to the introduction in our manuscript for more details on these approaches. On the other hand, synthesizing HTL derivatives is relatively straightforward compared to other modifications, and we provide helpful guidelines for chemical linker design, provided the optimal chemical moiety has been identified, which is crucial for target identification. We selected dasatinib and HCQ/CQ as model compounds because previous studies offered insights into their derivative synthesis. Our data also show that DH5 retains strong kinase inhibitory activity (Figure 4—figure supplement 2), and DC661-H1 demonstrates potent inhibition of autophagy (Figure 6—figure supplement 1). For novel compounds, conducting a thorough structure-activity relationship (SAR) study is essential to determine the optimal position for HTL derivative synthesis.

      (2) Although POST-IT works in zebrafish embryos, there is still a long way to go for the broad application of the technology in other animal models.

      Thank you for your constructive comment. Yes, there is still a long way to go in developing the POST-IT system for broader applications in other animal models, especially in mice. However, we hope that our study provides valuable insights and inspiration to scientists and experts for applying the POST-IT system in various models. We are also committed to further improving its applicability.

      (3) The authors identified SEPHS2 as a new potential target of dasatinib and further validated the direct binding of dasatinib with this protein. However, considering the super strong activity of dasatinib against c-Src (sub nanomolar IC50 value), it is hard to conclude the contribution of SEPHS2 binding (micromolar potency) to its antitumor activity.

      Thank you for your insightful comment. We agree that the anticancer activity of dasatinib primarily results from inhibiting tyrosine kinases such as SRC and ABL. However, SEPHS2 contains an “opal" termination codon, UGA, at the 60th amino acid residue, which codes for selenocysteine. Due to the technical challenge of expressing selenoproteins in E. coli, we mutated it to cysteine for expression in E. coli to avoid premature translation termination, as described in the Materials and Methods section. Although the purified recombinant SEPHS2 shows a Kd of about 10 µM for dasatinib, the binding affinity to endogenous SEPHS2 may be higher since selenocysteine is larger and more electronegative than cysteine. This presents an interesting area for future investigation. Furthermore, our study of dasatinib’s binding to SEPHS2 could help facilitate the development of new SEPHS2 inhibitors, potentially targeting the active site of SEPHS2.

      Reviewer #3 (Public review):

      (1) Target Specificity: It is crucial for the authors to differentiate between the primary targets of the POST-IT system and those identified as side effects. This distinction is essential for assessing the specificity and utility of the technology.

      Thank you for your insightful comment. Drugs inevitably bind to various proteins with differing affinities, which can contribute to both side effects and beneficial outcomes. Typically, the primary targets exhibit high affinities. In this manuscript, we ranked the identified protein targets of DH5 based on affinity from mass spectrometry and p-values (Fig. 5A), and for DC661-H1, we used the SILAC ratio (Fig. 6A). We also individually assessed many drug-protein binding affinities using the MST assay, as well as in vitro and in cellulo assays, demonstrating their specificity. Moreover, we believe it is essential to identify as many protein targets as possible at physiological drug concentrations to better understand the drug’s side effects. Of course, further investigation is required to assess the roles and effects of these target proteins.

      (2) In Vivo Target Identification: The manuscript lacks detailed clarity on which specific targets were successfully identified in the in vivo experiments. Expanding on this information would provide a clearer view of the system's effectiveness and scope in complex biological settings.

      Thank you for your insightful comment regarding in vivo target identification. In this manuscript, we utilized a cell line as the primary method for in vivo target identification and validation after optimizing our system in test tubes. We successfully validated many of the targets identified using our POST-IT system (Figure 6—figure supplement 3). To demonstrate the proof of principle for in vivo application, we employed zebrafish embryos as an in vivo model, showing that endogenous SRC can be effectively pulled down by DH5 treatment (Fig. 7). While we could have explored the entire proteome to identify endogenous target proteins in zebrafish that bind to DH5 or dasatinib, we felt this would extend beyond our original scope, given that we have already demonstrated POST-IT’s ability to identify target proteins for dasatinib. Specific target identification and validation are crucial when using zebrafish for drug discovery. Additionally, we acknowledge that drugs likely interact with a range of protein targets in living organisms and may undergo metabolism and interactions within the circulatory system, which we address in our discussion.

      (3) Reproducibility and Scalability: Discussion on the reproducibility of the POST-IT system across various experimental setups and biological models, as well as its scalability for larger-scale drug discovery programs, would be beneficial.

      Thank you for the suggestion. While our system has shown  high reproducibility in our experiments, further improving both reproducibility and scalability would be advantageous. One potential approach to address this is through the generation of stable-expressing cell lines and transgenic zebrafish lines, which we have discussed in the revised manuscript. Establishing stable cell lines with robust POST-IT expression could enhance scalability for drug discovery applications.

      (4) Quantitative Analysis: A more detailed quantitative analysis of the protein interactions identified by POST-IT, including statistical significance and comparative data against other technologies, would enhance the manuscript.

      Thank you for your suggestion. In our assessment of drug-protein affinity, we included Kd values as quantitative measures using MST assays. The protein targets of dasatinib identified through mass spectrometry are also accompanied by p-values for quantitative analysis (Fig. 5A), and the detailed procedures are described in the Material and methods section. While it is challenging to provide direct comparative data against other technologies, our system successfully identified many known target proteins for dasatinib, as well as SEPHS2 and VPS37C as new targets for dasatinib and for HCQ/CQ, respectively, which were not detected by other methods.

      (5) Technological Limitations: The authors should discuss any limitations or potential pitfalls of the POST-IT system, which would be crucial for future users and for guiding subsequent improvements.

      Thank you for your insightful suggestion We agree that clearly defining the technological limitations is important. Therefore, we have expanded our original discussion on the limitations of our POST-IT system (Discussion section, paragraph 6).

      (6) Long-Term Stability and Activity: Information on the long-term stability and activity of the POST-IT components in different biological environments would ensure the reliability of the system in prolonged experiments.

      Yes, this is an important question. We did not notice any stability or toxicity issues with Halo-PafA and Pup substrates in HEK293T cells or zebrafish, which is an important factor for stable cell lines and transgenic zebrafish lines. However, HTL derivatives of the drug could be toxic or unstable due to the nature of the drug or its metabolism, which needs to be taken into account when designing experiments, and we have included this in the Discussion.

      (7) Comparison with Existing Technologies: A detailed comparison with existing proximity tagging and target identification technologies would help position POST-IT within the current landscape, highlighting its unique advantages and potential drawbacks.

      We appreciate your valuable feedback and agree that such comparisons are crucial. We have included a detailed overview and comparison of existing proximity-tagging systems and their related target identification technologies in the Introduction (lines 78-100) and Discussion (lines 391-412), highlighting their respective pros and cons. Additionally, we have expanded the discussion to further compare these technologies with our POST-IT system, addressing its advantages and limitations (lines 378-390, lines 448-467). We hope this provides sufficient context and information to effectively position POST-IT among the landscape of proximity-tagging target identification technologies.

      (8) Concerns Regarding Overexposed Bands: Several figures in the manuscript, specifically Figure 3A, 3B, 3C, 3F, 3G, Figure 4D, and the second panels in Figure 7C as well as some figures in the supplementary file, exhibit overexposed bands.

      We appreciate your astute observation regarding the overexposed bands and apologize for any confusion. The “overexposed” bands represent the unpupylated proteins, while the bands above them correspond to the pupylated proteins. We intended to clearly show both pupylated and unpupylated bands, although the latter are generally much weaker. We are currently working on further improving our POST-IT system to enhance pupylation efficiency.

      (9) Innovation Concern: There is a previous paper describing a similar approach: Liu Q, Zheng J, Sun W, Huo Y, Zhang L, Hao P, Wang H, Zhuang M. A proximity-tagging system to identify membrane protein-protein interactions. Nat Methods. 2018 Sep;15(9):715-722. doi: 10.1038/s41592-018-0100-5. Epub 2018 Aug 13. PMID: 30104635. It is crucial to explicitly address the novel aspects of POST-IT in contrast to this earlier work.

      Thank you for bringing this to our attention. Proximity-tagging systems like BioID, TurboID, NEDDylator, and PafA (Lui Q et al., Nat Methods 2018) were initially developed to study protein-protein interactions or identify protein interactomes, as these applications are of broader interest and generally easier to implement. However, applying proximity-tagging systems for small molecule target identification requires significant optimization. As described in the introduction (lines 78-100), target protein identification systems have since been developed using TurboID and NEDDylator (Tao AJ et al., Nat Commun 2023; Hill ZB et al., J Am Chem Soc 2016). It is conceivable that a PafA-based proximity-tagging system could also be adapted for target-ID, and other groups may pursue this approach in the future. Although the PafA-Pup system shows great promise for target-ID applications, extensive optimization was needed to enable its use for this purpose. Finally, we demonstrate that POST-IT offers distinct advantages over other proximity-tagging-based target-ID systems. For more details, please refer to the introduction and discussion sections.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 1- Figure Supplement 1A: The Pup substrate "HB-Pup" is mentioned, but the main text or figure legend provides no introduction or description.

      We appreciate your astute observation. We have added a description in the main text and figure legend as follows: “…and used HB-Pup as a control, which contains 6´His and BCCP at the N terminus of Pup” in the main text (line 142) and “HB, TS, and SBP refer to 6´His and BCCP, twin-STII (Strep-tag II), and streptavidin binding peptide, respectively.” in the Figure 1-figure supplement 1A.

      (2) Figure 1 - Figure Supplement 3B: The authors used TS-sPupK61R as a substrate but did not explain why. The main text mentions that mutating sPup alone did not affect polypupylation, raising the question of why TS-sPupK61R was used in this figure. Furthermore, while the authors state that polypupylation becomes evident after 1 hour of incubation (more pronounced after 2 or 3 hours), the reactions here were conducted for only 30 minutes.

      Thank you for your question. Figure 1 - Figure Supplement 3B was conducted to test self-pupylation levels in the different Halo-PafA derivatives. For this purpose, we could use any Pup substrate such as SBP-sPup and SBPK4R-sPupK61R, instead of Ts-sPup and TS-sPupK61R, as they do not show any differences in pupylation activity. We chose Ts-sPup and TS-sPupK61R simply because any Pup substrates could be used for this purpose. Similarly, we did not need to incubate the reaction for a longer time to detect polypupylation, as our intention was to test “self-pupylation”. We demonstrated in Figure 1 – figure supplement 2 that polypupylation is dependent on the number or position of lysine residues in Pup substrate or tags. The results clearly showed that self-pupylation was almost completely abolished by the Halo8KR mutation. To clarify this, we added the following description in lines 168-169: “Ts-sPup and TS-sPupK61R were chosen as sPup substrates for this experiment, although any Pup substrates could have been used. The levels of self-pupylation were assessed.”

      (3) Line 156: The statement that "the TS-tag completely abolished polypupylation in TS-sPup" is inaccurate. Using TSK8R-sPupK61R as the substrate, several bands appear, which likely represent Halo-PafA with varying degrees of polypupylation. Some bands also appear to correspond to those seen when using TS-sPup as a substrate. The authors should clarify how they distinguish between multipupylation and polypupylation in this case.

      We sincerely appreciate your insight into clarifying the distinction between multipupylation and polypupylation. Polypupylation refers to the addition of a new Pup onto a previously linked Pup on the target protein, akin to polyubiquitination. In contrast, multipupylation involves multiple single pupylations at different positions on the target proteins. Since pupylation occurs exclusively at lysine residues in tag-Pup substrates, mutating all lysine residues to arginine, as in TSK48R-sPupK61R, prevents the mutant tag-Pup from linking to another Pup. This means that only single pupylation can proceed with this type of mutant Pup substrate. If multiple pupylated bands are observed with this mutant substrate, it indicates “multipupylation” rather than “polypupylation”, as shown in Figure 1-figure supplement 2D. The same applies to the pupylation bands in Figure 1-figure supplement 2E and F, as sSBP-sPupK61R and SBPK4R-sPupK61R lack lysine residues. By comparing these multipupylation bands, it is also possible to distinguish them from polypupylation bands, which are marked by yellow arrows. However, after 2-3 pupylation bands, higher-order bands become increasingly difficult to distinguish.

      To clarify the mutation in the TS-tag, we revised the sentence in line 156 from “However, further mutations within the TS-tag completely abolished polypupylation in TS-sPup” to “However, further mutations of two lysine residues within the TS-tag, creating TSK8R-sPupK61R, completely abolished polypupylation in TS-sPup”. Additionally, we have inserted sentences in line 152 to define polypupylation and multipupylation, as described here.

      (4) Line 160: Similar to the above concern about line 156, the claim that SBPK4R and sSBP completely prevented polypupylation is unconvincing and requires more supporting evidence.

      Thank you for raising this concern. As mentioned above, both SBPK4R and sSBP lack lysine residues required for pupylation. As a result, these mutants can only undergo multiple single pupylations on the lysine residues of the target protein, which leads to “multipupylation”. In Figure 1-figure supplement 2E and F, pupylation bands by sSBP-sPupK61R or SBPK4R-sPupK61R do not display doublet bands (one from multipupylation and the other from polypupylation), as seen with SBP-sPup, marked by yellow arrows. Notably, Halo-PafA containing polypupylated branches migrates more slowly than one with an equal number of multipupylation events. To clarify this point, we have added the phrase “as shown in sSBP-sPupK61R and SBP4KR-sPupK61R” at the end of the sentence in line 160.

      (5) Lines 176-177: The authors claim that PafAS126A exhibited reduced polypupylation compared to PafA, but given that PafAS126A may reduce depupylase activity, how could it reduce polypupylation levels? Moreover, it is hard to find any data supporting this conclusion in Figure 1 - Figure Supplement 3B.

      We appreciate your insightful comment. At this point, we do not fully understand how the mutation that reduces depupylase activity also decreases polypupylation. It is possible that PafAS126A has a lower preference for pupylated Pup as a prey, which is required for polypupylation, since depupylase activity depends on recognizing pupylated Pup as a prey to remove it. Nonetheless, Halo-PafAS126A shows reduced levels of higher molecular weight bands compared to Halo-PafA, as shown in Figure 1-figure supplement 3B, while exhibiting increased pupylation in lower molecular weight bands, which represent either multipupylation or low-degree polypupylation. Since higher molecular weight bands (> 150 kD) are likely due to polypupylation, this result suggests reduced polypupylation and increased multipupylation in Halo-PafAS126A. To clarify this in the main text, we have added the following description in line 177: “as evidenced by the decreased levels of high molecular weight bands and an increase in low molecular weight bands”

      (6) POST-IT system in cellulo validation: The system was developed using the Halo-tag, yet the in-cell validation uses FRB and FKBP instead, without explaining this switch. This inconsistency makes the logic of the experiment unclear.

      We appreciate your insightful comment. The interaction between rapamycin and FRB or FKBP is known to be highly specific and robust, making this system useful in various biological contexts. Due to this property, rapamycin can induce interaction between two proteins when one is fused with FRB and the other with FKBP. Before testing or optimizing the POST-IT system in cells, we hypothesized that using the rapamycin-induced interaction between FRB and FKBP could introduce pupylation of the target protein, provided that PafA is fused with FRB or FKBP and the target protein is fused with the other. The results demonstrate that PafA can introduce pupylation of the target protein in a proximity-dependent manner via this chemically induced interaction. To further clarify this in the main text, we modified the original sentence in lines 214-216 as follows: “To mimic drug-target interaction-induced pupylation in live cells and assess the potential of PafA as a proximity-tagging system for target-ID, we incorporated the rapamycin-induced interaction between FRB and FKBP into our PL system, as this interaction between a small molecule and a protein is known to be highly specific and robust (Figure 3—figure supplement 1A).”

      (7) Line 209: The authors decided to use the SBP-tag for further studies due to better performance, but in Figure 3 - Figure supplement 1, they still used the unintroduced HB-Pup as the substrate, which is confusing and lacks explanation.

      Thank you for raising your question. The SBP-tag is not superior to the TS-tag in terms of pupylation activity. However, the TSK8R mutant cannot bind to Strep-Tactin beads, while the SBP mutants, SBPK4R and sSBP, can bind to streptavidin. Therefore, we chose the SBP-tag instead of the TS-tag for further studies as a Pup substrate in POST-IT system, as we needed to pull down the target proteins. HB-Pup is consistently used as a control throughout various experiments, as it is the original Pup substrate. In Figure 3-figure supplement 1B and C, HB-Pup was used to test chemically induced pupylation by PafA. In these cases, it was not so critical which Pup substrate was chosen. Furthermore, we compared HB-Pup and different SBP-sPup substrates in Figure 3-figure supplement 1D, where HB-Pup was used as a control or for comparison. Although pupylation bands with HB-Pup appear more robust, this substrate contains multiple lysine residues, leading to high levels of polypupylation. To make it clear, we modified the sentence in line 209 to “Therefore, we decided to use the SBP-tag as a Pup substrate in the POST-IT system for further studies.”.

      (8) Line 220: Both SBP-sPup and SBPK4R-sPupK61R are described as exhibiting efficient pupylation, but the data show mostly self-pupylation and little to no pupylation of the target protein.

      Thank you for your concern. However, pupylation of the target protein is actually quite substantial, as the intensities of the free form and pupylated proteins are relatively similar, as shown in the upper panel of Figure 3-figure supplement 1D. Self-pupylation is always much higher than target pupylation, because PafA constantly pupylates itself, whereas pupylation of the target protein occurs only through interaction. Furthermore, V5-FRB-mKate2-PafA contains many lysine residues, which increases the levels of self-pupylation.

      (9) Lines 222-224: The authors chose SBPK4R-sPupK61R to avoid polypupylation, although SBP-sPup did not cause detectable polypupylation. Neither substrate caused pupylation of the target protein, so the rationale behind this choice is unclear.

      Thank you for raising your question. Similar to the above comment (#8), please refer to the pupylation bands of the target protein, as shown in the upper panel of Figure 3-figure supplement 1D. The pupylation band of the target protein is quite remarkable, as the intensities of the free form and pupylated proteins are comparable. Additionally, there are no multiple pupylation bands in either case, except for one additional weak multipupylation band, indicating no polypupylation by SBP-sPup, which does not have K-to-R mutations. Of course, SBPK4R-sPupK61R can only undergo single pupylation, as it does not contain lysine residues. Although we did not observe polypupylation by SBP-sPup in this experimental condition, it is possible that SBP-sPup may cause polypupylation under different experimental conditions or with other target proteins. Since SBPK4R-sPupK61R exhibits comparable pupylation of the target protein at least in this experiment setting as SBP-sPup, we selected SBPK4R-sPupK61R as the Pup substrate for POST-IT system to avoid any potential polypupylation that could be caused by SBP-sPup in other cases. We believe that polypupylation can introduce bias into the analysis and hinder the comprehensive discovery of additional target proteins for small molecules.

      (10) Line 224: The authors conclude that rapamycin greatly reduced self-pupylation, but the supporting data are unclear.

      Thank you for your constructive comments on our manuscript. Please refer to the lower panel of Figure 3-figure supplement 1D. When using either SBPK4R-sPupK61R or SBP-sPup, rapamycin treatment results in reduced levels of self-pupylation compared to the no-treatment control. However, we did not observe this reduction with HB-Pup and do not know the reason. To clarify this in the main text, we added the following description to the end of the sentence: “when using either SBPK4R-sPupK61R or SBP-sPup, as shown in the lower panel of Figure 3—figure supplement 1D”

      (11) Line 234: The authors selected an 18-amino acid linker, but given that linkers longer than 10 amino acids enhance labeling, this choice should be explained.

      Thank you for raising your question. In fact, a linker of 10 amino acids (aa) or longer is likely to behave similarly. We chose an 18 aa linker instead of a 40 aa linker primarily for the convenience of cloning and to reduce the potential for DNA sequence recombination associated with longer repeats. Additionally, a longer, flexible linker may behave like an intrinsically disordered protein (Harmon et al., 2017), which can lead to unwanted protein-protein interactions or phase separation. To elaborate on this, we added the following sentences after the sentence in line 233-235: “We chose the 18-amino acid linker instead of the 40-amino acid linker for easier cloning and to lower the risk of DNA recombination from longer repeats. Additionally, a longer, flexible linker may behave like an intrinsically disordered protein (Harmon et al., 2017), an unwanted feature for target-ID.”

      (12) S126A and K172R mutations: The authors claim that these mutations additively enhanced pupylation under cellular conditions, but in Figure 3B, the band intensities appear similar for the wild-type and mutant versions.

      Thank you for raising your concern. Although a single pupylation band appears similar among the three different Halo-PafA proteins, multipupylation bands are slightly but noticeably increased by the S126A and K172R mutations compared to Halo8KR-PafA. Since we used SBPK4R-sPupK61R as a Pup substrate, all higher molecular weight bands result from multipupylation rather than polypupylation. This illustrates why it is preferable to use SBPK4R-sPupK61R over SBP-sPup, as the pupylation bands with SBP-sPup are mixtures of poly- and multipupylation, making it difficult to assess levels of target labeling. To clarify this in the main text, we added the following description after the sentence in line 236: “as the higher molecular weight multipupylation bands are slightly but noticeably increased with these mutations compared to Halo8KR-PafA”

      (13) Line 263: The authors selected DH5 for further experiments due to its efficiency, but the data suggest that the performance of DH1 to DH5 is similar.

      We appreciate your question about the different dasatinib HTL derivatives. However, our data clearly show that DH2-5 derivatives bind significantly more effectively to Halo-PafA in vitro and in live cells compared to DH1 (Figure 4A and B). Additionally, the DH2-5 derivatives result in dramatically increased pupylation of the target protein in vitro and noticeable enhancement in live cells (Figure 4C and D). Among DH2 to DH5, there is no obvious difference in binding to Halo-PafA or pupylation of the target protein. Therefore, we chose DH5, as we believe that the longer linker in DH5 may facilitate the binding of a more diverse range of target proteins to dasatinib, enabling the discovery of additional target proteins.

      (14) Line 309: The authors introduce HCQ and CQ as important drugs but then investigate the mechanism using DC661 without introducing or justifying the choice of this compound.

      Thank you for your point. We explained the reason to choose DC661, a dimer form of CQ, instead of CQ for the synthesis of an HTL derivative in line 310. “assuming that a dimer would enhance binding affinity as previously described.” As the dimer forms of a drug or a small molecule such as testosterone dimers, estrogen dimers, and numerous anticancer drug dimers have been often developed to enhance drug effects (Paquin A et., Molecules 2021). Similarly, dimer forms of HCQ/CQ have been introduced and shown to be more potent (Hrycyna CA et al., ACS Chem Biol 2014; Rebecca VW et al., Cancer Discovery 2019). We expected that using a dimer form might offer higher probability to identify target proteins for HCQ/CQ.

      (15) The authors suggest that multipupylation levels were enhanced but do not explain whether this might benefit the system or introduce other issues. Clarifying this point would provide valuable insight for potential users of this system.

      Thank you for your thoughtful suggestion. Polypupylation likely leads to biased enrichment of a limited set of target proteins, and its levels may not correlate with the binding affinity of target proteins to the small molecule of interest, features that can negatively impact target-ID. In contrast, multipupylation may be correlated with binding affinity or interaction frequency, as we observed increased levels of multipupylation with higher Pup concentrations and longer incubation times. This suggests that target proteins with multiple lysines in proximity to PafA can be sequentially pupylated, starting with the most accessible lysine. However, if a target protein has only one accessible lysine, pupylation will occur only once, regardless of the protein’s affinity to the small molecule. In summary, while polypupylation may be a drawback for target-ID, multipupylation could be useful for both target-ID and understanding binding mode. To elaborate on this, we added the following additional explanation after the sentence in line 152: “, whereas multipupylation is more likely correlated with binding affinity or interaction frequency.”

      (16) The author should address whether the Halotag ligand modification of the drug alters the binding properties between the drug and targets. That may be causing artifact binding of the drug and other proteins.

      Thank you for your insightful comment. Yes, it is true that chemical modifications of the small molecule of interest, such as linker derivatization (e.g., HTL) or photo-affinity labeling, generally lead to reduced activity or affinity compared to the original molecule. Synthesizing a derivative is a common challenge across all target-ID methods, except for modification-free approaches, as we mentioned in the Discussion. However, modification-free methods like DARTS, CETSA, and TPP have their own limitations, including low sensitivity or high false positive rates. Identifying the optimal position for chemical modification on the small molecule of interest is critical. We chose dasatinib and HCQ/CQ as model compounds, because previous studies provided insights into their derivative synthesis. In addition, our data show that DH5 retains robust kinase inhibitory activity (Figure 4-figure supplement 2), and DC661-H1 exhibits potent autophagy inhibition (Figure 6-figure supplement 1). For novel compounds, a thorough structure-activity relationship study is essential to identify the optimal position for HTL derivative synthesis.

      (17) The author stated there is no observable toxicity in zebrafish without providing a detailed analysis or enough data. Further analysis of the expression of Halo-PafA and its substrate sPup influence on toxicity or side effects to the living cells or animals would be needed. It is important for in vivo applications.

      Thank you for your constructive suggestion. We have now included additional experimental data in Figure 7-figure supplement 1, showing no toxicity in zebrafish embryos expressing the POST-IT system. We assessed toxicity in two ways: by injecting the POST-IT DNA plasmid into one-cell-stage embryos for acute expression, and by using embryos from transgenic zebrafish expressing POST-IT under a heat-shock inducible promoter. Neither the injection nor the heat-shock activation of POST-IT expression resulted in any noticeable toxicity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study provides compelling evidence that RAR, rather than its obligate dimerization partner RXR, is functionally limiting for chromatin binding. This manuscript provides a paradigm for how to dissect the complicated regulatory networks formed by dimerizing transcription factor families.

      Dahal and colleagues use advanced SMT techniques to revisit the role of RXR in DNA-binding of the type-2 nuclear receptor (T2NR) RAR. The dominant consensus model for regulated DNA binding of T2NRs posits that they compete for a limited pool of RXR to form an obligate T2NR-RXR dimer. Using advanced SMT and proximity-assisted photoactivation technologies, Dahal et al. now test the effect of manipulating the endogenous pool size of RAR and RXR on heterodimerization and DNA-binding in live U2OS cells. Surprisingly, it turns out that RAR, rather than RXR, is functionally limiting for heterodimerization and chromatin binding. By inference, the relative pool size of various T2NRs expressed in a given cell, rather than RXR, is likely to determine chromatin binding and transcriptional output.

      The conclusions of this study are well supported by the experimental results and provide unexpected novel insights into the functioning of the clinically important class of T2NR TFs. Moreover, the presented results show how the use of novel technologies can put long-standing theories on how transcription factors work upside down. This manuscript provides a paradigm for how to further dissect the complicated regulatory networks formed by T2NRs or other dimerizing TFs. I found this to be a complete story that does not require additional experimental work. However, I do have some suggestions for the authors to consider.

      Reviewer #1 (Recommendations For The Authors):

      (1) Does the increased chromatin binding measured when the RAR levels are increased reflect a higher occupancy of a similar set of loci, or are additional loci bound? The authors could discuss this issue in the context of the published literature. Obviously, this could be addressed experimentally by ChIP-seq or a similar analysis, but this would extend beyond the main topic of this manuscript.

      We attempted to explore this experimentally using ChIP-seq with multiple RAR- and RXR-specific antibodies. Unfortunately, our results were inconclusive, as the antibody enrichment relative to the IgG control was insufficient for reliable interpretation. Specifically, our ChIP-seq enrichment levels were only around 1.5fold, while the accepted standard for meaningful ChIP enrichment is typically at least 2-fold. Due to these technical limitations, we decided to defer these experiments for now.

      However, we agree with the reviewer that understanding whether the increased chromatin binding of RAR reflects higher occupancy at the same set of loci or binding to additional loci is a key question. In similar experiments involving the transcription factor TFEB (Esbin et al., 2024, Genes Dev, doi: 10.1101/gad.351633.124) where an increase in the SMT bound fraction occurred, both scenarios—higher occupancy at known loci and binding to additional loci in ChIP-seq was observed. So, addressing this intriguing possibility in future studies focused on RAR and RXR would be interesting.

      (2) The results presented suggest convincingly that endogenous RXR is normally in excess to its binding partners (in U2OS cells). This point could be strengthened further by reducing RXR levels, e.g., by knocking out 1 allele or the use of shRNAs (although the latter method might be too hard to control). Overexpression of another T2NR might also help determine the buffer capacity of RXR.

      We appreciate the reviewers’ acknowledgment that our results convincingly demonstrate that endogenous RXR is typically in excess relative to its binding partners in U2OS cells. We agree that this conclusion could be further reinforced by experiments such as overexpression of another T2NR to test RXR's buffering capacity. We are actively pursuing follow-up experiments involving overexpression of additional T2NRs to address this question in more detail. These studies are ongoing, and we plan to explore the buffer capacity of RXR more extensively in a future manuscript.

      (3) The ~10% difference in fbound of RAR and RXR (in Figs 1 and 2), while they should be 1:1 dimers, is explained by invoking the expression of RXR isoforms. Can the authors be more specific concerning the nature of these isoforms?

      We have provided detailed information about different T2NRs expressed in U2OS cells according to the Expression Atlas and the Human Protein Atlas Database in Supplementary Table S1. Table S1 specifically shows that both isoforms of RXRα and RXRβ are expressed in U2OS cells. Additionally, the caption of Table S1 explicitly notes the presence of isoform RXRβ in U2OS cells. In the main text, we reference Table S1 when discussing the 10% difference in fbound between RARα and RXRα, and we have now suggested that the expression of RXRβ likely accounts for the observed discrepancy.

      Reviewer #2 (Public Review):

      Summary:

      In the manuscript "Surprising Features of Nuclear Receptor Interaction Networks Revealed by Live Cell Single Molecule Imaging", Dahal et al combine fast single molecule tracking (SMT) with proximity-assisted photoactivation (PAPA) to study the interaction between RARa and RXRa. The prevalent model in the nuclear receptor field suggests that type II nuclear receptors compete for a limiting pool of their partner RXRa. Contrary to this, the authors find that over-expression of RARa but not RXRa increases the fraction of RXRa molecules bound to chromatin, which leads them to conclude that the limiting factor is the abundance of RARa and not RXRa. The authors also perform experiments with a known RARa agonist, all trans retinoic acid (atRA) which has little effect on the bound fraction. Using PAPA, they show that chromatin binding increases upon dimerization of RARa and RXRa.

      Strengths:

      In my view, the biggest strength of this study is the use of endogenously tagged RARa and RXRa cell lines. As the authors point out, most previous studies used either in vitro assays or over-expression. I commend the authors on the generation of single-cell clones of knock-in RARa-Halo and Halo-RXRa. The authors then carefully measure the abundance of each protein using FACS, which is very helpful when comparing across conditions. The manuscript is generally well written and figures are easy to follow. The consistent color-scheme used throughout the manuscript is very helpful.

      Weaknesses:

      (1) Agonist treatment:

      The authors test the effect of all trans retinoic acid (atRA) on the bound fraction of RARa and RXRa and find that "These results are consistent with the classic model in which dimerization and chromatin binding of T2NRs are ligand independent." However, all the agonist treatments are done in media containing FBS. FBS is not chemically defined and has been found to have between 10 and 50 nM atRA (see references in PMID 32359651 for example). The addition of 1 nM or 100 nM atRA is unlikely to result in a strong effect since the medium already contains comparable or higher levels of agonist. To test their hypothesis of ligand-independent dimerization, the authors should deplete the media of atRA by growing the cells in a medium containing charcoal-stripped FBS for at least 24 hours before adding agonist.

      We acknowledge the reviewer's concern regarding the presence of atRA in FBS and agree that it may introduce baseline levels of agonist. However, in our experiments, both the 1 nM and 100 nM atRA treatments resulted in observable changes in RAR expression levels (Figure S3C). Additionally, the luciferase assays demonstrated that 100 nM atRA significantly increased retinoic acid-responsive promoter activity (Figure S1C). Given these clear responses to atRA, we believe the observed lack of effect on the chromatin-bound fraction cannot be attributed to the presence of comparable or higher levels of atRA in the FBS, as the reviewer suggests. Moreover, since our results align with the established literature and do not impact the core findings of our study, we decided not to pursue the suggested experiments with charcoal-stripped FBS in this manuscript.  

      (2) Photobleaching and its effect on bound fraction measurements:

      The authors discard the first 500 to 1000 frames due to the high localization density in the initial frames. This will preferentially discard bound molecules that will bleach in the initial frames of the movie and lead to an over-estimation of the unbound fraction.

      For experiments with over-expression of RAR-Halo and Halo-RXR, the authors state that the cells were pre-bleached and that these frames were used to calculate the mean intensity of the nuclei. When pre-bleaching, bound molecules will preferentially bleach before the diffusing population. This will again lead to an over-representation of the unbound fraction since this is the population that will remain relatively unaffected by the pre-bleaching. Indeed, the bound fraction for over-expressed RARa and RXRa is significantly lower than that for the corresponding knock in lines. To confirm whether this is a biological result, I suggest that the authors either reduce the amount of dye they use so that this pre-bleaching is not necessary or use the direct reactivation strategy they use for their PAPA experiments to eliminate the pre-bleaching step.

      As for the measurement of the nuclear intensity, since the authors have access to multiple HaloTag dyes, they can saturate the HaloTagged proteins with a high concentration of JF646 or JFX650 to measure the mean intensity of the protein while still using the PA-JFX549 for SMT. Together, these will eliminate the need to prebleach or discard any frames.

      The Janelia Fluor dyes used in our experiments are known for their high photostability (Grimm et al., 2021, JACS Au, doi: 10.1021/jacsau.1c00006). During the initial 80 ms imaging to calculate the mean nuclear intensity, the laser power was kept at very low intensity (~3%) for a brief duration (~10 seconds), in contrast to the high-intensity (~100%) used during the tracking experiments, which span around 3 minutes. This low-power illumination does not induce significant photobleaching but merely puts the dyes in a temporary dark state. Therefore, this pre-bleaching step closely resembles the direct reactivation strategy employed in our PAPA experiments.

      To further address the reviewer's concern, we performed a frame cut-off analysis for our SMT movies of endogenous RARα-Halo and over-expressed RARα-Halo (Figure S9B). The analysis shows no significant change in the bound fraction of either endogenous or over-expressed RARα-Halo when discarding the initial 1000 frames. Based on these results, we conclude that the pre-bleaching does not lead to an overestimation of the unbound fraction, and that our experimental approach is robust.

      (3) Heterogeneous expression of the SNAP fusion proteins:

      The cell lines expressing SNAP tagged transgenes shown in Fig S6 have very heterogeneous expression of the SNAP proteins. While the bulk measurements done by Western blotting are useful, while doing single-cell experiments (especially with small numbers - ~20 - of cells), it is important to control for expression levels. Since these transgenic stable lines were not FACS sorted, it would be helpful for the reader to know the spread in the distribution of mean intensities of the SNAP proteins for the cells that the SMT data are presented for. This step is crucial while claiming the absence of an effect upon over-expression and can easily be done with a SNAPTag ligand such as SF650 using the procedure outlined for the over-expressed HaloTag proteins.

      We agree with the reviewer that there is heterogeneity in SNAP protein expression across the transgenic lines. In response to the reviewer’s suggestion, we performed the proposed experiment to assess the distribution of mean intensities for two key experimental conditions: Halo-RXRα with overexpressed RARα-SNAP and HaloRXRα with overexpressed RARαRR-SNAP. These results again confirm that the increase in chromatin-bound fraction of Halo-RXRα is observed only in the presence of RARα capable of heterodimerizing with RXRα, supporting our main conclusion (Figure S9).

      For these experiments, we followed the same labelling procedure described in the methods section for tracking endogenous Halo-tagged proteins alongside transgenic SNAP proteins. As shown in Figure S9, for ~ 70 cell nuclei, the distribution of mean intensities is similar for both conditions, with the bound fraction of Halo-RXRα significantly increasing in the presence of RARα-SNAP compared to RARαRR-SNAP. This analysis underscores that the observed effects are indeed due to the functional differences between the two RARα variants rather than variability in expression levels.

      (4) Definition of bound molecules:

      The authors state that molecules with a diffusion coefficient less than 0.15 um2/s are considered bound and those between 1-15 um2/s are considered unbound. Clarification is needed on how this threshold was determined. In previous publications using saSPT, the authors have used a cutoff of 0.1 um2/s (for example, PMID 36066004, 36322456). Do the results rely on a specific cutoff? A diffusion coefficient by itself is only a useful measure of normal diffusion. Bound molecules are unlikely to be undergoing Brownian motion, but the state array method implemented here does not seem to account for non-normal diffusive modes. How valid is this assumption here?

      We acknowledge the inconsistency in the diffusion coefficient thresholds for defining the chromatin-bound fraction used across our group’s publications. The choice of threshold or cutoff (0.1 µm²/s vs 0.15 µm²/s) is largely arbitrary and does not significantly impact the results. To validate this, we tested the effect of different cutoffs on fbound (%) for endogenously expressed Halo-tagged RARα and RXRα (Figure S10). As shown in Figure S10, there was no substantial difference in fbound (%) calculated using a 0.1 µm²/s versus 0.15 µm²/s cutoff (e.g., RARα clone c156: 47±1% vs 49±1%; RXRα clone D6: 34±1% vs 35±1%). 

      Since we have consistently applied the 0.15 µm²/s cutoff throughout this manuscript across all experimental conditions, the comparative analysis of fbound (%) remains valid. While we agree that a Brownian diffusion model may not fully capture the motion of bound molecules, our state array model accounts for localization error, which likely incorporates some of the chromatin motion features. Moreover, the distinction between bound (<0.15 µm²/s) and unbound (1-15 µm²/s) populations is sufficiently large that using a normal diffusion model is reasonable for our analysis.

      (5) Movies:

      Since this is an imaging manuscript, I request the authors to provide representative movies for all the presented conditions. This is an essential component for a reader to evaluate the data and for them to benchmark their own images if they are to try to reproduce these findings.

      We have now included representative movies for all the SMT experimental conditions presented in the manuscript. Please see data availability section of the manuscript.

      (6) Definition of an ROI:

      The authors state that "ROI of random size but with maximum possible area was selected to fit into the interior of the nuclei" while imaging. However, the readout speed of the Andor iXon Ultra 897 depends on the size of the defined ROI. If the ROI was variable for every movie, how do the authors ensure the same sampling rate?

      We used the frame transfer mode on the Andor iXon Ultra 897 camera for our acquisitions, which allows for fast frame rate measurements without altering the exposure time between frames. Additionally, we verified the metadata of all our movies to ensure a consistent frame interval of 7.4 ms across all conditions. This confirms that the sampling rate was maintained uniformly, despite the variability in ROI size. 

      Reviewer #2 (Recommendations For The Authors):

      (1) 'Hoechst' is mis-spelled.

      We have now corrected this typo in the manuscript.

      (2) Cos7 appears in several places throughout the text. I assume this is a typo. If so, please correct it. If not, please explain if some experiments were done in Cos7 cells and kindly provide a justification for that.

      The use of Cos7 cells is intentional and not a typo. Cos7 cells have been previously utilized in studies investigating the interaction between T2NRs (Kliewer et al., 1992, Nature, doi: 10.1038/355446a0). In our study, due to technical issues with antibodies for coIP in U2OS cells, we initially used Cos7 cells for control experiments to verify that Halo-tagging of RARα and RXRα did not disrupt their interaction, by transiently expressing the constructs in Cos7 cells. Following these control experiments, we confirmed the direct interaction of endogenously expressed RAR and RXR in U2OS cells with their respective binding partners using the SMT-PAPA assay. Since these results confirmed that Halo-tagging did not interfere with RAR-RXR interactions, we chose not to repeat the coIP experiments in U2OS cells.

      Reviewer #3 (Public Review):

      Summary:

      This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.

      Strengths:

      The carefully designed experiments, from knock-in cell constructions to singlemolecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.

      Weaknesses:

      As the authors have mentioned, they have not investigated the effects of other T2NRs or RXR isoforms. These invisible factors leave room for interpretation regarding the origin of chromatin binding of endogenous proteins (Recommendations 4). In the PAPA experiments, overexpressed factors are visualized, but changes in chromatin binding of endogenous proteins due to interactions with the overexpressed proteins have not been investigated. This might be tested by reversing the fluorescent ligands for the Sender and Receiver. Additionally, the PAPA experiments are likely to be strengthened by control experiments (Recommendations 5).

      We agree that this would be an interesting experiment. However, there are three technical challenges that complicate its implementation: First, as demonstrated in our original PAPA paper, dark state formation is less efficient when dyes are conjugated to Halo compared to SNAPf, making the reverse configuration less optimal. Second, SNAPf-tagged proteins have slower labeling kinetics than Halotagged proteins, often resulting in under-labeling of SNAPf. Third, our SNAPf transgenes were integrated polyclonally. Since background PAPA scales with the concentration of the sender-labeled protein, variable concentrations of the senderlabeled SNAPf proteins would introduce significant variability, complicating the interpretation of the background PAPA signal. Due to these concerns, we believe that performing reciprocal measurements with reversed fluorescent ligands may not yield reliable results. 

      Reviewer #3 (Recommendations For The Authors):

      (1) The term "Surprising features" in the title is ambiguous and may force readers to search for what it specifically refers to. Including a word that evokes specific features might be helpful.

      Our findings contradict previous work, which suggested that chromatin binding of T2NRs is regulated by competition for a limited pool of RXR. In contrast, we found that RAR expression can limit RXR chromatin binding, but not the other way around, which challenges the existing model. This unexpected result is what we refer to as a "surprising feature" in our title, and we believe it accurately reflects the novel insights our study provides. We also think that this is clearly conveyed in our manuscript abstract, supporting the use of "Surprising features" in the title. 

      (2) p.3, line 11 - The threshold of 0.15 μm2s-1 seems to be a crucial value directly linked to the value of fbound. What is the rationale for choosing this specific value? If consistent conclusions can be obtained using threshold values that are similar but different, it would strengthen the robustness of the results.

      Please refer to our response to Reviewer #2’s Public Review point 4. The threshold choice is arbitrary and doesn’t affect the overall conclusions. To test this, we compared fbound (%) values calculated using both 0.1 μm²s-1 and 0.15 μm²s-1 cutoffs. For example, with endogenously expressed Halo-tagged RARα (clone c156), we observed fbound values of 47±1% vs 49±1%, and for RXRα (clone D6), 34±1% vs 35±1%, respectively (Figure S10). Since we have consistently applied the 0.15 μm²s-1 cutoff across all experimental conditions in this manuscript, the comparisons of fbound (%) between different conditions are robust and valid.

      (3) p.4, line 13 - "the fbound of endogenous RARα-Halo (47{plus minus}1%) was largely unchanged upon expression of SNAP (47{plus minus}1%)" part of the sentence is not surprising. It would make more sense if it were expressed as "the fbound of endogenous RARα-Halo (47{plus minus}1%) was largely unchanged upon expression of RXRα-SNAP (49{plus minus}1%), consistent with the control SNAP (47{plus minus}1%).".

      We understand how the original phrasing may be confusing to the readers and have restructured the sentence as suggested by the reviewer for clarity.

      (4) p.6, line 26 - The discussion that "most chromatin binding of endogenous RXRα in U2OS cells depends on heterodimerization partners other than RARα" seems to contradict the top right figure in Figure 4. If that's the case, the binding partner for the bound red molecule might be yellow rather than blue. Given a decrease in the number of RARα molecules with an unchanged binding ratio, the total number of binding molecules has decreased. Could it be interpreted that the potential reduction in RXRα chromatin binding, accompanying the decrease in binding RARα, is compensated for by other partners?

      We agree with the reviewer that both the yellow and blue molecules in Figure 4 represent T2NRs that can heterodimerize with RXR. For simplicity, we chose to omit the depiction of RXR dimerization with other T2NRs (represented in yellow) in Figure 4. We have now included a note in the figure caption to clarify this. We plan to follow up on the buffer capacity of RXR with other T2NRs in a separate manuscript and will discuss this aspect in more detail once we have data from those experiments.

      (5) Fig. 3 - I expected that DR localizations always appear more frequently than PAPA localizations by the difference in the number of distal molecules. Why does the linear line for SNAP-RXRα in Fig. 3 B have a slope exceeding 1? Also, although the sublinearity is attributed to binding saturation, is there any possibility that this sublinearity originates from the PAPA system like the saturation of PAPA reactivation? Control samples like Halo-SNAPf-3xNLS might address these concerns.

      The number of DR and PAPA localizations depends on the arbitrarily chosen intensity and duration of green and violet light pulses. For any given protein pair, different experimental settings can result in PAPA localizations being greater than, less than, or equal to the number of DR localizations. Therefore, the informative metric is not the absolute number of DR and PAPA localizations, but rather how the ratio of PAPA to DR localizations changes between different conditions—such as between interacting pairs and non-interacting controls.

      Regarding the sublinearity, we agree that it is essential to consider whether the observed sublinearity might stem from saturation of the PAPA signal. We know of two ways in which this could occur:

      First, PAPA can be saturated as the duration of the green light pulse increases and dark-state complexes are depleted. However, this cannot explain the nonlinearity that we observe, because the duration of the green light pulse is constant, and thus the probability that a given complex is reactivated by PAPA is also constant. Likewise, holding the violet pulse duration constant yields a constant probability that a given molecule is reactivated by DR. PAPA localizations are expected to scale linearly with the number of complexes, while DR localizations are expected to scale linearly with the total number of molecules. Sublinear scaling of PAPA localizations with DR localizations thus implies that the number of complexes scales sublinearly with the total concentration of the protein.

      Second, saturation could occur if PAPA localizations are undercounted compared to DR localizations. While this is a valid concern, we consider it unlikely in this case because 1) our localization density is below the level at which our tracking algorithm typically undercounts localizations, and 2) we observe sublinearity for RXR → RAR PAPA even though the number of PAPA localizations is lower than the DR localizations; undercounting due to excessive localization density would be expected to introduce the opposite bias in this case.

      (6) Fig. 4 - The differences between A, B, and C on the right side of the model are subtle, making it difficult to discern where to see. Emphasizing the difference in molecule numbers or grouping free molecules at the top might help clarify these distinctions.

      We appreciate the reviewer’s feedback. In response, we have revised Figure 4 by grouping the free molecules on the top right side for panels A, B and C, as suggested.

      (7) While the main results are obtained through single-molecule imaging, no singlemolecule fluorescence images or trajectory plots are provided. Even just for representative conditions, these could serve as a guide for readers trying to reproduce the experiments with different custom-build microscope setups. Also, considering data availability, depositing the source data might be necessary, at least for the diffusion spectra.

      We have now included representative movies for all the presented SMT conditions as source data. Please see data availability section of the manuscript.

      (8) Tick lines are not visible on many of the graph axes. 

      We have revised the figures to ensure that the tick lines are now clearly visible on all graph axes.

      (9) Inconsistencies in the formatting are present in the methods, such as "hrs" vs. "hours", spacing between numbers and units, and "MgCl2". "u" should be "μ" and "x" should be "×". 

      We have corrected the formatting errors.

      (10) Table S4, rows 16 and 17 - Are "RAR"s typos for "RXR"s? 

      We have corrected this in the manuscript.

      (11) p.10~12 - Are three "Hoestch"s typos for "Hoechst"s? 

      This is now corrected in the manuscript.

      (12) p.11, line 17 - According to the referenced paper, the abbreviation should be "HILO" in all capital letters, not "HiLO". 

      This is now corrected in the manuscript.

      (13) "%" on p.3, line 18, and "." on p.6, line 27 are missing. 

      This missing “%”  and “.” are now added.

    2. Reviewer #3 (Public review):

      Summary:

      This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.

      Strengths:

      The carefully designed experiments, from knock-in cell constructions to single-molecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.

      Weaknesses:

      None noted.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Exploiting synthetic lethality based on functional correlations has the potential to significantly improve the survival of cancer patients by reducing resistance to targeted therapies and increasing anti-tumour efficacy when combined with other treatment modalities. Schreuder et al., aim to identifying novel vulnerabilities of patient-derived mutations that could improve patient stratification based on a specific genetic background. Precisely, they established a model system to perform a genome-wide CRISPR-Cas9 KO screen to identify genomic vulnerabilities of BRCA1 variants with reported hypomorphic phenotypes, namely BRCA1 R1699Q and BRCA1 I26A in engineered RPE1 hTERT cells with AID tag. Using this system the authors were able to confirm known synthetic lethal genes reported in literature (e.g. APEX2, PARP1, POLQ) comparing cells with acute BRCA loss and BRCA1 deficiency. Moreover, the screen identified two genes, CSA and GPX4 that were not previously described as synthetic lethal with BRCA1 loss. What is potentially interesting, but marginally explored, is the identification of a unique synthetic vulnerability of cells expressing BRCA1 R1699Q mutant and NDE1 gene encoding for a dynamic scaffold protein essential in neocortical neurogenesis and heterochromatin patterning by H4K20me3, whose loss of function results in nuclear architecture aberrations and DNA double-strand breaks (Chomiak et al., iScience 2022). Accordingly, cells ablated of NDE1 and expressing BRCA1 R1699Q mutant show less proliferation of cells expressing either BRCA1 WT or BRCA1-depleted. Furthermore, cells lacking NDE1 show increased genomic instability by means of increased micronuclei and anaphase bridges compared to BRCA1 proficient and BRCA1 R1699Q mutant.

      Major comments:

      1. The authors claim that cells expressing BRCA1-I26A are largely HR-proficient, based on a milder effect on Olaparib sensitivity compared to cells expressing BRCA1-R1699A (Fig. 1C). However, I26A mutant cells are defective in RAD51 IRIF (Fig. 1B), indicative of an HR defect. Recently it has been shown that BRCA1 RING mutations that do not impact BARD1 binding, including I26A, render BRCA1 unable to accumulate to DNA damage sites and unable to form RAD51 foci when such mutation is combined with mutations that disable RAP80-BRCA1 interaction (Sherker et al., 2021). How do the authors explain this discrepancy with the literature?
      2. The reduction in survival following CSA depletion in BRCA1-proficient vs. -deficient cells is only 20% (Figure 2 and S2B). In my opinion, such a minor difference is not supporting the notion of a SL interaction between BRCA1 and CSA. To substantiate CSA as synthetic lethal hit, I would recommend the authors comparing the effect of CSA loss to that of EXO1 or BLM loss, both genes recently identified by the same group as SL partners of BRCA1 using the same experimental screening set up (van de Kooij et al, 2024). Moreover, validation data for GPX4 is missing.
      3. Similar to the minor effect observed for CSA, DOT1L and OTUD5 depletions caused rather mild and/or divergent phenotypes between the two sgRNAs used (Figure 4B), rather arguing against robust SL interactions between those genes and BRCA1 deficiency that could be therapeutically exploited.
      4. To strengthen their conclusion in Figure 4C the authors should perform complementation experiments with NDE1 WT and, ideally, with NDE1 mutant(s). On a related note, are NDE1 knock-out cells expressing BRCA1-R1699A more sensitive to PARPi?
      5. Graphs shown in Fig. 1A-C, Fig. 4B, S2D, S3B, S3E and S3F are lacking proper statistical analysis of the differences. Some experiments have only been repeated twice (e.g. Figure 1C), precluding running statistical tests.

      Minor comments:

      1. The authors should include representative images for results shown in Fig.1 A-C
      2. The authors should add immunoblots for BRCA1 in Fig. S2C to indicate successful BRCA1 cDNA complementation in HCC1937 cells.
      3. Most numbers in the Venn diagram shown in Figure 3A cannot be read when printed.
      4. In the western blots shown in Supplemental Figure 1A, the electrophoretic mobility of BRCA1 variants expressed in RPE1 is quite variable. Could the authors indicate in the Figure (e.g. with arrowheads) which bands represent endogenous and which transgenic BRCA1. Moreover, in BRCA-wt complemented cells there are two bands following auxin/DOX addition, whereas there is one band observed in cells expressing BRCA1 hypomorphic variants
      5. Line 229 please correct "BRCA1-proficient" to "BRCA1-depleted".

      Significance

      General assessment:

      This manuscript starts with an attractive hypothesis, which is the generation of a cellular system to study patient-derived hypomorphic BRCA1 missense mutations rather than using BRCA1 knockout cells. Performing CRISPR/Cas9-mediated genome-wide synthetic lethal screens in this system allowed uncovering genetic vulnerabilities of cells expressing BRCA1-R1699A, a pathogenic mutant identified in several cancer patients. The data are of good quality and the manuscript is coherent and generally well written (few typos). However, some data describe mainly negative results (e.g. BRCA1-I26A mutant) or weak phenotypes while other more interesting aspects are not rigorously exploited (e.g. NDE1 SL) and therefore need to be interpreted with more caution and extended by additional experiments.

      Advance:

      BRCA1-R1699Q is classified as a pathogenic variant despite its low penetrance and intermediate cancer risk in breast and ovarian cancer compared to other variants. A recent case report highlighted the unique clinical outcome of a patient with the BRCA1 R1699Q variant, suggesting that this variant may differ from others in terms of cancer risk and drug response (Saito et al., Cancer Treatment and Research Communications 2022). These findings underscore the need for further studies to confirm these observations and to elucidate the specific mechanisms underlying the response to platinum agents and PARP inhibitors in patients with the BRCA1 R1699Q variant. The manuscript proposed by the authors has the potential to help understanding how BRCA1 missense mutations can contribute to determine treatment sensitivity and pave the way to patient stratification.

      Audience:

      This manuscript is suitable for a specialized, basic research audience.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. Point-by-point description of the revisions

      • *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors present the use of previously identified biosensors in a single-molecule concentration regime to address lipid effector recruitment. Using controlled and careful single-cell based analysis, the study investigates how expression of the commonly used PIP3 sensor based on Akt-PH domain interferes with the native detection of PIP3. Predominantly live-cell fluorescence microscopy coupled to image analysis drives their studies.

      Conceptually, this manuscript carefully and quantitatively describes the influence of lipid biosensor overexpression and presents a means to overcome the inherent and long-recognized problems therein. This solution, namely employing low expression of the lipid biosensor, should be generally applicable. The work is of general interest to cell biologists focused on answering questions at membranes and organelles, including especially those interested in lipid-mediated signaling transductions.

      Reviewer 1 Major:

      #1.1 The terminology "single molecule biosensor" is not really appropriate. A protein is not "single-molecule". An enzyme does not "single molecule". Better is biosensors at single-molecule expression levels. In most cases, this should be changed. Single-molecule vs single-cell vs. bulk measurements are often poorly defined in quantifications and conflating these does not help the case, which is already supported by generally clear data.

      We appreciate the reviewer’s thoughtful critique of our grammatically incorrect use of jargon; we saw this as soon as they mentioned it! We have amended the manuscript where appropriate as detailed:

      • Title is now changed to “Lipid Biosensors Expressed at Single Molecule Levels Mitigates Inhibition of Endogenous Effector Proteins”
      • Last paragraph of the introduction on __ 2__ now reads “As well as alleviating inhibition of PI3K signaling, biosensors expressed at these low levels show improved dynamic range and report more accurate kinetics than their over-expressed counterparts."
      • The title of the results section on __ 6__ is now: Mitigating PIP3 competition using biosensors expressed at single molecule levels
      • Last paragraph of the results section on 6 now reads: “this showed that when expressed at single molecule levels, the biosensor has substantially better dynamic range”. #1.2 Figure 1D-F, images not as clearly describing quantitation as one would hope. Untransfected cells in 1E should demonstrate more translocated Akt-pS473 than transfected, but it is difficult for this reviewer to find. Consider inset images in addition to the wider field. Consider also moving the "negative" data of Fig 1B-C to Supplement.

      We regret not making this figure easier to interpret; we have substantially updated the figure, as comprehensively detailed in our point-by-point response to reviewer 2’s point 2.3. To specifically address this reviewer’s concerns:

      The older figure used non-confocal, low-resolution images that were used for quantification. Such an approach was employed to enable fluorescence from the entire cellular volume to be captured, which produces more robust quantification. However, to the reviewer’s point, it is not possible to see the translocation of PH-AKT1 nor translocated AKT-pS473 in these images. Fortunately, we had in parallel captured high resolution confocal images for some experiments. These are now shown in Fig 1D-E, which clearly shows translocated AKT-pS473 and PH-AKT-EGFP

      #1.3 The cell line being used is not clearly specified after the initial development of the NG1 followed by CRISPRed NG2 onto Akt. For example, for the Figure 3C experiments, the text states "complete ablation of endogenous AKT1-NG2" but this information is not apparent from the figure legend or figure. Throughout the cell line used and the aspects transfected need to be made explicitly clear.

      We are grateful to the reviewer for highlighting this ambiguity. We have now defined the gene-edited cells used throughout as “AKT1-NG2 cells” and expressly used this term when referring to experiments in figures 2-5.

      #1.4 Fig. 5 shows single cells. It is therefore unclear if broken promoters have resulted in decreased expression. This point is important because the expression plasmids should be made publicly available, and for their use to be understood properly, this must be clarified. The details of the plasmids are unclear. Perhaps listed in the table? - unclear. This aspect would be important for the field to effectively use the reagents.

      Thank you for drawing our attention to the lack of adequate detail here. We have now updated the results text to expressly reference Morita et al., 2022 where the origins of the truncated CMV promoters are detailed. We have also updated the plasmids table 1 to add pertinent details for these constructs: *pCMVd3 plasmids are based on the pEGFP-C1 backbone, with the CMV promoter truncated to remove 18 of the 26 putative transcription factor binding sites in the human Cytomegalovirus Major Intermediate Enhancer/Promoter (pCMV∆3 as described in Morita et al., 2012). The full sequences will be deposited with the plasmids on Addgene.

      We did not perform a formal comparison of full vs truncated promoters. Our only observation is that the truncated promoters greatly help in increasing the number of expressing cells presenting single-molecule resolvable expression levels (though the approach can still work with full promoters).

      #1.5 This manuscript speculates several times that with more abundant PIs like PI45P2, the observed saturation effect is probably not happening. This should be removed. While the back of envelope calculations may reflect an ideal scenario, the heterogeneity of distribution and multiple key cellular structures involved would seem to corral increased PI45P2 levels in certain regions. These factors amid multivalency and electrostatic mechanisms of lipid effector recruitment (e.g. MARCKS) suggest that speculation may be too strong. Moreover, Maib et al JCB 2024 demonstrated PI4P probe overexpression could directly mask the ability to detect PI4P post-fixation - not fully, but partially. Repeating the titration experiments of this manuscript for multiple PIs is entirely beyond the scope of reasonable, and hence, such experiments are not requested, in favor of adopting more conscientious speculation.

      The reviewer’s point is well taken. Whilst we still believe the overall argument for lipids is sounds (for example, PS or cholesterol are far too abundant for any expressed, stoichiometric binding protein to bind the majority of the population) even abundant phosphoinositides like PI4P and PI(4,5)P2 are an edge case. We have therefore undated the first paragraph of the introduction on __p. 1 __to be less explicit: One of the most prominent is the fact that lipid engagement by a biosensor occludes the lipid’s headgroup, blocking its interaction with proteins that mediate biological function. It follows that large fractions of lipid may be effectively outcompeted by the biosensor, inhibiting the associated physiology. We have argued that, in most cases, this is unlikely because the total number of lipid molecules outnumbers expressed biosensors by one to two orders of magnitude (Wills et al., 2018). However, for less abundant lipids, total molecule copy numbers may be in the order of tens to hundreds of thousands, making competition by biosensors a real possibility.

      We also removed the explicit discussion of PI(4,5)P2 from the introduction, and focus now solely on the PI3K lipids.

      Reviewer 1 Minor:

      1.6 Schematics throughout need simplification, enabling their enlargement.

      We have now enlarged the size of all schematics

      #1.7 Numerous spelling (Fig. 4 schemas) and capitalizations need fixing.

      Thank you for drawing our attention to these. We have thoroughly proof-read the figure panels and corrected errors.

      #1.8 Pg 1 Famous is not appropriate wording

      We respectfully beg to differ with the reviewer here. We believe it is perfectly accurate to state that PIP3 is a second messenger molecule that is known about by many people; we see this as the dictionary definition of the word “famous”.

      #1.9 Fig. 1A statistical testing of microscopy quantifications absent (generally, throughout) and should be included.

      This was indeed an oversight on our part. We have now added appropriate multiple comparisons tests to the data presented in figures 1F, 3F, 4C, 4F and 5C.

      #1.10 Fig.1. In a transient transfection, the protein expression is not uniform. Please explain how you normalized the quantification.

      We hope this is now clarified by the expanded “Image Analysis” part of the methods section on pp. 10-11 (relevant sentence is underlined): For immunofluorescence, we identified individual cells by auto thresholding the DAPI channel using the “Huang” method, followed by the Watershed function to segment bunched cells that appeared to touch. We then used the Voronoi function to generate boundary lines for the segmentation of the cells. To identify cytoplasm, auto thresholding of the CellMask channel using the “Huang” function was employed, with the cells segmented by adding the nuclear Voronoi boundaries. The “analyze particles” function was then used to identify individual cellular ROIs that were greater than 10 µm2 and were not touching the image periphery. These ROIs were used to measure the raw 12-bit intensity of the EGFP and AKT-pS473 channels. A cutoff of EGFP > 100 was used to define EGFP-positive cells, since this value was greater than the mean ± 3 standard deviations of the non-transfected cells’ EGFP intensity. Background intensity of AKT-pS473 was estimated from control cells subject to immunofluorescence in the absence of AKT-pS473 antibody; this value was subtracted from the measured values of all other conditions.

      #1.11 Fig. 1D. EGFP expression levels increased with EGF stimulation. How is this possible?

      There appeared to be a difference due to the presence of 5 strongly expressing cells in the chosen field in the original field for the EGF stimulated, EGFP cells. However, this arose just by chance. The new set of high-resolution images in the new figure 1 were selected to be more representative.

      #1.12 Fig. 1D. The images have pS473 whereas the y-axis label on box plots has p473. Can these box plots be labelled separately for consistency?

      Thank you. This has now been corrected in the revised Figure 1.

      #1.13 Fig.1. T308 phosphorylation is mentioned in Figure 1, but only pS473 data is shown.

      Both T308 and S473 phosphorylation are indicative of AKT activation. However, antibodies suitable for immunofluorescence are only available for pS473, hence why our experiments are restricted to this moiety.

      #1.14 Fig.1 legend. 'Over-expression of PH-AKT is hypothesised to outcompete the endogenous AKT's PH domain'. Why do you need to state a hypothesis in the legend?

      We included this statement for the benefit of the casual reader – i.e. one who looks at the pictures, but doesn’t read the main text!

      #1.15 Fig.1E You stated that the PH-AKT R25C-EGFP is stimulated by EGF addition. However, the GFP signal looks the same in both unstimulated and stimulated. Could you please clarify? Are you sure that the stimulation worked?

      We have clarified the second paragraph of the results section “Inhibition of AKT activation by PIP3 biosensor”__on __p. 4 as follows: In the non PIP3 binding PH-AKT1R25C-EGFP positive cells, we still observed an increase in pS473 intensity.

      The revised figure 1 images also show that PH-AKT1R25C does not translocate to the membrane with EGF stimulation.

      #1.16 You mention...that the AKT enzyme is activated by PDK1 and TORC2, which phosphorylate at residues T308 and S473, respectively. Phosphorylation is also known to occur on T450 at c-tail. Does this phosphorylation also contribute to its activation?

      Yes and no. Threonine 450 phosphorylation is thought to occur co-translationally and is important for AKT stability (see Truebestein et al as cited in the manuscript). It is not really relevant in the context for T308 and S473, which are phosphorylated acutely to activate the protein.

      #1.17 Fig. 1 scale bar in all images equivalent?

      We have now added scale bars to panels in both figure 1D and E to clarify.

      __#1.18 __Pg. 1 paragraph 1 "we have argued..." vs. paragraph 3"...consider that an..." feels like arguing with themselves.

      We believe the re-write we have done in response to major point #1.5 clarifies this point also.

      #1.19 Pg. 1 para 3 what is RFC score - must explain

      We have now defined this more clearly in third __paragraph of the __introduction on p. 1: PH domain containing PIP3effector proteins can be predicted based on sequence comparison to known PIP3 effectors vs non effectors using a recursive functional classification matrix for each amino acid (Park et al., 2008).

      #1.20 Discussion of numbers of PIP3 vs. effectors etc may not be appropriate for the introduction, as the points made by these calculations are already made in the previous paragraphs. May fit better in pg 6 Mitigating PIP3 titration... with an accompanying schematic.

      Respectfully, we prefer to keep this discussion of molecular concentrations, as this adds details and specifics to the pathway that is core to the paper.

      #1.21 Pg 2 "a neonGreen" not well defined, needs accurate description.

      We have clarified this in the sentence in the first paragraph of the results section “Genomic tagging of AKT1…” __on __p. 4, which includes the citation to the full description of the tag: To that end, we used gene editing to incorporate a bright, photostable neonGreen fluorescent protein to the C-terminus of AKT1 via gene editing using a split fluorescent protein approach (Kamiyama et al., 2016).

      #1.22 Fig 2C should give a unstimulated trajectory of puncta/100 um2 to compare with the stimulated

      Unfortunately, we did not record a full 5.5-minute video-rate time-lapse with unstimulated cells. However, we do not believe this control is essential for this experiment, since this example data is included to illustrate (1) the problem of photobleaching, which is clear in the 30-s pre-stimulus and (2) the variability in the raw molecule counts.

      #1.23 Fig 2C and F and G should be systematized for easier comparison. E.g. min vs seconds, 0 timepoint of EGF/rapa addition

      We have made the adjustment to figure 2C to be consistent with 2F and G:

      #1.24 Pg 5 "...and calibrated them..." unclear what is being calibrated, as the text later states that the histograms are fit to monomer/dimer/multimer model resulting in 98.1% in monomer. Minor point.

      We have clarified this point in the second paragraph of the results section “__Genomic tagging of AKT1…” __on __p. 4 __as follows: We analyzed the intensity of these spots and compared them to intensity distributions from a known monomeric protein localized to the plasma membrane (PM) and expressed at single molecule levels

      #1.25 Explain why baselines in Fig2CFG are different

      We did not comment on figure 2C; it is a single cell measurement, as opposed to the mean of 20 cells reported in F. However, we do now clarify the difference between figure 2F and G as the very end of the “Genomic tagging of AKT1…” results section on p 4: Notably, baseline AKT-NG2 localization increased from ~5 to ~15 per 100 µm2 in iSH2 cells, perhaps because the iSH2 construct does not contain the inhibitory SH2 domains of p85 regulatory subunits, producing higher basal PI3K activity.

      #1.26 Fig. 2 has quantification with images; Fig. 3 has it separate. Make consistent.

      We sometimes combine images with quantification, and other times separate the panel containing graphs. This is done deliberately, depending on whether the reader is directed to both together, or whether we consider the data separately in the results section.

      #1.27 Fig. 3B comes before images? Where are the images? Also, y-axis = Intensity (a.u.). Is intensity just full image field? Or per cell? All very unclear.

      We have modified both the graph y-axis label and the figure legend to clarify: (C) TIRF imaging of AKT1-NG2 cells from (B) stimulated with 10 ng/ml EGF

      #1.28 Fig. 3C missing images

      We believe the reviewer is referring to the mCherry channel for the “0 ng cDNA” condition. These images are missing because they do not exist. Since these cells were transfected with pUC19, there was no mCherry fluorescence to image.

      #1.29 Fig 3 C needs brightness/contrast adjusted as images are nearly entirely black (zero values).

      We believe the addition of insets addresses this concern. To the reviewer’s specific suggestion, we found that further increases in the brightness and contrast will bring up the camera noise, but this then occludes the signal from single molecules, such as those found after EGF stimulation of the 0 ng condition.

      #1.30 Fig 3C needs scale bar systemization

      We believe that the incorporation of scaled 6 µm insets addresses this point.

      #1.31 Fig 4 needs 4 panels A-D

      We have now added these individual panel labels to figure 4.

      #1.32 Pg 6 5-OH phosphatases needs reference

      We have added a citation to Trésaugues at the very end of the “Sequestration of PIP3 by lipid biosensors” results section on p. 6, which describes the activity of the whole 5-OH phosphatase activity against PIP3, not just the SHIP phosphatases.

      #1.33 Fig 5B, make images bigger

      Again, we trust that the addition of insets to all single molecule images has addressed this point.

      Reviewer 1 Referees cross-commenting**

      I have read the other reviews and find them entirely reasonable. My impression is we landed on similar general content that needs work, none of which is out of line. The importance and care taken in the author's work is uniformly lauded.

      We agree. At the risk of restoring to alliteration, we have been delighted to receive a trio of clear, concise and consistent comments on the manuscript! We believe it is now much improved.

      Reviewer #1 (Significance (Required)):

      This manuscript clearly and reasonably demonstrates that the commonly used PIP3 sensor can be titrated to low concentrations, at which it does not interfere with Akt translocation and activation. This work is a good technical reference for the field. Signal transduction and membrane biologists should be especially interested in the data. The reviewer/s have core expertise in phosphoinositides, protein biochemistry, cell biology, and membrane biophysics.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors characterize the inhibition of lipid second messenger mediated cell signaling through lipid biosensors that outcompete endogenous effector proteins. This is a very important study that as it quantitatively assesses an issue that many people suspected to exit, yet never properly characterized. This paper is therefore as much a service to the community as a research study in its own right and should be published without undue delay. I am glad that the authors decided to carry out this study & really appreciate their work.

      I do however, have a number of suggestions that I think will make the manuscript stronger and can be readily implemented, mostly by reformulating and/or re-analysis of exiting datasets. I've structured my comments by the datasets in the respective figures to follow the logic of the paper.

      Reviewer 2 Major:

      #2.1 Throughout the manuscript, statistical tests are missing, e.g. in figures 1C-F. This must be amended in the revised version. The authors are making a very quantitative point about buffering, data should be treated accordingly.

      We have now added appropriate multiple comparisons tests to figures 1F, 3F, 4C, 4F and 5C.

      #2.2 I do not think that "PIP3 titration" is the best term to describe the observed effect. "Titration" usually implies the controlled modulation of a concentration, e. g. in analytical chemistry. I think either "competitive binding of PIP3" or "buffering of free PIP3" are more adequate.

      This point is well taken. We have now replaced the word “titration” throughout, replacing it with either “competitive binding” or “sequestration”.

      #2.3 Specific comments: Figure 1

      #2.3a Why are data in 1D-Ff shown as median, with interquartile ranges and 10-90 percentile distance when everything else in the paper is mean +/- se? There might be a good reason for it, but I did not find it mentioned everywhere

      For consistency’s sake, we have changed figure 1F to show a bar graph, though as noted in the figure legend: Graphs show medians ± 95% confidence interval of the median from 82-160 cells pooled from three experiments (medians are reported since the data are not normally distributed).

      #2.3b The authors should test, whether the difference between the +EGF conditions in 1D (EGFP) and 1F (PH-AktR25C-EGFP) is indeed statistically significant. If this observation holds up, what does it mean? Is the mutant still competing with endogenous Akt despite the much-reduced binding affinity? The authors should discuss.

      We have re-analyzed the data in figure 1, with the quantitative data presented in figure 1F combined with statistical analysis. The new data shows no significant effect of the PH-AKT1R25C mutant in either resting or EGF stimulated condition

      There results are also described in the__ second paragraph__ of the first results section on pp. 3-4: This analysis showed that the R25C mutant had no substantial effect on pS473 levels, whereas wild-type PH-AKT greatly inhibited pS473 staining in EGF-stimulated cells as well as reducing basal levels in serum starved cells (Fig. 1F).

      #2.3c How were biosensor/GFP positive cells chosen? Did the authors choose a defined fluorescence intensity cut-off? I think that a pure manual selection is problematic from a methodological point of view as this may introduce biases. Since the authors use Fiji, they can also simply use the "Analyze particles" function, which allows to automatically segment cells from a thresholded image. By choosing the same threshold for all images, it would be ensured that all images are treated exactly the same way.

      We had initially opted for manual outlining of cells since automatic segmentation of irregularly-shaped HEK293a cells is imperfect. However, we agree with André that this opens the possibility of bias. We have therefore re-run the analysis with an automated segmentation and thresholding approach, as suggested. This is detailed in the__ second paragraph__ of the first results section on pp. 3-4: In parallel, we imaged cells with a low resolution 0.75 NA air objective to capture fluorescence from the cells’ entire volume, then quantified these images using an automatically determined threshold for GFP-positive cells (see Materials and Methods). This analysis showed that the R25C mutant had no substantial effect on pS473 levels, whereas wild-type PH-AKT greatly inhibited pS473 staining in EGF-stimulated cells as well as reducing basal levels in serum starved cells (Fig. 1F).

      Further detail is provided in the first paragraph of the “Image analysis” subsection of the methods on pp. 10-11: For immunofluorescence, we identified individual cells by auto thresholding the DAPI channel using the “Huang” method, followed by the Watershed function to segment bunched cells that appeared to touch. We then used the Voronoi function to generate boundary lines for the segmentation of the cells’ cytoplasm. To identify cytoplasm, auto thresholding of the CellMask channel using the “Huang” function was employed, with the images segmented by adding the nuclear Voronoi boundaries. The “analyze particles” function was then used to identify individual cellular ROIs that were greater than 10 µm2 and were not touching the image periphery. These ROIs were used to measure the raw 12-bit intensity of the EGFP and AKT-pS473 channels. A cutoff of EGFP > 100 was used to define EGFP-positive cells, since this value was greater than the mean ± 3 standard deviations of the untransfected cells’ EGFP intensity. Background intensity of AKT-pS473 was estimated from control cells subject to immunofluorescence with the AKT-pS473 antibody omitted; this value was subtracted from the measured values of all other conditions.

      #2.3d I am missing a statement in the methods section that all images were acquired using the same settings.

      This was indeed an important oversight on our part – thanks for spotting the omission of this crucial detail. This is now included at the end of the “Immunofluorescence” section of the Methods on pp. 9-10: Identical laser excitation power, scan speeds and photomultiplier gains were used across experiments to enable direct comparison.

      #2.3e I recommend that the authors include a single cell correlation plot of EGFP fluorescence intensity vs AktpS473 intensity in Figure 1 D-F. This should be rather informative & make the concentration dependence clear.

      We did not observe a strong correlation between PH-AKT1-EGFP intensity and pS473 staining, likely driven by both the imprecision of the cell segmentation and the fact that very low concentrations of PH domain effectively inhibit endogenous AKT1 (as we show in the later figures with the more precise, live cell AKT-NG2 recruitment experiments: see response to #2.5).

      #2.3f I further recommend that the authors look at alterations of baseline Akt activity in the presence of the biosensor. In the images it looks like there might be an effect, but this is then lost in the analysis due to the normalization.

      As covered in our response to #2.3b, there is indeed an inhibition of baseline pS473 in PH-AKT1-EGFP expressing cells, now explicitly quantified and documented in results.

      #2.3g Please include zoomed image insets in Fig. 1D-F, in the current magnification one needs to zoom in quite a bit to see the effect in the raw data. It is a clear effect, but having a zoomed version would make for much easier reading.

      We now include high-resolution confocal images instead of low power, low NA volumes as shown in the last version of the manuscript, which we believe addresses this point and also reviewer #1.2.

      2.3h Up to the authors: I wonder whether it is possible to extract an IC50 value for the competitive inhibition of Akt by the respective biosensors. The transient expression gives the authors access to a wide range of expression levels at the single cell level, which could be quantified by counterstaining with a EGFP-nanobody at a different color (since the EGFP fluorophore went through the fixation process, it is likely unsuitable for quantification) and microscope calibration. Activity could be quantified as the ratio of observed and expected Akt-pS473 fluorescence (derived from the mean FI per cell from the EGFP control). This is not strictly necessary, but would be a beautiful quantitative experiment, give an easy-to-understand number & make the paper much stronger.

      This is a great suggestion, but does not produce precise enough data to work out, as we detail in response to #2.3e. From our data in new figure 3F and figure 5, it seems we have not explored the appropriate expression range to see intermediate levels of inhibition necessary to estimate IC50. This would be a cool experiment though!

      __#2.4 __Specific comments: Figure 2. Overall, compelling data. However, 25 molecules/100 um^2 at maximal recruitment feels low. Assuming a total cell surface area of appr. 2000 um^2 per cell and taking a baseline of 5 molecules/100 um^2 into account, this would mean that only about 400 copies of Akt are recruited in response to a pretty robust stimulus. Is it possible that the association reaction of the split GFP is not complete under these conditions? I think that a direct measurement of intracellular endogenous Akt concentration is required to put these numbers into context.

      This is an excellent point that we had missed. We now specifically address this point in the third paragraph of the “Genomic tagging of AKT…” section on p. 4: __Accumulation of AKT-NG2 was ~25 molecules per 100 µm2, which assuming a surface area of ~1,500 µm2 per cell corresponds to ~375 molecules total. It should be noted that tagging likely only occurred at a single allele in each cell, and the population still exhibited expression of non-edited AKT1 (__Fig. 2B). Given that HEK293 are known to be pseudotriploid (Bylund et al., 2004), the true number of AKT1 molecules would be at least 1,125. However, given an estimated total copy number of 23,000 AKT1 in these cells (Cho et al., 2022), this is still only about 5%. However, we do not interpret these raw numbers due to uncertainties in the efficiency of NG2 complementation under these conditions, as well as potential for reduced expression from the edited allele.

      We also removed the specific comment on molecule density from the abstract.

      #2.5 Specific comments: Figure 3 I think that the classification by plasmid dose does not make a lot of sense, as the resulting expression levels are rather similar. I suggest to pool all traces and calculate mean curves by actual expression levels using a binning approach (e.g. 0-50 au, 50-100 au and so on in raw intensity from Figure 3b). If there is an effect in the realized concentration regime, this should pick it up.

      This is an excellent suggestion, and we have done just that: thank you! The data is now included as a new panel Fig. 3F. The result is described in the results section, “Sequestration of PIP3 by lipid biosensors”, end of the first paragraph on pp. 4-6: To observe the concentration-dependence of AKT1-PH-mCherry inhibition, we pooled the single cell data from these experiments and split transfected cells into cohorts based on raw expression level (excitation and gain were consistent between experiments, allowing direct comparison). This analysis showed profound inhibition of AKT1-NG2 recruitment at all expression levels, with a slightly reduced effect only visible in the lowest expressing cohort (Fig. 2F).

      #2.6 Specific comments: Figure 5 These are very interesting data, in particular with regard to the underlying PIP3 dynamics. I agree with the conclusion of the authors that shielding of PIP3 from degradation is the likely culprit. What I would like to see here is actual kinetic fits - and different terms. On- and off-rate imply biosensor binding, but these are likely rather fast and not on the minute-timescale. The detected processes are much more likely to reflect production and degradation of PIP3 and that should be reflected in the terminology. For the fit: I think that a simple rate law for subsequent reactions ([PIP3]=C(e^-k1t-e^k2t)) will give good results and yield effective rate constants for PIP3 generation and degradation. This implies the quasi-steady state assumption for biosensor binding and implies that [PIP3] is proportional to the biosensor bound [PIP3], but these are reasonable assumptions to make.

      The is an excellent suggestion, which we have added. Specifically, fits are now present on Figs. 5G and 5I; we describe these in the last paragraph of results on p. 8: Normalizing data from both expression modes to their maximum response (Fig. 5G) and fitting kinetic profiles for cooperative synthesis and degradation reactionsrevealed the rate of synthesis is remarkably similar: 1.09 min–1 (95% C.I. 1.02-1.17) for single molecule expression vs 1.02 min-1 (95% C.I. 0.98-1.06) for over-expression. On the other hand, degradation slowed with over expression from 0.34 min–1 (95% C.I. 0.24-0.58) to 0.13 min–1 (95% C.I. 0.12-0.15). This is expected, since synthesis of PIP3molecules would not be prevented by biosensor. On the other hand, PIP3 degradation could be slowed by the over-expressed biosensor competing with PTEN and 5-OH phosphatases that degrade PIP3. An even more exaggerated result is achieved with the cPHx1 PI(3,4)P2 biosensor; this shows an increase in fold-change over baseline of 600% for single molecule expression levels, compared to only 100% in over-expressed cells (Fig. 5H). Again, the degradation rate of the signal is substantially slowed by the over-expressed sensor, reducing from 0.27 min–1 (95% C.I. 0.22-0.39) to 0.16 min–1 (95% C.I. 0.14-0.19), whereas synthesis remains only minorly impacted, changing from 0.61 min–1 (95% C.I. 0.57-0.64) to 0.54 min–1 (95% C.I. 0.52-0.56) with over-expression (Fig. 5I). Collectively, these data show that single molecule based PI3K biosensors show improved dynamic range and kinetic fidelity compared to the same sensors over-expressed.

      Details of the fits are given in a new methods section on p. 11:

      Fitting of reaction kinetics

      Curve fitting was performed in Graphpad Prism 9 or later. For the data presented in Figs. 5G and 5I, both synthesis and degradation phases displayed clear “s” shaped profiles not well fit by simple first order kinetics. Since activation of the PI3K pathway involves many multiplicative interactions between adapters and allosteric activation of the enzymes themselves, we assumed cooperativity and fit reactions with the two phase reaction as follows:

      Where Ft denotes ∆Ft/∆FMAX, nsyn and ndeg are the Hill coefficients of the respective synthesis and degradation reactions, and the rate constants for the reactions are derived from ksyn = 1/τsyn and kdeg = 1/τdeg.

      André Nadler

      Reviewer #2 (Significance (Required)):

      This is an important paper, analyses the effects of over-expressed lipid biosensors on cell signalling in some detail and will be of significant interest to a broad readership.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This is essentially a methods paper in which the authors provide a detailed and highly quantitative analysis of the potentially deleterious effects of expressing phosphoinositide-binding domains as biosensors. Specifically, they study the effects on PIP3 signalling, using biosensors that are widely used in the field.

      They show that the most-commonly used method of expressing PIP3 biosensors using transient transfection with viral promotors has clear deleterious effects on downstream signalling due to out-competing the endogenous effectors. Importantly, they also describe a new approach to overcome this by developing new plasmids and methodology to express these reporters at low levels.

      Reviewer 3 Major comments:

      The work in this paper is thorough and very nicely done. I particularly appreciate the efforts to quantitate or estimate actual numbers and densities of molecules, which significantly strengthen their arguments. The data are excellent and strongly support all their conclusions. I would therefore be happy to see this work published in its current form.

      Reviewer 3 Minor comments:

      I only have some minor and optional suggestions for improvement.

      #3.1 In figure 1D-F they show that PH-Atk-EGFP expression can suppress downstream Akt activation by quantifying P-Akt signal my microscopy. In these panels they say tgey selectively measure this in GFP-expressing cells, but it is not clear how they define which cells are expressing GFP - was a threshold used? Also, it would be nice to also measure both PH-Akt-GFP and P-Akt staining by flow cytometry to look for a correlation. Is there a threshold of biosensor expression that blocks downstream signalling, or is there a linear relationship? This might help specifically measure how much biosensor is too much.

      This is an important comment, also raised by reviewer 2. We provide a detailed explanation and outline revisions that address this in our response to reviewer #2.3c; essentially, we replaced the analysis with an automated segmentation and quantification, estimating GFP-positive cells from a fraction of non transfected cells. We have not performed a FACS analysis, but as we note in our response to #2.3e __and #2.3h, the correlation between EGFP and pAKT staining is imprecise in these experiments. The new __Fig. 3C does address this point for AKT1-NG2 recruitment, as described in our response to #2.5.

      #3.2 Some of their microscopy images (e.g. Fig 1D-F, Fig 5) are very small and would benefit from a zoom box - especially when they are trying to demonstrate single molecule detection.

      This is a fair point raised by all of the reviewers in one form or another. We have added zoomed insets to all of the single molecule images in Figs 2-5, and added higher magnification, confocal section images to Fig. 1.

      Reviewer #3 (Significance (Required)):

      This is both a methods paper and cautionary tale for cell biologists working in this field. Whilst everyone who uses these probes should be aware of the potential risk of biosensors titrating our effectors, this is often not sufficiently acknowledged. This paper is a very nice and clear demonstration of these risks, exemplified with probably the most highly-used biosensor and key downstream signalling pathway.

      Whilst the concepts presented are not especially novel, this paper nonetheless makes an important contribution to the community and hopefully will make others more cautious in how they use these biosensors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The work from Petazzi et al. aimed at identifying novel factors supporting the differentiation of human hematopoietic progenitors from induced pluripotent stem cells (iPSCs). The authors developed an inducible CRISPR-mediated activation strategy (iCRISPRa) to test the impact of newly identified candidate factors on the generation of hematopoietic progenitors in vitro. They first compared previously published transcriptomic data of iPSCderived hemato-endothelial populations with cells isolated ex vivo from the aorta-gonadmesonephros (AGM) region of the human embryo and they identified 9 transcription factors expressed in the aortic hemogenic endothelium that were poorly expressed in the in vitro differentiated cells. They then tested the activation of these candidate factors in an iPSCbased culture system supporting the differentiation of hematopoietic progenitors in vitro. They found that the IGF binding protein 2 (IGFBP2) was the most upregulated gene in arterial endothelium after activation and they demonstrated that IGFBP2 promotes the generation of functional hematopoietic progenitors in vitro.

      Strengths:

      The authors developed an extremely useful doxycycline-inducible system to activate the expression of specific candidate genes in human iPSC. This approach allows us to simultaneously test the impact of 9 different transcription factors on in vitro differentiation of hematopoietic cells, and the system appears to be very versatile and applicable to a broad variety of studies.

      The system was extensively validated for the expression of 1 transcription factor (RUNX1) in both HeLa cells and human iPSC, and a detailed characterization of this test experiment was provided.

      The authors exhaustively demonstrated the role of IGFBP2 in promoting the generation of functional hematopoietic progenitors in vitro from iPSCs. Even though the use of IGFBP2interacting proteins IGF1 and IGF2 have been previously reported in human iPSC-derived hematopoietic differentiation in vitro (Ditadi and Sturgeon, Methods 2016; Ng et al., Nature Biotechnology 2016), and IGFBP-2 itself has been shown to promote adult HSC expansion ex vivo (Zhang et al., Blood 2008), its role on supporting in vitro hematopoiesis was demonstrated here for the first time.

      Weaknesses:

      Although the authors performed a very thorough characterization of the system in proof-ofprinciple experiments activating a single transcription factor, the data provided when 9 independent factors were used is not sufficient to fully validate the experimental strategy. Indeed, in the current version of the manuscript, it is not clear whether the results presented in both the scRNAseq analysis and the functional assays are the consequence of the simultaneous activation of all 9 TF or just a subset of them. This is essential to establish whether all the proposed factors play a role during embryonic hematopoiesis, and a more complete analysis of the scRNAseq dataset could help clarify this aspect.

      Similarly, the data presented in the manuscript are not sufficient to clarify at what stage of the endothelial-to-hematopoietic transition (EHT) the TF activation has an impact. Indeed, even though the overall increase of functional hematopoietic progenitors is fully demonstrated, the assays proposed in the manuscript do not clarify whether this is due to a specific effect at the endothelial level or to an increased proliferation rate of the generated hematopoietic progenitors. Similar conclusions can be applied to the functional validation of IGFBP2 in vitro.

      The overall conclusions are sometimes vague and not always supported by the data. For instance, the authors state that the CRISPR activation strategy resulted in transcriptional remodeling and a steer in cell identity, but they do not specify which cell types are involved and at what level of the EHT process this is happening. In the discussion, the authors also claim that they provided evidence to support that RUNX1T1 could regulate IGFBP2 expression. However, this is exclusively based on the enrichment of RUNX1T1 gRNA in cells expressing higher levels of IGFBP2 and it does not demonstrate any direct or indirect association of the two factors.

      We thank the reviewer for the positive comments about the importance of our work and have now addressed the points raised as weaknesses by performing additional analysis and experiments, adding a new schematic of the mechanism, and rewording our claims.

      We have clarified the different effects mediated by the activation and the IGFBP2 addition in a summary section at the end of the results and added Figure 6, showing this in visual form. We have also clearly stated the limitations related to the correlation between RUNX1T1 and IGFBP2 in the discussion and toned down our claims regarding this throughout the entire paper. We have also reworded the text to clarify the specific cell types identified in the sequencing data that we refer to.

      Reviewer #2 (Public Review):

      To enable robust production of hematopoietic progenitors in-vitro, Petazzi et al examined the role of transcription factors in the arterial hemogenic endothelium. They use IGFBP2 as a candidate gene to increase the directed differentiation of iPSCs into hematopoietic progenitors. They have established a novel induced-CRISPR mediated activation strategy to drive the expression of multiple endogenous transcription factors and show enhanced production of hematopoietic progenitors through expansion of the arterial endothelial cells. Further, upregulation of IGFBP2 in the arterial cells facilitates the metabolic switch from glycolysis to oxidative phosphorylation, inducing hematopoietic differentiation. While the overall study and resources generated are good, assertions in the manuscript are not entirely supported by the experimental data and some claims need further experimental validation.

      We thank the reviewer for the positive comments, and we have provided new data and analysis to make sure that all our assertations are clearly supported and also reworded those where limitations were identified by the reviewers.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      The assessment could change from "incomplete" to "solid" if the authors: i) improve data analysis (for both scRNAseq and functional assays) by providing additional information that could strengthen their conclusions, as suggested in the specific comments by both reviewers; ii) either provide new functional evidence supporting their mechanistic conclusion or alternatively tone down the claims that are not fully supported by data and acknowledge the limitations raised by reviewers in the discussion; (iii) the issue of paracrine signaling to expand only hematopoietic progenitors needs to be addressed.

      We have now improved the data analysis and provided additional functional tests to strengthen our conclusions and toned down those that were identified by the reviewers as not supported enough and included a discussion on these limitations. We have also reworded the section about the paracrine signaling throughout the paper.

      Reviewer #1 (Recommendations For The Authors):

      Figure 1 contains exclusively published data. It might be more appropriate to use it as a supplementary figure or as part of a more exhaustive figure (maybe combining Figures 1 and 2 together?).

      Figure 1 contained novel bioinformatic analyses that represent the base of our research and it has a different content and focus to figure 2, which is already a large figure. We therefore believe it is better to keep it as a separate figure, containing a new panel now too. 

      It seems there is an issue with Figure S3 labelling:

      • In line 112, Figure S2A-B does not display genomic PCR and sequencing results;

      • In line 123, Figure S3D-E does not show viability and proliferation data;

      • In line 127, Figure S3G does not show mCherry expression in response to DOX;

      We apologies for the confusion with the numbers, we have now correctly labelled the figures.

      It would be more informative to include gates and frequency on flow cytometry plots in Figure S3, to be able to evaluate the extent of the reduction in mCherry expression.

      We have now included the gating and frequency of mCherry-expressing cells in Supplementary Figure 3D.

      It is not clear from the text and figures whether the SB treatment was maintained throughout the hematopoietic differentiation protocol (line 122):

      • If so, it would be important to confirm that HDAC treatment does not affect EHT cultures

      • If not, can the authors provide some evidence that transgene silencing is not occurring during hematopoietic differentiation?

      We have clarified that we decided to treat the cells with SB exclusively in maintenance condihons because HDACs have been shown to be essenhal for the EHT (lines 138-142). We have now also included addihonal data showing the high expression of the mCherry tag reporhng the iSAM expression on day 8 (Supplementary Figure 4F).

      Can the authors provide a simple diagram summarizing the experimental strategy for each differentiation experiment in the respective supplementary figure? For instance, at what stage of the protocol was DOX added in Figure 3? Or at what stage IGFBP2 was added in Figure 5? It would be a very useful addition to the interpretation of the results.

      We have now included three schemahcs for all the experiments in the manuscript in supplementary figure 4 A-C.

      In Figure 3, the authors should provide more detailed information about the data filtering of the scRNAseq experiment, and more specifically:

      • How many cells were included in the analysis for each library after QC and filtering?

      • How "cells in which the gRNAs expression was detected" were selected? Do they include only cells showing expression of gRNAs for all 9 TF?

      This informahon is now included in the method sechon lines 773-781; the detailed code is available on the GitHub link provided in the same sechon. We have filtered the cells expressing one gRNA for the non-targehng gRNA (iSAM_NT) control and more than one for the iSAM_AGM sample. 

      In Figure 3A, it is not clear whether the expression of the 9 factors is consistently detected in all cells or just a subset of them, and the heatmap in Figure 3A does not provide this information. It would be more accurate to provide expression on a per-cell basis, for instance, as a violin plot displaying single dots representing each cell. 

      We have now included this violin plot in Supplementary Figure 4G as requested. However, this visualisation is difficult to interpret because some of the target genes’ expression seems variable in both experimental and control conditions. We had envisaged that this could have been the case and so this is why we had included the three different controls.  For this reason we chose to show the normalised expression which takes all the different variables into account (Figure 3A). 

      In Figure 3B-C, it seems that clusters EHT1 and EHT2 do not express endothelial markers anymore. Are these fully differentiated hematopoietic cells rather than cells undergoing EHT? In general, it would be quite important to provide evidence of expressed marker genes characterizing each cluster (eg. heatmap summarizing top DEG in the supplementary figure?). 

      We have now provided a spreadsheet containing the clusters’ markers that we used in

      Supplementary Table 1) a heatmap in Figure 3E. Furthermor,e we have now edited Figure 3C to include Pan Endothelial markers (PECAM1 and CDH5). These data show that the EHT1 and EHT2 cluster both express endothelial markers but are progressively downregulated as expected during endothelial to hematopoietic transition. We have also included and discussed this in the manuscript lines 192-195 and a schematic for the mechanism in Figure 6.

      In Figure 3E, displaying the proportion of clusters within each sample/library would be a more accurate way of comparing the cell types present in each library (removing potential bias introduced by loading different numbers of cells in each sample).

      We have now included the requested data in Supplementary Figure 4I and it confirms again the expansion of arterial cells in the activated cells.    

      In Figure 3G, by plating 20,000 total CD34+, the assay does not account for potential differences in sample composition. It is then hard to discriminate between the increased number of progenitors in the input or an enhanced ability of HE to undergo EHT. This is an important aspect to consider to precisely identify at what level the activation of the 9 factors is acting. A proper quantification of flow cytometry data summarizing the % of progenitors, arterial cells, etc. would be useful to interpret these results.

      Lines 204-205 reworded. We are very much aware of the fact that the CD34+ cell population consists of a range of cells across the EHT process and this is precisely why we carried out this single cell sequencing analyses.  We purposely tested the effect of the observed changes in composition by colony assays

      In Figure 3G, it seems that NT cells w/o DOX have very little CFU potential (if any). Can the authors provide an explanation for this?

      We think that the limited CFU potential is due to the extensive genetic manipulation and selection that the cells underwent for the derivation of all the iSAM lines but this did not impede us from observing an effect of gene activation on CFU numbers. This is one of the primary reasons that we then validated our overall findings using the parental iPSC line in control condition and with the addition of IGFBP2. We show that the parental iPSC line gives rise to hematopoietic progenitor, both immunophenotypically (Figure 4D) and functionally, at expected levels (Figure 4B left column).

      Figure 4A shows an upregulation of IGFBP2 in arterial cells as a result of TF activation. However, from the data presented here, it is not possible to evaluate whether this is specific to the arterial cluster, or it is a common effect shared by all cell types regardless of their identity. 

      Data has now been included in Supplementary Figure 4H, which shows that all the cells show an increase in IGFBP2, but arterial cells show the highest increase. We have now edited the text to reflect this, in lines 228-230.

      In Figure 5A-B only a minority of arterial cells express RUNX1 in response to IGFBP2 treatment. Is this sufficient to explain the very significant increase in the generation of functional hematopoietic progenitors described in Figure 4? Quantification and statistical analysis of RUNX1 upregulation would strengthen this conclusion.

      We have now provided the statistical analysis showing significant upregulation of RUNX1 upon IGFBP2 addition. The p values are now provided in the figure 5 legend.

      In Figure 5 the authors conclude that IGFBP2 remodels the metabolic profile of endothelial cells. However, it is not clear which cell types and clusters were included in the analysis of Figure 5C-G. Is the switch from Glycolysis to Oxidative Phosphorylation specific to endothelial cells? Or it is a more general effect on the entire culture, including hematopoietic cells? 

      We based this conclusion on the fact that the single-cell RNAseq allows to verify that the metabolic differences are obtained in the endothelial cells. Given that we sorted the adherent cells, the majority of these are endothelial cells as shown in Figure 5A. The Seahorse pipeline includes a number of washing steps resulting in the analyses being performed on the adherent compartment which we know consists primarily of endothelial cells. We cannot exclude some contamination from non-endothelial cells but we highlight to this reviewer that the initial observation of the metabolic changes was identified in endothelial cells in the single cell sequencing data. Taken together, we believe that this implies that metabolic changes are specific to this population. We have clarified this in the line 317.

      In the discussion, the authors conclude that they "provide evidence to support the hypothesis that RUNX1T1 could regulate IGFBP2 expression". To further support this conclusion, the authors could provide a correlation analysis of the expression of the two genes in the cell type of interest. 

      Following the observation of the IGFBP2 high expression across clusters, we have now reworded this sentence in lines 382-385  We have tried to perform the correlation analysis but we believe this not to be appropriate due to the detection level of the gRNA, we have now included this as a limitation point in the discussion lines 416-427, and also toned down the conclusion we did draw about RUNX1T1 throughout the whole manuscript.

      As mentioned by the authors, IGFBP2 binds IGF1 and IGF2 modulating their function. Both IGF1 (http://dx.doi.org/10.1016/j.ymeth.2015.10.001) and IGF2 (doi:10.1038/nbt.3702) have been used in iPSC differentiation into definitive hematopoietic cells. It would be relevant to discuss/reference this in the discussion.

      We have now included the suggested reference in the section where we discuss the role of IGFBP2 in binding IGF1 and IGF2.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 1 compares the transcriptome of human AGM and in-vitro derived hemogenic endothelial cells (HECs). It is not clear why only the genes downregulated in the latter were chosen. Are there any significantly upregulated genes, knockdown/knockout which could also serve a similar purpose? Single-cell transcriptome database analysis is very preliminary. A detailed panel with differences in cluster properties of HECs between the two systems should be provided. A heatmap of all differentially expressed genes between the two samples must be generated, along with a logical explanation for choosing the given set of genes. 

      We have now included another panel in figure 1 to better clarify the logic behind the strategy used to identify our target genes (Figure 1A).

      (2) Figure 2 - a panel describing the workflow of gRNA design and targeting for the 9 candidate genes, along with lentiviral packaging and transduction would make it easier to follow. 

      We have now included three schematics for all the experiments in the manuscript in supplementary figure 4 A-C. 

      (3) Figure 3- to assess the effect of arterial cell expansion on the emergence of hematopoietic progenitors, CD34+ Dll4+ cells should be sorted for OP9 co-culture assay.

      Using only CD34+ cells does not answer the question raised. Also, the CFU assay performed does not fully support the claim of enhanced hematopoietic differentiation since only CFU-E and CFU-GM colonies are increased in Dox-treated samples, with no effect on other colony types. OP9 co-culture assay with these cells would be required to strengthen this claim. 

      We wanted to clarify that the effect on the methylcellulose coming from the activated cells was not limited to CFU-E, as the reviewer reported; instead, it also affected CFU-GM and CFU-M. 

      We have now performed additional experiments where we sorted the CD34+ compartment into DLL4- and DLL4+ in Supplementary Figure 5D-E, which we discussed in lines 250-258. 

      (4) In Figure 3F, there appears to be a lot of variation in the DLL4% fold change values for

      DOX treated iSAM_AGM sample, which weakens the claim of increased arterial expansion.

      Can the authors explain the probable reason? It is suggested that the two other controls (iSAM_+DOX and iSAM_-DOX) should be included in this analysis. It is imperative to also show % populations rather than just fold change to gain confidence.

      We agree that there is a lot of variability. That is because differentiation happens in 3D in embryoid bodies, which contain many different cell types that differentiate in different proportions across independent experiments. We have now included the raw data in Supplementary Figure 4 D, with additional statistical analysis to show the expansion of arterial cells including also the suggested additional controls.

      (5) How does activation of these target genes cause increased arterialization? Is the emergence of non-HE populations suppressed? Or is it specific to the HE? The data on this should be clarified and also discussed. ANTO/Lesley text

      We have provided additional data clarifying the connection between increased arterialisation and hemogenic potential. We showed that the activation induces increased arterialisation and that IGFBP2 acts by supporting the acquisition of hemogenic potential. We have discussed this in lines 326-348 and provided a new figure to explain this in detail (figure 6)

      (6) Considering that IGFBP2 was chosen from the activated target gene(s) cluster, can the authors explain why the reduced CFU-M phenomenon observed in Figure 3G does not appear in the MethoCult assay for IGFBP2 treated cells (Figure 4B)?

      The difference could be explained by the fact that in Figure 3G, the cells underwent activation of multiple genes, while in Figure 4B, they were only exposed to IGFBP2. Our results show that IGFBP2 could at least partially explain the phenotype that we see with the activation, but we believe that during the activation experiments, there might be other signals available that might not be induced by IGFBP2 alone. We have also added a summary section and a figure to clarify the different mechanisms of action of the gene activation and IGFBP2.

      (7) Figure 4- while the experiments conducted support the role of IGFBP2 in increasing hematopoietic output, there is no experimental evidence to prove its function through paracrine signalling in HECs. The authors need to provide some evidence of how IGFBP2 supplementation specifically expands only the hematopoietic progenitors. Experimental strategies involving specifically targeting IGFBP2 in hemogenic/arterial endothelial cells are required to prove its cell type specific function. Additionally, assessing the in vivo functional potential of the hematopoietic cells generated in the presence of IGFBP2, by bone-marrow transplantation of CD34+ CD43+ cells, is essential. 

      The role of IGFBP2 in the context of HSC production and expansion was not the topic of our research, and we have not claimed that IGFBP2  affects the long-term repopulating capacity of HSPCs. Therefore, we believe that the requested experiments are not required to support the specific claims that we do make. We have now provided more experiments and bioinformatic analysis that support the role of IGFBP2 in inducing the progression of EHT from arterial cells to hemogenic endothelium, and to avoid misunderstandings, we have toned down our claims by editing the text regarding its paracrine effect s. 

      (8) Figure 4C-D -It is recommended to plot % populations along with fold change value. As this is a key finding, it is important to perform flow cytometry for additional hematopoietic markers- CD144, CD235a and CD41a to demonstrate whether this strategy can also expand erythroid-megakaryocyte progenitors. Telma

      Figure 4C already shows the percentage values; we have now added the percentage for Figure 4D in SF5C. We have also performed additional analysis as requested and added the data obtained to Supplementary Figure 5D.

      (9) In Figure 5, analysis showing the frequency of cells constituting different clusters, between untreated and IGFBP2-treated samples in the single-cell transcriptome analysis is essential. Additional experiments are required to validate the function of IGFBP2 through modulation of metabolic activity. Inhibition of oxidative phosphorylation in the IGFBP2treated cells should reduce the hematopoietic output. Authors should consider doing these experiments to provide a stronger mechanistic insight into IGFBP2-mediated regulation of hematopoietic emergence.

      We have now included the requested cluster composition in Supplementary Figure 5F. We decided not to include further tests on the metabolic profile of IGFBP2 as we already discussed in other papers that showed, using selective inhibitors, that the EHT coincides with a glycol to OxPhos switch. 

      (10) It is very striking to see that IGFBP2 supplementation changes the transcriptional profile of developing hematopoietic cells by increasing transcription of OXPHOS-related genes with concomitant reduction of glycolytic signatures, particularly at Day 13. However, the mitochondrial ATP rate measurements do not seem convincing. The bioenergetic profiles show that when mitochondrial inhibitors are added, both groups exhibit decreased OCR values and, on the other hand, higher ECAR. This indicates that both groups have the capability to utilize OXPHOS or glycolysis and may only differ in their basal respiration rates.

      Differences in proliferation rate can cause basal respiration to change. There is no information on how the bioenergetic profile was normalized (cell no./protein amount). Given that IGFBP2 has been shown to increase proliferation, it is very likely that the cells treated with IGFBP2 proliferated faster and therefore have higher OCR. The data needs to be normalized appropriately to negate this possibility.

      We have previously tested whether IGFBP2 causes an increase in proliferation by analysing the cell cycle of cells treated with it, as we initially thought this could be a mechanism of action. We have now provided the quantification of the cell cycle in the cells treated with IGFBP2, showing no effect was observed in cell cycle Supplementary Figure 4E. Following this analysis, we decided to plate the same number of cells and test their density under the microscope before running the experiment; each experiment was done in triplicate for each condition. We have now added this info to the method sections lines 806-813.  We did not comment on the basal difference, which we agree might be due to several factors, but we only compared the difference in response to the inhibitors, which isn’t affected by the basal level but exclusively by their D values. We have also included the formulas used to calculate the ATP production rate.

      Overall, it appears that IGFBP2 does not seem to primarily cause metabolic changes, but simply accelerates the metabolic dependency on OXPHOS. Hence, the term 'metabolic remodelling' must be avoided unless IGFBP2 depletion/loss of function analysis is shown.

      We thank the reviewer for suggesting how to interpret the data about the dependency on OXPHOS. We have now changed the conclusions and claims about the effect of IGFBP2. We have also included a cell cycle analysis of the hematopoietic cells derived upon IGFBP2 addition to show that they don’t show differences in proliferation that could cause the increase in colony formation we observed. Regarding the assay, we have plated the same number of cells for each group to make sure we were comparing the same number of cells, which we also assessed in the microscope before the test, and we eliminated the suspension cells during the washes that preceded the measurement. The review is correct in indicating that there is a basal difference in the value of OCR and ECAR where the IGFBP2 is lower at the start and not higher, which would not conceal higher proliferation. Finally, the ATP production rate is calculated on the variation of OCR and ECAR upon the addition of inhibitors, which normalizes for the basal differences.

    1. Temps Forts de la Vidéo "Peut on être adultes avec nos ados"

      Voici les temps forts de la vidéo avec une description des sujets abordés :

      • Introduction (0:00-3:00): Présentation de Cynthia Fleury, philosophe et psychanalyste, et du thème de la conférence : "Peut-on être adulte avec nos adolescents ?"
      • Statistiques sur la santé mentale des adolescents (3:00-7:00): Présentation des chiffres de Santé France sur la dégradation de la santé mentale des adolescents, notamment depuis la Covid-19. Discussion sur la conscientisation accrue de la santé mentale et les obstacles à la consultation d'un professionnel.
      • Clinique de l'adolescence (7:00-9:00): Exploration des transformations physiologiques et psychiques de l'adolescence, incluant la puberté, le développement cognitif et la construction de l'identité.
      • Le concept de "care" (9:00-14:00): Analyse du "care" comme élément central de l'individuation et de la construction d'un sujet en relation avec le monde. Discussion des travaux de Winnicott, Gilligan et Tronto sur l'éthique du "care".
      • Définition d'un adulte (14:00-23:00): Réflexion sur la définition d'un adulte selon le Larousse et proposition d'une dialectique pour le développement d'un sujet basée sur l'imagination vraie, le "pretium doloris" (prix de la douleur) et la "vis comica" (force comique).
      • L'adolescence comme expérience d'un "corps mutant" (23:00-28:00): Discussion du texte de Jean-Pierre Benoît, "L'adolescence, un excès de corps," et exploration des défis posés par les transformations corporelles et la découverte de la sexualité.
      • L'adolescence comme découverte de la vie comme "maladie chronique" (28:00-35:00): Analogie entre l'expérience de la maladie chronique et l'adolescence, toutes deux impliquant des ruptures biographiques, des atteintes à l'image de soi et des remises en question des projets de vie.
      • Déconnexion des adolescents et conduites à risque (35:00-38:00): Analyse de la déconnexion croissante des adolescents par rapport à la réalité du monde adulte et des conduites à risque comme moyen de se réapproprier son corps et son existence.
      • L'impact du Covid-19 (38:00-42:00): Discussion sur l'impact profond du confinement et de la pandémie sur la santé mentale des adolescents et des adultes, et sur la perte de chances pour les plus jeunes.
      • L'importance du lien (42:00-44:00): Recommandations pour maintenir le lien avec les adolescents, en utilisant la verbalisation, le non-verbal et le partage d'expériences communes.
      • Conclusion (44:00-46:00): Dernière question sur les activités offertes aux MNA pour vivre une vie d'adolescent et discussion sur la nécessité d'inclure le risque dans le processus de soin.

      ● Adolescence: Ce tag est essentiel car la vidéo explore de nombreux aspects de l'adolescence, tels que les transformations physiques et psychiques, la construction de l'identité, les conduites à risque et la relation aux adultes. ● Éducation: La vidéo aborde la question de l'éducation des adolescents, notamment le rôle des parents et la nécessité d'une autorité bienveillante. ● Santé Mentale: Les statistiques sur la santé mentale des adolescents et l'impact du Covid-19 occupent une part importante de la vidéo, justifiant ce tag. ● Philosophie: La vidéo s'appuie sur des concepts philosophiques pour analyser l'adolescence et la relation adulte-adolescent, notamment les travaux de Kant, Nietzsche et Ricker. ● Psychanalyse: Les théories psychanalytiques, en particulier celles de Winnicott, Anna Freud et Ronald Laing, sont utilisées pour comprendre le développement de l'adolescent. Concepts Clés: ● "Care": Ce concept central est analysé en profondeur, notamment à travers les travaux de Winnicott, Gilligan et Tronto. ● Individuation: La vidéo explore le processus d'individuation de l'adolescent, en lien avec le concept de "care". ● Rupture Biographique: Ce concept est utilisé pour illustrer les transformations profondes que traverse l'adolescent, en lien avec l'expérience de la maladie chronique. ● Corps Mutant: La vidéo s'intéresse à l'importance du corps dans l'expérience adolescente et aux défis posés par ses transformations. ● Conduites à Risque: Les conduites à risque, telles que la scarification et les tentatives de suicide, sont abordées dans la vidéo comme des manifestations de la quête d'identité et de la confrontation au réel. Autres Tags Pertinents: ● Parents ● Enfance ● Développement Personnel ● Psychologie ● Sociologie ● Communication ● Relation Adulte-Enfant ● Autorité ● Bienveillance ● Écrans ● Réseaux Sociaux ● Pandémie ● Confinement

  6. Nov 2024
    1. reply to u/Pawps4895 at https://old.reddit.com/r/typewriters/comments/1h1dcil/help_ink_ribbon_not_moving/

      That ghosting effect you're seeing may be down to your typing technique. Computer keyboard typing technique is different than typewriter technique. If you're pressing hard and/or bottoming the keys out, you may not be getting your fingers out of the way and causing the key to double strike while you're lifting your finger up.

      Instead, type as if they keys are hot lava. Strike and release them as quickly as possible and that ghosting should clear up. For more on technique, try: https://hypothes.is/users/chrisaldrich?q=tag%3A%22typing+technique%22

      If that isn't the issue, is that ghosting happening on all the keys or just a few? Cleaning things out certainly couldn't hurt: https://boffosocko.com/2024/08/09/on-colloquial-advice-for-degreasing-cleaning-and-oiling-manual-typewriters/

    1. Reviewer #2 (Public review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for a role for domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation dependent manner, due to DNMT1 deletion in HAP1 cell line. The authors then identified L1TD1 associated RNAs using RIP-Seq, which display a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found L1TD1 protein associated with L1-RNPs and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expression, and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish feasibility of this relationship existing in vivo in either development or disease, or both.

      Comments on revised version:

      In general, the authors did an acceptable job addressing the major concerns throughout the manuscript. This revision is much clearer and has improved in terms of logical progression.

    1. Reviewer #1 (Public review):

      Summary<br /> Roseman et al. use a new inhibitor of the maintenance DNA methyltransferase DNMT1 to probe the role of methylation on binding of the CTCF protein, which is known to be involved chromatin loop formation. As previous reported, and as expected based on our knowledge that CTCF binding is methylation-sensitive, the authors find that loss of methylation leads to additional CTCF binding sites and increased loop formation. By comparing novel loops with the binding of the pre-mRNA splicing factor SON, which localizes to the nuclear speckle compartment, they propose that these reactivated loops localize to near speckles. This behavior is dependent on CTCF whereas degradation of two speckle proteins does not affect CTCF binding or loop formation. The authors propose a model in which DNA methylation controls the association of genome regions with speckles via CTCF-mediated insulation.

      Strengths<br /> The strengths of the study are 1) the use of a new, specific DNMT1 inhibitor and 2) the observation that genes whose expression is sensitive to DNMT1 inhibition and dependent on CTCF (cluster 2) show higher association with SON than genes which are sensitive to DNMT1 inhibition but are CTCF insensitive, is in line with the authors' general model.

      Weaknesses<br /> There are a number of significant weaknesses that as a whole undermine many of the key conclusions, including the overall mechanistic model of a direct regulatory role of DNA methylation on CTCF-mediated speckle association of chromatin loops.

      (1) The authors frequently make quasi-quantitative statements but do not actually provide the quantitative data, which they actually all have in hand. To give a few examples: "reactivated CTCF sites were largely methylated (p. 4/5), "many CTCF binding motifs enriched..." (p.5), "a large subset of reactivated peaks..."(p.5), "increase in strength upon DNMT1 inhibition" (p.5); "a greater total number....." (p.7). These statements are all made based on actual numbers and the authors should mention the numbers in the text to give an impression of the extent of these changes (see below) and to clarify what the qualitative terms like "largely", "many", "large", and "increase" mean. This is an issue throughout the manuscript and not limited to the above examples.<br /> Related to this issue, many of the comparisons which the authors interpret to show differences in behavior seem quite minor. For example, visual inspection suggests that the difference in loop strength shown in figure 1E is something like from 0 to 0.1 for K562 cells and a little less for KCT116 cells. What is a positive control here to give a sense of whether these minor changes are relevant. Another example is on p. 7, where the authors claim that CTCF partners of reactivated peaks tend to engage in a "greater number" of looping partners, but inspection of Figure 2A shows a very minor difference from maybe 7 to 7.5 partners. While a Mann-Whitney test may call this difference significant and give a significant P value, likely due to high sample number, it is questionable that this is a biologically relevant difference.

      (2) The data to support the central claim of localization of reactivated loops to speckles is not overly convincing. The overlap with SON Cut&Tag (figure 2F) is partial at best and although it is better with the publicly available TSA-seq data, the latter is less sensitive than Cut&Tag and more difficult to interpret. It would be helpful to validate these data with FISH experiments to directly demonstrate and measure the association of loops with speckles (see below).

      (3) It is not clear that the authors have indeed disrupted speckles from cells by degrading SON and SRRM2. Speckles contain a large number of proteins and considering their phase separated nature stronger evidence for their complete removal is needed. Note that the data published in ref 58 suffers from the same caveat.

      (4) The authors ascribe a direct regulatory role to DNA methylation in controlling the association of some CTCF-mediated loops to speckles (p. 20). However, an active regulatory role of speckle association has not been demonstrated and the observed data are equally explainable by a more parsimonious model in which DNA methylation regulates gene expression via looping and that the association with speckles is merely an indirect bystander effect of the activated genes because we know that active genes are generally associated with speckles. The proposed mechanism of a regulatory role of DNA methylation in controlling speckle association is not convincingly demonstrated by the data. As a consequence, the title of the paper is also misleading.

      (5) As a minor point, the authors imply on p. 15 that ablation of speckles leads to misregulation of genes by altering transcription. This is not shown as the authors only measure RNA abundance, which may be affected by depletion of constitutive splicing factors, but not transcription. The authors would need to show direct effects on transcription.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the work: "Endosomal sorting protein SNX4 limits synaptic vesicle docking and release" Josse Poppinga and collaborators addressed the synaptic function of Sortin-Nexin 4 (SNX4). Employing a newly developed in vitro KO model, with live imaging experiments, electrophysiological recordings, and ultrastructural analysis, the authors evaluate modifications in synaptic morphology and function upon loss of SNX4. The data demonstrate increased neurotransmitter release and alteration in synapse ultrastructure with a higher number of docked vesicles and shorter AZ. The evaluation of the presynaptic function of SNX4 is of relevance and tackles an open and yet unresolved question in the field of presynaptic physiology.

      Strengths:

      The sequential characterization of the cellular model is nicely conducted and the different techniques employed are appropriate for the morpho-functional analysis of the synaptic phenotype and the derived conclusions on SNX4 function at presynaptic site. The authors succeeded in presenting a novel in vitro model that resulted in chronical deletion of SNX4 in neurons. A convincing sequence of experimental techniques is applied to the model to unravel the role of SNX4, whose functions in neuronal cells and at synapses are largely unknown. The understanding of the role of endosomal sorting at the presynaptic site is relevant and of high interest in the field of synaptic physiology and in the pathophysiology of the many described synaptopathies that broadly result in loss of synaptic fidelity and quality control at release sites.

      We thank the reviewer for their positive evaluation of our manuscript.

      Weaknesses:

      The flow of the data presentation is mostly descriptive with several consistent morphological and functional modifications upon SNX loss. The paper would benefit from a wider characterization that would allow us to address the physiological roles of SNX4 at the synaptic site and speculate on the underlying molecular mechanisms. In addition, due to the described role of SNX4 in autophagy and the high interest in the regulation of synaptic autophagy in the field of synaptic physiology, an initial evaluation of the autophagy phenotype in the neuronal SNX4KO model is important, and not to be only restricted to the discussion section.

      We thank the reviewer for their suggestions and agree that broader characterization would help us speculate on the underlying mechanism. To address this, we have conducted additional independent experiments investigating the role of SNX4 in neuronal autophagy, as suggested by this reviewer. These experiments are now included in the main figures and are no longer limited to the discussion section. Please see the detailed responses to this reviewer's recommendations below.

      Reviewer #2 (Public Review):

      Summary:

      SNX4 is thought to mediate recycling from endosomes back to the plasma membrane in cells. In this study, the authors demonstrate the increases in the amounts of transmitter release and the number of docked vesicles by combining genetics, electrophysiology, and EM. They failed to find evidence for its role in synaptic vesicle cycling and endocytosis, which may be intuitively closer to the endosome function.

      Strengths:

      The electrophysiological data and EM data are in principle, convincing, though there are several issues in the study.

      We thank the reviewer for their positive evaluation of our manuscript.

      Weaknesses:

      It is unclear why the increase in the amounts of transmitter release and docked vesicles happened in the SNX4 KO mice. In other words, it is unclear how the endosomal sorting proteins in the end regulate or are connected to presynaptic, particularly the active zone function.

      We thank the reviewer for their suggestions and agree that further characterization would help to understand how endosomal sorting proteins regulate presynaptic neurotransmission. We have now added extra data on electrophysiological recordings clarifying SNX4’s role in the synapse. Please see the detailed responses to this reviewer's recommendations below.

      Reviewer #3 (Public Review):

      Summary:

      The study aims to determine whether the endosomal protein SNX4 performs a role in neurotransmitter release and synaptic vesicle recycling. The authors exploited a newly generated conditional knockout mouse to allow them to interrogate the SNX4 function. A series of basic parameters were assessed, with an observed impact on neurotransmitter release and active zone morphology. The work is interesting, however as things currently stand, the work is descriptive with little mechanistic insight. There are a number of places where the data appear to be a little preliminary, and some of the conclusions require further validation.

      Strengths:

      The strengths of the work are the state-of-the-art methods to monitor presynaptic function.

      We thank the reviewers for their positive evaluation of our manuscript.

      Weaknesses:

      The weaknesses are the fact that the work is largely descriptive, with no mechanistic insight into the role of SNX4. Further weaknesses are the absence of controls in some experiments and the design of specific experiments.

      We thank the reviewer for their suggestions and agree that addition of extra control groups and experiments would strengthen interpretation of the observed phenotype. To address this, we have now performed experiments to investigate the miniature excitatory postsynaptic currents and added extra control groups such as overexpression of SNX4 on control background. In addition, we assessed SNX4-mediated neuronal autophagy as a potential molecular mechanism by which SNX4 affects synaptic output. Please see the detailed responses to this reviewers’ recommendations below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The characterization of the neurite outgrowth presented in Figure 1 is a necessary starting point for the characterization of the model and the interpretation of the following data. Being the analysis conducted at 21 DIV, a significant portion of the neurite tree is out of the analyzed field. Adding sholl analysis will better indicate the complexity of the that appears to be influenced by SNX4 loss in the representative images shown in Figure 1f.

      We fully agree and have now performed a Sholl analysis of dendrite branches to investigate dendritic complexity. (Figure 1(i), page 2-3, line 86-88). SNX4 depletion does not affect dendrite length or dendrite branching.

      (2) Analogously, the characterization of synapse number is of relevance for the interpretation of the data. For a better flow of the data, Figure 4 might be presented as Figure 2 (without the repetition of panel h in Figure 1). An explanation of how VAMP2 puncta are processed is necessary in the method section. A double labelling with a postsynaptic marker would allow trafficking organelles to be distinguished from mature synaptic contacts. Indeed, the analysis of VAMP2 intensity along neurite in mature 21DIV neurons should reveal peaks in the intensity profile that represent synaptic contacts. For unexplained reasons, the profile is rather flat in the two experimental groups. Focusing on axonal branches will surely result in a peaked profile for VAMP2 labelling.

      We fully agree that the characterization of synapses is relevant for the interpretation of the data. We have now added a section in our Material and Methods how the VAMP2 puncta are processed (p14 line 517-520). Instead of labeling mature synapses using double labeling of VAMP2 and PSD95, we analyzed the number of active synapses in live neurons using SypHy (Fig. 3g). The reviewer is correct that the VAMP2 data presented in Fig 1I and Fig 4 is part of the same dataset and we have clarified this in the figure legend. In Fig 1I only the total number of VAMP2 puncta is plotted as a marker for synapse number, while in Fig 4 we assess VAMP2 as potential SNX4 sorting cargo (Ma et al., 2017). Because of these different aims, we prefer to keep the figures separate. The analysis of VAMP2 intensity along the distance of the soma is a Sholl analysis (Fig. 4d), represents the average VAMP2 intensity over distance from the soma of 35-41 neurons per group. In contrast to a line scan of a single neurite, this average profile lacks the peaks of individual synapses.

      (3) Miniature excitatory postsynaptic currents recordings would strengthen the synaptic characterization and complement the electrophysiological recordings shown in Figure 2. Analyzing frequency and amplitude parameters would complement the data on the number of synaptic connections defined by the pre and postsynaptic colocalization puncta as suggested above and may support the data shown in Figure 3 g that suggests a decreased number of active synapses in SNX4-KO cells.

      We fully agree that the characterization of miniature excitatory postsynaptic currents would strengthen the synaptic characterization and complement the other electrophysiological data. Therefore, we have now added additional experiments showing the mEPSCs (Fig. 2k-m, page 4) in SNX4 cKO neurons versus control. This data shows that the amplitude and frequency of spontaneous miniature EPSCs (mEPSCs) were not affected upon SNX4 depletion, consistent with a normal first evoked EPSC and RRP estimate. Furthermore, these data suggest that it is unlikely that the observed increase in neurotransmission is due to post-synaptic effects.

      (4) Recordings on the first evoked response shown in Figure 2 b and quantified in Figures c and d suggest that SNX4 overexpression per se exerts some effect on the Amplitude and the Charge of the first evoked response. This is also evident in the supplementary Figure 2 with lower frequency trains. An additional experimental group, namely control+SNX4 is needed for the correct interpretation of the observed phenotype. The possibility that SNX4 per se exerts an effect on evoked transmission could be discussed in terms of putative mechanisms and interactions.

      We thank the reviewer for their suggestion and agree that an additional experimental group (control + SNX4) would strengthen interpretation of the observed phenotype. We have now added a new experimental condition with overexpression of SNX4 on a control background (Supplementary Fig. 3, page 20). This data shows that the amplitude and charge of the first evoked response were not affected in control + SNX4 neurons compared to control, and no differences were detected in the response to the 40 Hz stimulation train (Supplementary Fig. 3a-e).  Together, these data suggest that SNX4 overexpression in itself does not affect the neurotransmission protocols studied in SNX4 cKO experiments.

      (5) To correctly interpret the SyPhy experiments and exclude an effect of SNX silencing on SV recycling, it is suggested to repeat the experiments shown in Figure 3 in the absence and in the presence of bafilomycin. Indeed, the quantifications shown in Figure 3 d and f do not represent "release fraction" as stated (lines 139/140) but they rather refer to an average difference between release fraction and recovered fraction. With the use of bafilomycin, the comparison of the deltaFmax/deltaFNH4Cl with and without bafilomycin would enable the release fraction to be correctly evaluated and compared.

      We appreciate the reviewer’s suggestion and agree on the importance of considering the impact of SV recycling when evaluating the released fraction. We agree that the presence of bafilomycin is critical to isolate the released component during stimulation. We have now rephrased this conclusion. To assess synaptic recycling in these assays, bafilomycin in not critically required and we show by multiple independent experiments, including SypHy and FM64 dye assays, that SV recycling is either not affected or the effect is too small to be detected by these methods.

      (6) In the ultrastructural analysis, additional quantifications are needed to exclude the accumulation of endosome-like structures. It is not clear if, in the evaluation of total SV number (Figure 5e), the authors counted all vesicles or vesicles < 50nm. This has to be explained and additional quantification of # of SV < 50nm and # SV > 50nm is informative, taking into account the endosomal nature of SNX4. Indeed, although the average size of SV is not changed (fig. 5 d), the density of "bigger vesicle" may result from endosomal-like structure accumulation. An additional suggested quantification is on vesicle # SV > 80nm as previously reported in the cited references dealing with endosomal proteins and presynaptic morphology.

      We fully agree that the characterization of vesicle size is important and that it was not clearly stated which vesicles were included in the total number of SV (Fig. 5e). We have now added this to the figure description. We have also added a histogram that contains the vesicle numbers of different bin sizes for SNX4 cKO synapses and control synapses (Supplementary Fig. 4, page 21) including # SVs > 80nm. (Whilst it seems that there are more “bigger” vesicles in the KO, further analysis revealed that this is mostly driven by one experiment and this effect is not consistent.)

      (7) Due to the high scientific interest in presynaptic autophagy for SV recycling and degradation, and the paucity of experimental work assessing the proteins involved, an initial evaluation of the neuronal autophagy process (by western blot analysis and immunocytochemistry) for the characterization of the model will better support the paragraph in the discussion (lines 314-322) and contribute to future work in the field. Although very rare, autophagosomes quantification at presynaptic sites can also be performed from the already acquired images. A double membrane structure with the material inside is evident in the representative control image presented!

      We appreciate the reviewer’s suggestion and agree that presynaptic autophagy is an interesting potential mechanism that would elaborate our current working model. To address the reviewers’ suggestion, we added multiple independent experiments to investigate basal autophagy markers such as ATG5 using western blot analysis, characterization of p62 levels using immunohistochemistry and performed additional morphometric analysis on the electron microscopy data (Supplementary Fig. 5). In SNX4 cKO neurons, there was no significant difference in P62 puncta numbers or P62 somatic intensity under basal conditions or after blocking autophagic P62 degradation by bafilomycin treatment, suggesting that autophagic flux remains normal. Also, no changes in total ATG5 protein levels were observed and ultrastructural analysis revealed no differences in the total number of autophagosomes. Collectively, these data indicate that SNX4 depletion does not impact the basal autophagic flux, ATG5 protein levels, or the number of autophagosomes.

      Minor points:

      (1) Dorrbaun et al. 2018 is missing from the reference list. In the legend to figure 1 there is an incorrect reference to Figure 6, rather than Figure 4.

      We have now adjusted the figure legend and added the reference (page 16, line 604).

      (2) Information on the construct employed for the rescue is missing. Is it a fluorescent tag construct? Representative images of the three autaptic neurons (control, KO, KO+SNX4) would nicely complement data presentation in Figure 2. 

      We have now elaborated on this in material and methods section (p12, line 418-421). Unfortunately, we did not obtain pictures of autaptic neurons used for electrophysiology experiments.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 2d and f are somewhat inconsistent. Total charges for the 1st EPSCs differ almost 2-fold in the same condition.

      We appreciate the reviewer’s concern. The average EPSCs charge of the first evoked was 89, 122 and 57 pC for control, KO and rescued neurons respectfully. The average charge of the first pulse of 40Hz train was 41,58 and 32 pC for control, KO and rescued neurons respectfully, which is roughly 50% of the naïve response of the same cells. These trains were recorded after 2 or 3 other stimulation paradigms, which can have affected the total charge released in the 40Hz train. That said, the proportional difference between groups is high comparable, with a 37% increased average charge released in SNX4 cKO compared to control in the naïve response and 41% increased response in the first response of the 40 Hz train, and rescued cells show a 53% reduction in average released charge compared to control in the naïve response compared to a 44% reduction in the first response of the 40 Hz train. Although the absolute values differ between these readouts, we conclude that the biological comparison between groups is consistent.

      (2) Figure 2h. This type of analysis has a drawback. See Neher (2015) for the problems associated with this analysis.

      We fully agree with the reviewer’s comment. As noted in our discussion (page 9 line 285), while this analysis has its limitations, it can still provide an indication of the ready releasable pool.   

      (3) The EPSC phenotype may be due to postsynaptic effects. This should be excluded by additional experiments (mEPSC analysis) or further clarification.

      We fully agree that the characterization of miniature excitatory postsynaptic currents recording would strengthen the synaptic characterization and complement the electrophysiological recordings. Therefore, we have now added additional experiments showing the mEPSCs (Fig. 2k-m) in SNX4 cKO neurons versus control. This data shows that the amplitude and frequency of spontaneous miniature EPSCs (mEPSCs) were not affected upon SNX4 depletion, suggesting that it is unlikely that the observed increase in neurotransmission is due to post-synaptic effects.

      (4) The increased number of docked vesicles observed in EM and the increased slope (vesicle recruitment, Figure 2h) are not consistent with each other. Maybe the definition of docked vesicles is unclear in this version of the manuscript.

      As noted in our material & methods (page 15, line 547-548), SVs were defined as docked if there was no distance visible between the SV membrane and the active zone membrane. We have added the pixel size for clarification. Indeed, we do not observe an increase in release probability or first evoked response, which would correspond with an increased docked pool. However, we think that the increase in docked vesicles might contribute to an enhanced SV recruitment (see discussion).

      (5) Figure 3: Vesicle cycling was monitored in only a limited condition. It is known that there are multiple pathways of vesicle cycling. Ideally, these pathways should be dissected. At least, the authors mention the possibility that they have missed some "positive" conditions.

      We fully agree with the reviewer’s comment that vesicle recycling is complex with several parallel pathways involved. While we did not study individual endocytosis pathways, we used different assays covering various recycling pathways. The SypHy assay (Fig. 3c & f) combined with the 100 AP stimulation paradigm at room temperature predominantly addresses clathrin-mediated endocytosis. Additionally, the FM-64 dye assay at 37 degrees Celsius covers ultrafast endocytosis pathways as well as bulk endocytosis routes. Since neither assay showed major effects, we decided not to pursue further experiments focusing on different endocytosis pathways.

      Reviewer #3 (Recommendations For The Authors):

      Major points:

      (1) Since all of the work here is culture-focussed, the in vivo phenotype is not as relevant, however the in vitro properties are. The incomplete Cre-dependent removal of SNX4 is concerning (especially axonal SNX4 levels identified via immunofluorescence), however, the main concern is that there was no profiling of the other molecular changes within these cultures. This is important, since there may be considerable alterations in the expression of a number of presynaptic proteins which may explain the observed phenotypes. Ideally, these cultures could have been profiled in an unbiased manner via mass spectrometry to identify potential changes in the presynaptic proteome, or at the very least the levels of key fusion molecules would have been assessed via Western blotting.

      We thank the reviewer for their suggestion and agree that mass spectrometry would strengthen the interpretation of the observed phenotype. However, due to contractual constraints, we are unable to pursue a mass spectrometry follow-up experiment. We agree that characterizing key fusion molecules is of potential interest. Therefore, based on literature, we selected a likely candidate, VAMP2, which did not show any alterations in expression levels when knocking out SNX4. Given the previously described role of SNX4 in the degradation pathway, one would expect increased degradation of key fusion molecules if they are recycled by SNX4. Other literature indicates that reduced levels of key fusion molecules, such as synaptotagmin or SNAP-25 (Broadie et al., 1994; Washbourne et al., 2001) , do not mimic our phenotype.

      (2) The experiments reported in Figure 2, in particular those in 2c and 2d, suggest that overexpression of SNX4 has a dominant-negative effect on neurotransmitter release. This is strongly supported by the supplementary data during a stimulus train (particularly the start point of the 5 Hz train in Supplementary Figure 2). Therefore, the perceived rescue of EPSC charge in Figure 2f, 2g may be a result of SNX4 inhibiting neurotransmitter release. A determination of the impact of SNX4 overexpression (and level of overexpression) in WT neurons is essential to show that this is a bonefide rescue, rather than a direct inhibition by SNX4 overexpression.

      We thank the reviewer for their suggestion and agree that an additional experimental group (control + SNX4) would strengthen interpretation of the observed phenotype. We have now added a new experiment with an extra experimental condition with overexpression of SNX4 on a control background (Supplementary Fig. 3 page 21). This data shows that the amplitude and charge of the first evoked response were not affected in control + SNX4 neurons compared to control, and no differences were detected in the response to the 40 Hz stimulation train (Supplementary Fig. 3a-e).  Together, these data suggest that SNX4 overexpression in itself does not affect the neurotransmission protocols studied in SNX4 cKO experiments.

      (3) The experiments in Figure 3 clearly reveal a lack of effect of SNX4 depletion on synaptic vesicle endocytosis. However, the assumption that synaptic vesicle recycling is unaffected is a little premature. The fact that the second evoked SypHy peak is significantly larger than the first (Figures 3c-e) suggests that more vesicles may be recycling in KO neurons. Furthermore, the FM dye experiments do not aid interpretation, since there may be insufficient time (10 min) for new vesicles to be generated from endosomal intermediates experiments. Therefore, to confirm an absence of effect on recycling, the authors could either 1) perform the same experiment as 3c, but with 4 stimulation trains (to drive the system harder to reveal any phenotype) or 2) repeat the FM dye experiment but increase the time between loading and unloading to 30 min.

      We fully agree with the reviewers' comment that vesicle recycling is an important component to consider and is complex with several parallel pathways involved. We conducted multiple independent experiments covering the most significant recycling pathways. The SypHy assay (Fig. 3c & f) combined with the 100 AP stimulation paradigm at room temperature predominantly addresses clathrin-mediated endocytosis. Additionally, the FM-64 dye assay at 37 degrees Celsius covers ultrafast endocytosis pathways as well as bulk endocytosis routes. To further challenge the system and reveal recycling phenotypes, we included a second 100 AP stimulation in our SypHy assay. While only the increase of the second SypHy peak is significant, the absolute numbers do not differ much from the first peak (0,17 for control and 0,21 for KO second peak and 0,19 for control and 0,22 for KO first peak, Supplementary table1). We nevertheless do not see any effects on recycling after the second peak (mean decay time is 27 for control and 26 for KO Supplementary Table 1). A single 100 AP 40 Hz train depletes all the synchronous release (not shown) and most of the evoked charge (see Fig 2f), hence two of these trains with one minute recovery is already a very demanding protocol. Although increasing the time between loading and unloading to 30 minutes might uncover other recycling components, it has been shown that ultrafast endocytosis occurs within 30 seconds (Watanabe et al., 2013), suggesting that 10 minutes should provide enough time for synaptic vesicle recycling. This is also evident from the fact that we can significantly destain synapses loaded with FM dye by electrical stimulation (Fig 3j), indicating that synaptic vesicle recycling took place. Since neither assay showed major effects, we concluded that under these circumstances, synaptic recycling is not significantly affected. However, we cannot exclude the possibility that recycling deficits in SNX4 cKO neurons could be detected in other paradigms,

      (4) There is no obvious effect on VAMP2 levels or location in SNX4 KO neurons (Figure 4). However, when one considers that SNX4 is proposed to have a role in VAMP2 trafficking, it is surprising that an experiment examining the live trafficking of VAMP2-SypHy was not performed. This would have revealed activity-dependent alterations that would have been missed by simply measuring VAMP2 expression and localization, and potentially provided a molecular explanation for the enhanced neurotransmitter release during a stimulus train.

      We appreciate the reviewer’s suggestion and agree that it could be a valuable experiment However, overexpressing a VAMP2-pHluorin construct might obscure potential phenotypes related to VAMP2 trafficking. SNX4 is expected to be involved in VAMP2 recycling, even with activity-dependent changes. Mis-sorted VAMP2 would accumulate in acidic vesicles, which could be masked by the VAMP2-pHluorin construct. Similarly, mis-sorting of other SNX4 cargo, such as the transferrin receptor, has been identified through lysosomal degradation, as shown by Western blot analysis of expression levels of the endogenous protein. We did not detect any differences in endogenous levels of VAMP2 within 21 days of SNX4 deletion (Fig 4), indicating that SNX4-dependent endosome sorting is not essential for VAMP2 recycling.

      (5) The morphological data in Figure 5 report a series of small changes in docked vesicles and active zone length. In many cases, significance is obtained due to synapses being used as the experimental n, and thus inflating the statistical power. When one considers that no significant effect was observed on evoked release (apart from during a stimulus train), it suggests that the number of docked vesicles does not alter release probability in this system (which the authors point out). Instead, they suggest that an increased supply of vesicles is responsible, via increased recruitment to RRP/releasable pool (but not via increased recycling). If this is the case, it should have been reflected as an increase in the evoked SypHy response in Fig 2c,d (which is borderline significant). What may help is to determine the morphological landscape immediately after a stimulus strain, since this is the only condition where enhanced release is observed, and thus provide a morphological correlate to the physiological data.

      We fully agree with the reviewer’s suggestion that an ultrastructural characterization immediately after a stimulus train would be informative. Unfortunately, contract constraints prevent us from performing this experiment. For our ultrastructural morphological data, we treated synapses as individual experimental n since it is not possible to determine whether synapses in a micronetwork on one sapphire originate from the same neuron. We used 18 independent sapphires from 3 independent pups to ensure the technical and biological replication of our data and measuring independent neurons. We fully agree with the reviewers comment to be careful with ‘inflating the statistical power’ due to potential nesting effects when using synapses as experimental n. To mitigate the potential nesting effect of analyzing multiple synapses per neuron, the intracluster correlation (ICC) is calculated per variable and per nesting effect. If ICC was close to 0.1, indicating that a considerable portion of the total variance can be attributed to e.g. synapse or sapphire, multilevel analysis was performed to accommodate nested data (Aarts et al., 2014).

      Minor points

      (1) When a new mouse model is generated, it is usually accompanied by a thorough characterization of its properties. However, in this case, there was no information provided about the conditional SNX4 knockout mouse. This is surprising and at a minimum, the following should be provided a) the background strain, b) method of generation, c) the number of animals used to establish the colony, d) breeding strategy, e) backcrossing strategy, f) genotyping protocol.

      We apologize that a thorough characterization of our novel mouse model was lacking and therefore added this to our material & methods section (page 11, line 377-391).

      (2) There is a noticeable difference between WT and KO neurons during train stimulation in Figure 2f, however, this appears to be due to the fact that there is a far higher EPSC charge to begin with in KO neurons. Why is there such a disparity when there is no difference in response to single pulses (Figures 2b-d) or presynaptic plasticity (Figure 2e)?

      We understand the reviewer’s concern. We excluded an outlier (3x SD) in the KO dataset that drove the initial far higher EPSC charge in the graph (was already excluded for the statistics, Supplementary table 1). The average charge of the first pulse of 40Hz train is 41 pC and for KO neurons 58 pC, which did not differ significantly.  These trains of Fig. 2f were recorded after 2 or 3 other stimulation paradigms, which can have affected the total charge released in the 40Hz train. That said, the proportional difference between groups is high comparable between Fig 2b-d and 2f, with a 37% increased average charge released in SNX4 cKO compared to control in the naïve response (Fig. 2d) and 41% increased response in the first response of the 40 Hz train (Fig. 2f), and rescued cells show a 53% reduction in average released charge compared to control in the naïve response compared to a 44% reduction in the first response of the 40 Hz train. Although the absolute values differ between these readouts, we conclude that the biological comparison between groups is consistent.

      (3) Line 343-344 - "(Supplementary Figure 1a)" should be "(Figure 1a)".

      We thank the reviewer for this comment and adjusted this in the manuscript.

    1. Welcome back to stage two of this advanced demo lesson and again have included full instructions attached to this lesson.

      And this stage of the demo will be another one where you're entering lots of commands because you're going to automate the build of the WordPress application instance.

      So again, I would recommend opening the instructions for this demo lesson and copy and pasting the commands rather than typing them out by hand.

      Now at this point in the advanced demo series, you're going to have a leftover instance that you used to manually install WordPress in the previous stage.

      It should be called WordPress - Manual.

      So I'm going to want you to go ahead and right click on that and select terminate instance and confirm that process to remove this instance from your AWS account.

      We're going to be setting up exactly the same single instance deployment of WordPress, so both the database and the application on the same instance.

      But instead of manually building this, we're going to be using a launch template.

      So from the EC2 console, just go ahead and click on launch templates under instances.

      The first step is to create a launch template for our WordPress application.

      So go ahead and click on create launch template.

      Now launch templates are actually a new version of launch configurations that were previously used with auto scaling groups.

      Launch templates allow you to either launch instances manually using the template or they can be part of auto scaling groups.

      But what a launch template allows you to do is to specify all of the configuration in advance to launch an instance and that template can be used to launch one or many instances.

      So we're going to create a launch template which will automate the installation of WordPress, MariaDB and perform all of the configuration.

      And a launch template can actually have many different versions, which is a feature we'll use throughout this demo series as we evolve the design.

      So the first step is to name this template and we're going to call it WordPress.

      Under template version description, go ahead and enter single server DB and app.

      And then check this box which says provide guidance to help me set up a template that I can use with EC2 auto scaling.

      We're not immediately going to set it up as part of an auto scaling group, but it will help us highlight any options which are required if we want to use it with an auto scaling group.

      Now launch templates can actually be created from scratch or they can be based on a previous template version.

      If we expand source template, you're able to specify a template which this template is based on.

      But in this case, we're creating one from scratch so we won't set any of those options.

      Now just scroll down.

      So the next thing we're going to define in this launch template is the AMI that we're going to use.

      So go ahead and click on Quickstart.

      And once this has changed, we're going to use the same AMI we've been using previously.

      So I want you to go ahead and click on Amazon Linux, specifically Amazon Linux 2023.

      It should be the SSD volume type.

      It should be listed as free tier eligible and just make sure that you've got 64 bit x86 selected.

      And then scroll down further still and in the instance type drop down, we're looking for the T series of instances.

      And then you need to select the one that's free tier eligible.

      In most cases, this will be T2.micro, but select whichever is free tier eligible.

      We want to keep this advanced demo as much as possible within the free tier.

      Scroll down again and for key pair, just make sure that it says don't include in the launch template.

      Move down further still to network settings.

      Then make sure select existing security group is selected.

      And then in the security groups drop down, click in that and make sure that you select the A4L.

      VPC - SG WordPress.

      So this is the security group which will automatically be associated with any instances launched using this launch template.

      So select A4L.

      VPC - SG WordPress and there will be some randomness after this.

      That's fine.

      Just make sure you select the SG WordPress group and then we can scroll down further still.

      Now we can leave storage volumes as default.

      We won't set any resource tags.

      We won't do any configuration of network interfaces, but I will want you to expand advanced details.

      There are a few things that we need to set within advanced details.

      The first is an IAM instance profile.

      So click in this drop down and then make sure that you pick A4L.

      VPC - SG WordPress instance profile.

      Again, there will be some randomness.

      That's fine.

      What this is doing is creating the configuration which will attach an instance role to this EC2 instance.

      And this instance role is going to provide all the permissions required to interact with the parameter store and the elastic file system and anything else that this instance requires.

      And this was pre-created on your behalf using the cloud formation template.

      Next, scroll down further still and look for credit specification.

      Remember, this is the same option that you set when launching an instance manually.

      Now, as before, it's always best to set this to unlimited.

      But if you are using a brand new AWS account, then it's possible that AWS won't allow you to use this option.

      So you should probably go ahead and pick standard.

      It won't make that much of a difference.

      I'm going to pick unlimited, but I do suggest if you are using a fairly new account, you go ahead and select standard.

      So that's the configuration for the instance, the base level configuration.

      What I want you to do now though is to scroll all the way down to the bottom and there's a user data box.

      This user data allows us to specify bootstrapping information to automatically configure our EC2 instances.

      So into this user data box, I want you to paste the entire code snippet within stage 2B of this stages instructions.

      And again, they're attached to this lesson.

      The top line should be hash bang forward slash bin forward slash bash and then a space hyphen XE.

      And then if you scroll all the way down to the bottom, the last line should be RM space forward slash TMP forward slash DB dot setup.

      And now we can see we've pasted this entire user data.

      Once you've done that, go ahead and click on create launch template.

      Now that user data that you just pasted in is essentially all of the commands that you ran in the previous stage of the demo.

      Only instead of pasting them one by one, you've defined them within the user data.

      So this simply automates the process end to end.

      So to test this, go ahead and click on launch templates towards the top of the screen.

      It should show that you have a single launch template.

      It's called WordPress.

      The default version is one and the latest version is one.

      And as we move throughout this demo series, the latest version and the default version will change.

      So just keep an eye on those as we go.

      For now, though, I want you to click in the checkbox next to this launch template, click on actions and then launch instance from template.

      So this is going to launch an EC2 instance using this launch template.

      We're asked to choose a launch template and a version and define the number of instances and we can leave all of these as the defaults.

      If we just scroll down, you'll see how it's pre-populating all of these values with the configuration from the launch template.

      And that's what we want.

      Under key pair name, just select to proceed without a key pair not recommended.

      And that's the default value.

      Scroll down further still.

      Even the networking configuration is partially pre-populated.

      The only thing we need to do is specify a subnet that this instance will be launched into.

      And when we configure auto scaling groups to use this launch template, the auto scaling group will configure the subnets on our behalf.

      Because we're launching an instance directly from the launch template, we have to specify this subnet.

      So click in the subnet dropdown and then look for SN-PUB-A.

      Because we're going to deploy this WordPress instance into the public subnet in Availability Zone A.

      So select that.

      Scroll down.

      Look for the resource tag section and click on add tag.

      We're going to add a tag to the instance launched by this template.

      So into key, just type name and then for value, use WordPress-LT.

      And this will just tell us that this is an instance launched using the launch template.

      Once you've entered those, just scroll all the way down to the bottom and click launch instance.

      And this will launch an EC2 instance using this template.

      And this will automate everything that we had to do in the previous stage manually.

      So this saves us significant time and it enables us to use automation in later stages of this demo series.

      So now go ahead and click on the instance ID in this success box and this will take you to the EC2 console.

      Just give this instance a couple of minutes to finish its build process.

      Even though we're automating the process, it does still take some time to perform the installation and the configuration of all of those different components.

      So go ahead and just copy the public IP version for address of this instance into your clipboard.

      And then after you've waited a few minutes, open that in a new tab.

      If you get an error or it opens with a blank page, then you just need to give it a few minutes longer.

      But when it's finished, it should show the same WordPress installation screen.

      Once it does load the installation screen, we're going to follow the same process.

      So site title is Categorum, username is Admin.

      Enter the same password and then enter the fake test at test.com email address.

      Then click on install WordPress.

      Then click on login.

      Enter admin again.

      Enter the password.

      Click on login.

      It looks as though our automated WordPress build has worked because the dashboard has loaded.

      Click on posts.

      Delete the default post.

      Click on add new.

      For the title, the best animals again, click on the plus, select gallery, click on upload.

      And again, pick a selection of animal pictures and click on open.

      Remember, this is a new EC2 instance.

      So the one we previously terminated will have also deleted the data on that previous instance.

      Once these images have uploaded, click on publish and then publish again to upload the images to the EC2 instance and store the data within the database.

      So remember two components, the data stored in the database and the images or media stored locally on the EC2 instance.

      Click on view post to make sure that this loads correctly.

      It does.

      So that means the automatic build has worked okay.

      Everything's functioning as we expect.

      This has been an automatic build of a functional WordPress application.

      Now, the only thing that's changed from the previous stage of this advanced demo series is we've automated the build of this instance.

      It still has much the same limitations as the previous stage.

      So while we can improve the build time and we can use launch templates to support further automation, the database and application are still on the same instance.

      So neither can scale without the other.

      The database of the application is still located on that instance, meaning scale in or out operations risk this data.

      The WordPress content store is also stored locally on the instance.

      So again, any scale in or out operations risk the media that's stored locally as well as the database.

      Customers still connect directly to the instance, which means we can't perform health checks or automatically heal any failed instances.

      For this, we need a load balancer which we'll be looking at in later stages of this demo series.

      And of course, the IP address of the instance is still hard coded into the database.

      So this is something else we need to resolve as we move through the demo series.

      With that being said, though, that is everything that you needed to do in stage two of this demo series.

      So in this stage, you've automated the build of the WordPress instance using a launch template.

      Now, in stage three, you're going to migrate the data from the local database on EC2 into RDS.

      And this will move the data out of the lifecycle of the EC2 instance.

      And this makes it easier to scale.

      So in stage three, you're going to perform that migration and then update the launch template to take account of that configuration change.

      So go ahead and complete this stage of the demo lesson.

      And when you're ready, I'll look forward to you joining me in the next.

    1. residential racial

      Still using race as a tag here. Not a super fan but if carefully explained how this is being used as a measure for systemic and structural racism and show how it correlates with income and thus likely other unmeasured determinants.

    2. Model 3 included all factors in Model 2 plus %AGA

      Why not also have Model 1 + %AGA if part of the point is that doing this does tag mortality - I would like to see that here

    1. Author response:

      Public reviews:

      Reviewer #1:

      Epigenetic regulation complex (PRC2) is essential for neural crest specification, and its misregulation has been shown to cause severe craniofacial defects. This study shows that Eed, a core PRC2 component, is critical for craniofacial osteoblast differentiation and mesenchymal proliferation after neural crest induction. Using mouse genetics and single-cell RNA sequencing, the researcher found that conditional knockout of Eed leads to significant craniofacial hypoplasia, impaired osteogenesis, and reduced proliferation of mesenchymal cells in post-migratory neural crest populations.

      Overall, the study is superficial and descriptive. No in-depth mechanism was analyzed and the phenotype analysis is not comprehensive.

      We thank the reviewer for sharing their expertise and for taking the time to provide a helpful suggestion to improve our study. We are gratified that the striking phenotypes we report from Eed loss in post-migratory neural crest craniofacial tissues were appreciated. The breadth and depth of our phenotyping techniques, including skeletal staining, micro-CT, echocardiogram, immunofluorescence, histology, and unbiased single-cell gene expression analysis, provide comprehensive data in support our conclusion that PRC2 is required for craniofacial osteoblast differentiation. We hypothesize that epigenetic regulation of chromatin accessibility downstream of PRC2 activity is the molecular mechanism that underlies these phenotypes. To test this hypothesis in our revision, we are using CUT&Tag to profile H3K27me3 epigenetic modifications genome-wide and at the loci encoding the differentially expressed genes revealed by our single-cell transcriptomics in developing craniofacial structures. We anticipate that these experiments will reveal an epigenetic mechanism underlying the phenotypes we report from Eed loss in post-migratory neural crest craniofacial tissues.

      Reviewer #2:

      Summary:The role of PRC2 in post-neural crest induction was not well understood. This work developed an elegant mouse genetic system to conditionally deplete EED upon SOX10 activation. Substantial developmental defects were identified for craniofacial and bone development. The authors also performed extensive single-cell RNA sequencing to analyze differentiation gene expression changes upon conditional EED disruption.

      Strengths:

      (1) Elegant genetic system to ablate EED post neural crest induction.

      (2) Single-cell RNA-seq analysis is extremely suitable for studying the cell type-specific gene expression changes in developmental systems.

      We thank the reviewer for their generous and helpful comments on our study. We are pleased that our mouse genetic and single-cell RNA sequencing approaches were appropriate in pairing the craniofacial phenotypes we report with distinct gene expression changes in post-migratory neural crest tissues upon Eed deletion.

      Weaknesses:

      (1) Although this study is well designed and contains state-of-the-art single-cell RNA-seq analysis, it lacks the mechanistic depth in the EED/PRC2-mediated epigenetic repression. This is largely because no epigenomic data was shown.

      Thank you for this suggestion. As described in response to Reviewer #1, we will include H2K27me3 CUT&Tag data in craniofacial tissue harvested from E12.5 and E16.5 Sox10-Cretg+ Eedfl/fl and Sox10-Cretg+ Eedfl/wt  embryos in our revision. Our analyses will including genome-wide and targeted metaplot visualizations across genotypes and developmental timepoints and assess how H3K27me3 occupancy relates to gene expression changes in our single-cell RNA sequencing data.

      (2) The mouse model of conditional loss of EZH2 in neural crest has been previously reported, as the authors pointed out in the discussion. What is novel in this study to disrupt EED? Perhaps a more detailed comparison of the two mouse models would be beneficial.

      We acknowledge the study the reviewer has indicated (Schwarz et al. Development 2014). This elegant investigation uses Wnt1-Cre to delete Ezh2 and found a similar phenotype to ours in the form of catastrophic craniofacial hypoplasia. We sought to add depth to the study of PRC2’s vital role in neural crest development by ablating Eed, which has a unique function in the PRC2 complex by binding to H3K27me3 and allosterically activating Ezh2. In this sense, we sought to test if phenotypes arising from deletion of Eed, the PRC2 “reader”, differ from phenotypes arising from deletion of Ezh2, the PRC2 “writer”, in neural crest derived tissues. Due to limitations associated with the Wnt1-Cre transgene (Lewis et al. Developmental Biology 2013), we used the Sox10-Cre allele which targets the migratory neural crest and is completely recombined by E10.5, instead of Wnt1-Cre which targets pre-migratory neural crest cells. A more detailed comparison of these mouse models will be included in the Discussion section of our revised manuscript, and we thank the reviewer for this thoughtful suggestion.

      (3) The presentation of the single-cell RNA-seq data may need improvement. The complexity of the many cell types blurs the importance of which cell types are affected the most by EED disruption.

      We agree with the reviewer’s critique of the scRNA-seq data presentation. Because Sox10+ cells were not sorted (via FACS, for example) from craniofacial tissues before single-cell RNA sequencing, we identified a breath of cell types in UMAP space unrelated to epigenetic disruption of neural crest derived tissues. We will include subcluster visualization plots in the figures of our revised manuscript to highlight specific changes in clusters, such as osteoblasts and mesenchymal stem cells, that arise from Eed loss in post-migratory neural crest craniofacial tissues.

      (4) While it's easy to identify PRC2/EED target genes using published epigenomic data, it would be nice to tease out the direct versus indirect effects in the gene expression changes (e.g Figure 4e).

      We agree with the reviewer that our single-cell RNA sequencing data do not provide insight into direct versus indirect changes in gene expression downstream of PRC2. We hope that the aforementioned CUT&Tag experiment will provide the necessary mechanistic insight into H3K27me3 occupancy and direct effects on gene expression resulting from PRC2 inactivation in our mouse model.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work investigated the role of CXXC-finger protein 1 (CXXC1) in regulatory T cells. CXXC1-bound genomic regions largely overlap with Foxp3-bound regions and regions with H3K4me3 histone modifications in Treg cells. CXXC1 and Foxp3 interact with each other, as shown by co-immunoprecipitation. Mice with Treg-specific CXXC1 knockout (KO) succumb to lymphoproliferative diseases between 3 to 4 weeks of age, similar to Foxp3 KO mice. Although the immune suppression function of CXXC1 KO Treg is comparable to WT Treg in an in vitro assay, these KO Tregs failed to suppress autoimmune diseases such as EAE and colitis in Treg transfer models in vivo. This is partly due to the diminished survival of the KO Tregs after transfer. CXXC1 KO Tregs do not have an altered DNA methylation pattern; instead, they display weakened H3K4me3 modifications within the broad H3K4me3 domains, which contain a set of Treg signature genes. These results suggest that CXXC1 and Foxp3 collaborate to regulate Treg homeostasis and function by promoting Treg signature gene expression through maintaining H3K4me3 modification.

      Strengths:

      Epigenetic regulation of Treg cells has been a constantly evolving area of research. The current study revealed CXXC1 as a previously unidentified epigenetic regulator of Tregs. The strong phenotype of the knockout mouse supports the critical role CXXC1 plays in Treg cells. Mechanistically, the link between CXXC1 and the maintenance of broad H3K4me3 domains is also a novel finding.

      Weaknesses:

      (1) It is not clear why the authors chose to compare H3K4me3 and H3K27me3 enriched genomic regions. There are other histone modifications associated with transcription activation or repression. Please provide justification.

      Thank you for highlighting this important point. We prioritized H3K4me3 and H3K27me3 because they are well-established markers of transcriptional activation and repression, respectively. These modifications provide a robust framework for investigating the dynamic interplay of chromatin states in Treg cells, particularly in regulating the balance between activation and suppression of key genes. While histone acetylation, such as H3K27ac, is linked to enhancer activity and transcriptional elongation, our focus was on promoter-level regulation, where H3K4me3 and H3K27me3 are most relevant. Although other histone modifications could provide additional insights, we chose to focus on these two to maintain clarity and feasibility in our analysis. We are happy to further elaborate on this rationale in the manuscript if necessary.

      (2) It is not clear what separates Clusters 1 and 3 in Figure 1C. It seems they share the same features.

      We apologize for not clarifying these clusters clearly. Cluster 1 and 3 are both H3K4me3 only group, with H3K4me3 enrichment and gene expression levels being higher in Cluster 1. At first, we divided the promoters into four categories because we wanted to try to classify them into four categories: H3K4me3 only, H3K27me3 only, H3K4me3-H3K27me3 co-occupied, and None. However, in actual classification, we could not distinguish H3K4me3-H3K27me3 co-occupied group. Instead, we had two categories of H3K4me3 only, with cluster 1 having a higher enrichment level for H3K4me3 and gene expression levels.

      (3) The claim, "These observations support the hypothesis that FOXP3 primarily functions as an activator by promoting H3K4me3 deposition in Treg cells." (line 344), seems to be a bit of an overstatement. Foxp3 certainly can promote transcription in ways other than promoting H3K3me3 deposition, and it also can repress gene transcription without affecting H3K27me3 deposition. Therefore, it is not justified to claim that promoting H3K4me3 deposition is Foxp3's primary function.

      We appreciate the reviewer’s thoughtful observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      (4) For the in vitro suppression assay in Figure S4C, and the Treg transfer EAE and colitis experiments in Figure 4, the Tregs should be isolated from Cxxc1 fl/fl x Foxp3 cre/wt female heterozygous mice instead of Cxxc1 fl/fl x Foxp3 cre/cre (or cre/Y) mice. Tregs from the homozygous KO mice are already activated by the lymphoproliferative environment and could have vastly different gene expression patterns and homeostatic features compared to resting Tregs. Therefore, it's not a fair comparison between these activated KO Tregs and resting WT Tregs.

      Thank you for this insightful comment and for pointing out the potential confounding effects associated with using Treg cells from homozygous Foxp3Cre/Cre (or Cre/Y) Cxxc1fl/fl mice. We agree that using Treg cells from _Foxp3_Cre/+ _Cxxc1_fl/fl (referred to as “het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (referred to as “het-WT”) female mice would provide a more balanced comparison, as these Treg cells are less likely to be influenced by the activated lymphoproliferative environment present in homozygous KO mice.

      To address this concern, we will perform additional experiments using Treg cells isolated from _Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice. We will update the manuscript with these new data to provide a more accurate assessment of the impact of CXXC1 deficiency on Treg cell function.

      (5) The manuscript didn't provide a potential mechanism for how CXXC1 strengthens broad H3K4me3-modified genomic regions. The authors should perform Foxp3 ChIP-seq or Cut-n-Taq with WT and Cxxc1 cKO Tregs to determine whether CXXC1 deletion changes Foxp3's binding pattern in Treg cells.

      Thank you for your insightful comments and valuable suggestions. We greatly appreciate your recommendation to explore the potential mechanism by which CXXC1 enhances broad H3K4me3-modified genomic regions.

      In response, we plan to conduct CUT&Tag experiments for Foxp3 in both WT and Cxxc1 cKO Treg cells.

      Reviewer #2 (Public review):

      FOXP3 has been known to form diverse complexes with different transcription factors and enzymes responsible for epigenetic modifications, but how extracellular signals timely regulate FOXP3 complex dynamics remains to be fully understood. Histone H3K4 tri-methylation (H3K4me3) and CXXC finger protein 1 (CXXC1), which is required to regulate H3K4me3, also remain to be fully investigated in Treg cells. Here, Meng et al. performed a comprehensive analysis of H3K4me3 CUT&Tag assay on Treg cells and a comparison of the dataset with the FOXP3 ChIP-seq dataset revealed that FOXP3 could facilitate the regulation of target genes by promoting H3K4me3 deposition.

      Moreover, CXXC1-FOXP3 interaction is required for this regulation. They found that specific knockdown of Cxxc1 in Treg leads to spontaneous severe multi-organ inflammation in mice and that Cxxc1-deficient Treg exhibits enhanced activation and impaired suppression activity. In addition, they have also found that CXXC1 shares several binding sites with FOXP3 especially on Treg signature gene loci, which are necessary for maintaining homeostasis and identity of Treg cells.

      The findings of the current study are pretty intriguing, and it would be great if the authors could fully address the following comments to support these interesting findings.

      Major points:

      (1) There is insufficient evidence in the first part of the Results to support the conclusion that "FOXP3 functions as an activator by promoting H3K4Me3 deposition in Treg cells". The authors should compare the results for H3K4Me3 in FOXP3-negative conventional T cells to demonstrate that at these promoter loci, FOXP3 promotes H3K4Me3 deposition.

      We appreciate the reviewer’s critical observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      We will compare H3K4me3 levels at the promoter loci of interest between FOXP3-negative conventional T cells and FOXP3-positive regulatory T cells. This comparison will help elucidate whether FOXP3 directly promotes H3K4me3 deposition at these loci.

      (2) In Figure 3 F&G, the activation status and IFNγ production should be analyzed in Treg cells and Tconv cells separately rather than in total CD4+ T cells. Moreover, are there changes in autoantibodies and IgG and IgE levels in the serum of cKO mice?

      We appreciate the reviewer’s constructive feedback on the analyses presented in Figures 3F and 3G and the additional suggestion to investigate autoantibodies and serum immunoglobulin levels.

      Regarding Figures 3F and 3G, we agree that separating Treg cells and Tconv cells for analysis of activation status and IFN-γ production would provide a more precise understanding of the cellular dynamics in Cxxc1 cKO mice.

      To address this, we will reanalyze the data to examine Treg and Tconv cells independently and include these results in the revised manuscript.

      As for the changes in autoantibodies and serum IgG and IgE levels, we acknowledge that these parameters are important indicators of systemic immune dysregulation.

      We will now measure serum autoantibodies and immunoglobulin levels in Cxxc1 cKO mice and WT controls.

      (3) Why did Cxxc1-deficient Treg cells not show impaired suppression than WT Treg during in vitro suppression assay, despite the reduced expression of Treg cell suppression assay -associated markers at the transcriptional level demonstrated in both scRNA-seq and bulk RNA-seq?

      Thank you for your thoughtful question. We appreciate your interest in understanding the apparent discrepancy between the reduced expression of Treg-associated suppression markers at the transcriptional level and the lack of impaired suppression observed in the in vitro suppression assay.

      There are several potential explanations for this observation:

      (1) Functional Redundancy: Treg cell suppression is a complex, multi-faceted process involving various effector mechanisms such as cytokine production (e.g., IL-10, TGF-β), cell-cell contact, and metabolic regulation. Thus, even though the transcriptional signature of suppression-associated genes is altered, compensatory mechanisms may still allow Cxxc1-deficient Treg cells to retain functional suppression capacity under these specific in vitro conditions.

      (2) In Vitro Assay Limitations: The in vitro suppression assay is a simplified model of Treg function that may not capture all the complexities of Treg-mediated suppression in vivo. While we observed altered gene expression in Cxxc1-deficient Treg cells, this might not directly translate to a functional defect under the specific conditions of the assay. In vivo, additional factors such as cytokine milieu, cell-cell interactions, and tissue-specific environments may be required for full suppression, which could be missing in the in vitro assay.

      (4) Is there a disease in which Cxxc1 is expressed at low levels or absent in Treg cells? Is the same immunodeficiency phenotype present in patients as in mice?

      Thank you for your insightful question regarding the role of CXXC1 in Treg cells and its potential link to human disease. To our knowledge, no specific human disease has been identified where CXXC1 is expressed at low levels or absent specifically in Treg cells. There is currently no direct evidence of an immunodeficiency phenotype in human patients that parallels the one observed in Cxxc1-deficient mice.

      Reviewer #3 (Public review):

      In the report entitled "CXXC-finger protein 1 associates with FOXP3 to stabilize homeostasis and suppressive functions of regulatory T cells", the authors demonstrated that Cxxc1-deletion in Treg cells leads to the development of severe inflammatory disease with impaired suppressive function. Mechanistically, CXXC1 interacts with Foxp3 and regulates the expression of key Treg signature genes by modulating H3K4me3 deposition. Their findings are interesting and significant. However, there are several concerns regarding their analysis and conclusions.

      Major concerns:

      (1) Despite cKO mice showing an increase in Treg cells in the lymph nodes and Cxxc1-deficient Treg cells having normal suppressive function, the majority of cKO mice died within a month. What causes cKO mice to die from severe inflammation?

      Considering the results of Figures 4 and 5, a decrease in Treg cell population due to their reduced proliferative capacity may be one of the causes. It would be informative to analyze the population of tissue Treg cells.

      We thank the reviewer for this insightful comment and acknowledge the importance of understanding the causes of severe inflammation and early mortality in cKO mice. Based on our data and previous studies, we propose the following explanations:

      (1) Reduced Treg Proliferative Capacity: As shown in Figure 5I, the decreased proportion of FOXP3+Ki67+ Treg cells in cKO mice likely reflects impaired proliferative capacity, which may limit the expansion of functional Treg cells in response to inflammatory cues, particularly in peripheral tissues where active suppression is required.

      (2) Altered Treg Function and Activation: Cxxc1-deficient Treg cells exhibit increased expression of activation markers (Il2ra, Cd69) and pro-inflammatory genes (Ifng, Tbx21). This suggests a functional dysregulation that may impair their ability to suppress inflammation effectively, despite their presence in lymphoid organs.

      (3) Tissue Treg Populations: Although our study focuses on lymph node-resident Treg cells, tissue-resident Treg cells play a crucial role in maintaining local immune homeostasis. It is plausible that Cxxc1 deficiency compromises the accumulation or functionality of tissue Treg cells, contributing to uncontrolled inflammation in non-lymphoid organs. Unfortunately, we currently lack data on tissue Treg populations, which limits our ability to directly address this hypothesis.

      Regarding the suggestion to analyze tissue Treg populations, we agree that this would be an important next step in understanding the cause of the severe inflammation and early mortality in Cxxc1-deficient mice.

      We plan to perform detailed analyses of Treg cell populations in various tissues, including the gut, lung, and liver, to determine if there are specific defects in tissue-resident Treg cells that could contribute to the observed phenotype.

      (2) In Figure 5B, scRNA-seq analysis indicated that Mki67+ Treg subset are comparable between WT and Cxxc1-deficient Treg cells. On the other hand, FACS analysis demonstrated that Cxxc1-deficient Treg shows less Ki-67 expression compared to WT in Figure 5I. The authors should explain this discrepancy.

      Thank you for pointing out the apparent discrepancy between the scRNA-seq and FACS analyses regarding Ki-67 expression in Cxxc1-deficient Treg cells.

      In Figure 5B, the scRNA-seq analysis identified the Mki67+ Treg subset as comparable between WT and Cxxc1-deficient Treg cells. This finding reflects the overall proportion of cells expressing Mki67 transcripts within the Treg population. In contrast, the FACS analysis in Figure 5I specifically measures Ki-67 protein levels, revealing reduced expression in Cxxc1-deficient Treg cells compared to WT.

      To address this discrepancy more comprehensively, we will further analyze the scRNA-seq data to directly compare Mki67 mRNA expression levels between WT and Cxxc1-deficient Treg cells.

      In addition, the authors concluded on line 441 that CXXC1 plays a crucial role in maintaining Treg cell stability. However, there appears to be no data on Treg stability. Which data represent the Treg stability?

      We appreciate the reviewer’s observation and recognize that our wording may have been overly conclusive. Our data primarily highlight the impact of Cxxc1 deficiency on Treg cell homeostasis and transcriptional regulation, rather than providing direct evidence for Treg cell stability. Specifically, the downregulation of Treg-specific suppressive genes (Nt5e, Il10, Pdcd1) and the upregulation of pro-inflammatory markers (Gzmb, Ifng, Tbx21) indicate a shift in functional states. While these findings may suggest an indirect disruption in the maintenance of suppressive phenotypes, they do not constitute a direct measure of Treg cell stability.

      To address the reviewer’s concern, we will revise our conclusion to more accurately state that our data support a role for CXXC1 in maintaining Treg cell homeostasis and functional balance, without overextending claims about Treg cell stability. Thank you for bringing this to our attention, as it will help us improve the clarity and precision of our manuscript.

      (3) The authors found that Cxxc1-deficient Treg cells exhibit weaker H3K4me3 signals compared to WT in Figure 7. This result suggests that Cxxc1 regulates H3K4me3 modification via H3K4 methyltransferases in Treg cells. The authors should clarify which H3K4 methyltransferases contribute to the modulation of H3K4me3 deposition by Cxxc1 in Treg cells.

      Thank you for pointing out the need to clarify the role of H3K4 methyltransferases in the modulation of H3K4me3 deposition by CXXC1 in Treg cells.

      In our study, we found that Cxxc1-deficient Treg cells exhibit reduced H3K4me3 levels, as shown in Figure 7. CXXC1 has been previously reported to function as a non-catalytic component of the Set1/COMPASS complex, which contains H3K4 methyltransferases such as SETD1A and SETD1B. These methyltransferases are the primary enzymes responsible for H3K4 trimethylation.

      References:

      (1) Lee J.H., Skalnik D.G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 2005; 280:41725–41731.

      (2). J. P. Thomson, P. J. Skene, J. Selfridge, T. Clouaire, J. Guy, S. Webb, A. R. W. Kerr, A. Deaton, R. Andrews, K. D. James, D. J. Turner, R. Illingworth, A. Bird, CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

      (3) Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81:65–95.

      (4) Brown D.A., Di Cerbo V., Feldmann A., Ahn J., Ito S., Blackledge N.P., Nakayama M., McClellan M., Dimitrova E., Turberfield A.H. et al. The SET1 complex selects actively transcribed target genes via multivalent interaction with CpG Island chromatin. Cell Rep. 2017; 20:2313–2327.

      Furthermore, it would be important to investigate whether Cxxc1-deletion alters Foxp3 binding to target genes.

      Thank you for this important suggestion regarding the impact of Cxxc1 deletion on FOXP3 binding to target genes. We agree that understanding whether Cxxc1 deficiency affects FOXP3’s ability to bind to its target genes would provide valuable insight into the regulatory role of CXXC1 in Treg cell function.

      To address this, we plan to perform CUT&Tag experiments to assess FOXP3 binding profiles in Cxxc1-deficient versus wild-type Treg cells. These experiments will allow us to determine if Cxxc1 loss disrupts FOXP3’s occupancy at key regulatory sites, which may contribute to the observed functional impairments in Treg cells.

      (4) In Figure 7, the authors concluded that CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification since Cxxc1-deficient Treg cells show lower H3K4me3 densities at the key Treg signature genes. Are these Cxxc1-deficient Treg cells derived from mosaic mice? If Cxxc1-deficient Treg cells are derived from cKO mice, the gene expression and H3K4me3 modification status are inconsistent because scRNA-seq analysis indicated that expression of these Treg signature genes was increased in Cxxc1-deficient Treg cells compared to WT (Figure 5F and G).

      Thank you for the insightful comment. To clarify, the Cxxc1-deficient Treg cells analyzed for H3K4me3 modification in Figure 7 were indeed derived from Cxxc1 conditional knockout (cKO) mice, not mosaic mice.

      The scRNA-seq analysis presented in Figures 5F and G revealed an upregulation of Treg signature genes in Cxxc1-deficient Treg cells. This finding suggests that the loss of Cxxc1 drives these cells toward a pro-inflammatory, activated state, underscoring the pivotal role of CXXC1 in maintaining Treg cell homeostasis and suppressive function.

      Regarding the apparent discrepancy between the reduced H3K4me3 levels and the increased expression of these genes, it is important to note that H3K4me3 primarily functions as an epigenetic mark that facilitates chromatin accessibility and transcriptional regulation, acting as an upstream modulator of gene expression. However, gene expression levels are also influenced by downstream compensatory mechanisms and complex inflammatory environments. In this context, the reduction in H3K4me3 likely reflects the direct role of CXXC1 in epigenetic regulation, whereas the upregulation of gene expression in Cxxc1-deficient Treg cells may result as a side effect of the inflammatory environment.

      To further substantiate our findings, we performed RNA-seq analysis on Treg cells from Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice, as presented in Figure S6C. This analysis revealed a notable reduction in the expression of key Treg signature genes, including _Icos, Ctla4, Tnfrsf18, and Nt5e, in het-KO Treg cells. Importantly, the observed changes in gene expression were consistent with the altered H3K4me3 modification status, further supporting the epigenetic regulatory role of CXXC1. These results further emphasize the critical role of CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification.

    2. Reviewer #2 (Public review):

      FOXP3 has been known to form diverse complexes with different transcription factors and enzymes responsible for epigenetic modifications, but how extracellular signals timely regulate FOXP3 complex dynamics remains to be fully understood. Histone H3K4 tri-methylation (H3K4me3) and CXXC finger protein 1 (CXXC1), which is required to regulate H3K4me3, also remain to be fully investigated in Treg cells. Here, Meng et al. performed a comprehensive analysis of H3K4me3 CUT&Tag assay on Treg cells and a comparison of the dataset with the FOXP3 ChIP-seq dataset revealed that FOXP3 could facilitate the regulation of target genes by promoting H3K4me3 deposition.

      Moreover, CXXC1-FOXP3 interaction is required for this regulation. They found that specific knockdown of Cxxc1 in Treg leads to spontaneous severe multi-organ inflammation in mice and that Cxxc1-deficient Treg exhibits enhanced activation and impaired suppression activity. In addition, they have also found that CXXC1 shares several binding sites with FOXP3 especially on Treg signature gene loci, which are necessary for maintaining homeostasis and identity of Treg cells.

      The findings of the current study are pretty intriguing, and it would be great if the authors could fully address the following comments to support these interesting findings.

      Major points:

      (1) There is insufficient evidence in the first part of the Results to support the conclusion that "FOXP3 functions as an activator by promoting H3K4Me3 deposition in Treg cells". The authors should compare the results for H3K4Me3 in FOXP3-negative conventional T cells to demonstrate that at these promoter loci, FOXP3 promotes H3K4Me3 deposition.

      (2) In Figure 3 F&G, the activation status and IFNγ production should be analyzed in Treg cells and Tconv cells separately rather than in total CD4+ T cells. Moreover, are there changes in autoantibodies and IgG and IgE levels in the serum of cKO mice?

      (3) Why did Cxxc1-deficient Treg cells not show impaired suppression than WT Treg during in vitro suppression assay, despite the reduced expression of Treg cell suppression assay -associated markers at the transcriptional level demonstrated in both scRNA-seq and bulk RNA-seq?

      (4) Is there a disease in which Cxxc1 is expressed at low levels or absent in Treg cells? Is the same immunodeficiency phenotype present in patients as in mice?

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study addresses how 3' splice site choice is modulated by the conserved spliceosome-associated protein Fyv6. The authors provide compelling evidence Fyv6 functions to enable selection of 3' splice sites distal to a branch point and in doing so antagonizes more proximal, suboptimal 3' splice sites. The study would be improved through a more nuanced discussion of alternative possibilities and models, for instance in discussing the phenotypic impact of Fyv6 deletion.

      We thank the editors and reviewers for their supportive comments and assessment of this manuscript. We have improved the discussion at several points as suggested by the reviewers to include discussion of alternative possibilities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      A key challenge at the second chemical step of splicing is the identification of the 3' splice site of an intron. This requires recruitment of factors dedicated to the second chemical step of splicing and exclusion of factors dedicated to the first chemical step of splicing. Through the highest resolution cyroEM structure of the spliceosome to-date, the authors show the binding site for Fyv6, a factor dedicated to the second chemical step of splicing, is mutually exclusive with the binding site for a distinct factor dedicated to the first chemical step of splicing, highlighting that splicing factors bind to the spliceosome at a specific stage not only by recognizing features specific to that stage but also by competing with factors that bind at other stages. The authors further reveal that Fyv6 functions at the second chemical step to promote selection of 3' splice sites distal to a branch point and thereby discriminate against proximal, suboptimal 3' splice site. Lastly, the authors show by cyroEM that Fyv6 physically interacts with the RNA helicase Prp22 and by genetics Fyv6 functionally interacts with this factor, implicating Fyv6 in 3'SS proofreading and mRNA release from the spliceosome. The evidence for this study is robust, with the inclusion of genomics, reporter assays, genetics, and cyroEM. Further, the data overall justify the conclusions, which will be of broad interest.

      Strengths:

      (1) The resolution of the cryoEM structure of Fyv6-bound spliceosomes at the second chemical step of splicing is exceptional (2.3 Angstroms at the catalytic core; 3.0-3.7 Angstroms at the periphery), providing the best view of this spliceosomal intermediate in particular and the core of the spliceosome in general.

      (2) The authors observe by cryoEM three distinct states of this spliceosome, each distinguished from the next by progressive loss of protein factors and/or RNA residues. The authors appropriately refrain from overinterpreting these states as reflecting distinct states in the splicing cycle, as too many cyroEM studies are prone to do, and instead interpret these observations to suggest interdependencies of binding. For example, when Fyv6, Slu7, and Prp18 are not observed, neither are the first and second residues of the intron, which otherwise interact, suggesting an interdependence between 3' splice site docking on the 5' splice site and binding of these second step factors to the spliceosome.

      (3) Conclusions are supported from multiple angles.

      (4) The interaction between Fyv6 and Syf1, revealed by the cyroEM structure, was shown to account for the temperature-sensitive phenotypes of a fyv6 deletion, through a truncation analysis.

      (5) Splicing changes were observed in vivo both by indirect copper reporter assays and directly by RT-PCR.

      (6) Changes observed by RNA-seq are validated by RT-PCR.

      (7) The authors go beyond simply observing a general shift to proximal 3'SS usage in the fyv6 deletion by RNA-seq by experimentally varying branch point to 3' splice site distance experimentally in a reporter and demonstrating in a controlled system that Fyv6 promotes distal 3' splice sites.

      (8) The importance of the Fyv6-Syf1 interaction for 3'SS recognition is demonstrated by truncations of both Fyv6 and of Syf1.

      (9) In general, the study was executed thoroughly and presented clearly.

      We thank the reviewer for their recognition of the strengths of our multi-faceted approach that led to highly supported conclusions.

      Weaknesses:

      (1) Despite the authors restraint in interpreting the three states of the spliceosome observed by cyroEM as sequential intermediates along the splicing pathway, it would be helpful to the general reader to explicitly acknowledge the alternative possibility that the difference states simply reflect decomposition from one intermediate during isolation of the complex (i.e., the loss of protein is an in vitro artifact, if an informative one).

      We thank the reviewer for noticing our restraint in interpreting these structures, and we agree that the scenario described by the reviewer is a possibility. We have now explicitly mentioned this in the Discussion on lines 755-757.

      (2) The authors acknowledge that for prp8 suppressors of the fyv6 deletion, suppression may be indirect, as originally proposed by the Query and Konarska labs - that is, that defects in the second step conformation of the spliceosome can be indirectly suppressed by compensating, destabilizing mutations in the first step spliceosome. Whereas some of the other suppressors of the fyv6 deletion can be interpreted as impacting directly the second step spliceosome (e.g., because the gene product is only present in the second step conformation), it seems that many more suppressors beyond prp8 mutants, especially those corresponding to bulky substitutions, which would more likely destabilize than stabilize, could similarly act indirectly by destabilization of first step conformation. The authors should acknowledge this where appropriate (e.g., for factors like Prp8 that are present in both first and second step conformations).

      We agree that this is also a possibility and have now included this on lines 480-486.

      Reviewer #2 (Public Review):

      In this manuscript, Senn, Lipinski, and colleagues report on the structure and function of the conserved spliceosomal protein Fyv6. Pre-mRNA splicing is a critical gene expression step that occurs in two steps, branching and exon ligation. Fyv6 had been recently identified by the Hoskins' lab as a factor that aids exon ligation (Lipinski et al., 2023), yet the mechanistic basis for Fyv6 function was less clear. Here, the authors combine yeast genetics, transcriptomics, biochemical assays, and structural biology to reveal the function of Fyv6. Specifically, they describe that Fyv6 promotes the usage of distal 3'SSs by stabilizing a network of interactions that include the RNA helicase PRP22 and the spliceosome subunit SYF1. They discuss a generalizible mechanism for splice site proofreading by spliceosomsal RNA helicases that could be modulated by other, regulatory splicing factors.

      This is a very high quality study, which expertly combines various approaches to provide new insights into the regulation of 3'SS choice, docking, and undocking. The cryo-EM data is also of excellent quality, which substantially extends on previous yeast P complex structures. This is also supported by the authors use of the latest data analysis tools (Relion-5, AlphaFold2 multimer predictions, Modelangelo). The authors re-evaluate published EM densities of yeast spliceosome complexes (B*, C,C*,P) for the presence or absence of Fyv6, substantiate Fyv6 as a 2nd step specific factor, confirm it as the homolog of the human protein FAM192A, and provide a model for how Fyv6 may fit into the splicing pathway. The biochemical experiments on probing the splicing effects of BP to 3'SS distances after Fyv6 KO, genetic experiments to probe Fyv6 and Syf1 domains, and the suppressor screening add substantially to the study and are well executed. The manuscript is clearly written and we particularly appreciated the nuanced discussions, for example for an alternative model by which Prp22 influences 3'SS undocking. The research findings will be of great interest to the pre-mRNA splicing community.

      We thank the reviewer for their positive comments on our manuscript.

      We have only few comments to improve an already strong manuscript.

      Comments:

      (1) Can the authors comment on how they justify K+ ion positions in their models (e.g. the K+ ion bridging G-1 and G+1 nucleotides)? How do they discriminate e.g. in the 'G-1 and G+1' case K+ from water?

      The assignment of K+ at this position is justified by both longer coordination distances and relatively high cryo-EM density compared to structured water molecules in the same vicinity. We have added a panel to figure3-figure supplement 4C to show the density for the G-1/G+1 bridging K+ ion and to show the adjacent density for putative water molecules which coordinate the ion. The K+ ion density is larger and has stronger signal than the adjacent water molecules. The coordination distances are also longer than would be expected for a Mg2+. For these reasons and because K+ was present in the purification buffer, we modelled the density as K+.

      (2) The authors comment on Yju2 and Fyv6 assignments in all yeast structures except for the ILS. Can the authors comment on if they have also looked into the assignment of Yju2 in the yeast ILS structure in the same manner? While it is possible that Fyv6 could dissociate and Yju2 reassociate at the P to ILS transition, this would merit a closer look given that in the yeast P complex Yju2 had been misassigned previously.

      We thank the reviewer for pointing out this very interesting topic! We have used ModelAngelo to analyze the S. cerevisiae ILS structure for support of density assignment as Yju2 (and not Fyv6). This analysis supports the assignment as Yju2 in this structure and we have no evidence to doubt its presence in those particular purified spliceosomes. We have updated Figure 4- figure supplement 1B accordingly.

      That being said, we do think that this issue should be studied more carefully in the future. The S. cerevisiae ILS structure (5Y88) was determined by purifying spliceosome complexes with a TAP-tag on Yju2. So the conclusion that Yju2 is part of the ILS spliceosome involves some circular logic: Yju2 is part of ILS spliceosome complexes because it is present in ILS complexes purified with Yju2. We also note that Yju2 was absent in ILS complexes recently determined from metazoans by the Plaschka group.  We have added some additional nuance to the Discussion to raise this important mechanistic point at lines 711-718.

      (3) For accessibility to a general reader, figures 1c, d, e, 2a, b, would benefit from additional headings or labels, to immediately convey what is being displayed. It is also not clear to us if Fig 1e might fit better in the supplement and be instead replaced by Supplementary Figure 1a (wt) , b (delta upf1), and a new c (delta fyv6) and new d (delta upf1, delta fyv6). This may allow the reader to better follow the rationale of the authors' use of the Fyv6/Upf1 double deletion.

      We thank the reviewer for the suggestion and have updated Figures 1 C-E to include additional information in the headings and labels. We have not changed the labels in Figures 2A, B but have added additional clarifying language to the legend.

      In terms of rearranging the figures, we thank the reviewer for the suggestion but have decided that the figures are best left in their current ordering.

      (4) The authors carefully interpret the various suppressor mutants, yet to a general reader the authors may wish to focus this section on only the most critical mutants for a better flow of the text.

      We thank the reviewer for this suggestion. While this section of the manuscript does contain (to quote Reviewer #3) “extensive new information regarding functional interactions”, it was a bit long. We have reduced this section of the manuscript by ~200 words for a more focused presentation for general readers.

      Reviewer #3 (Public Review):

      In this manuscript the authors expand their initial identification of Fyv6 as a protein involved in the second step of pre-mRNA splicing to investigate the transcriptome-wide impact of Fyv6 on splicing and gain a deeper understanding of the mechanism of Fyv6 action.

      They first use deep sequencing of transcripts in cells depleted of Fyv6 together with Upf1 (to limit loss of mis-spliced transcripts) to identify broad changes in the transcriptome due to loss of Fyv6. This includes both changes in overall gene expression, that are not deeply discussed, as well as alterations in choice of 3' splice sites - which is the focus of the rest of the manuscript

      They next provide the highest resolution structure of the post-catalytic spliceosome to date; providing unparalleled insight into details of the active site and peripheral components that haven't been well characterized previously.

      Using this structure they identify functionally critical interactions of Fyv6 with Syf1 but not Prp22, Prp8 and Slu7. Finally, a suppressor screen additionally provides extensive new information regarding functional interactions between these second step factors.

      Overall this manuscript reports new and essential information regarding molecular interactions within the spliceosome that determine the use of the 3' splice site. It would be helpful, especially to the non-expert, to summarize these in a table, figure or schematic in the discussion.

      We thank the reviewer for the positive comments and suggestions. We did include a summary figure in panel 7H. However, it was a bit buried. To highlight the summary figure more clearly, we have moved panel 7H to its own figure (Fig. 8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The resolution of some panels is poor, nearly illegible (e.g., Supp Fig 1A, B).

      The resolution of panels in supplemental figure 1 has been increased. However, this may be an artifact of the PDF conversion process. We will pay attention to this during the publication process.

      (2) Panel S6B: 6HYU is a structure of DHX8, not DDX8

      We have corrected DDX8 to DHX8 in Supplemental Fig. S6D and associated figure legend.

      (3) The result that Syf1 truncations can suppress the Fyv6 deletion is impressive. The subsequent discussion seems muddled. A discussion of Fyv6 binding at the first step, instead of Yju2, doesn't seem relevant here (though worthy of consideration in the discussion), given that the starting mutation is the Fyv6 deletion. Further, conjuring rebinding of Yju2 based on the data in the paper seems unnecessarily speculative (assumes that biochemical state III is on pathway), unless I am unaware of some other evidence for such rebinding. Instead, a simpler explanation would seem to be that in the absence of Fyv6, Syf1 inappropriately binds Yju2 instead at the second step and that deletion of the common Fyv6/Yju2 binding site on Syf1 suppresses this defect. In this case, the ts phenotype of the Fyv6 deletion would result from inappropriate binding of Yju2, and the splicing defect would be due to loss of Fyv6 activity. Alternatively, especially considering the work of the labs of Query and Konarska, the authors should consider the possibility that i) the Fyv6 deletion destabilizes the second step conformation, shifting an equilibrium to the first step conformation, and that ii) the Syf1 truncation destabilizes binding of Yju2, thereby restoring the equilibrium. In this case the ts phenotype of the Fyv6 deletion is due to a disturbed equilibrium and the splicing defect is due to the failure of Fyv6 to function at the second step.

      We believe the reviewer is specifically referencing the final paragraph of this Results section (the paragraph that comes just before the section “Mutations in many different splicing factors…”). In retrospect, we agree that our discussion was convoluted. In particular, we emphasized rebinding of Yju2 based on its presence in the cryo-EM structure of the yeast ILS complex. However, given some uncertainties about whether or not Yju2 is a bona fide ILS component (as discussed above). We don’t think it is appropriate to over-emphasize rebinding of Yju2 and have decided to incorporate the elegant mechanisms proposed by the reviewer. This paragraph has now been edited accordingly (lines 386-395).

      (4) The authors imply they have performed biochemical studies, which I think is misleading. Of course, RT-PCR and primer extension assays for example are performed in vitro, but these are an analysis of RNA events that occurred in vivo. In my view a higher threshold should be used for defining "biochemistry". To me "biochemistry" would imply that the authors have, for example, investigated 3' splice site usage in splicing extracts of the fyv6 deletion or engaged in an analysis of the Syf1-Fyv6 interaction involving the expression of the interacting domains in bacteria followed by a binding analysis in the test tube.

      We disagree with the reviewer on this point. Biochemistry is defined as the “branch of sciences concerned with the chemical substances, reactions, and physico chemical processes which occur within living organisms; biological or physical chemistry.” (Oxford English Dictionary). Biochemical studies are not defined by whether or not they take place in vitro, in vivo, or even in silico. Indeed, much of the history of biochemistry (especially in studies of metabolism, for example) involved experiments occurring in vivo that reported on the molecular properties and mechanisms of biological processes. We think many of our experiments fall into this category including our structure/function analysis of splicing factors and the use of the ACT1-CUP1 reporter substrate.

      (5) The monovalents are shown; inositol phosphate is shown; is the binding of Prp22 to RNA shown?

      We have added a panel to Figure 3-figure supplement 4D showing density for the 3' exon within Prp22.

      (6) The authors invoke undocking of the 3'SS in the P complex. Where is the 3'SS in the ILS? The author's model predicts: undocked.

      In all ILS structures to date, the 3′ SS is undocked, in agreement with this prediction. We have now noted this observation in line 760.

      (7) Would be helpful to show fyv6 deletion in Fig 1b.

      We have included growth data for an additional fyv6 deletion strain (in a cup1Δ background) in Figure 1b. The results are quite similar to the upf1_Δ_ background except with slightly worse growth at 23°C.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments

      (1) Fig.3b is the arrow indicating the right rotation?

      This typo has been fixed.

      (2) Fig.4b, panel H is annotated, which should read 'F'.

      This typo has been fixed.

      (3) Line 178: "Finally, we analyzed the sequence features of the alternative 3ʹ SS activated by loss of Fyv6." We would suggest 'used after' instead of 'activated by'.

      We have replaced ‘activated by’ with ‘with increased use after’.

      (4) In Line 544, the authors speculate on a Slu7 requirement for 3'SS docking and on 3'SS docking maintenance. In the results section (Line 265) they however only mention the latter possibility. These statements should be consistent.

      We thank the reviewer for pointing this out. We have added a reference to docking maintenance to the results section at line 325.

      (5) Line 476: "Unexpectedly, Prp22 I1133R was actually deleterious when Fyv6 was present for this reporter." We suggest removing "actually".

      We have removed ‘actually’.

      (6) The authors describe the observed changes in splicing events in absolute numbers (e.g. in Fig 1c). To better assess for the reader whether these numbers reflect large or small effects of Fyv6 in defining mRNA isoforms, it would be more useful to state these as percent changes of total events or to provide a reference number for how many introns are spliced in S.c. See for example the statements in Lines 132 and 145.

      We have added a percentage at line 138 that indicates ~20% of introns in yeast showed splicing changes.

      Reviewer #3 (Recommendations For The Authors):

      Do the authors have a proposed explanation for the observed DGE in non-intron containing genes in the Fyv6 depleted cells?

      The simplest explanation is that this is an indirect effect due to splicing changes occurring in other genes (such as transcription factors, ribosomal protein genes, etc..). It is possible that this can be further dissected in the future using shorter-term knockdown of Fyv6 using Anchors Away or AID-tagging. However, that is beyond the scope of the current manuscript, and we do not wish to comment on these non-intron containing genes further at present.

      Figure 2A - What is going on with the events that show no FAnS value under one condition (i.e. are up against the X or Y axis)? These are of interest as most on the Y- axis are blue.

      The events along one of the axes denote alternative splice sites that are only detected under one condition (either when Fyv6 is present or when it is absent). At this stage, we do not wish to interpret these events further since most have a relatively low number of reads overall.

    1. "u" and "i"

      Charles, talk about a freaking amazing academic writer! I’m so jealous of your expansive vocabulary! Especially in your false dreams writing, your highly descriptive and emotional sentences really shone through – you’ve definitely got an ear for music! For this and the other writings, each one of your sentences contained so much meaning and clearly related to the purpose of the writing – especially with your concluding ideas!

      Most of the comments I made were very minor ones - usually relating to grammar or sentence structure - because I thought you clearly stated your thoughts. One big suggestion is to try and implement shorter sentences to add a sort of “attitude to your writing.” You are fantastic at formally stating your ideas, yet sometimes I find that the most influential writings use a conversational tone here and there. I also noticed that many of your sentences end with a comma then -ing word; therefore, maybe look to change this up somehow by making shorter sentences, placing the dependent clause at the beginning of the sentence, or using different punctuation to help with structure variation. Also, I understand you didn’t have enough time to do this yet, but definitely implement some media to help your project’s visual appeal.

      I like the linear structure that you went with. I think (other than possibly switching “The Duality of Vulnerability Between ‘u’ and ‘i’” and “How Kendrick Lamar Transformed Cultural Trauma Into To Pimp a Butterfly”) the order you have is great. One thing that I suggest would be to incorporate more of the tag feature at the bottom of your pages. For example, tag the bibliography page at the bottom of each page where you use cites and the lyrics page after you cite one of the song’s lyrics.

      In the end, I really enjoyed your project. Of course I knew who Kendrick Lamar was, but I had no clue of all the details about his young life. I enjoyed your unique approach to this writing: analyzing two songs instead of one. The relationship that you discussed between these songs (especially in “The Duality of Vulnerability Between ‘u’ and ‘i’”) is very informative and overall intriguing – I love it when music artists tell a story with multiple songs (just as you did in false dreams)! For me, analyzing one song was hard enough but two…that’s just impressive. And the best part: you did it beautifully!

    1. Lyrics

      I think it would be awesome if every time in your project you talked bout the lyrics, you would hyperlink it back to here and tag this page at the bottom of your writing. It would help give your project more connections and give this lyrics page more purpose!

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02640

      Corresponding author(s): Purusharth I, Rajyaguru; Stephan Vagner

      1. General Statements

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      In the manuscript titled, "RGG motif-containing Scd6/LSM14A proteins regulate the translation of specific mRNAs in response to hydroxyurea-induced genotoxic stress" we elucidate a conserved role of an RNA-binding protein with low-complexity sequences (RGG-motifs) in genotoxic stress response. This work uncovers HU-stress mediated translation regulation of SRS2, Ligase IV and RTEL1 transcripts by Scd6 (yeast)/LSM14 (human). It further identifies RNP condensates and arginine methylation as sites and means of this regulation.

      We heartily thank all three reviewers for their overall encouraging comments about the significance of this manuscript. Specifically, we appreciate their view that the manuscript provides new functional insights into the role of RGG-motif-containing RNA-binding protein in genotoxic stress response. They further agree that such knowledge will impact and interest the general audience of RNA biology and stress biology.

      We have carefully noted all the comments raised by three reviewers. We have addressed almost all the comments, including several by performing new experiments. The new results and their analysis have helped us improve the manuscript, allowing us to provide a stronger mechanistic and functional insight underlying the findings presented in this work. We thank the reviewers for their insightful comments. Below, we provide a point-by-point response to each of the comments.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Reviewer 3

      Major Comment 4: Page 7, top: '...indicating that Scd6 regulated the expression of SRS2 in a HU-dependent manner.' In my opinion, the results so far suggest that Scd6 and SRS2 are somehow functionally connected during HU-treatment. To substantiate the statement of the authors, they should provide a Western blot showing that the levels of SRS2 change upon Scd6 KO or OE during HU-treatment. This will also substantiate the results shown in Figs 2G-H.

      Response: We thank the reviewer for this comment. Detecting Srs2 protein has been technically challenging. The SRS2 construct used in this study is untagged. Unfortunately, the commercial SRS2 antibody has been discontinued. We requested several groups who have used SRS2 antibody in their past studies but they have either closed down their labs or are unable to find an aliquot to share. We have tried tagging SRS2 with 6xHis/1XFLAG/3xFLAG tags at N and C-terminal, but unfortunately, the protein was undetectable in the Western blot analysis using either of the tag-specific antibodies. We have also tried western blot analysis using SRS2-GFP strain, but the protein does not get detected by anti-GFP antibody, probably because of very low expression.

      Since we will not be able to provide western blots for Srs2 protein levels due to technical challenges, we shall provide western blots for RTEL1 (human homolog of Srs2) protein levels upon Lsm14A knockdown in the presence and absence of HU. This will validate the polysome data we have of RTEL1 regulation by LSM14A, and would, by extension, substantiate the SRS2 polysome data.

      Major Comment 5: Figs 3: How are the localization of Scd6 protein and SRS2 mRNA to granules, and the levels of Srs2 protein, in cells exposed to HU after deletion of Hmt1? This would substantiate a role of Hmt1 in vivo.

      Response: We will provide the data for Scd6 protein localization and SRS2 mRNA localization in granule enriched fraction upon HU treatment in Δhmt1 background. This experiment is ongoing.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer 1

      Major Comment 1: Fig. 1 F/G: were the delta RGG and LSM variants expressed at an equivalent level to the WT protein in these experiments?

      Response: We thank the reviewer for this comment. We have quantified the total fluorescence intensity of GFP from the existing microscopy images for WT and domain deletion mutants for both Scd6 and Sbp1 (Now Figure 3A and 3D). This result (added as a new figure panel Fig 3C and 3F) indicates that the levels of Scd6∆RGG mutant is more whereas Scd6∆Lsm protein levels are comparable than WT. Similarly, Sbp1∆RGG mutant expression is comparable to WT in the given experimental conditions.

      Major Comment 2: Fig. 3G: The 6 data points for the delta LSM variant are literally spread evenly up and down the graph, making these data appear highly questionable as to whether one can draw a definitive conclusion from them.

      Response: We agree with the reviewer that the data points are varied. To address the scatter in data, we have performed additional experiments and added those to the existing results. Even though there is a spread in the points, except for one data point, all others show an increase in methylation of LSM domain deletion mutant compared to WT, which is statistically significant. The old blot and graph (Old Figure 3F and 3G) have now been replaced with new ones (Figure 5F and 5G) which look more convincing. The result and conclusion derived from it remain unchanged.

      Minor Comments

      Comment 1: Abstract: the acronym NHEJ likely will need to be defined for the general reader.

      Response: The acronym has been expanded in the abstract and explained in the introduction.

      Comment 2: Introduction, first paragraph: change gene expression to 'transcription' in the phrase 'Even if the contribution of gene expression to GSR..' as I assume this is what is meant here. Gene expression consists of synthesis, processing, translation and decay.

      Response: The required change has been made.

      Comment 3: Pg. 3 Introduction: Since they are liquid-liquid phase condensates and ribonucleoproteins (RNPs) refer to any protein-RNA interaction, I think that referring to PBs and SGs as mRNPs is a bit misleading (especially the 'major mRNPs').

      Response: The statement has been rewritten.

      Comment 4: Introduction: are PBs truly 'sites' of mRNA decay as stated? There are papers in the literature that would argue otherwise.

      Response: The statement has been modified with more citations.

      Comment 5: Pg. 3, three lines from bottom. Change LSM14 to LSM14A

      Response: The addition has been done.

      Comment 6: Pg. 4 top - What is an 'LCS' - containing protein? The acronym has not been defined

      Response: The acronym has been defined now. We have also defined acronyms wherever they were missing.

      Comment 7: Fig. S1 - there are a lot of important data in this figure that demonstrate the coordinated movement of Scd6 and Sbp1 to granules. They should be moved into the main body of the manuscript in my opinion. Likewise, a whole section of the Results is dedicated to Fig. S2 - thus I would suggest moving these data into the main body of the manuscript to assist the reader.

      Response: We thank the reviewer for pointing this out. Figure S1 has now been added to the main body of the manuscript as Figure 2. Figure S2 has now been added to Figure 1 and new Figure 3. This rearrangement has improved the flow of the manuscript.

      Comment 8: Fig. 1F should be flipped in the figure with panel G since G is discussed in the results section before F

      Response: Figure 1F and 1G are now Figure 3A and 3D and in the same order as mentioned in the text.

      Comment 9: Be sure to define all acronyms for the reader.

      Response: All acronyms in the manuscript have been defined wherever applicable.

      Comment 11: Fig. 3H/I: It might be optimal to calculate and compare Kd's for the methylated and unmethylated variants. Also, the labels at the top of 3H do not line up with the wells of the EMSA gel.

      Response: We have calculated the Kd’s for the EMSA, and it has been added to the results section. We have also aligned the labels at the top of the EMSA gel (now Figure 5I) to match with the wells.

      Reviewer 2

      Major Comment 1: Fig. 2A, B. While there seems to be an effect on the lag phase, it could be revealing if the authors pls. calculate the doubling times for the strains and treatments (taking through the exponential growth phase). Furthermore, it would be good if the authors can show the rescue of phenotypes for deletion strains (ie. reintroduction of respective gene on ARS-CEN based plasmids or (if not available) with the OE plasmids.

      Response: We thank the reviewer for this remark. We have calculated the doubling times for the strains in the tested conditions and added in the text. We have analyzed the effect of complementing the deletion strains with the respective genes on the CEN plasmid. We observe that Δscd6 shows tolerance to HU stress as previously seen, which gets rescued almost completely upon complementation with WT SCD6. This result has been included in the manuscript as a new figure panel (Figure S1A) . Δsbp1 also shows marginal tolerance to HU stress, but complementation with WT SBP1 only slightly rescues the phenotype, which is not statistically significant (Figure S1B). This result highlights a more important role of Scd6 as compared to Sbp1 in genotoxic stress response.

      Major Comment 2 (part 1): Fig. 3H. The authors tested the 5'UTR of SRS2 for interaction with recombinant Scd6. Firstly, it is unclear why the authors have chosen the 5'UTR for investigation? Can the authors explain.

      Response: We thank the reviewer for this important comment. During experimentation and analysis, we assayed Scd6 binding to two different fragments of SRS2 mRNA: 5’ and 3’UTR of same lengths (200 bases). We used the UTR fragments because there are numerous reports indicating the role of UTRs in the regulation by RNA binding proteins (https://doi.org/10.1093/bfgp/els056, https://doi.org/10.1126/science.aad9868, https://doi.org/10.1093/jxb/erae073). RNA EMSAs with purified Scd6 and in vitro transcribed UTR RNA fragments revealed a significantly better binding of Scd6 with the 5’ UTR fragment of SRS2 mRNA compared to the 3’ UTR. Therefore, we proceeded with the 5’ UTR fragment for further analysis. We have now added this as a supplementary figure panel and explanation in the manuscript text (Figure S2B).

      Major Comment 2 (part 2): Secondly, the affinities are relatively low (µM), and the gel shift assay lacks a negative control. The authors should test an unrelated RNA fragment of approximately the same size to control for specificity (negative control). It is unclear whether the protein could interact with any RNA fragment through a charged RNA backbone.

      Response: Our in vivo data suggests that the binding of Scd6 with SRS2 mRNA is condition and RNA-specific and is regulated by methylation (now Figure 5C, S2A and 5E). As the reviewer mentioned, Scd6, in principle, could bind to any RNA molecule given the affinity of an RNA-binding protein (with positively charged amino acids such as arginine) to RNA molecule. Nevertheless, the significant difference in the binding of Scd6 to the 5’UTR and 3’UTR fragments itself acts as a relative control for EMSA. The aim of the in vitro experiment (EMSA) was to establish the difference, if any, in the binding affinities of unmethylated vs methylated Scd6, like the in vivo data, where we observe significantly increased binding to SRS2 mRNA upon decreased Scd6 methylation.

      Major Comment 2 (part 3): Thirdly, it would be good if the authors could show a Coomassie gel for the recombinant protein used in those assays.

      Response: The Coomassie gel which was provided as part the supplementary data (now Figure S2C), have now been added as another gel image to the main figure (Figure 5H), next to the EMSA, for better clarity.

      Major Comment 3: Methods and Materials: The Materials and Methods section lacks important information and requires further details to evaluate the study (see below 11 – 17)

      Response: The comment has been duly noted.

      Minor Comments

      Results:

      Comment 4: The numbering of Figure S1, S2 is confused in the first part of the results section. The authors should check numbering. In general, numbering should follow in the order of the text - pls. check.

      Response: Based on the comment#7 by Reviewer 1, Figure S1 and S2 have now been added to the main figure, and the changes in the text have been made accordingly.

      Comment 5: Pg. 5. CHX treatment leads to a decrease in Scd6-GFP and SBP-1 GFP granules. Essentially, CHX blocks translation elongation so the result indicates that puncta depend on active translation. The authors may want to add this liaising point towards the claim that mRNAs could be present in those puncta. How this results integrates with data shown in Fig. S5B*.

      *

      Response: We thank the reviewer for this comment. Since granules are dynamic structures that depend on active translation, CHX treatment leads to the dissociation of Scd6 and Sbp1 granules. This indicate that most of the mRNAs present in these granules could be recycled for translation in polysomes. This strategy has been used in multiple research articles for similar deductions (10.1091/mbc.E08-05-0499, https://doi.org/10.1083/jcb.151.6.1257, https://doi.org/10.1093/nar/gku582). We have now modified the text in the manuscript to accommodate this point. It has been previously reported that core components of stress granules, once formed are stable and resistant to RNase, EDTA and NaCl treatment ex vivo (https://doi.org/10.1016/j.cell.2015.12.038), even when these structures have RNA. Figure S5B (now S3C) indicates that the granule enriched fraction derived from untreated and treated cells indeed behaves like stress granule cores and not protein aggregates allowing us to proceed with downstream experiments.

      Comment 6: Fig. 2H. It would be helpful to the reader, if the authors could mark the respective fraction in the polysomes taken for analysis of relative enrichments. How was this relative enrichment was calculated needs further description.

      Response: The modification has been made (now Figure 4G) and added to the methods and materials.

      Comment 7: Fig. S5B. 1% SDS treatment cause absence for Scd6 signal from the pellet fraction. Based on this result, I am not clear how based on this result they can claim for presence of higher order mRNA-protein complexes? Why does it exclude the possibility for Scd6 aggregates accumulating in the pellet? The authors need to explain/ modify this statement. Related to earlier findings that showed dependency of puncta upon CHX treatment, one wonders how this result matches to this earlier observation (ie.EDTA should dissassemble ribosomes)? Can the authors explain?

      Response: The very stable β-zipper interactions present in prion like domains, which leads to aggregation, is resistant to 1-2% SDS treatment (https://doi.org/10.1016/j.cell.2015.12.038). Hence, we think that solubilization upon 1% SDS treatment indicates that these are not aggregates. EDTA and NaCl are capable of disrupting interactions, which are stabilized mainly by electrostatic forces. Our observations (now Figure S3C) indicate that Scd6 could be part of the more stable mRNP condensate core structure and are therefore resistant to these treatments. Such observations have been previously reported, for example, stress granules in yeast are not affected by EDTA and NaCl treatments (https://doi.org/10.1016/j.cell.2015.12.038).

      Comment 8 (part 1): Fig. 5E, F. For the RNA-seq, the authors compared polysomes with free RNAs (up to 80S) and found enrichment of LIG4 and RTEL1. However, the polysomal profiling mainly shows a slight shift of those mRNAs in higher polysomes; while there is no difference compared to free fractions. How can this be explained?

      Response: We observed a shift from lower polysome fractions (11-12-13) (not from free fractions) to higher polysome fractions (14-15) indicating an increased number of ribosomes translating the RTEL1 mRNA.

      Comment 8 (part 2): On the line, the authors should indicate clearly what fractions were pooled for RNA seq analysis. It is also not clear how the authors quantified percentage of RNA in individual fractions (have they spiked-in an RNA?) - this needs to be stated in the M&M section.

      Response: We have now added the requested information in the Materials and Methods section. Fractions 13 to 17 were pooled for RNAseq analysis. The % of RNA in each fraction was calculated as described in Panda AC et al. Bio Protoc . 2017 Feb 5;7(3):e2126. doi: 10.21769/BioProtoc.2126

      Comment 9: At the end, if may be beneficial to the reader if the authors could provide a simple scheme depicting the model develop during this study.

      Response: We thank the reviewer for this comment. We have included a model derived from our study as a new figure (Figure 8).

      Comment 10: Supplemental Data set (.xls) The adjusted p-values are clustered and >0.05. Can the authors check and describe how those were calculated. How does it match with Volcano plots.

      Response: The adjusted p-values are indeed >0.05. The p-values (and not the adjusted p-values) are plotted in the Volcano plot (now Fig. 7E)

      Materials and Methods:

      Comment 11: A list of primers should be given with specification of their use.

      Response: The list has been added in the supplementary files (Table S3)

      Comment 12: The plasmids constructed for (over)expression of proteins/ production of recombinant proteins should be added. If published, references should be added accordingly.

      Response: The list has been added in the supplementary files (Table S4)

      Comment 13: RIP: the media for growing yeast cells should be added. Check also other section if defined.

      Response: The information has been added wherever required.

      Comment 14: RT-qPCR is not sufficiently described. RT kit needs specification, PCR reaction cycles should be given.

      Response: The information has been added

      Comment 15: Quantification of mRNA levels in polysomes is unclear. How was the distribution of mRNA profiles determined? Have the authors added some RNA spikes to fractions?

      See above.

      Response: The % of RNA in each fraction was calculated as described in Panda AC et al. Bio Protoc . 2017 Feb 5;7(3):e2126. doi: 10.21769/BioProtoc.2126. Details have now been added in the Mat and Meth section.

      Comment 16: The calculation for the enrichments in IPs is not described conclusively and should be added.

      Response: The calculation has now been elaborated and added to the methods and materials section.

      Comment 17: Polysomes fractionation (mammalian). It is indicated that the resultant supernatant was adjusted to 5M NaCl and 1 M MgCl2. This seems to be very high - is this a typo? OR why such high concentrations have been chosen?

      Response: The sentence has been removed. There is no need for such adjustment.

      Review 3

      Major Comment 2: Fig 2A-F: The effects of Scd6 and Sbp1 deletion upon HU-treatment are very small. A more convincing effect is observed upon over-expression of both SRS2 and SCD6. What is the effect of over-expression of SCD6 and SBP1 alone (i.e. without SRS2 over-expression)?

      Response: We thank the reviewer for this comment. The effects are indeed small but consistent and reproducible with two different kinds of assays (growth curve and plating assay, now Figure 4A-C). Overexpression of Scd6 or Sbp1 alone when expressed from a CEN/2u plasmid does not have any phenotype in the presence of HU (Figure S1A and S1B). Although, it has been previously reported that galactose-inducible Scd6 causes a severe growth defect (https://doi.org/10.1093/nar/gkw762), we performed spot assays with galactose inducible Scd6 and Sbp1 on control and HU plates, but did not see any difference in the extent of growth upon HU treatment. This data has now been presented as Figure S1C.

      Major Comment 3: Fig 2E: Why is there an opposite effect of deletion of Scd6 and Sbp1in the SRS2 over-expression background?

      Response: We thank the reviewer for this comment; however, we respectfully disagree with the idea that overexpression of SRS2 yields opposite phenotypes in SCD6 and SBP1 deletion backgrounds. Figure 2E (now Figure 4E) gives the impression that SRS2 overexpression in SBP1 deletion grows significantly more for two reasons. There was an increased spotting of Dsbp1 cells overexpressing SRS2 (row#6) as compared to Dscd6 cells overexpressing SRS2 (row#4), which is evident in the plate without HU (left panel). Additionally, there is also reduced spotting of wild-type cells overexpressing SRS2 (row#2) as compared to Dscd6 cells overexpressing SRS2 (row#4). We have now replaced these panels with another image with better loadings. Quantitation of five experiments (Figure S1F) indicates that Dsbp1 grows slightly better in both EV and SRS2 over-expression background, but the increase is not statistically significant. We interpret this data to suggest that SRS2 is not a direct target of Sbp1. Another protein perhaps performs the specific role of Sbp1 in assisting Scd6 in genotoxic stress response in Dsbp1 background.

      Major Comment 6: Fig 3C: Is the increased interaction of SRS2 mRNA with Scd6 due to increased levels of SRS2 mRNA upon HU treatment? See also comment below.

      Response: Based on RT-qPCR of total RNA, SRS2 mRNA levels do not seem to increase, which has now been added as a Supplementary figure (Figure S3D, left panel). Moreover, quantification of SRS2 mRNA from the FISH data also does not support an increase in mRNA levels (Figure 6D, left panel).

      Major Comment 7: Fig 4A: There seems to be an enrichment of SRS2 mRNA both in the granule-enriched pellet and in the supernatant upon HU treatment in the Scd6-GFP context, suggesting increased SRS2 mRNA levels altogether. The enrichment in granules upon HU is difficult to see, as one should measure the distribution of the mRNA in the pellet relative to the supernatant. Can the authors represent the ratio pellet/supernatant normalized to a control transcript? A similar calculation can be done for the protein normalized to a control protein.

      Response: As mentioned earlier, RT-qPCR data with SRS2 mRNA levels in total lysate has been added to supplementary data (Figure S3D, left panel). Based on RT-qPCR of total RNA, SRS2 mRNA levels do not seem to increase.

      The quantification of SRS2 mRNA and Scd6 protein enrichment is done such that the supernatant and pellet fractions are separately normalized to their respective controls (Scd6GFP, untreated sample) and therefore do not represent the mRNA distribution but relative mRNA enrichment. However, as per the recommendation by the reviewer, the data has been replotted as a ratio of supernatant and pellet with the addition of two more data points and has been added in the main figure (Figure 6E). The data concludes increased enrichment of SRS2 mRNA in granules upon HU treatment. The previous data has been included in the supplementary data as Supplementary figure (Figure S3D, right panel).

      Major Comment 8: Fig 4B: Increased juxtaposition of SRS2 mRNA and Scd6 granules upon HU treatment does not really mean increased colocalization. Granules are likely significantly apart such that increased interactions between the two partners are not explained by increased juxtaposition. Please, comment, tune-down and provide examples where increased granule juxtaposition is associated with increased interaction.

      Response: We believe that the usage of term ‘juxtaposition’ is leading to misinterpretation of the data. Therefore, we have replaced it with ‘percentage area overlap’ analysis to demonstrate that the SRS2 mRNA foci indeed overlap/localize with Scd6GFP foci up to an average of 43.5% in HU stress. This analysis has been added as an additional panel (Figure 6C), indicating that the SRS2 mRNA interacts with Scd6 in the granules. Even though the granules do not overlap/localize completely, the observed area of granule overlap (43.5%) is functionally effective as it leads to the physical interaction of Scd6 and SRS2 (Figure 6E & 5C) and, consequently, repression (Figure 4H). The FISH data, granule enrichment, and RNA immunoprecipitation data demonstrate Scd6 protein and SRS2 mRNA interaction in granules.

      Major Comment 9: Fig 4D: These results are in direct contradiction with those shown in Fig 1C.

      Response: We thank the reviewer for this comment. Figure 1C (now Figure 1B and 1C) demonstrates that Scd6 localization to puncta, when expressed from a CEN plasmid, significantly increases upon HU stress. The same trend is visible in Figure 4D (now Figure 6D) where Scd6 is expressed from a 2μ plasmid; however, it is not significant. The data in 1C and 4D (now 1C and 6D respectively) are rather inconsistent with each other than being contradictory. Nevertheless, we understand this reviewer’s concern and address it below.

      The initial localization experiments were performed using Scd6 expressed from CEN plasmid or genomically tagged Scd6. Since both these versions of Scd6 are not detectable using western blotting, we used Scd6 expressed from 2μ plasmid. Localization to condensates by liquid-liquid phase separation is a concentration-driven phenomenon. Therefore, when Scd6 is expressed from a 2μ plasmid amounting to increased protein levels, its localization to puncta increases even in the absence of stress, which is visible in the quantitation provided in the figure (Figure 6D) as compared to Figure 1C. We have now analyzed the percentage granular localization (granule intensity) of Scd6 (2µ), which significantly increases upon HU stress (Figure S3A). Thus although number of Scd6 granules does not increase upon HU stress when expressed from a 2µ plasmid, there is significant increase in localization of Scd6 to granule upon HU stress (Figure S3A).

      Major comment 10: Fig 5E: Can the authors provide a GO analysis of the up- and down- regulated transcripts?

      Response: We have now provided a GO analysis (Table S2). However, due to the low number of regulated genes, only a few GO terms with weak scores appeared in the analysis.

      Minor comments:

      Comment 11: Figures S1 and S2 seem to be swapped. Please make sure that Figures and panels are arranged in the order they are mentioned in the main text.

      Response: We thank the reviewer for pointing it out. Based on the comment#7 by Reviewer 1, Figure S1 and S2 have now been added to the main figure, and the changes in the text have been made accordingly. We have ensured that the order of figures matches the text.

      Comment 12: Page 5, sentence: 'our results argue for the role of Scd6 and Sbp1 in HU-mediated stress response'. I do not agree, as no functional assays showing that these proteins affect HU-mediated stress response have been provided at this point of the story. Please, delete.

      Response: We have removed the sentence from the existing paragraph.

      Comment 13: Page 6: The authors state 'Since Dscd6 and Dsbp1 showed tolerance to chronic HU exposure...'. Where is this shown?

      Response: The growth curve in Figure 2A and 2B (now Figure 4A and 4B) and the plating assay in Figure 2C (now Figure 4C) was done with hydroxyurea in the media/plate. Hence, we state that deletion of either SCD6 or SBP1 shows tolerance to chronic (or continuous) HU stress.

      Comment 14: Fig 2F: The rescue by SCD6 OE is not complete, as mentioned in the main text.

      Response: We have now included the quantification of the spot assay in 2F (now Figure 4F) to show that the rescue by SCD6 overexpression is complete (Fig S1G).

      Comment 15: Figure 2G-H: Please, indicate in the figure what the authors consider 'translated' and 'untranslated’ fractions.

      Response: The fractions have now been labelled to indicate the missing information in Figure 2G (now Figure 4G).

      4. Description of analyses that authors prefer not to carry out



      Review 1


      Minor Comment 10: Pg. 8/Fig. S3D/4A: It would be interesting to complete the story and determine the functional relationship of Scd6 to the DNL4 mRNA

      Response: It is indeed an interesting observation and is currently being pursued as part of another story. We believe it is beyond the scope of the current manuscript.


      Review 3

      Major Comment 1: Page 5 and Fig S2E-F: The CLHX experiment to conclude that mRNA is present in Scd6 and Sbp1 puncta is rather indirect. The fact that RNase treatment of a granule-enriched pellet has no effect (Fig S5B) does not help. The authors should perform RNase treatment of intact cells and see that the puncta disappear.

      Response: We thank the reviewer for this comment. Cycloheximide treatment is a well-accepted assay to detect the presence of mRNA in granules. Since granules are dynamic structures, and these depend on active translation, CHX treatment leads to the dissociation of Scd6 and Sbp1 granules. This indicates that granule assembly depends on the availability of mRNA derived from translating ribosomes. The observation that Scd6 puncta are sensitive to cycloheximide but not to RNase A treatment is not surprising. It indeed is consistent with the properties of some of the condensates reported in the literature. For example, stress granule cores that are sensitive to cycloheximide, like Scd6 puncta, are resistant to RNase treatment in lysate, indicating that once formed, these structures are quite stable (https://doi.org/10.1016/j.cell.2015.12.038). It is interpreted to suggest that the RNAs in these condensates are protected by the RNA-binding proteins. Also, subsequently, in the study, we do RNA immunoprecipitation and granule enrichment experiments and show specific RNA enrichment with Scd6 (Figure 5C, 6A).

    1. Contents

      I noticed that you have a works cited page on each of your writings and that is very important. But I wonder if it would help to also have your entire bibliography page connected to the notes as an indirect connections (you can do this by editing the page and adding a tag)

    1. https://stationeryfestival.com/exhibitors

      Elite Accessories<br /> 3428 Hauck Rd, Ste K<br /> Cincinnati, OH 45241<br /> (630) 945-2710

      Represents the following stationery manufacturers in the US:<br /> - Kaweco (Germany) fountain pens - Kyo No Oto (Tag Stationery) inks - Oeda Letterpress (Osaka Japan) letterpress stationery - Onishi Seisakusho (fountain pens) - Diamine Inks (Liverpool, UK)

    1. Reviewer #2 (Public review):

      Summary:

      The authors tried to determine how PA28g functions in oral squamous cell carcinoma (OSCC) cells. They hypothesized it may act through metabolic reprogramming in the mitochondria.

      Strengths:

      They found that the genes of PA28g and C1QBP are in an overlapping interaction network after an analysis of a genome database. They also found that the two proteins interact in coimmunoprecipitation and pull-down assays using the lysate from OSCC cells with or without expression of the exogenous genes. They used truncated C1QBP proteins to map the interaction site to the N-terminal 167 residues of C1QBP protein. They observed the levels of the two proteins are positively correlated in the cells. They provided evidence for the colocalization of the two proteins in the mitochondria and the effect on mitochondrial form and function in vitro and in vivo OSCC models, and the correlation of the protein expression with the prognosis of cancer patients.

      Weaknesses:

      Many data sets are shown in figures that cannot be understood without more descriptions either in the text or the legend, e.g., Fig. 1A. Similarly, many abbreviations are not defined.

      The revision addressed these issues.

      Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Fig. 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Fig. 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Fig. 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.

      The revision addressed these problems.

      The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation, and analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.

      The revision corrected this method.

      To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupt the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Fig. 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Fig. 1G is a quantification of a Western blot data that should be shown.

      The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Fig. 1I, more Flag-C1QBP 1-167 was pull-down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?

      The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect.

      The revision added AlphaFold models for the protein interaction. However, the models were not analyzed and potential mutations that would disrupt the interact were not predicted, made and tested. The revision did not addressed the request for the protease inhibitor.

    1. Décryptage du porno mainstream et exploration du porno alternatif : L'industrie, les normes et l'impact sur la perception de la sexualité

      I. Datagueule #85 : "Datagaule et clitodonnées : le plaisir à la chaîne"

      A. L'industrie du porno en ligne : Une domination par les "tubes"

      Présentation des données clés de l'industrie du porno en ligne: Trafic, téléchargements, évolution depuis l'arrivée de l'internet haut débit.

      Focus sur Pornhub, un des géants du secteur, illustrant l'ampleur du phénomène et la rapidité de consommation.

      Ascension de la société MGeek, qui a racheté des studios historiques du X fragilisés par la crise de 2008.

      Fonctionnement des "tubes" qui offrent un accès gratuit aux vidéos, impactant les revenus des studios.

      B. Le porno mainstream : Des normes et des dérives

      Le porno mainstream, majoritairement produit pour un public masculin hétérosexuel et blanc, impose ses normes.

      Illustration de ces normes à travers la popularité du tag "lesbien" et la stigmatisation des scènes gays pour les acteurs.

      L'émergence du "pro-am" (productions professionnelles d'amateurs) et ses conditions de tournage précaires et parfois dangereuses.

      Problèmes liés aux contrats, au consentement et à la difficulté de faire retirer des contenus des plateformes.

      Conditions de travail des acteurs masculins : Salaires faibles, recours à des médicaments pour la performance sexuelle et risques associés.

      C. Addictivité et tabou : Des idées reçues à déconstruire

      L'argument de l'addictivité du porno, souvent utilisé pour la censure, est démenti scientifiquement.

      L'Organisation Mondiale de la Santé a rejeté l'ajout du visionnage de pornographie dans sa liste des troubles addictifs.

      Le porno, érigé en tabou, échappe aux questionnements légitimes qui entourent les autres productions culturelles.

      II. Interview de Camille Emmanuel, journaliste et auteur de "Sex Power"

      A. Le regard masculin dominant dans le porno mainstream

      L'industrie du porno traditionnellement dominée par une vision masculine, centrée sur le plaisir masculin et la pénétration.

      Le porno mainstream reproduit les schémas traditionnels de la sexualité, ignorant le plaisir féminin et la diversité des pratiques.

      Le discours dominant sur la sexualité féminine est déconstruit par des études scientifiques sur le clitoris et l'orgasme féminin.

      B. L'émergence du porno alternatif : Un contre-pouvoir nécessaire

      Le mouvement du porno alternatif initié par des femmes dans les années 80, pour proposer une vision différente de la sexualité.

      Ce mouvement, encore niche, met en avant la diversité des pratiques, des corps et des sexualités.

      Le porno alternatif se distingue par ses modes de production éthiques, respectueux du consentement et du droit du travail.

      C. L'impact du porno sur la perception de la sexualité

      Le porno mainstream véhicule une vision normée et limitée de la sexualité, pouvant influencer négativement la perception du public.

      Le porno alternatif, en proposant une vision plus diverse et inclusive, permet de questionner les normes et de s'ouvrir à d'autres possibilités.

      L'importance de se questionner sur sa propre consommation de porno et de réfléchir à l'imaginaire pornographique proposé aux générations futures.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      It is evident that studying leukocyte extravasation in vitro is a challenge. One needs to include physiological flow, culture cells and isolate primary immune cells. Timing is of utmost Importance and a reproducible setup essential. Extra challenges are met when extravasation kinetics in different vascular beds is required, e.g., across the blood-brain barrier. In this study, the authors describe a reliable and reproducible method to analyze leukocyte TEM under physiological flow conditions, including this analysis. That the software can also detect reverse TEM is a plus.

      Strengths:

      It is quite a challenge to get this assay reproducible and stable, in particular as there is flow included. Also for the analysis, there is currently no clear software analysis program, and many labs have their own methods. This paper gives the opportunity to unify the data and results obtained with this assay under label-free conditions. This should eventually lead to more solid and reproducible results.

      Also, the comparison between manual and software analysis is appreciated.

      We thank the Reviewer for their positive evaluation of our manuscript and highlighting the value of obtaining more reproducible and unbiases results, as well as detection of forward and reverse transmigration with UFMTrack.

      Weaknesses:

      The authors stress that it can be done in BBB models, but I would argue that it is much more broadly applicable. This is not necessarily a weakness of the study but more an opportunity to strengthen the method. So I would encourage the authors to rewrite some parts and make it more broadly applicable.

      We thank the Reviewer for this suggestion. In the revised version of our manuscript, we have now emphasized the broader applicability of UFMTrack to analyze the interaction of immune cells with 2dimensional endothelial monolayers in various contexts in the abstract, introduction, and discussion sections.

      Reviewer #2 (Public Review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      Algorithm is almost as accurate as manual tracking and importantly saves time for researchers.

      We thank the Reviewer for this positive evaluation of our work.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. Comparisons to other automated tools was not performed by the authors.

      We thank the Reviewer for pointing our attention to these weaknesses in our manuscript.

      We have clarified in the revised manuscript that using 2D endothelial monolayer models in parallel laminar flow chambers is still a state-of-the-art methodology for studying the multi-step extravasation process of immune cells across endothelial monolayers under physiological flow by in vitro live cell imaging. These models provide excellent optical quality that is not yet achieved in 3D models. We have extended the introduction to emphasize the limitations of existing tools that motivated us to establish UFMTrack. We have furthermore extended the discussion section to highlight the features unique to our UFMTrack framework.

      Reviewer #3 (Public Review):

      Summary:

      The authors aimed to establish a faster and more efficient method of tracking steps of T-cell extravasation across the blood brain barrier. The authors developed a framework to visualize, recognize and track the movement of different immune cells across primary human and mouse brain microvascular endothelial cells without the need for fluorescence-based imaging. The authors succinctly describe the basic requirements for tracking in the introduction followed by an in-depth account of the execution.

      We thank the Reviewer for their positive evaluation of our manuscript and highlighting the value of label-free analysis of the multistep immune cell extravasation cascade with UFMTrack.

      Weaknesses and Strengths:

      Materials & methods and results:

      (1) The methods section also lacks details of the microfluidic device that the authors talk about in the paper. Under physiological sheer stress, the T-cells detach from the pMBMEC monolayer, and are hence unable to be detected; however, this observation requires an explanation pertaining to the reason of occurrence and potential solutions to circumvent it to ensure physiologically relevant experimental parameters.

      We thank the Reviewer for pointing out this oversight. We have used a custom-made microfluidic device that has been published and described in detail before. This information has now been included in the Methods Section under Point 7, and the two references describing the flow chamber in depth are mentioned below and have been included in the manuscript.  

      Coisne Caroline, Ruth Lyck and Britta Engelhardt. 2013. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo. Fluids and Barriers of the CNS 10:7 doi:10.1186/20458118-10-7; 21 January 2013

      Lyck R, Hideaki Nishihara, Sidar Aydin, Sasha Soldati and Britta Engelhardt. 2022. Modeling brain vasculature immune interactions in vitro. Angogenesis, 2nd edition. Editors PatriciaD’Amore and Diane Bielenberg Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a041185

      T cell detachment is a physiologically relevant parameter besides T cell arrest, polarization, crawling, probing, and transmigration during the interaction with an endothelial monolayer. T cell detachment means that post-arrest, the T cell cannot engage adhesion molecules required for subsequent polarization and, eventually, transmigration. 

      (2) The author describes a method for debris exclusion using UFMTrack that eliminates objects of <30 pixels in size from analysis based on a mean pixel size of 400 for T lymphocytes. However, this mean pixel size appears to stem from in-vitro activated CD8 T cells, which rapidly grow and proliferate upon stimulation. In line with this, activated lymphocytes exhibit increased cytoplasmic area, making them appear less dense or “brighter” by phase microscopy compared to naïve lymphocytes, which are relatively compact and subsequently appear dimmer. Given this, it is not clear whether UFMTrack is sufficiently trained to identify naïve human lymphocytes in circulating blood, nor smaller, murine lymphocytes. Analysis of each lymphocyte subtype in terms of pixel size and intensity would be beneficial to strengthen the claim that UFMTrack can identify each of these populations. Additionally, demonstrating that UFMTrack can correctly characterize the behavior of naïve versus activated lymphocytes isolated from murine and human sources would strengthen the claim that UFMTrack can be broadly applied to study lymphocyte dynamics in diverse models without additional training

      We thank the Reviewer for the suggestion to more precisely evaluate the range of cell sizes that can be analyzed by our framework. We have included a visualization of crawling cell sizes successfully analyzed by the UFMTrack in Supplementary Figure 7. It demonstrates that the human peripheral blood mononuclear cells, that are almost twice as small as the activated mouse CD4 T cells used in these assays, can be successfully segmented, tracked, and analyzed with the UFMTrack framework. Thus, our UFMTrack framework is suitable for a broad application to differentially sized immune cells during their interaction with the endothelial cell monolayer under flow. 

      (3) Average precision was compared to the analysis of UFMTrack but it is unclear how average precision was calculated. This information should have been included in the methods section

      We thank the Reviewer for pointing our attention to the missing information. We have added a subsection, “Performance Analysis”, to the Materials and Methods section, where we describe the statistical methods and the performance metrics used to evaluate the UFMTrack framework.

      (4) CD4 and CD8 T cells exhibit distinct biology and interaction kinetics driven in part by their MHC molecule affinity and distinct receptor expression profiles. Thus, it is unclear why two distinct mechanisms of endothelial cell activation are needed to see differences between the populations.

      We thank the Reviewer for pointing out that different cytokine stimulations of endothelial cells were used in the assays used here to test our UFMTrack to analyze CD4 and CD8 T cell interactions with the endothelial monolayer. While the Reviewer is correct that CD4 and CD8 T cells use different mechanism to cross the pMBMEC monolayer as show by us (doi: 10.1002/eji.201546251.) and others and that recognition of cognate antigen on MHC class I on pMBMECs will arrest CD8 T cells and lead to CD8 T-cell mediated apoptosis ( doi: 10.1038/s41467-023-38703-2.) the focus of the present study was not on comparing CD4 and CD8 T cell interactions with the pMBMEC monolayer but rather to test suitability of UFMTrack to study the different multi-step transmigration of these T cell subsets across the endothelial monolayer. 

      (5) The BMECs are barrier tissues but were cultured on µdishes in this study. To study the transmigration of T-cells across the endothelium, the model would have been more relevant on a semi-permeable membrane instead of a closed surface.

      We understand the critique of the Reviewer, but laminar flow chambers with endothelial monolayers still provide a state-of-the-art and established methodology to study immune cell migration across endothelial monolayers by in vitro live cell imaging including endothelial cells forming the blood-brain barrier.  

      (6) Methods are provided for the isolation and expansion of human effector and memory CD4+ T cells. However, there is no mention of specific CD4+ T cell populations used for analysis with UFMTrack, nor a clear breakdown of tracking efficiency for each subpopulation. Further, there is no similar method for the isolation of CD8+ T cell compartments. A clear breakdown of the performance efficiency of UFMTrack with each cell population investigated in this study would provide greater insight into the software’s performance with regard to tracking the behavior and movement of distinct immune populations.

      We thank the Reviewer for this comment. Since a fair performance evaluation requires collecting reliable and consistent manual annotations, in this work we have performed such analysis only for the mouse CD8 T-cell population migrating on the pMBMEC monolayer. We have chosen this as a reference since it is a different cell population than the one the segmentation model was trained on. This provides an insight into how high performance is expected when other immune cell types are studied than the ones used for model development.

      (7) The results section is quite extensive and discusses details of establishment of the framework while highlighting both the pros and cons of the different aspects of the process, for example the limitation of the two models, 2D and 2D+T were highlighted well. However, the results section includes details which may be more fitting in the methods section.

      We thank the Reviewer for highlighting the extensive work carried out in the development of our UFMTrack framework. We decided to include in the results section only the description of key elements and design decisions taken when developing the framework, such as the need to include a time series of images for successful segmentation of the transmigrated cells. At the same time, the majority of implementational details can be found in the Supplementary Material.

      (8) A few statements in the results section lacked literary support, which was not provided in the discussion either, such as support for increased variance of T-cell instantaneous speed on stimulated vs non-stimulated pMBMECs. Another example is the enhancement of cytokine stimulation directed T-cell movement on the pMBMECs that the authors observed but failed to relay the physiological relevance of it. The authors don’t provide enough references for developments in the field prior to their work which form the basis and need for this technology.

      We thank the Reviewer for this comment and for asking for literature references. However, we cannot provide such references as these are original observations we made by employing the UFMTrack framework.  This shows that UFMTrack observes T-cell behaviors that have previously been overlooked. Their physiological relevance will have to be explored in separate studies. We have extended the introduction section to include the details on the existing methods developed in the field, as well as their weaknesses that motivated the development of the UFMTrack framework.

      (9) The rationale for use of OT-1 and 2D2-derived murine lymphocytes is unclear here. The OT-1 model has been generated to study antigen-specific CD8+ T cell responses, while the 2D2 model has been generated to recapitulate CD4 T cell-specific myelin oligodendrocyte glycoprotein (MOG) responses.

      To establish and test the UFMTrack framework, we have made use of the specific T-cell subsets and endothelial cell models we generally use within our research context. Especially for animal work, this is according to the 3R rules requesting to reduce animal experimentation.  

      Figures and text:

      (1) There are certain discrepancies and misarrangement of figures and text. For example, discussion of the effect of sheer flow on T cell attachment as part of the introduction in figure 1 and then mentioning it in the text again in the results section as part of figure 4 is repetitive.

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the label of Figure 4 to emphasize that this effect is correctly captured by the UFMTrack.

      (2) Section IV, subsection 1 of the results section, refers to ‘data acquisition section above’ in line 279, however the said section is part of materials and methods which is provided towards the end of the manuscript.

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the text to reflect the correct chapter order.

      (3) There are figures in the manuscript that have not been referenced in the results section, for example, figure 3A and B. Figure 1 hasn’t been addressed until subsection 7 of materials and methods

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the text to refer to all figure panels and the clarification of the cell multiplicity estimation in the supplementary information section. References to Figure 1 were added in the introduction section to illustrate the in vitro under flow imaging setup as well as the typical T cell behaviors in such experiments.

      (4) A lack of significance but an observed trend of increased variance of T cell instantaneous speed is reported in line 296-298; however, the graph (figure 4G) shows a significant change in instantaneous speed between non-stimulated and TNFα-stimulated systems. This is misleading to the readers.

      We thank the Reviewer for pointing our attention to this discrepancy. We have expanded the text to indicate a low statistical significance for the TNF and no significance but just a trend for the IL1-beta conditions.

      (5) The authors talk about three beginner experimentors testing the manual T cell tracking process but figure 5 only showcases data from two experimentors without stating the reason for excluding experimentor 1.

      We thank the Reviewer for pointing our attention to this ambiguity. While both the migration analysis and the manual cell tracking were performed by all three beginner experimenters, the cell tracking data for the first one was unfortunately lost due to a hardware failure.

      Discussion:

      (1) While the discussion captures the major takeaways from the paper, it lacks relevant supporting references to relate the observation to physiological conditions and applicability.

      This study is not about the physiological relevance of the microfluidic devices and immune cells used but rather about advancing methodology to analyze dynamic immune cell behavior on endothelial monolayers under physiological flow. Therefore, the discussion does not extend to comparing the physiological relevance of the specific in vitro models employed in this study.   

      (2) The discussion lacks connection to the results since the figures were not referenced while discussing an observed trend

      We thank the Reviewer for pointing our attention to this misarrangement. We have included the references to the relevant figures as well as supporting references.

      (3) The authors briefly looked into mouse and human BMECs and their individual interaction with Tcells, but don’t discuss the differences between the two, if any, that challenged their framework.

      We thank the Reviewer for pointing our attention to this weakness. We have added to the discussion section clarifications on the challenges of analyzing the T cell interactions with the HBMEC and the BMDM interactions with the pMBMEC monolayer.

      (4) Even though though the imaging tool relies on difference in appearance for detection, the authors talk about lack of feasibility in detecting transmigration of BMDMs due to their significantly different appearance. The statement lacks a problem solving approach to discuss how and why this was the case.

      We thank the Reviewer for pointing our attention to this weakness and apologize for the misleading explanation of the problem of analyzing the BMDM sample. Since the transmigrated part of the macrophages differs in appearance from a transmigrated part of a T cell, its detection by a Deep Neural Network trained on the T cell data is worse than that for the T cells. At the same time, the detection performance before the transmigration is sufficient for the BMDM migration analysis. The potential approaches to alleviate this are added to the discussion section.

      Relevance to the field:

      Utilizing the framework provided by the authors, the application can be adapted and/or utilized for visualizing a range of different cell types, provided they are different in appearance. However, this would require extensive changes to the script and won’t be adaptable in its current form.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors should announce in the abstract that the software analysis Track is downloadable and free to use for all researchers. They may consider providing some sort of helpdesk, although I realize that that may run into too much time.

      As said above, they stress that it can be done in BBB models, but I would argue that it is much more broadly applicable.

      We thank the Reviewer for these suggestions. We have emphasized the broader applicability of UFMTrack in the abstract and pointed out the public availability of the code and data.

      Can they add an experiment that shows that it also works for neutrophils for example? I understand that on paper yes it should work, but the neutrophils are of course faster etc.

      This is an excellent suggestion, but we tested UFMTrack within the current framework of ongoing research, which does not include the investigation of neutrophil transmigration across endothelial monolayers.  

      Also, the combination of different leukocytes in one TEM assay would really be a step forward. If the software can detect different-sized leukocytes, then this should be possible.

      We thank the Reviewer for this suggestion. We have added Supplementary Figure 7, demonstrating the range of cell sizes that were successfully analyzed by the UFMTrack framework throughout our manuscript. We also added a statement to the discussion that according to this data, “simply by discriminating cells by size, it is possible to extend UFMTrack to study the interaction of several types of immune cells migrating on top of a cellular monolayer under flow.”

      Extra challenges: can the method also discriminate between paracellular and transcellular migration modes? In particular for T-cells this is known to happen.

      We thank the Reviewer for this suggestion. We have added this to the potential applications of UFMTrack in the discussion section. While this differentiation is not feasible relying solely on the phasecontrast imaging data, UFMTrack can simplify this analysis by providing automatically the predictions of the transmigration locations, for analysis of the fluorescent data of the junctional labels.

      Reviewer #2 (Recommendations For The Authors):

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications. There are several points that need to be addressed, particularly about the claims made by the authors.

      Please see the comments below for more details:

      • Lines 88-92: Add a citation for the characteristics of the BBB as a barrier

      We have added two references accordingly.  

      • Lines 94-95: Can the authors indicate what models were used for these studies and how those compare to their in vitro model? In addition, can the authors say whether T cells were manually tracked in this study to translate results to the clinic and whether the results were successful when translated to the clinic? This may enhance the argument that automatic trackers are needed if the translation was not 100% successful

      This introductory paragraph summarizes in vivo and in vitro observations from several laboratories. Although these studies include manual tracking of T cells, they do not necessarily distinguish all sequential steps of the multi-step T cell transmigration cascade. Thus, automated tracking may provide additional insights, allowing for increased translation of findings to the clinic.  

      • Lines 96-98: Citing the work of Roger Kamm and Noo Li Jeon would be helpful here as they pioneered these BBB microfluidic models and have protocol papers on how to build them and how to use them for cancer cell extravasation studies. Roger Kamm has also worked on several extravasation studies with neutrophils, monocytes, and PBMCs from 3D vasculatures in microfluidic devices, under flow using pressurized fluid or recirculating pumps. Mentioning those would be helpful as they are directly related to what the authors are presenting in their paper.

      We thank the Reviewer for this comment, and we consider the work of Roger Kamm and Noo Li Jeon as very valuable for the field. However, these authors have focused on developing functional 3D microfluidic devices, including, e.g., all cells of the neurovascular unit which is not the focus of this present study that solely employed parallel flow chamber devices and endothelial monolayers.  

      • Lines 110-116: Can the authors comment on the use of ImageJ or similar automatic tracking tools and how these compare to the under-flow migration tracker developed in this paper? Several groups use ImageJ to track cellular migration successfully and in an automatic manner with short intervals between each frame. One paper that comes to mind is Chen et al: DOI: 10.1073/pnas.1715932115 where neutrophil migration in 3D was assessed with ImageJ in microfluidic devices of the vasculature. If the authors can highlight differences between their tool and what is currently available and used for automatic tracking (e.g. ImageJ), this would help in understanding the advantages of the migration tracker developed in this paper.

      • Lines 118-121: Add citations for the current state of the art for T cell extravasation tracking

      We thank the Reviewer for these suggestions. We have extended the introduction to add more details on the available tools for tracking migrating immune cells and their limitations, as well as the discussion section to emphasize the features unique to the developed UFMTrack framework.

      • Figure 1: The device used by the authors is considered to be a 2D microfluidic device with a monolayer of mouse brain endothelial cells. I would recommend the authors to carefully revise the claims made in the paper to mention that this is a 2D device as opposed to a 3D device, in order to not mislead readers who may be expecting these analyses to be performed in 3D vasculatures.

      We thank the Reviewer for this suggestion. We have included in the summary the mention of the 2dimensional nature of the employed BBB model.

      • Figure 1: The T cells used in this study are not fluorescently-labeled but the authors mention that this is an issue from current state-of-the-art tools. I would recommend that the authors remove this point as being an issue because it is not addressed in their paper. The T cells are also not labeled in this study so this limitation of other systems is not addressed in this paper.

      We apologize to the Reviewer as we do not understand this question. There will be many experimental conditions not allowing to study fluorescently tagged T cells. Therefore, UFMTrack is tailored to follow and analyze T cells and other immune cells during their interaction with endothelial monolayers independent of a fluorescence tag.  

      • Figure 1: Was the shear stress controlled manually with a syringe? Or with the use of a pressure controller? I would clarify this aspect and discuss human errors that can be introduced from manually controlling the pressure applied to the monolayer.

      We thank the Reviewer for pointing our attention to this ambiguity. We have added a mention of the automated syringe pump used to control the shear stress in the text where the values of shear stress applied to the sample are first mentioned.

      • Figure 1: Does T cell attachment occur within the first 5 minutes? Can the authors comment on how they chose this timeline and the percentage of T cells that are washed off at the second step at 1.5 dynes/cm^2? Is 30 seconds enough to ensure all the non-adhered T cells are washed off with 1.5 dyns/cm^2?

      Superfusion of the T cells over the endothelial monolayer is performed under 0.5 dynes/cm2 to allow the T cells to settle on the endothelial cell monolayer under flow. After increasing to physiological, flow non adherent T cells detach within 30 seconds, as described by the Reviewer. We have included in the Methods Section Point 7 the references describing in depth the design of the flow chamber device and methods used here.  

      • Line 154: How many images were used in the training vs. testing dataset for T cell migrations?

      We thank the Reviewer for pointing our attention to this missing information. We have added the sizes of the training and validation datasets. Specifically, the 226MPix of available imaging data was split into 154Mpix training and 37 MPix validation sets. The gap in between was introduced to avoid a correlation between validation and training set that would compromise the performance evaluation.

      • Are the supplementary videos at real speed or accelerated?

      We thank the Reviewer for pointing our attention to this missing information. The videos are sped up by a factor of 96. We have added this information to the Supplementary video descriptions.  

      • Lines 208 216: Can the authors comment on how their initial adhesion timeframe of 30sec before starting the recording at 5.5min affects the number of T cells with rapid displacement? 30 seconds may not be enough to ensure T cells have adhered to the endothelium

      Please see our comment above. The methodology used in the present assays has been set up and validated in numerous publications. We have included in the Methods Section under Point 7 the references describing in depth the design of the flow chamber device and the methods used here.  

      • Lines 275-277: Was the number of testing images 18? Can the authors comment on how this compares to training dataset size and whether these numbers are enough to achieve robust results?

      We apologize for this ambiguity in our manuscript. The framework was evaluated on 18 imaging datasets, each corresponding to 32 minutes of recording, not 18 images. We have added this clarification to the “CD4+ T cell analysis” subsection. The total size of these datasets is 18 datasets * 191 timeframe/dataset * 9.9MPix/frame = 34MPix

      • Figure 4B: Can the authors add statistics here? Individual datapoints on the error bars would be helpful too. 

      We thank the Reviewer for pointing our attention to this weakness. The data corresponds to the statistical errors as evaluated based on all cells in the 18 datasets. We have added the total number of cells in each of the endothelium stimulation conditions to the text.

      • Figure 4C-J: Can the authors put individual datapoints here as well and explain whether they considered each T cell to be one datapoint or each endothelium (averaging all T cells) to be one datapoint? 

      We thank the Reviewer for this suggestion. However, adding about one thousand points corresponding to each cell would be impractical. We thus present the distributions of the evaluated from the data metrics as a histogram on the violin plot instead of the swarm plot.

      • Figure 4: Did the authors wash the monolayers before introducing T cells? Soluble unbound cytokines may still be present and there are two different questions that would be studied here: “Is the inflamed endothelium affecting T cell migration?” (if washing was performed) or “Is T cell and microenvironmental inflammation affecting T cell migration?” (if no washing was performed)

      The endothelial monolayers are “washed” by starting the flow in the flow chamber device and this is before superfusing the T cells over the endothelial monolayer. We agree that our flow chamber device combined with UFMTrack will allow to address all these questions.

      • Figure 4I: Are all the T cells decelerating? (negative AM speed)

      We thank the Reviewer for this question. The cells are moving along the flow, which, in our experiments, is from left to right. The vector of speed is thus pointing against the x-axis, and thus the AM speed is negative.

      • Lines 302 306: Please explain how this compares to ImageJ or similar trackers that can achieve similar outputs. 

      We thank the Reviewer for this question. We have added a statement in the “T-cell tracking” section emphasizing that standard trackers are incapable of correctly capturing large displacements.

      • Lines 306-309: It is not lower for TNF stimulation though. How do the authors address this? TNF is also a pro-inflammatory cytokine.

      We have previously shown that stimulation of pMBMECs with IL-1 and TNF-a induces different cell surface levels of ICAM-1 and VCAM-1, which will influence T cell behavior on the pMBMEC monolayer.  

      • Lines 313-315: Could this be because the monolayer was not washed and soluble cytokines affected T cell response directly?

      Please see our answer to lines 306-309.  

      • Lines 319: Please cite Roger Kamm and Noo Li Jeon’s papers on BBB models with human BMECs, pericytes and astrocytes in 3D microfluidic devices.

      We thank the Reviewer again for pointing out these studies. As mentioned above, as our present study does not explore 3D models of the BBB, we think it does not fit into the framework of our study to elaborate on 3D models of the BBB. In addition, this would require the inclusion of a discussion of the work of others like, e.g., Peter Searson and others.  

      • Figure 5: Several statistics are missing from parts of the figure. Please add those.

      We apologize – but we do not understand which statistical analysis the Reviewer is missing from this Figure.  

      • Can the authors comment on the number of T cells perfused over the monolayer and if this ratio of T cells to endothelial cells makes physiological sense? Too many T cells may result in endothelium inflammation and increased diapedesis.

      The number of T cells used to suprerfuse over the endothelial monolayer is tested to avoid aggregation of T cells in suspension and thus artificial interactions with the endothelial monolayer. T cell behavior on the pMBMEC monolayer remains the same over the dilution of factor 10.  

      • Lines 381 383: How does this compare to analyses that look at the cross-section of the endothelium? It is difficult to assess transmigration looking at the top view of the endothelium. Perhaps, cross-section assessments will identify differences in manual vs. automatic tracking.

      There is, to the best of our knowledge, no microscopic device that would allow for in vitro live cell imaging of a live endothelial monolayer – this is in the presence of tissue culture medium – from the side at a resolution that would allow to define transmigration. Our current study rather shows the UFMTrack can distinguish cells moving above or below the endothelial monolayer.  

      • Figure 5J: This is probably the most important argument of the paper. If the authors can show statistical differences in their graph, this would greatly help convince readers that this tool is necessary and actually computationally efficient compared to manual work by researchers.

      We thank the Reviewer for this suggestion. However, comparing a single data point for automated measurement with four manual experimenter analysts is not a statistically sound comparison. We believe that Figure 5K is clearly showing the factor 5 difference in analysis speed as compared to manual analysis. More importantly, though, the automated analysis is taking the machine time, lifting the need for the experimenter to invest even 1/5th of the original analysis time.

      • Figure 6: Did the authors use autologous immune cells and endothelial cells? This is particularly relevant with the use of human-derived T cells (line 436) on the BMEC monolayer. Can the authors comment on non-self reactivity by the T cells encountering BMEC from another human subject?

      Autologous T cell interaction with BMECs would only be possible when using hiPSC-derived EECM-BMECs and the T cells from the same individual. All other experimental frameworks will not include autologous interactions. This is the experimental framework used by most authors studying immune cell interactions with commercially available donors. We have not studied alloreactive interactions in our assays and thus cannot further comment.  

      • Figure 6M,N,O: How does this compare to ImageJ for tracking of fluorescent cells? I recommend the authors to try that, at least for this section, as this may enhance their argument for their tool vs. standard tools like ImageJ if success rates are higher for their tool.

      We thank the Reviewer for this suggestion. We included a note on the analysis of the fluorescent datasets using the  TrackMate plugin for imageJ performed previously in our lab in the “Human T cells on immobilized recombinant BBB adhesion molecules” subsection.

      • Figure 6: Please put individual datapoints on the bar or violin plots where they are missing.

      We thank the Reviewer for this suggestion. However, adding about one thousand points corresponding to each cell would be impractical. We thus present the distributions of the evaluated from the data metrics as a histogram on the violin plot instead of the swarm plot.

      • Lines 467-471: This argument is important and should be mentioned earlier in the introduction.

      Another point that can be mentioned is the application of this platform to imaging modalities in vivo (mouse or human) given that there is no fluorescent staining in these cases. This review may be relevant: https://doi.org/10.1002/jcb.10454

      We thank the Reviewer for this suggestion. We have clarified in the introduction that UFMTrack does not require fluorescent labels of the imaged migrating cells and relies solely on the phase contrast imaging data.

      • Discussion: Please address a few more potential applications to this study. One can be cancer and immune infiltration.

      We thank the Reviewer for this suggestion. We have elaborated on additional potential applications to the discussion section.

      Reviewer #3 (Recommendations For The Authors):

      (1) Line 327-328: The authors talk about ‘As we have previously shown…pMBMEC monolayers differs between CD4+ and CD8+ cells…’. Where was this shown? If it was in a previously published article, please provide a reference.

      We have added these missing references.  

      (2) Line 353: Please provide clear location on where to find the associated information instead of stating ‘see below’.

      We thank the Reviewer for pointing our attention to this ambiguity. We have corrected the phrase to “see next paragraph”

      (3) Line 439: Please correct the acronym to BMECs

      We thank the Reviewer for pointing our attention to this typo. We have corrected it.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Choi and co-authors presents "P3 editing", which leverages dual-component guide RNAs (gRNA) to induce protein-protein proximity. They explore three strategies for leveraging prime-editing gRNA (pegRNA) as a dimerization module to create a molecular proximity sensor that drives genome editing, splitting a pegRNA into two parts (sgRNA and petRNA), inserting self-splicing ribozymes within pegRNA, and dividing pegRNA at the crRNA junction. Among these, splitting at the crRNA junction proved the most promising, achieving significant editing efficiency. They further demonstrated the ability to control genome editing via protein-protein interactions and small molecule inducers by designing RNA-based systems that form active gRNA complexes. This approach was also adaptable to other genome editing methods like base editing and ADAR-based RNA editing.

      Strengths:

      The study demonstrates significant advancements in leveraging guide RNA (gRNA) as a dimerization module for genome editing, showcasing its high specificity and versatility. By investigating three distinct strategies-splitting pegRNA into sgRNA and petRNA, inserting self-splicing ribozymes within the pegRNA, and dividing the pegRNA at the repeat junction-the researchers present a comprehensive approach to achieving molecular proximity and reconstituting function. Among these methods, splitting the pegRNA at the repeat junction emerged as the most promising, achieving editing efficiencies up to 76% of the control, highlighting its potential for further development in CRISPR-Cas9 systems. Additionally, the study extends genome editing control by linking protein-protein interactions to RNA-mediated editing, using specific protein-RNA interaction pairs to regulate editing through engineered protein proximity. This innovative approach expands the toolkit for precision genome editing, demonstrating the feasibility of controlling genome editing with enhanced specificity and efficiency.

      Weaknesses:

      The initial experiments with splitting the pegRNA into sgRNA and petRNA showed low editing efficiency, less than 2%. Similarly, inserting self-splicing ribozymes within pegRNA was inefficient, achieving under 2% editing efficiency in all constructs tested, possibly hindered by the prime editing enzyme. The editing efficiency of the crRNA and petracrRNA split at the repeat junction varied, with the most promising configurations only reaching 76% of the control efficiency. The RNA-RNA duplex formation's inefficiency might be due to the lack of additional protein binding, leading to potential degradation outside the Cas9-gRNA complex. Extending the approach to control genome editing via protein-protein interactions introduced complexity, with a significant trade-off between efficiency and specificity, necessitating further optimization. The strategy combining RADARS and P3 editing to control genome editing with specific RNA expression events exhibited high background levels of non-specific editing, indicating the need for improved specificity and reduced leaky expression. Moreover, P3 editing efficiencies are exclusively quantified after transfecting DNA into HEK cells, a strategy that has resulted in past reproducibility concerns for other technologies. Overall, the various methods and combinations require further optimization to enhance efficiency and specificity, especially when integrating multiple synthetic modules.

      Thank you for this accurate summary and assessment of the strengths and weaknesses of the P3 editing as it stands. Looking ahead, we agree that further optimizations will be important, as will characterizing the performance of P3 editing in additional cellular contexts. The revised Discussion (see below) now makes these points more clearly.

      Reviewer #2 (Public Review):

      Choi et al. describe a new approach for enabling input-specific CRISPR-based genome editing in cultured cells. While CRISPR-Cas9 is a broadly applied system across all of biology, one limitation is the difficulty in inducing genome editing based on cellular events. A prior study, from the same group, developed ENGRAM - which relies on activity-dependent transcription of a prime editing guide RNA, which records a specific cellular event as a given edit in a target DNA "tape". However, this approach is limited to the detection of induced transcription and does not enable the detection of broader molecular events including protein-protein interactions or exposure to small molecules. As an alternative, this study envisioned engineering the reconstitution of a split prime editing guide RNA (pegRNA) in a protein-protein interaction (PPI)-dependent manner. This would enable location- and content-specific genome editing in a controlled setting.

      The authors explored three different design possibilities for engineering a PPI-dependent split pegRNA. First, they tried splitting pegRNA into a functional sgRNA and corresponding prime editing transRNA, incorporating reverse-complementary dimerization sequences on each guide half. This approach, however, resulted in low editing efficiency across 7 different designs with various complementary annealing template lengths (<2% efficiency). They also tried inserting a self-splicing ribozyme within the pegRNA, which produces a functional pegRNA post-transcriptionally. The incorporation of a split-ribozyme, dependent on a PPI, could have been used to reconstitute the split pegRNA in an event-controlled manner. However again, only modest levels of editing were observed with the self-splicing ribozyme design (<2%). Finally, they tried splitting the pegRNA at the repeat:anti-repeat junction that was used to join the original dual-guide system comprised of a crRNA and tracrRNA, into a single-guide RNA. They incorporated the prime editing features into the tracrRNA half, to create petracrRNA. Dimerization was initially induced by different complementary RNA annealing sequences. Using this design, they were able to induce an editing efficiency of ~28% (compared to 37% efficiency using a positive control epegRNA guide).

      Having identified a suitable split pegRNA system, they next sought to induce the reconstitution of the two halves in a PPI-dependent manner. They replaced the complementary RNA annealing sequences with two different RNA aptamers (MS2 and BoxB). MS2 detects the MCP protein, while BoxB detects the LambdaN protein. Close proximity between MCP and LambdaN would thus bring together the two split pegRNA halves, creating a functional pegRNA that would enable prime editing at a specific target site. They demonstrated that they could induce MCP-BoxB proximity by fusing them to different dimerizing protein partners: 1) constitutive epitope-nanobody/antibody pairs such as scFv/GCN4 or NbALFA/ALFA-Tag; 2) split-GFP; or 3) chemically-induced protein pairs such as FKBP/FRB or ABI/PYL. For all of these approaches, they could achieve between ~20-60% normalized editing efficiency (relative to positive control editing levels with epegRNA). Additional mutation of the linkers between the RNA and aptamers could increase editing efficiency but also increase non-specific background editing even in the absence of an induced PPI.

      Additional applications of this overall strategy included incorporating the design with different DNA base editors, with the most promising examples shown with the base editors CBE4max and ABE8. It should be noted that these specific examples used a non-physiological LambdaN-MCP direct fusion protein as the "bait" that induced reconstitution of the two halves of the guideRNA, rather than relying on a true induced PPI. They also demonstrated that the recently reported RADARS strategy could be incorporated into their system. In this example, they used an ADAR-guide-RNA to drive the expression of a LambdaN-PCP fusion protein in the presence of a specific target RNA molecule, IL6. This induced LambdaN-PCP protein could then reconstitute the split peg-RNAs to drive prime editing. To enable this last application, they replaced the MS2 aptamer in their pegRNA with the PP7 aptamer that binds the PCP protein (this was to avoid crosstalk with RADARS, which also uses MS2/MCP interaction). Using this strategy, they observed a normalized editing efficiency of around 12% (but observed non-specific editing of around 8% in the absence of the target RNA).

      Strengths:

      The strengths of this paper include an interesting concept for engineering guide RNAs to enable activity-dependent genome editing in living cells in the future, based on discreet protein-protein interactions (either constitutively, spatially, or chemically induced). Important groundwork is laid down to engineer and improve these guide RNAs in the future (especially the work describing altering the linkers in Supplementary Figure 3 - which provides a path forward).

      Weaknesses:

      In its current state, the editing efficiency appears too low to be applied in physiological settings. Much of the latter work in the paper relies on a LambdaN-MCP direction fusion protein, rather than two interacting protein pairs. Further characterizations in the future, especially varying the transfection amounts/durations/etc of the various components of the system, would be beneficial to improve the system. It will also be important to demonstrate editing at additional sites; to characterize how long the PPI must be active to enable efficient prime editing; and how reversible the reconstitution of the split pegRNA is.

      Thank you for this assessment of the strengths and weaknesses of the P3 editing as it stands. Looking ahead, we agree that further optimizations will be important, including along the lines suggested by the reviewer, as will further characterization of the system with respect to dependencies, reversibility, etc. The revised Discussion (see below) now makes these points more clearly.

      Recommendations for the authors:

      Reviewing Editor comments:

      It would be helpful to better describe the nature of improvements (on-targeting and/or off-targeting) that would be needed to effectively use this approach in vitro and in vivo applications.

      We agree, and have accordingly revised the last paragraph of our discussion to better describe what improvements are needed for in vitro and in vivo applications:

      “In our view, there are four outstanding challenges for P3 editing to be broadly useful: evaluating additional cellular contexts, the method’s efficiency and specificity, understanding the limit of detectable protein-protein interactions, and the development of sensors compatible with multiplex P3 editing within the same cell. First, we have thus far only conducted P3 editing in HEK293T cells, and obviously needs to be tested in additional cell types. Second, both the efficiency and specificity of the P3 editing need to be improved before it can be used as a selective editing tool in model systems. We have explored how modifying the crRNA and petracrRNA pair sequences can tune the efficiency-vs-specificity tradeoff, but alternative avenues to improvement (e.g., better docking of RNA-aptamers such as MS2, BoxB, or PP7 by testing more linker sequences that place crRNA and petracrRNA for duplex formation) may be more fruitful in terms of achieving high efficiency and specificity at once (e.g., >50% editing in the setting of a specific protein-protein interaction, and <1% editing without it). Second, it is not clear whether weak and transient interactions among proteins can be used to trigger P3 editing. Assuming the genome editing complex formation is reversible, improving P3 editing efficiency may be able to capture different strengths of protein-protein interactions, although some interactions may be too transient to promote functional guide RNA formation. Finally, the current P3 editing design uses a pair of RNA aptamers and their corresponding protein binders, limiting the multiplex detection of protein-protein pairs. More orthogonal protein-RNA pairs need to be identified (e.g., using a massively parallel platform (Buenrostro et al., 2014) and/or computational prediction (Baek et al., 2023)) to allow for large numbers of P3 sensors for different protein-protein interactions to be deployed within the same cell. Overcoming these four challenges is necessary for P3 editing to be broadly useful for gating genome editing on physiological levels of specific protein-protein interactions in a multiplex fashion.”

      Reviewer #2 (Recommendations For The Authors):

      It does not appear that all plasmids necessary to reproduce the results of this paper have been deposited to addgene, but only a small subset. The authors might include that these plasmids are available upon request, if not uploaded to a public repository.

      We have added a statement that additional plasmids are available upon request. Our Data Availability Statement reads (with the added sentence underlined):

      “Raw sequencing data have been uploaded to Sequencing Read Archive (SRA) with the associated BioProject ID PRJNA1004865. The following plasmids have been deposited to Addgene: pU6-crRNA-MS2, pU6-BoxB-petracrRNA, pCMV-LambdaN-MCP, pCMV-LambdaN-NbALFA,  and pCMV-ALFA-MCP (Addgene ID 207624 - 207628). The rest of the plasmids used in this study are available upon request.”

      It could be useful to include somewhere why, specifically, editing the guide RNAs as opposed to the Cas9 itself is advantageous. Light-inducible split Cas9s have been engineered, and I imagine other PPI-inducible split Cas9s have also been engineered. A specific mention of the advantages of using engineered split pegRNAs could put the significance of this work in a better context.

      Thanks for raising this, and we agree. We have revised the first paragraph of the Results section to highlight why we think splitting the guide RNAs as opposed to Cas9 might be advantageous:

      “In the split architecture, the “dimerization module” is a key sensor component. Although strategies that split the protein component of the genome editing complex have been described (e.g., split-Cas9 (Yu et al., 2020)), we reasoned that having the guide RNA serve as the dimerization module rather than the protein, i.e. by splitting it into two parts, and making the restoration of its function dependent on a molecular proximity event, would afford even more control. For example, if multiple split gRNAs were present within the same cell, they could be independently controlled, whereas a split Cas9 would only allow a single control point.  In our initial experiments, we focused on splitting the pegRNA used in prime editing.”

    1. Welcome back.

      This is part two of this lesson.

      We're going to continue immediately from the end of part one.

      So let's get started.

      Okay, so the instance is now in an available state.

      Let's just close down this informational dialogue at the top.

      And let's just minimize this menu on the left.

      Let's maximize the amount of screen space that we have for this specific purpose.

      So I just want us to go inside this database instance and explore together the information that we have available.

      So I talked in the theory lesson how every RDS instance is given an endpoint name and an endpoint port.

      So this is the information that we'll use to connect to this RDS instance.

      Networking wise, this instance has been provisioned in US-EAST-1A.

      It's in the Animals for Life VPC and it's used our A4L subnet group that we created at the start of this demo.

      And that means that it's currently utilizing all three database subnets in the Animals for Life VPC.

      But it's chosen because we only deployed one instance to use US-EAST-1A.

      Now this is the VPC security group that we're going to need to configure.

      So right click on this and open it in a new tab and move to that tab.

      This is the security group which controls access to this RDS instance.

      So let's expand this at the bottom.

      So currently it has my IP address being the only source allowed to connect into this RDS instance.

      So the only inbound rule on the security group protecting this RDS instance is allowing my IP address.

      So we're going to click on Edit and then click on Add Rule.

      And we're going to add a rule which allows our other instances to connect to this RDS instance.

      So first in the type drop down click and then type mySQL to get the same option as the line above and then click to select.

      Next go ahead and type instance into the source box and then select the migrate to RDS-instance security group.

      Now this is the security group that's used by any instances deployed by our one click deployment.

      And this allows those instances to connect to our RDS instance and that's what we want.

      So go ahead and select that and then click on Save Rules.

      And this means now that our WordPress instance can communicate with RDS.

      So now let's move back to the RDS tab and then make sure we're inside the A4L WordPress database instance.

      So that's the connectivity and the security tab.

      We also have the monitoring tab and it's here where you can see various CloudWatch provided metrics about the database instance.

      You also have logs and events related to this instance.

      So if we go and have a look at recent events we can see all of the events such as when the database instance was created, when its first backup was created.

      And you can explore those because they might be different in your environment.

      You can click on the Configuration tab and see the current configuration of the RDS instance.

      The Maintenance and Backups tab is where you can configure the maintenance and backup processes and then of course you can tag the RDS instance.

      Now in other lessons in this section of the course and depending on what course you're taking I will be talking about many of these options, what you can modify and which actions you can perform on RDS instances.

      But for now we're just going to move on with this demo.

      So the next step is that we need to migrate our existing data into this RDS instance.

      So what we're going to do is to click on the Connectivity and Security tab and we're going to leave this open.

      We're going to need this endpoint name and port very shortly.

      You should still have a tab open to the EC2 console.

      If you don't you can reach that by going on Services and then opening EC2 in a new tab.

      But I want you to select the A4L-WordPress instance and then right click and connect to it using Instance Connect.

      So go ahead and do that.

      Once you've done that we're going to start referring to the lesson commands document.

      So make sure you've got that open.

      We're going to use this command to take a backup of the existing MariaDB database.

      So we need to replace a placeholder.

      What we need to do is delete this and replace it with the private IP address of the MariaDB EC2 instance.

      So go back to the EC2 console, select the DB-WordPress instance and copy the private IP version 4 address into your clipboard.

      And then let's move back to the WordPress instance and paste that in.

      Go ahead and press Enter and it will prompt you for the password.

      And the password is the same Animals for Life strong password that we've been using everywhere.

      Copy that into your clipboard.

      So this is the password for the A4L WordPress user on the MariaDB EC2 instance.

      So paste that in and press Enter and then LS-LA to confirm that we now have this A4L WordPress.SQL database backup file.

      And we do, so that's good.

      So as we did in the previous demo lesson, we're going to take this backup file and we're going to import it into the new destination database, which is going to be the RDS instance.

      To do that, we'll use this command, but we're going to need to replace the placeholder hostname with the CNAME of the RDS instance.

      So go ahead and delete this placeholder, then go back to the RDS console and I'll want you to copy the endpoint name into your clipboard.

      So select it, right click and then copy.

      We won't need the port number because this is the standard MySQL port and if you don't specify it, most applications will assume this default.

      So just make sure that you have the endpoint DNS name or endpoint CNAME in your clipboard.

      And then back on the WordPress EC2 instance, go ahead and paste this database name into this command and press Enter.

      And again, you'll be asked for the password and that's the same Animals for Life strong password.

      So copy that into your clipboard, paste that in and press Enter.

      And that's imported this A4LWordPress.SQL file into the RDS instance.

      So now we need to follow the same process and change WordPress so that it points at the RDS instance.

      And we do that by moving to where the WordPress configuration file is.

      So cd space forward slash var forward slash ww w forward slash html and press Enter.

      And then shudu.

      So we have admin privileges, nano, which is a text editor and then wp-config.php and press Enter.

      Then we need to scroll down and we're looking for where it says DB host and currently it has a host name here.

      Now if you go back to the EC2 console and you look at the A4L-DB-WordPress instance, you'll see that its private IP version for DNS name is what's listed inside this configuration item.

      So it's currently pointing at this dedicated database instance.

      What we need to do is replace that and we're going to replace it with the RDS database DNS name or the CNAME of this RDS instance.

      So copy that into your clipboard and then go ahead and delete this private DNS name for the MariaDB EC2 instance and then paste in the RDS endpoint name, also known as the RDS CNAME.

      Once you've done that, control O and Enter to save and control X to exit.

      And now our WordPress instance is pointing at the RDS instance for its database.

      Now we can verify that by checking WordPress, move back to instances, select the WordPress instance, copy the public IP version for addressing to your clipboard.

      Don't use this open address link.

      Open that in a new tab.

      Go ahead and just click on the best cats ever to verify the functionality and it does look as though it's working.

      And to verify that, if we go back to the EC2 console, select the A4L-DB-WordPress instance and right click and then stop that instance.

      Now the original database that was providing database services to WordPress is going to move into a stopped state.

      And if our WordPress blog continues functioning, we know that it's using the RDS instance.

      So let's keep refreshing and wait for this to change into a stopped state.

      There we go.

      It's stopped.

      And if we go back to our WordPress page and refresh, it still loads.

      And so we know that it's now using RDS for its database services.

      So at this point, that's everything that I wanted you to do in this demo lesson.

      You've stepped through the process of provisioning an RDS instance.

      So you've created a subnet group, provisioned the instance itself, explored the functionality of the instance, including how to provide access to it by selecting a security group.

      And then editing that security group to allow access.

      You've performed a database migration and you've explored how the RDS instance is presented in the console.

      So that's everything that you need to do within this demo lesson.

      And don't worry, we're going to be exploring much more of the advanced functionality of RDS as we move through this section of the course.

      For now, though, I want us to clear up the infrastructure that we've created as part of this demo lesson.

      Now, because we've provisioned RDS manually outside of CloudFormation, unfortunately, there is a little bit more manual work involved in the cleanup.

      So I want you to go to the RDS console, move to databases, select this database, click on actions, and then select delete.

      Now it will prompt you to create a final snapshot and we're not going to do that.

      We're not going to retain automated backups and so you'll need to acknowledge that upon instance deletion, automated backups including any system snapshots and pointing time recoveries will no longer be available.

      And don't worry, I'll be talking about backups and recovery in another lesson in this section of the course.

      For now, just acknowledge that and then type delete me into this box and confirm the deletion.

      Now this deletion is going to take a few minutes.

      It's not an immediate process.

      It will start in a deleting state and we need to wait for this process to be completed before we continue the cleanup.

      So go ahead and pause this video and wait for this instance to fully delete before continuing.

      Now that the instance has been deleted, it vanishes from this list.

      Next, we need to delete the subnet group that we created earlier.

      So click on subnet groups, select the subnet group and then delete it.

      You'll need to confirm that deletion.

      Once done, it too should vanish from that list.

      Next, go to the tab you've got open to the VPC console, scroll down and select security groups.

      Now look through this list and locate the security group that you created as part of provisioning the RDS instance.

      It should be called a4LVPC-RDS-SG.

      Select that, click on actions and then delete security group and you'll need to confirm that process as well.

      Once that's deleted, the final step is to go to the cloud formation console and then you'll need to delete the cloud formation stack that was created using the one-click deployment at the start of the demo.

      It should be called migrate to RDS.

      Select it, click on delete and confirm that deletion.

      And once deleted, the account will be returned into the same state as it was at the start of the demo lesson.

      So all of the infrastructure that we've used will be removed from the account and the account will be in the same state as at the start of the demo.

      Now I hope you've enjoyed this demo and that we're repeating the same WordPress installation and then the creation of the blog post over and over again.

      But I want you to get used to different parts of this process over and over again.

      You need to know why not to use a database on EC2.

      You need to know why not to perform a lot of these processes manually.

      From this point onward in the course, we're going to be using RDS to evolve our WordPress design into something that is truly elastic.

      And so all of these processes, the things I'm having you repeat are really useful to aid in your understanding of all of these different components.

      So from this point onward, we're going to be automating the creation of RDS and focusing on the specific pieces of functionality that you need to understand.

      But at this point, that's everything that you need to do in this demo.

      So go ahead, complete the video and when you're ready, I look forward to you joining me in the next.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #4

      We sincerely appreciate the time and effort you have taken to review our manuscript. We followed your recommendations to polish the text and make it easier to understand.

      Regarding terms and terminology, we changed “non-breeding” everywhere in the text to “over- wintering.”

      Regarding the title, as it was suggested by reviewer #1 as his recommendation, we tried to find a compromise and make the changes you suggested but left part of the suggestion from reviewer #1. So, now it’s “Foxtrot migration and dynamic over-wintering range of an arctic raptor”

      Thank you for highlighting the importance of snow cover and changes in snow cover as a possible factor of over-wintering movements. We appreciate your feedback and have explored several approaches to address this issue. Specifically, we examined how both snow cover extent and changes in snow cover influenced movement distance. However, we found no effect of either factor on movement distance.

      Our data show that birds leave their sites in October and move southwest, even though snow cover is minimal at that time. They also leave their sites in November and in subsequent months, regardless of the snow cover levels. Thus, we observed no pattern of birds leaving sites when snow cover reaches a specific threshold (e.g., 75-80%). Similarly, we found no evidence of birds staying in areas with a certain snow cover extent (e.g., 30%), nor did they leave sites when snow cover increased by a specific amount (e.g., by 10 or 20%).

      It is possible that more experienced birds anticipate that October plots will become inaccessible later in the winter and, therefore, leave early without waiting for significant snow accumulation. Alternatively, other factors, such as brief heavy snowfalls, may trigger movement, even if these do not lead to sustained increases in snow cover. Multiple factors, possibly acting asynchronously, could also play a role. This complexity adds an interesting dimension to the study of ecological patterns. However, in this study, we chose to focus on describing the migration pattern itself and its impact on aspects like over-winter range determination and population dynamics. While we have prioritized this approach, we remain committed to further analyzing the data to uncover additional details about this behavior.

      In response to your suggestion, we have expanded the Methods sections to clarify that we tested the effects of snow cover and changes in snow cover on distance (Lines 241-246); the Results section (Lines 348-349). We have also included the relevant plots in the Supplementary Materials. In the Discussion, we noted that this approach did not reveal any significant dependence and acknowledged that this issue requires further investigation (Lines 422-459).

      ---------

      The following is the authors’ response to the previous reviews.

      Reviewer #2:

      We sincerely appreciate the time and effort you have taken to review our manuscript. 

      First of all, we apologize for publishing the preprint without incorporating certain adjustments outlined in our earlier response, particularly in the Methods section. This was due to an oversight regarding the different versions of the manuscript. We have corrected this mistake. Our response to the feedback on this section (Methods), with line numbers of the changes made, is immediately below this response. In addition, we have included the units of measurement (mean and standard deviation) in both the results and figure captions for clarity.

      To focus on the main point regarding wintering strategies, we acknowledge that in the previous versions, this aspect was inadequately addressed and caused some confusion. In the revised edition, both the Introduction and the Discussion have been thoroughly reworked.

      As you suggested, we have removed the long introductory paragraph and all references to foxtrot migrations from the Introduction. As a result, the Introduction is now short and to the point. In the second paragraph, we explain why we propose the wintering strategies outlined (L74-81).

      In the Discussion, we've added a substantial new section at the beginning that discusses different wintering strategies. We have also updated Figure 4 accordingly. Previously, we erroneously suggested that Montagu's harrier and other African-Palaearctic migrants might adopt wintering strategies similar to those we describe. Upon further investigation, however, we found that almost all African-Palaearctic migrants exhibit an itinerant wintering strategy. Conversely, the strategy we describe is primarily observed in mid-latitude wintering species.

      We have shown that, unlike itinerancy, the birds in our study don't pause for 1-2 months at multiple non-breeding sites, but instead migrate significant distances, up to 1000 km, throughout the winter. Furthermore, unlike itinerancy, the sites they reach are consistently snow-free throughout the year. Following the logic of publications on Montagu's harriers (Schlaich et al. 2023), our birds do not wait for favorable conditions at the next site, as is typical of itinerancy. Moreover, this behavior is influenced by external factors such as snow cover dynamics and occurs primarily in mid-latitudes. Researchers studying a species similar to our subject, the Common buzzard, observed a similar pattern and termed it "prolonged autumn migration" rather than itinerancy. Although their transmitters stopped working in mid-winter, precluding a full observation of the annual cycle, they captured the essence of continued migration at a slower pace, distinct from itinerancy. We've detailed all of these findings in a new section.

      In addition, we acknowledge the mischaracterization of the implications of our research as ‘Conservation implications’ and have corrected this to ‘Mapping ranges and assessing population trends’, as you suggested.

      Finally, we've rewritten the Conclusion, removing overly grandiose statements and simply summarizing the main findings.

      We appreciate your time and effort in reviewing our manuscript. With your invaluable input, it has become clearer, more concise, and easier to understand.

      Dataset: unclear what is the frequency of GPS transmissions. Furthermore, information on relative tag mass for the tracked individuals should be reported.

      We have included this information in our manuscript (L 115-122). We also refer to the study in which this dataset was first used and described in detail (L 123).

      Data pre-processing: more details are needed here. What data have been removed if the bird died? The entire track of the individual? Only the data classified in the last section of the track? The section also reports on an 'iterative procedure' for annotating tracks, which is only vaguely described. A piecewise regression is mentioned, but no details are provided, not even on what is the dependent variable (I assume it should be latitude?).

      Regarding the deaths, we only removed the data when the bird was already dead. We estimated the date of death and excluded tracking data corresponding to the period after the bird's death. We have corrected the text to make this clear (L 130-131).

      Regarding the piecewise regression. We have added a detailed description on lines 136-148.

      Data analysis: several potential issues here:

      (1) Unclear why sex was not included in all mixed models. I think it should be included.

      Our dataset contains 35 females and eight males (L116). This ratio does not allow us to include sex in all models and adequately assess the influence of this factor. At the same time, because adult females disperse farther than males in some raptor species, we conducted a separate analysis of the dependence of migration distance on sex (Table S8) and found no evidence for this in our species. We have written about that in the Methods (L177-181) and after in the Results (L277-278).

      (2) Unclear what is the rationale of describing habitat use during migration; is it only to show that it is a largely unsuitable habitat for the species? But is a formal analysis required then? Wouldn't be enough to simply describe this?

      Habitat use and snow cover determine the two main phases (quick and slow) of the pattern we describe. We believe that habitat analysis is appropriate in this case, and a simple description would be uninformative and not support our conclusions.

      (3) Analysis of snow cover: such a 'what if' analysis is fine but it seems to be a rather indirect assessment of the effect of snow cover on movement patterns. Can a more direct test be envisaged relating e.g. daily movement patterns to concomitant snow cover? This should be rather straightforward. The effectiveness of this method rests on among-year differences in snow cover and timing of snowfall. A further possibility would be to demonstrate habitat selection within the entire non-breeding home range of an individual in relation snow cover. Such an analysis would imply associating presenceabsence of snow to every location within the non-breeding range and testing whether the proportion of locations with snow is lower than the proportion of snow of random locations within the entire nonbreeding home range (95% KDE) for every individual (e.g. by setting a 1/10 ratio presence to random locations).

      The proposed analysis will provide an opportunity to assess whether the Rough-legged buzzard selects areas with the lowest snow cover, but will not provide an opportunity to follow the dynamics and will therefore give a misleading overall picture. This is especially true in the spring months. In March-April, Rough-legged buzzards move northeast and are in an area that is not the most open to snow. At this time, areas to the southwest are more open to snow (this can be seen in Figure 3b). If we perform the proposed analysis, the control points for this period would be both to the north (where there is more snow) and to the south (where there is less snow) from the real locations, and the result would be that there is no difference in snow cover. 

      A step-selection analysis could be used, as we did in our previous work (Curk et al 2020 Sci Rep) with the same Rough-legged buzzards (but during migration, not winter). But this would only give us a qualitative idea, not a quantitative one - that Rough-legged Buzzards move from snow (in the fall) and follow snowmelt progression (in the spring). 

      At the same time, our analysis gives a complete picture of snow cover dynamics in different parts of the non-breeding range. This allows us to see that if Rough-legged buzzards remained at their fall migration endpoint without moving southwest, they would encounter 14.4% more snow cover (99.5% vs. 85.1%). Although this difference may seem small (14.4%), it holds significance for rodent-hunting birds, distinguishing between complete and patchy snow cover.

      Simultaneously, if Rough-legged buzzards immediately flew to the southwest and stayed there throughout winter, they would experience 25.7% less snow cover (57.3% vs. 31.6%). Despite a greater difference than in the first case, it doesn't compel them to adopt this strategy, as it represents the difference between various degrees of landscape openness from snow cover.

    1. node* Address

      kalo di notal "pointer to node"

      ok intinya ini pake tag node biar bisa memberi instruksi ke preprocessor membuat struct baru node dengan Address yang beda-beda.

      pada umumnya itu typedef Node (cara aksesnya)

      cuman karna ini pake tag, instead of mengubah, kita membuat baru dengan address yang bisa beda beda

      ini typedef struct node* Address (perhatikan bahwa struct di tulis juga)

    2. node

      ini tag

      tag dan type nya dibedakan (node dan Node) untuk mengatasi strictnya bahasa C dimana tipe tidak bisa di declare setelah operasi lain. dibuatlah jadi tag, im not to sure so ask again ke GPT

    Annotators

    1. Author response:

      The following is the authors’ response to the current reviews.

      We are grateful to the reviewers for their positive assessment of the revised version of the article.

      Please find below our answers to the last, minor comments of the reviewers.

      We thank the reviewer for this important comment. In our live imaging experiments, we actually tracked the dorsal and ventral borders of the omp:yfp positive clusters in control and sly mutant embryos. These measurements showed that the omp:yfp positive clusters are more elongated along the DV axis in mutants as compared with control siblings, as seen on fixed samples (data not shown), suggesting that this difference in tissue shape is not due to fixation.

      Reviewer #4 (Public review):

      Summary:

      In this elegant study XX and colleagues use a combination of fixed tissue analyses and live imaging to characterise the role of Laminin in olfactory placode development and neuronal pathfinding in the zebrafish embryo. They describe Laminin dynamics in the developing olfactory placode and adjacent brain structures and identify potential roles for Laminin in facilitating neuronal pathfinding from the olfactory placode to the brain. To test whether Laminin is required for olfactory placode neuronal pathfinding they analyse olfactory system development in a well-established laminin-gamma-1 mutant, in which the laminin-rich basement membrane is disrupted. They show that while the OP still coalesces in the absence of Laminin, Laminin is required to contain OP cells during forebrain flexure during development and maintain separation of the OP and adjacent brain region. They further demonstrate that Laminin is required for growth of OP neurons from the OP-brain interface towards the olfactory bulb. The authors also present data describing that while the Laminin mutant has partial defects in neural crest cell migration towards the developing OP, these NCC defects are unlikely to be the cause of the neuronal pathfinding defects upon loss of Laminin. Altogether the study is extremely well carried out, with careful analysis of high-quality data. Their findings are likely to be of interest to those working on olfactory system development, or with an interest in extracellular matrix in organ morphogenesis, cell migration, and axonal pathfinding.

      Strengths:

      The authors describe for the first time Laminin dynamics during the early development of the olfactory placode and olfactory axon extension. They use an appropriate model to perturb the system (lamc1 zebrafish mutant), and demonstrate novel requirements for Laminin in pathfinding of OP neurons towards the olfactory bulb.

      The study utilises careful and impressive live imaging to draw most of its conclusions, really drawing upon the strengths of the zebrafish model to investigate the role of laminin in OP pathfinding. This imaging is combined with deep learning methodology to characterise and describe phenotypes in their Laminin-perturbed models, along with detailed quantifications of cell behaviours, together providing a relatively complete picture of the impact of loss of Laminin on OP development.

      Weaknesses:

      Some of the statistical tests are performed on experiments where n=2 for each condition (for example the measurements in Figure S2) - in places the data is non-significant, but clear trends are observed, and one wonders whether some experiments are under-powered.

      We initially planned the electron microscopy experiments in order to analyse 3 embryos per genotype per stage. However, because of technical issues we could not perform the measurements in all the cases, explaining why we have n = 2 in some of the graphs. The trends were quite clear, so we chose to keep these data in the article. We believe they nicely complement the immunostaining data assessing basement membrane integrity in control and mutant embryos.


      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors describe the dynamic distribution of laminin in the olfactory system and forebrain. Using immunohistochemistry and transgenic lines, they found that the olfactory system and adjacent brain tissues are enveloped by BMs from the earliest stages of olfactory system assembly. They also found that laminin deposits follow the axonal trajectory of axons. They performed a functional analysis of the sly mutant to analyse the function of laminin γ1 in the development of the zebrafish olfactory system. Their study revealed that laminin enables the shape and position of placodes to be maintained late in the face of major morphogenetic movements in the brain, and its absence promotes the local entry of sensory axons into the brain and their navigation towards the olfactory bulb. 

      Strengths: 

      - They showed that in the sly mutants, no BM staining of laminin and Nidogen could be detected around the OP and the brain. The authors then elegantly used electron microscopy to analyse the ultrastructure of the border between the OP and the brain in control and sly mutant conditions. 

      - To analyse the role of laminin γ1-dependent BMs in OP coalescence, the authors used the cluster size of Tg(neurog1:GFP)+ OP cells at 22 hpf as a marker. They found that the mediolateral dimension increased specifically in the mutants. However, proliferation did not seem to be affected, although apoptosis appeared to increase slightly at a later stage. This increase could therefore be due to a dispersal of cells in the OP. To test this hypothesis, the authors then analysed the cell trajectories and extracted 3D mean square displacements (MSD), a measure of the volume explored by a cell in a given period of time. Their conclusion indicates that although brain cell movements are increased in the absence of BM during coalescence phases, overall OP cell movements occur within normal parameters and allow OPs to condense into compact neuronal clusters in sly mutants. The authors also analysed the dimensions of the clusters composed of OMP+ neurons. Their results show an increase in cluster size along the dorso-ventral axis. These results were to be expected since, compared with BM, early neurog1+ neurons should compact along the medio-lateral axis, and those that are OMP+ essentially along the dorso-ventral axis. In addition to the DV elongation of OP tissue, the authors show the existence of isolated and ectopic (misplaced) YFP+ cells in sly mutants. 

      - To understand the origin of these phenotypes, the authors analysed the dynamic behaviour of brain cells and OPs during forebrain flexion. The authors then quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, and proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected. 

      - They then analysed the dynamic behaviour of the axon using live imaging. Thus, olfactory axon migration is drastically impaired in sly mutants, demonstrating that Laminin γ1dependent BMs are essential for the growth and navigation of axons from the OP to the olfactory bulb. 

      - The authors therefore performed a quantitative analysis of the loss of function of Laminin γ1. They propose that the BM of the OP prevents its deformation in response to mechanical forces generated by morphogenetic movements of the neighbouring brain. 

      Weaknesses: 

      - The authors did not analyse neurog1 + axonal migration at the level of the single cell and instead made a global analysis. An analysis at the cell level would strengthen their hypotheses.  

      - Rescue experiments by locally inducing Laminin expression would have strengthened the paper. 

      - The paper lacks clarity between the two neuronal populations described (early EONs and late OSNs).  

      - The authors quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected. 

      - A missing point in the paper is the effect of Laminin γ1 on the migration of cranial NCCs that interact with OP cells. The authors could have analysed the dynamic distribution of neural crest cells in the sly mutant. 

      We thank the reviewer for the overall positive assessment of our work, and we carefully responded to all her/his insightful comments below. Live imaging experiments to (1) visualise exit and entry point formation with only a few axons labelled, (2) characterise the behaviour of single neurog1:GFP-positive neurons/axons during OP coalescence and to (3) analyse the migration of cranial NCC are now included in the revised manuscript to address the reviewer’s questions, and reinforce our initial conclusions.

      Reviewer #2 (Public Review): 

      Summary: 

      This manuscript addresses the role of the extracellular matrix in olfactory development. Despite the importance of these extracellular structures, the specific roles and activities of matrix molecules are still poorly understood. Here, the authors combine live imaging and genetics to examine the role of laminin gamma 1 in multiple steps of olfactory development. The work comprises a descriptive but carefully executed, quantitative assessment of the olfactory phenotypes resulting from loss of laminin gamma. Overall, this is a constructive advance in our understanding of extracellular matrix contributions to olfactory development, with a well-written Discussion with relevance to many other systems. 

      Strengths: 

      The strengths of the manuscript are in the approaches: the authors have combined live imaging, careful quantitative analyses, and molecular genetics. The work presented takes advantage of many zebrafish tools including mutants and transgenics to directly visualize the laminin extracellular matrix in living embryos during the developmental process. 

      Weaknesses: 

      The weaknesses are primarily in the presentation of some of the imaging data. In certain cases, it was not straightforward to evaluate the authors' interpretations and conclusions based on the single confocal sections included in the manuscript. For example, it was difficult to assess the authors' interpretation of when and how laminin openings arise around the olfactory placode and brain during olfactory axon guidance. 

      We thank the reviewer for the overall positive assessment of our work, and we carefully responded to all her/his insightful comments below. To address these comments, live imaging data to visualise exit and entry point formation with a sparse labelling of axons, and z-stacks showing how exit and entry points are organised in 3D, have been added to the revised manuscript.

      Reviewer #3 (Public Review): 

      This is a beautifully presented paper combining live imaging and analysis of mutant phenotypes to elucidate the role of laminin γ1-dependent basement membranes in the development of the zebrafish olfactory placode. The work is clearly illustrated and carefully quantified throughout. There are some very interesting observations based on the analysis of wild-type, laminin γ1, and foxd3 mutant embryos. The authors demonstrate the importance of a Laminin γ1-dependent basement membrane in olfactory placode morphogenesis, and in establishing and maintaining both boundaries and neuronal connections between the brain and the olfactory system. There are some very interesting observations, including the identification of different mechanisms for axons to cross basement membranes, either by taking advantage of incompletely formed membranes at early stages, or by actively perforating the membrane at later ones. 

      This is a valuable and important study but remains quite descriptive. In some cases, hypotheses for mechanisms are stated but are not tested further. For example, the authors propose that olfactory axons must actively disrupt a basement membrane to enter the brain and suggest alternative putative mechanisms for this, but these are not tested experimentally. In addition, the authors propose that the basement membrane of the olfactory placode acts to resist mechanical forces generated by the morphogenetic movement of the developing brain, and thus to prevent passive deformation of the placode, but this is not tested anywhere, for example by preventing or altering the brain movements in the laminin γ1 mutant. 

      We thank the reviewer for the overall positive assessment of our work and for suggesting interesting experiments to attempt in the future, and we carefully responded to all her/his constructive comments below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In general, it would be easier to draw conclusions and compare data if the authors used similar stages throughout the article. 

      Throughout the article we tried to focus on a series of stages that cover both the coalescence of the OP (up to 24 hpf) and later stages of olfactory system development spanning the brain flexure process (28, 32, 36 hpf). However, for technical reasons it was not always possible to stick to these precise stages in some of our experiments. Also, in Fig. 1E-J, we picked in the movies some images illustrating specific cell or axonal behaviours, and thus the corresponding stages could not match exactly the stage series used in Fig. 1A-D and elsewhere in the article. Nevertheless, this stage heterogeneity does not affect our main conclusions.

      It would be useful to schematise the olfactory placode and the brain in an insert to clearly visualise the system in each figure. 

      We hope that the schematic which was initially presented in Fig. 1K already helps the reader to understand how the system is organised. Although we have not added more schematic views to represent the system in each figure (we think this would make the figures overcrowded), we have added additional legends to point to the OP and the brain in the pictures in order to clarify the localisation of each tissue.

      In the Summary, the authors refer to the integrity of the basement membrane. I don't think there is any attempt to affect basement membrane integrity in the article. It would be important to do so to look at the effect on CNS-PNS separation and axonal elongation. 

      In the Summary, we use the term « integrity of the basement membrane » to mention that we have analysed this integrity in the sly mutant. Given the results of our immunostainings against three main components of the basement membrane (Laminin, Collagen IV and Nidogen), as well as our EM observations, we see the sly mutant as a condition in which the integrity of the basement membrane is strongly affected.

      Rescue experiments by locally inducing Laminin expression would have strengthened the paper. 

      We have attempted to rescue the sly mutant phenotypes by introducing the mutation in the transgenic TgBAC(lamC1:lamC1-sfGFP) background, in which Laminin γ1 tagged with sfGFP is expressed under the control of its own regulatory sequences (Yamaguchi et al., 2022). To do so, we crossed sly+/-;Tg(omp:yfp) fish with sly+/-; Tg(lamC1:LamC1-sfGFP) fish. Surprisingly, while a rescue of the global embryo morphology was observed, no clear rescue of the olfactory system defects could be detected at 36 hpf. This could be due to the fact that the expression level of LamC1-sfGFP obtained with one copy of the transgene is not sufficient to rescue the olfactory system phenotypes, or that the sfGFP tag specifically affects the function of the Laminin 𝛾1 chain during the development of the olfactory system, making it unable to rescue the defects. Given the results of our first attemps, we decided not to continue in this direction.

      (1) Developing OP & brain are surrounded by laminin-containing BM (already described by Torrez-Pas & Whitlock in 2014). 

      "we first noticed the appearance of a continuous Laminin-rich BM surrounding the brain from 14-18 hpf, while around the OP, only discrete Laminin spots were detected at this stage (Fig. 1A, A'). " 

      Around 8ss for Torrez-Pas & Whitlock (before 14 hpf). Can you modify the text, or show an 8ss stage embryo? As far as I know, the authors do not show images at 14hpf. Please correct this sentence or show a 14 hpf picture. 

      The reviewer is right, we do not show any 14 hpf stage in the images and thus have removed this stage in the text and replaced it by 17 hpf.

      In Figure 1A, the labelling of laminin 111 does not appear to be homogeneous along the brain.

      Is this true? 

      At this stage the brain’s BM revealed by the Laminin immunostaining appears fairly continuous (while the OP’s one is clearly dotty and less defined), but indeed very tiny/local interruptions of the signal can been seen along the structure as detected by the reviewer. We thus modified the text to mention these tiny interruptions.

      How is the Laminin antibody used by the authors specific to laminin 111?  

      We thank the reviewer for raising this important point. The immunogen used to produce this rabbit polyclonal antibody is the Laminin protein isolated from the basement membrane of a mouse Engelbreth Holm-Swarm sarcoma (EHS). It is thus likely to recognise several Laminin isoforms and not only Laminin 111. We thus replaced Laminin 111 by Laminin when mentioning this antibody in the text and Figures.

      Please schematise in Figure 1K the stages you have tested and shown here in the article i.e. stages 18 - 22 - 28 -36 hpf using immunohistochemistry and 17-26-27-29-33 and 38 hpf using transgenics for laminin 111 and LamC1 respectively.  

      As suggested by the reviewer, we changed the stages in the schematics for stages we have presented in Figure 1 (analysed either with immunostaining or in live imaging experiments). We chose to represent 17 - 22 - 26 - 33 hpf (and thus adapted some of the schematics for them to match these stages).  

      Please specify in the Figure 1 legend for panels A to D whether this is a 3D projection or a zsection.

      We indicated in the Figure 1 legend that all these images are single z-sections (as well as for panels E-J).

      Furthermore, the schematisation in Fig. 1K does not reflect what the authors show: at 22 hpf laminin 111 labelling appears to be present only near the brain, and no labelling lateral to the olfactory placode and anteriorly and posteriorly. Thus, the schematisation in Figure 1K needs to be modified to reflect what the authors show.

      We agree with the reviewer that the Laminin staining at this stage is observed around the medial region of the OP, but not more laterally. We modified the schematic view accordingly in Figure 1K. Anterior and posterior sides of the OP are not represented in this schematic because we chose to represent a frontal view rather than a dorsal view.

      The authors suggest that" the laminin-rich BM of OP assembles between 18 and 22 hpf, during the late phase of OP coalescence". However, their data indicate that this BM assembles around 28hpf (Figure 1C). Can they clarify this point?

      What we meant with this sentence is that we cleary see two distinct BMs from 22 hpf. However, as noticed by the reviewer, the OP’s BM is only present around the medial/basal regions of the OP and does not surround the whole OP tissue at this stage. We modified the text to clarify this point (in particular by mentioning that the OP’s BM starts to assemble between 18 and 22 hpf), and replaced the image shown in Figure 1B, B’ with a more representative picture (the previous z-section was taken in very dorsal regions of the OP).

      It would be useful to disrupt these cells that have a cytoplasmic expression of Laminin-sfGFP, to analyse their contribution to BM and OP coalescence.

      Indeed it will be interesting in the future to test specifically the role of the cells expressing cytoplasmic Laminin-sfGFP around and within the OP, as proposed by the reviewer. Laser ablation of these cells could be attempted, but due to their very superficial localisation, close to the skin, we believe these ablations (with the protocol/set-up we currently use in the lab) would impair the skin integrity, preventing us to conclude. We consider that the optimisation of this experiment is out of the scope of the present work.

      Tg(-2.0ompb:gapYFP)rw032 marks ciliated olfactory sensory neurons (OSNs) (Sato et al., 2005). The authors should mention this. 

      Please see our detailed response to the next point below.

      Points to be clarified: 

      -Tg(-2.0ompb:gapYFP)rw032 marks ciliated olfactory sensory neurons (OSNs) (Sato et al., 2005). The authors should mention this here. Moreover, the authors refer to "OP neurons" throughout the article. In the development of the olfactory organ, two types of neurons have been described in the literature: early EONs (12hpf-26hpf) and later OSNs. Each could have a specific role in the establishment and maintenance of the BM described by the authors. The authors need to clarify this point as, in Figure 1 for example, they use a marker for Tg(neurog1:GFP) EONs and a marker for ciliated OSNs without distinction. The distinction between EONs and OSNs comes a little late in the text and should be placed higher up. 

      As mentioned by the reviewer, according to the initial view of neurogenesis in the OP, OP neurons are born in two waves. A transient population of unipolar, dendrite-less pioneer neurons would differentiate first, in the ventro-medial region of the OP and elongate their axons dorsally out of the placode, along the brain wall. These pioneer axons would then be used as a scaffold by later born OSNs located in the dorso-lateral rosette to outgrow their axons towards the olfactory bulb (Whitlock and Westerfield, 1998). 

      Another study further characterised OP neurogenesis and showed that the first neurons to differentiate in the OP (the early olfactory neurons or EONs) express the Tg(neurog1:GFP) transgene (Madelaine et al., 2011). As mentioned by the authors in the discussion of this article, neurog1:GFP+ neurons appear much more numerous than the previously described pioneer neurons, and may thus include pioneers but also other neuronal subtypes.

      We would like here to share additional, unpublished observations from our lab that further suggest that the situation is more complex than the pioneer/OSN and EON/OSN nomenclatures. First, in many of our live imaging experiments, we can clearly visualise some neurog1:GFP+ unipolar neurons, initially located in a medial position in the OP, which intercalate and contribute to the dorsolateral rosette (where OSNs are proposed to be located) at the end of OP coalescence, from 22-24 hpf. Second, in fixed tissues, we observed that most neurog1:GFP+ neurons located in the rosette at 32 hpf co-express the Tg(omp:meRFP) transgene (Sato et al., 2005). These observations suggest that at least a subpopulation of neurog1:GFP+ neurons could incorporate in the dorsolateral rosette and become ciliated OSNs during development. We can share these results with the reviewer upon request. Further studies are thus needed to clarify and describe the neuronal subpopulations and lineage relationships in the OP, but this detailed investigation is out of the scope and focus of the present study. 

      An additional complication comes from the fact that, as shown and acknowledged by the authors in Miyasaka et al., 2005, the Tg(omp:meYFP) line (6kb promoter) labels ciliated OSNs in the rosette but also some unipolar, ventral neurons (around 10 neurons at 1 dpf, Miyasaka et al. 2005, Figure 3A, white arrowheads). This was also observed using the 2 kb promoter Tg(omp:meYFP) line (see for instance Miyasaka et al., 2007) and in our study, we can indeed detect these ventro-medial neurons labelled in the Tg(omp:meYFP) line (2 kb promoter), see for instance Figure 1C’, D’ or Movie 6. It is unclear whether these unipolar omp:meYFPpositive cells are pioneer neurons or EONs expressing the omp:meYFP transgene, or OSN progenitors that would be located basally/ventrally in the OP at these stages.

      For all these reasons, we decided to present in the text the current view of neurogenesis in the OP but instead of attributing a definitive identity to the neurons we visualise with the transgenic lines, we prefer to mention them in the manuscript (and in the rest of the response to the reviewers) as neurons expressing neurog1:GFP or omp:meYFP transgenes (or cells/axons/neurons expressing RFP in the Tg(cldnb:Gal4; UAS:RFP) background).

      What we also changed in the text to be more clear on this point:

      - we moved higher up in the text, as suggested by reviewer 1, the description of the current model of neurogenesis in the OP,

      - we mentioned that neurog1:GFP+ neurons are more numerous than the initially described pioneer neurons, as discussed in Madelaine et al., 2011,

      - we wrote more clearly that the Tg(omp:meYFP) line labels ciliated OSNs but also a subset of unipolar, ventral neurons (Miyasaka et al., 2005), and pointed to these ventral neurons in Figure 1C’, D’,

      - in the initial presentation of the current view of OP neurogenesis we renamed neurog1:GFP+ into EONs to be coherent with Madelaine et al., 2011.

      - To visualise pioneer axons, the authors should use an EONS marker such as neurog1 because, to my knowledge, OMP only marks OSN axons and not pioneer axons.  

      To visualise neurog1:GFP+ axons during OP coalescence, we performed live imaging upon injection of the neurog1:GFP plasmid (Blader et al., 2003) in the Tg(cldnb:Gal4; UAS:RFP) background (n = 4 mutants and n = 4 controls from 2 independent experiments). We observed some GFP+ placodal neurons exhibiting retrograde axon extension in both controls and sly mutants. In such experiments it is very difficult to quantify and compare the number of neurons/axons showing specific behaviours between different experimental conditions/genetic background. Indeed, due to the cytoplasmic localisation of GFP, the axons can only be seen in neurons expressing high levels of GFP, and due to the injection the number of such neurons varies a lot in between embryos, even in a given condition. Nevertheless, our qualitative observations reinforce the idea that the basement membrane is not absolutely required for mediolateral movements and retrograde axon extension of neurog1:GFP+ neurons in the OP. We added examples of images extracted from these new live imaging experiments in the revised Fig. S5A, B.

      - The authors should analyse the presence of laminin in the OP and forebrain in conjunction with neural crest cell dynamics (using a Sox10 transgenic line for example) to refine their entry and exit point hypotheses. 

      As described in the answer to the next point, we performed new experiments in which we visualised NCC migration in the Tg(neurog1:GFP) background, which allowed us to analyse the localisation of NCC at the forebrain/OP boundary, in ventral and dorsal positions, both in sly mutant embryos and control siblings.

      - A dynamic analysis of the distribution of neural crest cells in the sly mutant over time and during OP coalescence would be important. 

      The dynamics of zebrafish cranial NCC migration in the vicinity of the OP has been previously analysed using sox10 reporter lines (Harden et al., 2012, Torres-Paz and Whitlock, 2014, Bryan et al., 2020). To address the point raised by the reviewer, we performed live imaging from 16 to 32 hpf on sly mutants and control siblings carrying the Tg(neurog1:GFP) and Tg(UAS:RFP) transgenes and injected with a sox10(7.2):KalTA4 plasmid (Almeida et al., 2015). This allows the mosaic labelling of cells that express or have expressed sox10 during their development which, in the head region at these stages, represents mostly NCC and their derivatives. 3 independent experiments were carried out (n = 4 mutant embryos in which 8 placodes could be analysed; n = 6 control siblings in which 10 placodes could be analysed). A new movie (Movie 9) has been added to the revised article to show representative examples of control and mutant embryos.

      From these new data, we could make the following observations:

      - As expected from previous studies (Harden et al., 2012, Torres-Paz and Whitlock, 2014, Bryan et al., 2020), in control embryos a lot of NCC had already migrated to reach the vicinity of the OP when the movies begin at 16 hpf, and were then seen invading mainly the interface between the eye and the OP (10/10 placodes). Surprisingly, in sly mutants, a lot of motile NCC had also reached the OP region at 16 hpf in all the analysed placodes (8/8), and populated the eye/OP interface in 7/8 placodes (10/10 in controls). Counting NCC or tracking individual NCC during the whole duration of the movies was unfortunately too difficult to achieve in these movies, because of the low level of mosaicism (a high number of cells were labelled) and of the high speed of NCC movements (as compared with the 10 min delta t we chose for the movies). 

      - in some of the control placodes we could detect a few NCC that populated the forebrain/OP interface, either ventrally, close to the exit point of the axons (4/10 placodes), or more dorsally (8/10 placodes). By contrast, in sly mutants, NCC were observed in the dorsal region of the brain/OP boundary in only 2/8 placodes, and in the ventral brain/OP frontier in only 2/8 placodes as well. Interestingly, in these 2 last samples, NCC that had initially populated the ventral region of the brain/OP interface were then expelled from the boundary at later stages.

      We reported these observations in a new Table that is presented in revised Fig. S6B. In addition, instances of NCC migrating at the eye/OP or forebain/OP interfaces are indicated with arrowheads on Movie 9. Previous Figure S6 was splitted into two parts presenting NCC defects in sly mutants (revised Figure S6) and in foxd3 mutants (revised Figure S7).

      Altogether, these new data suggest that the first postero-anterior phase of NCC migration towards the OP, as well as their migration in between the eye and OP tissues, is not fully perturbed in sly mutants. The subset of NCC that populate the OP/forebrain seem to be more specifically affected, as these NCC show defects in their migration to the interface or the maintenance of their position at the interface. Since the crestin marker labels mostly NCC at the OP/forebrain interface at 32 hpf (revised Fig. S6A), this could explain why the crestin ISH signal is almost lost in sly mutants at this stage.

      (2) Laminin distribution suggests a role in olfactory axon development 

      "Laminin 111 immunostaining revealed local disruptions in the membrane enveloping the OP and brain, precisely where YFP+ axons exit the OP (exit point) and enter the brain (entry point) (Fig. 1C-D')." Can the authors quantify this situation? It would be important to analyse this behaviour on the scale of a neuron and thus axonal migration to strengthen the hypotheses. 

      As suggested by the reviewer, to better visualise individual axons at the exit and entry point, we used mosaic red labelling of OP axons. To achieve this sparse labelling, we took advantage of the mosaic expression of a red fluorescent membrane protein observed in the Tg(cldnb:Gal4; UAS:lyn-TagRFP) background. The unpublished Tg(UAS:lyn-TagRFP) line was kindly provided by Marion Rosello and Shahad Albadri from the lab of Filippo Del Bene. We crossed the Tg(cldnb:Gal4; UAS:lyn-TagRFP) line with the TgBAC(lamC1:lamC1-sfGFP) reporter and performed live imaging on 2 embryos/4 placodes, in a frontal view. A new movie (Movie 3 in the revised article) shows examples of exit and entry point formation in this context.This allowed us to visualise the formation of the exit and entry points in more samples (6 embryos and 12 placodes in total when we pool the two strategies for labelling OP axons) and through the visualisation of a small number of axons, and reinforce our initial conclusions. 

      (3) The integrity of BMs around the brain and the OP is affected in the sly mutant 

      Why do the authors analyse the distribution of collagen IV and Nidogen and not proteoglycans and heparan sulphate? 

      We attempted to label more ECM components such as proteoglycans and heparan sulfate, but whole-mount immunostainings did not work in our hands.

      A dynamic analysis of the distribution of neural crest cells in the sly mutant over time and during OP coalescence would be important. 

      See our detailed response to this point above.  

      (4) Role of Laminin γ1-dependent BMs in OP coalescence 

      The authors use the size of the Tg(neurog1:GFP)+ OP cell cluster at 22 hpf as a marker.  The authors should count the number of cells in the OP at the indicated time using a nuclear dye to check that in the sly mutant the number of cells is the same over time. Two time points as analysed in Figure S2 may not be sufficient to quantify proliferation which at these stages should be almost zero according to Whitlock & Westerfield and Madelaine et al.

      Counting the neurog1:GFP+ cell numbers in our existing data was unfortunately impossible, due to the poor quality of the DAPI staining. We are nevertheless confident that the number of cells within neurog1:GFP+ clusters is fairly similar between controls and sly mutants at 22 hpf, since the OP dimensions are the same for AP and DV dimensions, and only slightly different for the ML dimension. In addition, we analysed proliferation and apoptosis within the neurog1:GFP+ cluster at 16 and 21 hpf and observed no difference between controls and mutants.

      (5) Role of Laminin γ1-dependent BMs during the forebrain flexure 

      In Figure 4F at 32hpf, the presence of 77% ectopic OMP+ cells medially should result in an increase in dimensions along the M-L? This is not the case in the article. The authors should clarify this point. 

      As we explained in the Material and Methods, ectopic fluorescent cells (cells that are physically separated from the main cluster) were not taken into account for the measurement of the OP dimensions. This is now also also mentioned in the legends of the Figures (4 and S3) showing the quantifications of OP dimensions.

      Cell distribution also seems to be affected within the OMP+ cluster at 36hpf, with fewer cells laterally and more medially. The authors should analyse the distribution of OMP+ cells in the clusters. in sly mutants and controls to understand whether the modification corresponds to the absence of BM function. 

      On the pictures shown in Figure 4F,G, we agree that omp:meYFP+ cells appear to be more medially distributed in the mutant, however this is not the case in other sections or samples, and is rather specific to the z-section chosen for the Figure. We found that the ML dimension is unchanged in mutants as compared with controls, except for the 28 hpf stage where it is smaller, but this appears to be a transient phenomenon, since no change is detected at earlier or later stages (Figure 4A-D and Figure S3A-L). The difference we observe at 28 hpf is now mentioned in the revised manuscript.

      The conclusions of Figures 4 and S3 would rather be that laminin allows OMP+ cells to be oriented along the medio-lateral axis whereas it would control their position along the dorsoventral axis. The authors should modify the text. It would be useful to map the distribution of OMP+ cells along the dorsoventral and mediolateral axes. The same applies to Neurog1+ cells. An analysis of skin cell movements, for example, would be useful to determine whether the effects are specific.  

      We are confident that the measurements of OP dimensions in AP, DV and ML are sufficient to describe the OP shape defects observed in the sly mutants. Analysing cell distribution along the 3 axes as well as skin cell movements will be interesting to perform in the future but we consider these quantifications as being out of the scope of the present work.

      (6) Laminin γ1-dependent BMs are required to define a robust boundary between the OP and the brain 

      The authors must weigh this conclusion "Laminin γ1-dependent BMs serve to establish a straight boundary between the brain and OP, preventing local mixing and late convergence of the two OPs towards each other during flexion movement." Indeed, they don't really show any local mixing between the brain and OP cells. They would need to quantify in their images (Figure 5A-A' and Figure S4 A-A') the percentage of cells co-labelled by HuC and Tg(cldnb:GFP). 

      We agree with the reviewer and thus replaced « reveal » by « suggest » in the conclusion of this section. 

      (7) Role of Laminin γ1-dependent BMs in olfactory axon development 

      An analysis of the retrograde extension movement in the axons of OMP+ ectopic neurons in the sly1 mutant condition would be useful to validate that the loss of laminin function does not play a role in this event. 

      Indeed, even though we can visualise instances of retrograde extension occurring normally in sly mutants, we can not rule out that this process is affected in a subset of OP neurons, for instance in ectopic cells, which often show no axon or a misoriented axon. We added a sentence to mention this in the revised manuscript.

      Minor comments and typos: 

      Please check and mention the D-V/L-M or A-P/L-M orientation of the images in all figures. 

      This has been checked.

      Legend Figure 1: "distalmost" is missing a space "distal most". 

      We checked and this word can be written without a space.

      Figure 1 panel C: check the orientation (I am not sure that Dorsal is up). 

      We double-checked and confirm that dorsal is up in this panel.

      Movie 1 Legend: "aroung "the OP should be around the OP. 

      Thanks to the reviewer for noticing the typo, we corrected it.

      Reviewer #2 (Recommendations For The Authors):

      The comments below are relatively minor and mostly raise questions regarding images and their presentation in the manuscript. 

      • Figure 1, visualization of exit and entry points: It is a bit difficult to visualize the axon exit and entry points in these images, and in particular, to understand how the exit and entry points in C and D correspond to what is seen in F, F', H, and H'. There appears to be one resolvable break in the staining in C and D, whereas there are two distinct breaks in F-H'. Are these single optical sections? Is it possible to visualize these via 3-dimensional rendering? 

      All the images presented in Figure 1 are single z-sections, which is now indicated in the Figure legend. As noticed by the reviewer, Laminin immunostainings on fixed embryos at 28 and 36 hpf suggested that the exit and entry points are facing each other, as shown in Figure 1C-D’. However, in our live imaging experiments we always observed that the exit point is slightly more ventral than the entry point (of about 10 to 20 µm). This discrepancy could be due to the fixation that precedes the immunostaining procedure, which could modify slightly the size and shape of cells/tissues. We added a sentence on this point in the text. In addition, we added new movies of the LamC1-sfGFP reporter with sparse red axonal labelling (Movie 3, see response to reviewer 1), as well as z-stacks presenting the organisation of exit and entry points in 3D (Movie 4), which should help to better illustrate the mechanisms of exit and entry point formation.

      • Movie 2, p. 6, "small interruptions of the BM were already present near the axon tips, along the ventro-medial wall of the OP." This is a bit difficult to assess since the movie seems to show at least one other small interruption in the BM in addition to the exit point, in particular, one slightly dorsal to the exit point. Was this seen in other samples, or in different optical sections? 

      Indeed the exit and entry points often appear as regions with several, small BM interruptions, rather than single holes in the BM. We now show in revised Movie 4 the two z-stacks (the merge and the single channel for green fluorescence) corresponding to the last time points of the movies showing exit and entry point formation in Movie 2, where several BM interruptions can be seen for both the exit and entry points. We had already mentioned this observation in the legend of Movie 2, and we added a sentence on this point in the main text of the revised manuscript. This is also represented for both exit and entry points in the new schematics in revised Fig. 1K and its legend. 

      • Movie 2, p. 6, "The opening of the entry point through the brain BM was concomitant with the arrival of the RFP+ axons, suggesting that the axons degrade or displace BM components to enter the brain." Similar to the questions regarding the exit point, it was a bit difficult to evaluate this statement. There appears to be a broader region of BM discontinuity more dorsal to the arrowhead in Movie 2. A single-channel movie of just the laminin fluorescence might help to convey the extent of the discontinuity. As with above, was this seen in other samples, or in different optical sections?  

      See our response to the previous comment.

      • Figure 1H, I, "the distal tip of the RFP+ axons migrated in close proximity with the brain's BM." This is again a bit difficult to see, and quite different than what is seen in Figure 4A, in which the axons do not seem close to the BM in this section. Is it possible to visualize this via 3-dimensional rendering? 

      In fixed embryos or in live imaging experiments, we observed that, once entered in the brain, the distal tips (the growth cones) of the axons are located close to the BM of the brain. However, this is not the case of the axon shafts which, as development proceeds, are located further away from the BM. This can clearly be seen at 36 hpf in Figure 1D’ and Figure 4A, as spotted by the reviewer. We modified the text to clarify this point.

      • Figure 2J, J', p. 7, the gap between the OP and brain cells of sly mutants "was most often devoid of electron-dense material." It is difficult to see this loss of electron-dense material in 2J'. The thickness of the space is quantified well and is clearly smaller, but the change in electron-dense material is more difficult to see.  

      We looked at Figure 2 again and it seems clear to us that there is electron-dense material between the plasma membranes in controls, which is practically not seen (rare spots) in the mutants. We added a sentence mentioning that we rarely see electron-dense spots in sly mutants.

      • Figure 5E-F': There are concerns about evaluating the shape of a tissue based on nuclear position. Is there a way to co-stain for cell boundaries (maybe actin?), and then quantify distortion of the dlx+ cell population using the cell boundaries, rather than nuclear staining? 

      We agree with the reviewer that it is not ideal to evaluate the shape of the OP/brain boundary based on a nuclear staining. As explained in the text, we could not use the Tg(eltC:GFP) or Tg(cldnb:Gal4; UAS:RFP) reporter lines for this analysis, due to ectopic or mosaic expression. However we are confident that the segmentation of the Dlx3b immunostaining reflects the organisation of the cells at the OP/brain tissue boundary: in other data sets in which we performed Dlx3b staining with membrane labelling independently of the present study and in the wild type context, we clearly see that cell membranes are juxtaposed to the Dlx3b nuclear staining (in other words, the cytoplasm volume of OP cells is very small). 

      • Figure S5E: It would be helpful to see representative images for each of the categories (Proper axon bundle; Ventral projections; Medial projections) or a schematic to understand how the phenotypes were assessed. 

      To address this point we added a schematic view to illustrate the phenotypes assessed in each column of the table in revised Figure S5G.

      • Figure 6, p. 12, "Laminin gamma 1-dependent BMs are essential for growth and navigation of the axons...": What fraction of the tracked axons managed to exit the OP? Given the quantitative analyses in Figure 6, one might interpret this to mean that laminin gamma 1 is not essential for axon growth (speed and persistence are largely unchanged), but rather, primarily for navigation. 

      As noticed by the reviewer, the speed and persistence of axonal growth cones are largely unchanged in the sly mutants (except for the reduced persistence in the 200-400 min window, and an increased speed in the 800-1000 min window), showing that the growth cones are still motile. However, as shown by the tracks, they tend to wander around within the OP, close to the cell bodies, which results in the end in a perturbed growth of the axons. The navigation issues are rather revealed by the analysis of fixed Tg(omp:meYFP) embryos presented in the table of Figure S5G. We modified the text to separate more clearly the conclusions of the two types of experiments (fixed, transgenic embryos versus live, mosaically labelled embryos).

      Reviewer #3 (Recommendations For The Authors):

      Testing the hypotheses mentioned in the public review will be interesting experiments for a follow-up study, but are not essential revisions for this manuscript. 

      I have only a few minor suggestions for revisions: 

      P8 subheading 'Role of Laminin γ1-dependent BMs in OP coalescence' - since no major role was demonstrated here, this heading should be reworded.  

      We agree with the reviewer and replaced the previous title by « OP coalescence still occurs in the sly mutant ».

      P11, line 3 - the authors conclude that the forebrain is smaller 'due to' the inward convergence of the OPs. I do not think it is possible to assign causation to this when the mutant disrupts Laminin γ1 systemically - it is equally possible that the OPs move inward due to a failure of the brain to form in the normal shape. Thus, the wording should be changed here. (In the Discussion on p15, the authors mention the 'apparent distortion' of the brain, and say that it is 'possibly due' to the inward migration of the placodes', but again this could be toned down.) 

      We agree with the reviewer’s comment and changed the wording of our conclusions in the Results section.

      P11 and Fig. S5 - The table and text seem to be saying opposite things here. The text on p11 (3rd paragraph) indicates that the normal exit point is ventral and that this is disrupted in the mutant, with axons exiting dorsally. However, in the table, at each time point there is a higher % of axons exiting ventrally in the mutant. Please clarify. The table does not provide a % value for axons exiting dorsally - it might help to add a column to show this value. 

      We are grateful to the reviewer for pointing this out, and we apologize for the lack of clarity in the first version of the manuscript. We have modified the text and Figure S5 in order to clarify the different points raised by the reviewer in this comment. The Table in Fig. S5G does not represent the % of axons showing defects, but the % of embryos showing the phenotypes. In addition, an embryo is counted in the ventral or medial projection category if it shows at least one ventral or medial projection (even if its shows a proper bundle). This is now clearly indicated in the title of the columns in the table itself and in the legend. The embryos in which the axons exit dorsally in sly mutants are actually those counted in the left column of the Table (they exit dorsally and form a bundle), as shown by the new schematics added below the table. We also added this information in the title of the left column, and mention in the legend the pictures in which this dorsal exit can be observed in the article (Figures 4B and S3E’). Having more sly mutant embryos with axons exiting dorsally is thus compatible with more embryos showing at least one ventral projection.

      Fig. S6, shows the lack of neural crest cells between the olfactory placode and the brain in both laminin γ1 mutants (without a basement membrane) and foxd3 mutants (which retain the membrane). Comparison of the two mutants here is a neat experiment and the result is striking, demonstrating that it is the basement membrane, and not the neural crest, that is required for correct morphology of the olfactory placode. I think this figure should be presented as a main figure, rather than supplementary.  

      Our new live imaging characterisation of NCC migration in sly mutants and control siblings (Movie 9) revealed that at 32 hpf, in the vicinity of the OP, NCC (or their derivatives) are much more numerous than the subset of NCC showing crestin expression by in situ hybridisation (compare the end of our control movie – 32 hfp, with crestin ISH shown in Figure S6A for instance). 

      Thus, the extent of the NCC migration defects should be analysed in more detail in the foxd3 mutant in the future (using live imaging or other NCC markers), and for this reason we chose to keep this dataset in the supplementary Figures.

      One of the first topics covered in the Discussion section is the potential role of Collagen. I was surprised to see the description on P15 'the dramatic disorganization of the Collagen IV pattern observed by immunofluorescence in the sly mutant', as I hadn't picked this up from the Results section of the paper. I went back to the relevant figure (Fig. 2) and description on p7, which does not give the same impression: 'in sly mutants, Collagen IV immunoreactivity was not totally abolished'. This suggested to me that there was only minor (not dramatic) disorganisation of the Collagen IV. This needs clarification.  

      The linear, BM-like Collagen IV staining was lost in sly mutants, but not the fibrous staining which remained in the form of discrete patches surrounding the OP. We modified the text in the Results section as well as in the Figure 2 legend to clarify our observations made on embryos immunostained for Collagen IV.

      Typos etc 

      P5 - '(ii) above of the neuronal rosette' - delete the word 'of'. 

      P5 two lines below this - ensheathed. 

      P10 - '3 distinct AP levels' (delete s from distincts). 

      P10 - distortion (not distorsion) . 

      P12 - 'From 14 hpf, they' should read 'From 14 hpf, neural crest cells'. 

      P15, line 1 - 'is a consequence of' rather than 'is consecutive of'? 

      P22 'When the data were not normal,' should read 'When the data were not normally distributed,'. 

      We thank the reviewer for noticing these typos and have corrected them.

      General 

      Please number lines in future manuscripts for ease of reference. 

      This has been done.

    1. In all this time, our men being all or the most part well recovered, and not willing to trifle away more time then necessitie enforced us into: we thought good, for the better content of the adventurers, in some reasonable sort of fraight home Maister Nelson, with Cedar wood. About which, our men going with willing minds, was in very good time effected, and the ship sent for England. Wee now remaining being in good health, all our men wel contented, free from mutinies, in love one with another, and as we hope in a continuall peace with the Indians: where we doubt not but by Gods gracious assistance, and the adventurers willing minds and speedie furtherance to so honorable an action, in after times to see our Nation to enjoy a Country, not onely exceeding pleasant habitation, but also very profitable for comerce in generall; no doubt pleasing to almightie God, honourable to our gracious Soveraigne, and commodious generally to the whole Kingdome.

      Most of the second half of John Smith account talks about trade relations and exploratory missions between various indigenous tribes in the area. (Smith, John “A True Relation of Such Occurrences) Because of this, there wasn't too much to compare to the movie. For one, the movie is short and I can understand why a lot of the mundane time that is spent setting up a colony wasn't included. ("Goldberg, Eric, and Mike Gabriel. 1995. Pocahontas") The movie also deviates so far from this, and other scholarly sources, that there isn't much to compare. Overall, this source is heavily biased with a fair bit of exaggeration, that modern day historians know not to be true. At the same time, half of what John Smith talks about is a gateway into what life was like in the early days of Jamestown. It talks about disease, conditions of the settlement, various indigenous tribes (which the rest of the world knew relatively little about), the land and new sources of food which was an important source at the time it was published. (Smith, John “A True Relation of Such Occurrences) While Disney's Pocahontas isn't that close to this primary source, nor is it to other sources detailing this part of history, it does a good job in respecting Native American culture. There weren't a lot of films depicting Native Americans in a positive or appropriate light before this movie was made. While there is still shockingly low number of films that tell Native American stories, Pocahontas I think was a small catalyst for future indigenous movies due to its commercial success.

      Bibliography: “A True Relation of Such Occurrences and Accidents of Note as Hath Hapned in Virginia Since the First Planting of That Colony, Which Is Now Resident in the South Part Thereof, till the Last Returne from Thence. Written by Captaine Smith One of the Said Collony, to a Worshipfull Friend of His in England.,” April 13, 2005. http://web.archive.org/web/20050413081941/http://etext.lib.virginia.edu/etcbin/toccer-new2?id=J1007.xml&images=images/modeng&data=/texts/english/modeng/parsed&tag=public&part=all.

      Goldberg, Eric, and Mike Gabriel. 1995. Pocahontas. United States: Buena Vista Pictures.

    1. I’m always negotiating the relationship between micro.blog and my big blog, but I’m getting closer to a system in which micro.blog is a box of delights and the big blog is a Memex. Gonna try to stick with that model.

      reply to @ayjay @annie at https://micro.blog/ayjay/48571448

      @ayjay I've long presumed you were digitally commonplacing by means of your websites, so thanks for laying out some of your specific current thoughts on the process.

      ​@Annie I've been collecting examples of bloggers who are using their personal websites as commonplaces, zettelkasten, and "thought spaces" at https://indieweb.org/commonplace_book. If you're interested, you'll also find examples and details to explore in my own digital commonplace. "Thought spaces" is an interesting entry point.

      Doctorow goes through more of his process in which he's saving both his "box of delights" and the refashioning of them into longer pieces in "20 years a blogger". In his case it's (now) all done on Pluralistic and syndicated out from there, in much the same way @dave has done for years.

  7. Oct 2024
    1. Using the same microscopy setup as above, in vegetative cells, PHAkt-Achilles and PHAkt-mNeonGreen fluorescence appeared localized in the pinocytic cups (Fig. 2A),

      Was the cytoplasmic background also brighter here (not just the localized signal)? I'm just naively wondering if the achilles tag is causing some stress that is increasing background autofluorescence in the cell (given the onset of uniform cytoplasmic fluorescence in Fig 1).

    1. Reviewer #1 (Public review):

      Summary:

      The authors describe a method to probe both the proteins associated with genomic elements in cells, as well as 3D contacts between sites in chromatin. The approach is interesting and promising, and it is great to see a proximity labeling method like this that can make both proteins and 3D contacts. It utilizes DNA oligomers, which will likely make it a widely adopted method. However, the manuscript over-interprets its successes, which are likely due to the limited appropriate controls, and of any validation experiments. I think the study requires better proteomic controls, and some validation experiments of the "new" proteins and 3D contacts described. In addition, toning down the claims made in the paper would assist those looking to implement one of the various available proximity labeling methods and would make this manuscript more reliable to non-experts.

      Strengths:

      (1) The mapping of 3D contacts for 20 kb regions using proximity labeling is beautiful.

      (2) The use of in situ hybridization will probably improve background and specificity.

      (3) The use of fixed cells should prove enabling and is a strong alternative to similar, living cell methods.

      Weaknesses:

      (1) A major drawback to the experimental approach of this study is the "multiplexed comparisons". Using the mtDNA as a comparator is not a great comparison - there is no reason to think the telomeres/centrosomes would look like mtDNA as a whole. The mito proteome is much less complex. It is going to provide a large number of false positives. The centromere/telomere comparison is ok, if one is interested in what's different between those two repetitive elements. But the more realistic use case of this method would be "what is at a specific genomic element"? A purely nuclear-localized control would be needed for that. Or a genomic element that has nothing interesting at it (I do not know of one). You can see this in the label-free work: non-specific, nuclear GO terms are enriched likely due to the random plus non-random labeling in the nucleus. What would a Telo vs general nucleus GSEA look like? (GSEA should be used for quantitative data, no GO). That would provide some specificity. Figures 2G and S4A are encouraging, but a) these proteins are largely sequestered in their respective locations, and b) no validation by an orthogonal method like ChIP or Cut and Run/Tag is used.

      You can also see this in the enormous number of "enriched" proteins in the supplemental volcano plots. The hypothesis-supporting ones are labeled, but do the authors really believe all of those proteins are specific to the loci being looked at? Maybe compared to mitochondria, but it's hard to believe there are not a lot of false positives in those blue clouds. I believe the authors are more seeing mito vs nucleus + Telo than the stated comparison. For example, if you have no labeling in the nucleus in the control (Figures 1C and 2C) you cannot separate background labeling from specific labeling. Same with mito vs. nuc+Telo. It is not the proper control to say what is specifically at the Telo.

      I would like to see a Telo vs nuclear control and a Centromere vs nuc control. One could then subtract the background from both experiments, then contrast Telo vs Cent for a proper, rigorous comparison. However, I realize that is a lot of work, so rewriting the manuscript to better and more accurately reflect what was accomplished here, and its limitations, would suffice.

      (2) A second major drawback is the lack of validation experiments. References to literature are helpful but do not make up for the lack of validation of a new method claiming new protein-DNA or DNA-DNA interactions. At least a handful of newly described proximal proteins need to be validated by an orthogonal method, like ChIP qPCR, other genomic methods, or gel shifts if they are likely to directly bind DNA. It is ok to have false positives in a challenging assay like this. But it needs to be well and clearly estimated and communicated.

      (3) The mapping of 3D contacts for 20 kb regions is beautiful. Some added discussion on this method's benefits over HiC-variants would be welcomed.

      (4) The study claims this method circumvents the need for transfectable cells. However, the authors go on to describe how they needed tons of cells, now in solution, to get it to work. The intro should be more in line with what was actually accomplished.

      (5) Comments like "Compared to other repetitive elements in the human genome...." appear to circumvent the fact that this method is still (apparently) largely limited to repetitive elements. Other than Glopro, which did analyze non-repetitive promoter elements, most comparable methods looked at telomeres. So, this isn't quite the advancement you are implying. Plus, the overlap with telomeric proteins and other studies should be addressed. However, that will be challenging due to the controls used here, discussed above.

    2. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors describe a method to probe both the proteins associated with genomic elements in cells, as well as 3D contacts between sites in chromatin. The approach is interesting and promising, and it is great to see a proximity labeling method like this that can make both proteins and 3D contacts. It utilizes DNA oligomers, which will likely make it a widely adopted method. However, the manuscript over-interprets its successes, which are likely due to the limited appropriate controls, and of any validation experiments. I think the study requires better proteomic controls, and some validation experiments of the "new" proteins and 3D contacts described. In addition, toning down the claims made in the paper would assist those looking to implement one of the various available proximity labeling methods and would make this manuscript more reliable to non-experts.

      Strengths:

      (1) The mapping of 3D contacts for 20 kb regions using proximity labeling is beautiful.

      (2) The use of in situ hybridization will probably improve background and specificity.

      (3) The use of fixed cells should prove enabling and is a strong alternative to similar, living cell methods.

      Weaknesses:

      (1) A major drawback to the experimental approach of this study is the "multiplexed comparisons". Using the mtDNA as a comparator is not a great comparison - there is no reason to think the telomeres/centrosomes would look like mtDNA as a whole. The mito proteome is much less complex. It is going to provide a large number of false positives. The centromere/telomere comparison is ok, if one is interested in what's different between those two repetitive elements. But the more realistic use case of this method would be "what is at a specific genomic element"? A purely nuclear-localized control would be needed for that. Or a genomic element that has nothing interesting at it (I do not know of one). You can see this in the label-free work: non-specific, nuclear GO terms are enriched likely due to the random plus non-random labeling in the nucleus. What would a Telo vs general nucleus GSEA look like? (GSEA should be used for quantitative data, no GO). That would provide some specificity. Figures 2G and S4A are encouraging, but a) these proteins are largely sequestered in their respective locations, and b) no validation by an orthogonal method like ChIP or Cut and Run/Tag is used.

      You can also see this in the enormous number of "enriched" proteins in the supplemental volcano plots. The hypothesis-supporting ones are labeled, but do the authors really believe all of those proteins are specific to the loci being looked at? Maybe compared to mitochondria, but it's hard to believe there are not a lot of false positives in those blue clouds. I believe the authors are more seeing mito vs nucleus + Telo than the stated comparison. For example, if you have no labeling in the nucleus in the control (Figures 1C and 2C) you cannot separate background labeling from specific labeling. Same with mito vs. nuc+Telo. It is not the proper control to say what is specifically at the Telo.

      I would like to see a Telo vs nuclear control and a Centromere vs nuc control. One could then subtract the background from both experiments, then contrast Telo vs Cent for a proper, rigorous comparison. However, I realize that is a lot of work, so rewriting the manuscript to better and more accurately reflect what was accomplished here, and its limitations, would suffice.

      (2) A second major drawback is the lack of validation experiments. References to literature are helpful but do not make up for the lack of validation of a new method claiming new protein-DNA or DNA-DNA interactions. At least a handful of newly described proximal proteins need to be validated by an orthogonal method, like ChIP qPCR, other genomic methods, or gel shifts if they are likely to directly bind DNA. It is ok to have false positives in a challenging assay like this. But it needs to be well and clearly estimated and communicated.

      (3) The mapping of 3D contacts for 20 kb regions is beautiful. Some added discussion on this method's benefits over HiC-variants would be welcomed.

      (4) The study claims this method circumvents the need for transfectable cells. However, the authors go on to describe how they needed tons of cells, now in solution, to get it to work. The intro should be more in line with what was actually accomplished.

      (5) Comments like "Compared to other repetitive elements in the human genome...." appear to circumvent the fact that this method is still (apparently) largely limited to repetitive elements. Other than Glopro, which did analyze non-repetitive promoter elements, most comparable methods looked at telomeres. So, this isn't quite the advancement you are implying. Plus, the overlap with telomeric proteins and other studies should be addressed. However, that will be challenging due to the controls used here, discussed above.

      We thank the Reviewer for their careful reading of manuscript and constructive suggestions. We plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

      Reviewer #2 (Public review):

      Summary

      Liu and MacGann et al. introduce the method DNA O-MAP that uses oligo-based ISH probes to recruit horseradish peroxidase for targeted proximity biotinylation at specific DNA loci. The method's specificity was tested by profiling the proteomic composition at repetitive DNA loci such as telomeres and pericentromeric alpha satellite repeats. In addition, the authors provide proof-of-principle for the capture and mapping of contact frequencies between individual DNA loop anchors.

      Strengths

      Identifying locus-specific proteomes still represents a major technical challenge and remains an outstanding issue (1). Theoretically, this method could benefit from the specificity of ISH probes and be applied to identify proteomes at non-repetitive DNA loci. This method also requires significantly fewer cells than other ISH- or dCas9-based locus-enrichment methods. Another potential advantage to be tested is the lack of cell line engineering that allows its application to primary cell lines or tissue.

      Weaknesses

      The authors indicate that DNA O-MAP is superior to other methods for identifying locus-specific proteomes. Still, no proof exists that this method could uncover proteomes at non-repetitive DNA loci. Also, there is very little validation of novel factors to confirm the superiority of the technique regarding specificity.

      The authors first tested their method's specificity at repetitive telomeric regions, and like other approaches, expected low-abundant telomere-specific proteins were absent (for example, all subunits of the telomerase holoenzyme complex). Detecting known proteins while identifying noncanonical and unexpected protein factors with high confidence could indicate that DNA O-MAP does not fully capture biologically crucial proteins due to insufficient enrichment of locus-specific factors. The newly identified proteins in Figure 1E might still be relevant, but independent validation is missing entirely. In my opinion, the current data cannot be interpreted as successfully describing local protein composition.

      Finally, the authors could have discussed the limitations of DNA O-MAP and made a fair comparison to other existing methods (2-5). Unlike targeted proximity biotinylation methods, DNA O-MAP requires paraformaldehyde crosslinking, which has several disadvantages. For instance, transient protein-protein interactions may not be efficiently retained on crosslinked chromatin. Similarly, some proteins may not be crosslinked by formaldehyde and thus will be lost during preparation (6).

      (1) Gauchier M, van Mierlo G, Vermeulen M, Dejardin J. Purification and enrichment of specific chromatin loci. Nat Methods. 2020;17(4):380-9.

      (2) Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009;136(1):175-86.

      (3) Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell. 2017;170(5):1028-43 e19.

      (4) Villasenor R, Pfaendler R, Ambrosi C, Butz S, Giuliani S, Bryan E, et al. ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol. 2020;38(6):728-36.

      (5) Santos-Barriopedro I, van Mierlo G, Vermeulen M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat Commun. 2021;12(1):5015.

      (6) Schmiedeberg L, Skene P, Deaton A, Bird A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One. 2009;4(2):e4636.

      We thank the Reviewer for their constructive feedback on our work. As noted above, we plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

      Reviewer #3 (Public review):

      Significance of the Findings:

      The study by Liu et al. presents a novel method, DNA-O-MAP, which combines locus-specific hybridisation with proximity biotinylation to isolate specific genomic regions and their associated proteins. The potential significance of this approach lies in its purported ability to target genomic loci with heightened specificity by enabling extensive washing prior to the biotinylation reaction, theoretically improving the signal-to-noise ratio when compared with other methods such as dCas9-based techniques. Should the method prove successful, it could represent a notable advancement in the field of chromatin biology, particularly in establishing the proteomes of individual chromatin regions - an extremely challenging objective that has not yet been comprehensively addressed by existing methodologies.

      Strength of the Evidence:

      The evidence presented by the authors is somewhat mixed, and the robustness of the findings appears to be preliminary at this stage. While certain data indicate that DNA-O-MAP may function effectively for repetitive DNA regions, a number of the claims made in the manuscript are either unsupported or require further substantiation. There are significant concerns about the resolution of the method, with substantial biotinylation signals extending well beyond the intended target regions (megabases around the target), suggesting a lack of specificity and poor resolution, particularly for smaller loci. Furthermore, comparisons with previous techniques are unfounded since the authors have not provided direct comparisons with the same mass spectrometry (MS) equipment and protocols. Additionally, although the authors assert an advantage in multiplexing, this claim appears overstated, as previous methods could achieve similar outcomes through TMT multiplexing. Therefore, while the method has potential, the evidence requires more rigorous support, comprehensive benchmarking, and further experimental validation to demonstrate the claimed improvements in specificity and practical applicability.

      We thank the Reviewer for providing detailed critiques of our manuscript. As noted above, we plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores the cellular and circuit features that distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation. The authors tag memory and enriched environment-activated dentate granule cells and semilunar granule cells and show their reactivation in an appropriate context a week later. They perform patch clamp recordings from activated and surrounding neurons to understand cellular driving the selective activation of semilunar granule cells and granule cells. Authors perform dual patch clamp recordings from various pairs of labeled semilunar granule cells, labeled granule cells, unlabeled granule cells, and unlabeled semilunar granule cells. The sustained firing of semilunar granule cells explained their preferential activation. In addition, activated neurons received correlated inputs.

      Strengths:

      The authors confirmed engram cell properties of activated semilunar granule cells and granule cells in two different paradigms, validated using an enriched environment paradigm.

      The authors carefully separate semilunar granule cells from granule cells, using electrophysiology and morphology. Cell filling to confirm morphology further strengthens confidence.

      The dual patch recordings, which are technically challenging, are carefully performed, and the presence of synaptic activity is confirmed.

      Finally, the correlation analysis of EPSCs on labeled neurons is rigorous.

      Weaknesses:

      (1) Engram cells are (i) activated by a learning experience, (ii) physically or chemically modified by the learning experience, and (iii) reactivated by subsequent presentation of the stimuli present at the learning experience (or some portion thereof), resulting in memory retrieval. The authors show that exposure to Barnes Maze and the enriched environment-activated semilunar granule cells and granule cells preferentially in the superior blade of the dentate gyrus, and a significant fraction were reactivated on re-exposure. However, physical or chemical modification by experience was not tested. Experience modifies engram cells, and a common modification is the Hebbian, i.e., potentiation of excitatory synapses. The authors recorded EPSCs from labeled and unlabeled GCs and SGCs. Was there a difference in the amplitude or frequency of EPSCs recorded from labeled and unlabeled cells?

      (2) The authors studied five sequential sections, each 250 μm apart across the septotemporal axis, which were immunostained for c-Fos and analyzed for quantification. Is this an adequate sample? Also, it would help to report the dorso-ventral gradient since more engram cells are in the dorsal hippocampus. Slices shown in the figures appear to be from the dorsal hippocampus.

      (3) The authors investigated the role of surround inhibition in establishing memory engram SGCS and GCs. Surprisingly, they found no evidence of lateral inhibition in the slice preparation. Interneurons, e.g., PV interneurons, have large axonal arbors that may be cut during slicing. Similarly, the authors point out that some excitatory connections may be lost in slices. This is a limitation of slice electrophysiology.

    1. Reviewer #1 (Public review):

      In this manuscript, Sun et al report the development of a POST-IT (Pup-On-target for Small molecule Target Identification Technology) approach for drug target identification. Generally, this new technology applies a non-diffusive proximity tagging system by utilizing an engineered fusion of proteasomal accessory factor A (PafA) and HaloTag to transfer prokaryotic ubiquitin-like protein (Pup) to proximal proteins upon directly binding to the small molecule. After the pupylated targets are captured, they are able to be detected by mass spectrometry. Significant optimization (Lys-Arg and other mutations) was conducted to eliminate the interference of self-pupylation, polypupylation, and depupylation, POST-IT was successfully applied for the target identification of 2 well-known drugs: dasatinib and hydroxychloroquine, which yielded SEPHS2 and VPS37C as their new potential targets, respectively. Furthermore, POST-IT was also applied in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

      This work was well designed and the experiments were logically conducted. The solid results support POST-IT as a promising technology for new drug target identification.

      Weakness and limitations:

      (1) The technology requires a halo-tagged derivation of the active compound, and the linked position will have a huge impact on the potential "target hits" of the molecules. Given the fact that most of the active molecules lack of structure-activity relationship information, it is very challenging to identify the optimal position of the halo tag linkage.

      (2) Although POST-IT works in zebrafish embryos, there is still a long way to go for the broad application of the technology in other animal models.

      (3) The authors identified SEPHS2 as a new potential target of dasatinib and further validated the direct binding of dasatinib with this protein. However, considering the super strong activity of dasatinib against c-Src (sub nanomolar IC50 value), it is hard to conclude the contribution of SEPHS2 binding (micromolar potency) to its antitumor activity.

    1. Technical Feedback (8/20)

      HTML Structure (3/5)

      • ✓ Good heading variety (h1-h4)
      • ✗ Structural issues:
      • <h3> nested inside <h3>
      • Invalid custom tags (<p1>, <p2>)
      • ✓ Links properly embedded
      • ⚠ Image implementation:
      • Alt attributes present
      • Some invalid URLs (\ddd)
      • Inconsistent sources

      CSS Implementation (4/10)

      • ✗ Missing IDs completely
      • ✗ No class usage
      • ✗ Style issues:
      • Invalid selectors (p1, p2)
      • Redundant background declarations
      • Overuse of inline styles
      • ⚠ Limited styling scope:
      • Basic font sizing
      • Simple background images
      • Needs more detailed styling

      Code Quality (1/5)

      • ✗ Organization problems:
      • Excessive <br> tags
      • Missing closing tags
      • Poor indentation
      • ✗ Invalid elements:
      • Custom paragraph tags
      • Broken image sources
      • Improper tag nesting

      Priority Fixes:

      1. Fix HTML structure:
      2. Replace <p1>, <p2> with <p>
      3. Correct heading hierarchy
      4. Add proper closing tags
      5. Fix image URLs

      6. Improve CSS:

      7. Add 5+ unique IDs
      8. Create reusable classes
      9. Remove redundant styles
      10. Replace inline styling

      11. Clean up code:

      12. Replace <br> with margins/padding
      13. Improve indentation
      14. Fix tag nesting

      Your content structure shows promise, but needs technical cleanup. Focus first on using valid HTML elements and building a proper CSS structure with IDs and classes.

    1. Technical Feedback (18/20)

      HTML Structure (5/5)

      • ✓ Excellent heading hierarchy (h1-h3)
      • ✓ Well-organized paragraphs
      • ✓ Links properly implemented:
      • Correct <a> tag usage
      • Good use of target="_blank"
      • ✓ Images:
      • Properly embedded
      • Well-styled

      CSS Implementation (9/10)

      • ✓ Strong ID usage:
      • #intro
      • #ind
      • #iow
      • #pel
      • ✓ Effective class reuse:
      • .div1 across sections
      • .div2 across sections
      • ✓ Comprehensive tag styling:
      • Headers
      • Paragraphs
      • Images
      • ⚠ Minor optimization needed:
      • Redundant properties in .div1 and .div2
      • Could combine common styles

      Code Quality (4/5)

      • ✓ Clean, readable structure
      • ✓ Proper indentation
      • ✓ Good element nesting
      • ✗ Missing </head> closing tag

      Suggestions for Perfect Score:

      1. Optimize CSS:
      2. Create shared class for common div styles
      3. Combine repeated properties
      4. Add missing </head> tag

      Excellent work overall! Your code is clean and well-structured. Making these minor improvements would make it perfect. Your use of classes and IDs is particularly strong, showing good understanding of CSS organization.

    1. Technical Feedback (8/20)

      HTML Structure (2/5)

      • ✗ Critical structure issues:
      • <div> inside <h1> (invalid)
      • Multiple <body> tags
      • Missing closing tags for <a> and <ol>
      • ✗ Invalid <frame> usage (should be <iframe>)
      • ⚠ Heading issues:
      • Uses <h1> and <h3>
      • Improper nesting
      • ⚠ Custom paragraph ID used instead of <p> tag
      • ✓ Images have alt attributes

      CSS Implementation (5/10)

      • ⚠ Problematic ID usage:
      • #heading
      • #heading2
      • #p (should be tag selector)
      • Split styles that should be unified
      • ✗ Class issues:
      • Invalid .container: syntax
      • Missing second reusable class
      • ✗ Style problems:
      • Redundant h1/h3 styles
      • Inline styles in <body>
      • Misplaced colons
      • Missing semicolons

      Code Quality (1/5)

      • ✗ Major structural issues:
      • Multiple body tags
      • Broken closing tags
      • Improper element nesting
      • ✗ Redundant styling
      • ✗ Invalid HTML/CSS syntax
      • ✗ Disorganized code structure

      Critical Fixes:

      1. Fix HTML structure:
      2. Remove extra <body> tag
      3. Fix tag nesting
      4. Close all tags properly
      5. Correct element usage:
      6. Replace <frame> with <iframe>
      7. Use proper <p> tags
      8. Fix CSS:
      9. Remove .container: syntax error
      10. Consolidate heading styles
      11. Move inline styles to CSS file
      12. Clean up redundant code
      13. Fix all closing tags

      Hi Collin, I really enjoyed your projects concept; however, your project needs significant technical improvements to function properly. Focus first on fixing the HTML structure and closing tags, then work on organizing your CSS more efficiently.

    1. Technical Feedback (19/20)

      HTML Structure (5/5)

      • ✓ Excellent heading hierarchy (h1-h5)
      • ✓ Proper paragraph structure
      • ✓ Media well-implemented (YouTube, Giphy iframes)
      • ✓ Images correctly formatted
      • ⚠ Minor note: Redundant <a> tag after Giphy embed

      CSS Implementation (10/10)

      • ✓ Strong ID usage:
      • #containerOne
      • #leftnote
      • #rightnote
      • #color
      • #define
      • #bold
      • #big
      • ✓ Effective class reuse:
      • .notes
      • .small
      • ✓ Comprehensive tag styling:
      • Tables (table, th, td)
      • Headings
      • Paragraphs

      Code Quality (4/5)

      • ✓ Clean, readable structure
      • ✓ Good separation of concerns
      • ✓ Proper indentation
      • ⚠ Some inline styles could move to CSS file

      Suggestions for Perfect Score:

      1. Remove redundant <a> tag after Giphy
      2. Move inline styles to CSS file
      3. Review table styling for consistency

      Outstanding work on HTML structure and CSS implementation. Your code is clean, semantic, and well-organized. Minor tweaks to styling organization, but overall nice job.

    1. Technical Feedback (8/20)

      HTML Structure (3/5)

      • ✓ Main heading (<h1>) used correctly
      • ✗ Custom tags used instead of standard <p> tags (<p1>, <p2>, <p4>)
      • ⚠ Links present but have syntax errors (missing >)
      • ✓ Image (elio2.jpeg) implemented correctly
      • ✗ Needs more section headings

      CSS Implementation (4/10)

      • ⚠ IDs implemented:
      • #containerone
      • #containertwo
      • #floatingpup
      • Need 2 more to meet requirements
      • ⚠ Classes:
      • .container used well
      • Need another reusable class (3+ instances)
      • ✗ Style issues:
      • Invalid syntax (opacity: .7.5)
      • Missing semicolons
      • Broken custom tag selectors

      Code Quality (1/5)

      • ✗ Invalid HTML elements (<div1>, <p1>, <p2>, <p4>)
      • ✗ Improper CSS formatting
      • ✗ Missing closing brackets
      • ✗ Invalid font-family declarations
      • ✗ Misused quotes in div1 styling

      Priority Fixes:

      1. Replace custom tags (<p1>, <p2>, <p4>) with standard <p> tags
      2. Add 2 more unique IDs
      3. Create another reusable class
      4. Fix link syntax
      5. Clean up CSS syntax (semicolons, opacity values)

      Enjoyed this project overall! Address the technical issues listed here and this will be a solid submission.

    1. Technical Feedback (14/20)

      HTML Structure (4/5)

      • ✓ Good use of heading hierarchy (h1-h6)
      • ✓ Paragraphs properly tagged
      • ✗ Two empty <p> tags need content
      • ✗ Missing navigation links
      • ⚠ Images work but need better organization

      CSS Implementation (7/10)

      • ✓ Multiple IDs used effectively
      • ✓ Good reuse of .container class
      • #rain1 ID exists in CSS but not in HTML
      • .container class missing style definitions
      • ✗ Layout issues due to undefined container styles

      Code Quality (3/5)

      • ✗ HTML syntax errors:
      • Missing > in <link> tag
      • Unclosed final <div>
      • ✗ Unused CSS selectors (p2, h2, #rain1)
      • ✗ Inconsistent margin spacing
      • ✗ Div structure needs optimization

      Key Improvements:

      1. Add navigation links
      2. Define .container styles
      3. Fix HTML syntax errors
      4. Clean up unused CSS
      5. Improve div organization

      Overall I really enjoyed your concept and visuals that reinforced the theme of the page. Focus on cleaning up the technical details and completing the missing style definitions to take this to the next level.

    1. Existing facilities that can filter carbon dioxide out of the air only have the capacity to capture 0.01 million metric tons of CO2 globally today, costing companies like Microsoft as much as $600 per ton of CO2. That’s very little capacity with a very high price tag.

      Calma, Justine. “Trying to Reverse Climate Change Won’t Save Us, Scientists Warn.” Msn.Com, 1729, https://www.msn.com/en-us/news/technology/trying-to-reverse-climate-change-won-t-save-us-scientists-warn/ar-AA1sN6OC?ocid=msedgntp&cvid=20987699b6484dd5c9aad7c390f9e4cd&ei=4.

    1. Reviewer #3 (Public review):

      Summary:

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature, and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation at the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience. However, there are some issues with the conclusions drawn from the data and analysis that can be addressed to further bolster the manuscript.

      Strengths:

      Adaptive optics imaging of the murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is beneficial for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, (a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, (b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. While not directly shown in the article, this model would potentially allow for controlling the size, depth, and severity of the laser injury opening interesting avenues for future study.

      Weaknesses:

      (1) It is unclear based on the current data/study to what extent the mild laser damage phenotype is generalizable to disease phenotypes. The outer nuclear cell loss of 28% and a complete recovery in 2 months would seem quite mild, thus the generalizability in terms of immune-mediated response in the face of retinal remodeling is not certain, specifically whether the key finding regarding the lack of neutrophil recruitment will be maintained with a stronger laser ablation.

      (2) Mice numbers and associated statistics are insufficient to draw strong conclusions in the paper on the activity of neutrophils, some examples are below :

      a) 2 catchup mice and 2 positive control EAU mice are used to draw inferences about immune-mediated activity in response to injury. If the goal was to show 'feasibility' of imaging these mouse models for the purposes of tracking specific cell type behavior, the case is sufficiently made and already published by the authors earlier. It is possible that a larger sample size would alter the conclusion.

      b) There are only 2 examples of extravasated neutrophils in the entire article, shown in the positive control EAU model. With the rare extravasation events of these cells and their high-speed motility, the chance of observing their exit from the vasculature is likely low overall, therefore the general conclusions made about their recruitment or lack thereof are not justified by these limited examples shown.

      c) In Figure 3, the 3-day time point post laser injury shows an 18% reduction in the density of ONL nuclei (p-value of 0.17 compared to baseline). In the case of neutrophils, it is noted that "Control locations (n = 2 mice, 4 z-stacks) had 15 {plus minus} 8 neutrophils per sq.mm of retina whereas lesioned locations (n = 2 mice, 4 z-stacks) had 23 {plus minus} 5 neutrophils per sq.mm of retina (Figure 10b). The difference between control and lesioned groups was not statistically significant (p = 0.19)." These data both come from histology. While the p-values - 0.17 and 0.19 - are similar, in the first case a reduction in ONL cell density is concluded while in the latter, no difference in neutrophil density is inferred in the lesioned case compared to control. Why is there a difference in the interpretation where the same statistical test and methodology are used in both cases? Besides this statistical nuance, is there an alternate possibility that there is an increased, albeit statistically insignificant, concentration of circulating neutrophils in the lesioned model? The increase is nearly 50% (15 {plus minus} 8 vs. 23 {plus minus} 5 neutrophils per sq.mm) and the reader may wonder if a larger animal number might skew the statistic towards significance.

      (2) The conclusions on the relative activity of neutrophils and microglia come from separate animals. The reader may wonder why simultaneous imaging of microglia and neutrophils is not shown in either the EAU mice or the fluorescently labeled catchup mice where the non-labeled cell type could possibly be imaged with phase-contrast as has been shown by the authors previously. One might suspect that the microglia dynamics are not substantially altered in these mice compared to the CX3CR1-GFP mice subjected to laser lesions, but for future applicability of this paradigm of in vivo imaging assessment of the laser damage model, including documenting the repeatability of the laser damage model and the immune cell behavior, acquiring these data in the same animals would be critical.

      (3) Along the same lines as above, the phase contrast ONL images at time points from 3-day to 2-month post laser injury are not shown and the absence of this data is not addressed. This missing data pertains only to the in vivo imaging mice model but are conducted in histology that adequately conveys the time-course of cell loss in the ONL. It is suggested that the reason be elaborated for the exclusion of this data and the simultaneous imaging of microglia and neutrophils mentioned above. Also, it would be valuable to further qualify and check the claims in the Discussion that "ex vivo analysis confirms in vivo findings" and "Microglial/neutrophil discrimination using label-free phase contrast"

    1. During this period of reggae’s development, a connection grew between the music and the Rastafarian movement, which encourages the relocation of the African diaspora to Africa, deifies the Ethiopian emperor Haile Selassie I (whose precoronation name was Ras [Prince] Tafari), and endorses the sacramental use of ganja (marijuana). Rastafari (Rastafarianism) advocates equal rights and justice and draws on the mystical consciousness of kumina, an earlier Jamaican religious tradition that ritualized communication with ancestors.

      Diaspora: the jews living outside Israel (https://www.merriam-webster.com/dictionary/diaspora)

      Interesting musical roots for Reggae... Wonder if this is still present?

      Mystical roots.

      (Note, I give this the fiction tag because I might want to look into this mystical religion for fiction writing as inspiration)

      Logical that marijuana (a drug) is correlated with the mystical concept of communicating with diseased spirits for marijuana makes you hallucinate (or perhaps it's demonic in nature?)

    1. Chris M. recommends to use a layered system for music categorization:

      • Layer 1) Genres / Subgenres
      • Layer 2) Energy
      • Layer 3) Vibe

      Genre itself is the main overall (and broad) genre. Subgenres are tag-like and related to when you want to play it more granularly.

      Energy is a measurement of the average energy of the song.

      Vibes refer to the emotions and memories it brings up to you and potentially others you play it for. Some questions he asks: - 1) How does it make me feel? - 2) What does it remind me of? - 3) Where would I play it? - 4) When would I play it? - 5) Why would I play it? - 6) Who would I play it for?

    1. Author response:

      Reviewer #1 (Public Review):

      Summary

      The authors asked if parabrachial CGRP neurons were only necessary for a threat alarm to promote freezing or were necessary for a threat alarm to promote a wider range of defensive behaviors, most prominently flight.

      Major Strengths of Methods and Results

      The authors performed careful single-unit recording and applied rigorous methodologies to optogenetically tag CGRP neurons within the PBN. Careful analyses show that single-units and the wider CGRP neuron population increases firing to a range of unconditioned stimuli. The optogenetic stimulation of experiment 2 was comparatively simpler but achieved its aim of determining the consequence of activating CGRP neurons in the absence of other stimuli. Experiment 3 used a very clever behavioral approach to reveal a setting in which both cue-evoked freezing and flight could be observed. This was done by having the unconditioned stimulus be a "robot" traveling along a circular path at a given speed. Subsequent cue presentation elicited mild flight in controls and optogenetic activation of CGRP neurons significantly boosted this flight response. This demonstrated for the first time that CGRP neuron activation does more than promote freezing. The authors conclude by demonstrating that bidirectional modulation of CGRP neuron activity bidirectionally aTects freezing in a traditional fear conditioning setting and aTects both freezing and flight in a setting in which the robot served as the unconditioned stimulus. Altogether, this is a very strong set of experiments that greatly expand the role of parabrachial CGRP neurons in threat alarm.

      We would like to sincerely thank the reviewer for the positive and insightful comments on our work. We greatly appreciate the acknowledgment of our new behavioral approach, which allowed us to observe a dynamic spectrum of defensive behaviors in animals. Our use of the robot-based paradigm, which enables the observation of both freezing and flight, has been instrumental in expanding our understanding of how parabrachial CGRP neurons modulate diverse threat responses. We are pleased that the reviewer found this methodological innovation to be a valuable contribution to the field.

      Weaknesses

      In all of their conditioning studies the authors did not include a control cue. For example, a sound presented the same number of times but unrelated to US (shock or robot) presentation. This does not detract from their behavioral findings. However, it means the authors do not know if the observed behavior is a consequence of pairing. Or is a behavior that would be observed to any cue played in the setting? This is particularly important for the experiments using the robot US.

      We appreciate the reviewer’s insightful comment regarding the absence of a control cue in our conditioning studies. First, we would like to mention that, in response to the Reviewer 3, we have updated how we present our flight data by following methods from previously published papers (Fadok et al., 2017; Borkar et al., 2024). Instead of counting flight responses, we calculated flight scores as the ratio of the velocity during the CS to the average velocity in the 7 s before the CS on the conditioning day (or 10 s for the retention test). This method better captures both the speed and duration of fleeing during CS. With this updated approach, we observed a significant difference in flight scores between the ChR2 and control groups, even during conditioning, which may partly address the reviewer’s concern about whether the observed behavior is a consequence of CS-US pairing.

      However, we agree with the reviewer that including an unpaired group would provide stronger evidence, and in response, we conducted an additional experiment with an unpaired group. In this unpaired group, the CS was presented the same number of times, but the robot US was delivered randomly within the inter-trial interval. The unpaired group did not exhibit any notable conditioned freezing or flight responses. We believe that this additional experiment, now reflected in Figure 3, further strengthens our conclusion that the fleeing behavior is driven by associative learning between the CS and US, rather than a reaction to the cue itself.

      The authors make claims about the contribution of CGRP neurons to freezing and fleeing behavior, however, all of the optogenetic manipulations are centered on the US presentation period. Presently, the experiments show a role for these neurons in processing aversive outcomes but show little role for these neurons in cue responding or behavior organizing. Claims of contributions to behavior should be substantiated by manipulations targeting the cue period.

      We appreciate the reviewer’s constructive comments. We would like to emphasize that our primary objective in this study was to investigate whether activating parabrachial CGRP neurons—thereby increasing the general alarm signal—would elicit different defensive behaviors beyond passive freezing. To this end, we focused on manipulating CGRP neurons during the US period rather than the cue period.

      Previous studies have shown that CGRP neurons relay US signals, and direct activation of CGRP neurons has been used as the US to successfully induce conditioned freezing responses to the CS during retention tests (Han et al., 2015; Bowen et al., 2020). In our experiments, we also observed that CGRP neurons responded exclusively to the US during conditioning with the robot (Figure 1F), and stimulating these neurons in the absence of any external stimuli elicited strong freezing responses (Figure 2B). These findings, collectively, suggest that activation of CGRP neurons during the CS period would predominantly result in freezing behavior.

      Therefore, we manipulated the activity of CGRP neurons during the US period to examine whether adjusting the perceived threat level through these neurons would result in diverse dfensive behaivors when paired with chasing robot. We observed that enhancing CGRP neuron activity while animals were chased by the robot at 70 cm/s made them react as if chased at a higher speed (90 cm/s), leading to increased fleeing behaviors. While this may not fully address the role of these neurons in cue responding or behavior organizing, we found that silencing CGRP neurons with tetanus toxin (TetTox) abolished fleeing behavior even when animals were chased at high speeds (90 cm/s), which usually elicits fleeing without CGRP manipulation (Figure 5). This supports the conclusion that CGRP neurons are necessary for processing fleeing responses.

      In summary, manipulating CGRP neurons during the US period was essential for effectively investigating their role in adjusting defensive responses, thereby expanding our understanding of their function within the general alarm system. We hope this clarifies our experimental design and addresses the concern the reviewer has raised.

      Appraisal

      The authors achieved their aims and have revealed a much greater role for parabrachial CGRP neurons in threat alarm.

      Discussion

      Understanding neural circuits for threat requires us (as a field) to examine diverse threat settings and behavioral outcomes. A commendable and rigorous aspect of this manuscript was the authors decision to use a new behavioral paradigm and measure multiple behavioral outcomes. Indeed, this manuscript would not have been nearly as impactful had they not done that. This novel behavior was combined with excellent recording and optogenetic manipulations - a standard the field should aspire to. Studies like this are the only way that we as a field will map complete neural circuits for threat.

      We sincerely thank the reviewer for their positive and encouraging comments. We are grateful for the acknowledgment of our efforts in employing a novel behavioral paradigm to study diverse defensive behaviors. We are pleased that our work contributes to advancing the understanding of neural circuits involved in threat responses.

      Reviewer #3 (Public Review):

      Strengths:

      The study used optogenetics together with in vivo electrophysiology to monitor CGRP neuron activity in response to various aversive stimuli including robot chasing to determine whether they encode noxious stimuli diTerentially. The study used an interesting conditioning paradigm to investigate the role of CGRP neurons in the PBN in both freezing and flight behaviors.

      Weakness:

      The major weakness of this study is that the chasing robot threat conditioning model elicits weak unconditioned and conditioned flight responses, making it diTicult to interpret the robustness of the findings. Furthermore, the conclusion that the CGRP neurons are capable of inducing flight is not substantiated by the data. No manipulations are made to influence the flight behavior of the mouse. Instead, the manipulations are designed to alter the intensity of the unconditioned stimulus.

      We sincerely thank the reviewer for the thoughtful and constructive comments on our manuscript. In response to this feedback, we revisited our analysis of the flight responses and compared our methods with those used in previous literatures examining similar behaviors.

      We reviewed a study investigating sex differences in defensive behavior using rats (Gruene et al., 2015). In that study, the CS was presented for 30 s, and active defensive behvaior – referred to as ‘darting’ – was quantified as ‘Dart rate (dart/min)’. This was calculated by doubling the number of darts counted during the 30-s CS presentation to extrapolate to a per-min rate. The highest average dart rate observed was approximatley 1.5. Another relevant studies using mice quantified active defensive behavior by calculating a flight score—the ratio of the average speed during each CS to the average speed during the 10 s pre-CS period (Fadok et al., 2017; Borkar et al., 2024). This method captures multiple aspects of flight behavior during CS presentation, including overall velocity, number of bouts, and duration of fleeing. Moreover, it accounts for each animal’s individual velocity prior to the CS, reflecting how fast the animals were fleeing relative to their baseline activity.

      In our original analysis, we quantified flight responses by counting rapid fleeing movements, defined as movements exceeding 8 cm/s. This approach was consistent with our previous study using the same robot paradigm to observe unique patterns of defensive behavior related to sex differences (Pyeon et al., 2023). Based on our earlier findings, where this approach effectively identified significant differences in defensive behaviors, we believed that this method was appropriate for capturing conditioned flight behavior within our specific experimental context. However, prompted by the reviewer's insightful comments, we recognized that our initial method might not fully capture the robustness of the flight responses. Therefore, we re-analyzed our data using the flight score method described by Fadok and colleagues, which provides a more sensitive measure of fleeing during the CS.

      Re-analyzing our data revealed a more robust flight response than previously reported, demonstrating that additional CGRP neuron stimulation promoted flight behavior in animals during conditioning, addressing the concern that the data did not substantiate the role of CGRP neurons in inducing flight. In addition, we would like to emphasize the findings from our final experiment, where silencing CGRP neurons, even under high-threat conditions (90 cm/s), prevented animals from exhibiting flight responses. This demonstrates that CGRP neurons are necessary in influencing flight responses.

      We have updated all flight data in the manuscript and revised the relevant figures and text accordingly. We appreciate the opportunity to enhance our analysis. The reviewer's insightful observation led us to adopt a better method for quantifying flight behavior, which substantiates our conclusion about the role of CGRP neurons in modulating defensive responses.

      Borkar, C.D., Stelly, C.E., Fu, X., Dorofeikova, M., Le, Q.-S.E., Vutukuri, R., et al. (2024). Top- down control of flight by a non-canonical cortico-amygdala pathway. Nature 625(7996), 743-749.

      Bowen, A.J., Chen, J.Y., Huang, Y.W., Baertsch, N.A., Park, S., and Palmiter, R.D. (2020). Dissociable control of unconditioned responses and associative fear learning by parabrachial CGRP neurons. Elife 9, e59799.

      Fadok, J.P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., et al. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542(7639), 96-100.

      Gruene, T.M., Flick, K., Stefano, A., Shea, S.D., and Shansky, R.M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. Elife 4, e11352.

      Han, S., Soleiman, M.T., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2015). Elucidating an a_ective pain circuit that creates a threat memory. Cell 162(2), 363-374.

      Pyeon, G.H., Lee, J., Jo, Y.S., and Choi, J.-S. (2023). Conditioned flight response in female rats to naturalistic threat is estrous-cycle dependent. Scientific Reports 13(1), 20988.

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:10:23][^2^][2]:

      Cette vidéo explore comment les adolescentes YouTubeuses mettent en scène leur féminité en ligne. Elle présente les recherches de Claire Balle, sociologue, sur les pratiques numériques des jeunes filles sur YouTube.

      Points forts : + [00:00:00][^3^][3] Développement de l'identité féminine * Affirmation identitaire en ligne * Étude des vidéos de filles et garçons * Importance des vidéos "je suis bizarre" et "anti-boyfriend tag" + [00:02:47][^4^][4] Proximité et sociabilité * Partage d'expériences personnelles * Attente de soutien des abonnés * Mention fréquente d'autres YouTubeuses + [00:04:46][^5^][5] Utilisation de l'intimité * Validation de l'identité par les pairs * Différences de genre dans l'expression de l'intimité * Sexualité et honte corporelle chez les filles + [00:06:30][^6^][6] Caractéristiques féminines involontaires * Manies et habitudes perçues comme féminines * Exigences dans le domaine amoureux * Perfectionnisme et propreté + [00:07:52][^7^][7] Dramatisation et standardisation * Effets de dramatisation pour représenter la féminité * Standardisation des modes de présentation * Influence des médias et réseaux sociaux

    1. Welcome back and in this demo lesson you're going to learn how to install the Docker engine inside an EC2 instance and then use that to create a Docker image.

      Now this Docker image is going to be running a simple application and we'll be using this Docker image later in this section of the course to demonstrate the Elastic Container service.

      So this is going to be a really useful demo where you're going to gain the experience of how to create a Docker image.

      Now there are a few things that you need to do before we get started.

      First as always make sure that you're logged in to the I am admin user of the general AWS account and you'll also need the Northern Virginia region selected.

      Now attached to this lesson is a one-click deployment link so go ahead and click that now.

      This is going to deploy an EC2 instance with some files pre downloaded that you'll use during the demo lesson.

      Now everything's pre-configured you just need to check this box at the bottom and click on create stack.

      Now that's going to take a few minutes to create and we need this to be in a create complete state.

      So go ahead and pause the video wait for your stack to move into create complete and then we're good to continue.

      So now this stack is in a create complete state and we're good to continue.

      Now if you're following along with this demo within your own environment there's another link attached to this lesson called the lesson commands document and that will include all of the commands that you'll need to type as you move through the demo.

      Now I'm a fan of typing all commands in manually because I personally think that it helps you learn but if you are the type of person who has a habit of making mistakes when typing along commands out then you can copy and paste from this document to avoid any typos.

      Now one final thing before we finish at the end of this demo lesson you'll have the opportunity to upload the Docker image that you create to Docker Hub.

      If you're going to do that then you should pre sign up for a Docker Hub account if you don't already have one and the link for this is included attached to this lesson.

      If you already have a Docker Hub account then you're good to continue.

      Now at this point what we need to do is to click on the resources tab of this stack and locate the public EC2 resource.

      Now this is a normal EC2 instance that's been provisioned on your behalf and it has some files which have been pre downloaded to it.

      So just go ahead and click on the physical ID next to public EC2 and that will move you to the EC2 console.

      Now this machine is set up and ready to connect to and I've configured it so that we can connect to it using Session Manager and this avoids the need to use SSH keys.

      So to do that just right-click and then select connect.

      You need to pick Session Manager from the tabs across the top here and then just click on connect.

      Now that will take a few minutes but once connected you should see this prompt.

      So it should say SH- and then a version number and then dollar.

      Now the first thing that we need to do as part of this demo lesson is to install the Docker engine.

      The Docker engine is the thing that allows Docker containers to run on this EC2 instance.

      So we need to install the Docker engine package and we'll do that using this command.

      So we're using shudu to get admin permissions then the package manager DNF then install then Docker.

      So go ahead and run that and that will begin the installation of Docker.

      It might take a few moments to complete it might have to download some prerequisites and you might have to answer that you're okay with the install.

      So press Y for yes and then press enter.

      Now we need to wait a few moments for this install process to complete and once it has completed then we need to start the Docker service and we do that using this command.

      So shudu again to get admin permissions and then service and then the Docker service and then start.

      So type that and press enter and that starts the Docker service.

      Now I'm going to type clear and then press enter to make this easier to see and now we need to test that we can interact with the Docker engine.

      So the most simple way to do that is to type Docker space and then PS and press enter.

      Now you're going to get an error.

      This error is because not every user of this EC2 instance has the permissions to interact with the Docker engine.

      We need to grant permissions for this user or any other users of this EC2 instance to be able to interact with the Docker engine and we're going to do that by adding these users to a group and we do that using this command.

      So shudu for admin permissions and then user mod -a -g for group and then the Docker group and then EC2 -user.

      Now that will allow a local user of this system, specifically EC2 -user, to be able to interact with the Docker engine.

      Okay so I've cleared the screen to make it slightly easier to see now that we've added EC2 -user the ability to interact with Docker.

      So the next thing is we need to log out and log back in of this instance.

      So I'm going to go ahead and type exit just to disconnect from session manager and then click on close and then I'm going to reconnect to this instance and you need to do the same.

      So connect back in to this EC2 instance.

      Now once you're connected back into this EC2 instance we need to run another command which moves us into EC2 user so it basically logs us in as EC2 -user.

      So that's this command and the result of this would be the same as if you directly logged in to EC2 -user.

      Now the reason we're doing it this way is because we're using session manager so that we don't need a local SSH client or to worry about SSH keys.

      We can directly log in via the console UI we just then need to switch to EC2 -user.

      So run this command and press enter and we're now logged into the instance using EC2 -user and to test everything's okay we need to use a command with the Docker engine and that command is Docker space ps and if everything's okay you shouldn't see any output beyond this list of headers.

      What we've essentially done is told the Docker engine to give us a list of any running containers and even though we don't have any it's not erred it's simply displayed this empty list and that means everything's okay.

      So good job.

      Now what I've done to speed things up if you just run an LS and press enter the instance has been configured to download the sample application that we're going to be using and that's what the file container.zip is within this folder.

      I've configured the instance to automatically extract that zip file which has created the folder container.

      So at this point I want you to go ahead and type cd space container and press enter and that's going to move you inside this container folder.

      Then I want you to clear the screen by typing clear and press enter and then type ls space -l and press enter.

      Now this is the web application which I've configured to be automatically downloaded to the EC2 instance.

      It's a simple web page we've got index.html which is the index we have a number of images which this index.html contains and then we have a docker file.

      Now this docker file is the thing that the docker engine will use to create our docker image.

      I want to spend a couple of moments just stepping you through exactly what's within this docker file.

      So I'm going to move across to my text editor and this is the docker file that's been automatically downloaded to your EC2 instance.

      Each of these lines is a directive to the docker engine to perform a specific task and remember we're using this to create a docker image.

      This first line tells the docker engine that we want to use version 8 of the Red Hat Universal base image as the base component for our docker image.

      This next line sets the maintainer label it's essentially a brief description of what the image is and who's maintaining it in this case it's just a placeholder of animals for life.

      This next line runs a command specifically the yum command to install some software specifically the Apache web server.

      This next command copy copies files from the local directory when you use the docker command to create an image so it's copying that index.html file from this local folder that I've just been talking about and it's going to put it inside the docker image in this path so it's going to copy index.html to /var/www/html and this is where an Apache web server expects this index.html to be located.

      This next command is going to do the same process for all of the jpegs in this folder so we've got a total of six jpegs and they're going to be copied into this folder inside the docker image.

      This line sets the entry point and this essentially determines what is first run when this docker image is used to create a docker container.

      In this example it's going to run the Apache web server and finally this expose command can be used for a docker image to tell the docker engine which services should be exposed.

      Now this doesn't actually perform any configuration it simply tells the docker engine what port is exposed in this case port 80 which is HTTP.

      Now this docker file is going to be used when we run the next command which is to create a docker image.

      So essentially this file is the same docker file that's been downloaded to your EC2 instance and that's what we're going to run next.

      So this is the next command within the lesson commands document and this command builds a container image.

      What we're essentially doing is giving it the location of the docker file.

      This dot at the end contains the working directory so it's here where we're going to find the docker file and any associated files that that docker file uses.

      So we're going to run this command and this is going to create our docker image.

      So let's go ahead and run this command.

      It's going to download version 8 of UBI which it will use as a starting point and then it's going to run through every line in the docker file performing each of the directives and each of those directives is going to create another layer within the docker image.

      Remember from the theory lesson each line within the docker file generally creates a new file system layer so a new layer of a docker image and that's how docker images are efficient because you can reuse those layers.

      Now in this case this has been successful.

      We've successfully built a docker image with this ID so it's giving it a unique ID and it's tagged this docker image with this tag colon latest.

      So this means that we have a docker image that's now stored on this EC2 instance.

      Now I'll go ahead and clear the screen to make it easier to see and let's go ahead and run the next command which is within the lesson commands document and this is going to show us a list of images that are on this EC2 instance but we're going to filter based on the name container of cats and this will show us the docker image which we've just created.

      So the next thing that we need to do is to use the docker run command which is going to take the image that we've just created and use it to create a running container and it's that container that we're going to be able to interact with.

      So this is the command that we're going to use it's the next one within the lesson commands document.

      It's docker run and then it's telling it to map port 80 on the container with port 80 on the EC2 instance and it's telling it to use the container of cats image and if we run that command docker is going to take the docker image that we've got on this EC2 instance run it to create a running container and we should be able to interact with that container.

      So if you go back to the AWS console if we click on instances so look for a4l-public EC2 that's in the running state.

      I'm just going to go ahead and select this instance so that we can see the information and we need the public IP address of this instance.

      Go ahead and click on this icon to copy the public IP address into your clipboard and then open that in a new tab.

      Now be sure not to use this link to the right because that's got a tendency to open the HTTPS version.

      We just need to use the IP address directly.

      So copy that into your clipboard open a new tab and then open that IP address and now we can see the amazing application if it fits i sits in a container in a container and this amazing looking enterprise application is what's contained in the docker image that you just created and it's now running inside a container based off that image.

      So that's great everything's working as expected and that's running locally on the EC2 instance.

      Now in the demo lesson for the elastic container service that's coming up later in this section of the course you have two options.

      You can either use my docker image which is this image that I've just created or you can use your own docker image.

      If you're going to use my docker image then you can skip this next step.

      You don't need a docker hub account and you don't need to upload your image.

      If you want to use your own image then you do need to follow these next few steps and I need to follow them anyway because I need to upload this image to docker hub so that you can potentially use it rather than your own image.

      So I'm going to move back to the session manager tab and I'm going to control C to exit out of this running container and I'm going to type clear to clear the screen and make it easier to see.

      Now to upload this to docker hub first you need to log in to docker hub using your credentials and you can do that using this command.

      So it's docker space login space double hyphen username equals and then your username.

      So if you're doing this in your own environment you need to delete this placeholder and type your username.

      I'm going to type my username because I'll be uploading this image to my docker hub.

      So this is my docker hub username and then press enter and it's going to ask for the corresponding password to this username.

      So I'm going to paste in my password if you're logging into your docker hub you should use your password.

      Once you've pasted in the password go ahead and press enter and that will log you in to docker hub.

      Now you don't have to worry about the security message because whilst your docker hub password is going to be stored on the EC2 instance shortly we're going to terminate this instance which will remove all traces of this password from this machine.

      Okay so again we're going to upload our docker image to docker hub so let's run this command again and you'll see because we're just using the docker images command we can see the base image as well as our image.

      So we can see red hat UBI 8.

      We want the container of cats latest though so what you need to do is copy down the image ID of the container of cats image.

      So this is the top line in my case container of cats latest and then the image ID.

      So then we need to run this command so docker space tag and then the image ID that you've just copied into your clipboard and then a space and then your docker hub username.

      In my case it's actrl with 1L if you're following along you need to use your own username and then forward slash and then the name of the image that you want this to be stored as on docker hub so I'm going to use container of cats.

      So that's the command you need to use so docker tag and then your image ID for container of cats and then your username forward slash container of cats and press enter and that's everything we need to do to prepare to upload this image to docker hub.

      So the last command that we need to run is the command to actually upload the image to docker hub and that command is docker space push so we're going to push the image to docker hub then we need to specify the docker hub username so again this is my username but if you're doing this in your environment it needs to be your username and then forward slash and then the image name in my case container of cats and then colon latest and once you've got all that go ahead and press enter and that's going to push the docker image that you've just created up to your docker hub account and once it's up there it means that we can deploy from that docker image to other EC2 instances and even ECS and we're going to do that in a later demo in this section of the course.

      Now that's everything that you need to do in this demo lesson you've essentially installed and configured the docker engine you've used a docker file to create a docker image from some local assets you've tested that docker image by running a container using that image and then you've uploaded that image to docker hub and as I mentioned before we're going to use that in a future demo lesson in this section of the course.

      Now the only thing that remains to do is to clear up the infrastructure that we've used in this demo lesson so go ahead and close down all of these extra tabs and go back to the cloud formation console this is the stack that's been created by the one click deployment link so all you need to do is select this stack it should be called EC2 docker and then click on delete and confirm that deletion and that will return the account into the same state as it was at the start of this demo lesson.

      Now that is everything you need to do in this demo lesson I hope it's been useful and I hope you've enjoyed it so go ahead and complete the video and when you're ready I look forward to you joining me in the next.

    1. Welcome back and we're going to use this demo lesson to get some experience of working with EBS and Instant Store volumes.

      Now before we get started, this series of demo videos will be split into two main components.

      The first component will be based around EBS and EBS snapshots and all of this will come under the free tier.

      The second component will be based on Instant Store volumes and will be using larger instances which are not included within the free tier.

      So I'm going to make you aware of when we move on to a part which could incur some costs and you can either do that within your own environment or watch me do it in the video.

      If you do decide to do it in your own environment, just be aware that there will be a 13 cents per hour cost for the second component of this demo series and I'll make it very clear when we move into that component.

      The second component is entirely optional but I just wanted to warn you of the potential cost in advance.

      Now to get started with this demo, you're going to need to deploy some infrastructure.

      To do that, make sure that you're logged in to the general account, so the management account of the organization and you've got the Northern Virginia region selected.

      Now attached to this demo is a one click deployment link to deploy the infrastructure.

      So go ahead and click on that link.

      That's going to open this quick create stack screen and all you need to do is scroll down to the bottom, check this capabilities box and click on create stack.

      Now you're going to need this to be in a create complete state before you continue with this demo.

      So go ahead and pause the video, wait for that stack to move into the create complete status and then you can continue.

      Okay, now that's finished and the stack is in a create complete state.

      You're also going to be running some commands within EC2 instances as part of this demo.

      Also attached to this lesson is a lesson commands document which contains all of those commands and you can use this to copy and paste which will avoid errors.

      So go ahead and open that link in a separate browser window or separate browser tab.

      It should look something like this and we're going to be using this throughout the lesson.

      Now this cloud formation template has created a number of resources, but the three that we're concerned about are the three EC2 instances.

      So instance one, instance two and instance three.

      So the next thing to do is to move across to the EC2 console.

      So click on the services drop down and then either locate EC2 under all services, find it in recently visited services or you can use the search box at the top type EC2 and then open that in a new tab.

      Now the EC2 console is going through a number of changes so don't be alarmed if it looks slightly different or if you see any banners welcoming you to this new version.

      Now if you click on instances running, you'll see a list of the three instances that we're going to be using within this demo lesson.

      We have instance one - az a.

      We have instance two - az a and then instance one - az b.

      So these are three instances, two of which are in availability zone A and one which is in availability zone B.

      Next I want you to scroll down and locate volumes under elastic block store and just click on volumes.

      And what you'll see is three EBS volumes, each of which is eight GIB in size.

      Now these are all currently in use.

      You can see that in the state column and that's because all of these volumes are in use as the boot volumes for those three EC2 instances.

      So on each of these volumes is the operating system running on those EC2 instances.

      Now to give you some experience of working with EBS volumes, we're going to go ahead and create a volume.

      So click on the create volume button.

      The first thing you'll need to do when creating a volume is pick the type and there are a number of different types available.

      We've got GP2 and GP3 which are the general purpose storage types.

      We're going to use GP3 for this demo lesson.

      You could also select one of the provisioned IOPS volumes.

      So this is currently IO1 or IO2.

      And with both of these volume types, you're able to define IOPS separately from the size of the volume.

      So these are volume types that you can use for demanding storage scenarios where you need high-end performance or when you need especially high performance for smaller volume sizes.

      Now IO1 was the first type of provisioned IOPS SSD introduced by AWS and more recently they've introduced IO2 and enhanced it which provides even higher levels of performance.

      In addition to that we do have the non-SSD volume types.

      So SC1 which is cold HDD, ST1 which is throughput optimized HDD and then of course the original magnetic type which is now legacy and AWS don't recommend this for any production usage.

      For this demo lesson we're going to go ahead and select GP3.

      So select that.

      Next you're able to pick a size in GIB for the volume.

      We're going to select a volume size of 10 GIB.

      Now EBS volumes are created within a specific availability zone so you have to select the availability zone when you're creating the volume.

      At this point I want you to go ahead and select US-EAST-1A.

      When creating volume you're also able to specify a snapshot as the basis for that volume.

      So if you want to restore a snapshot into this volume you can select that here.

      At this stage in the demo we're going to be creating a blank EBS volume so we're not going to select anything in this box.

      We're going to be talking about encryption later in this section of the course.

      You are able to specify encryption settings for the volume when you create it but at this point we're not going to encrypt this volume.

      We do want to add a tag so that we can easily identify the volume from all of the others so click on add tag.

      For the key we're going to use name.

      For the value we're going to put EBS test volume.

      So once you've entered both of those go ahead and click on create volume and that will begin the process of creating the volume.

      Just close down any dialogues and then just pay attention to the different states that this volume goes through.

      It begins in a creating state.

      This is where the storage is being provisioned and then made available by the EBS product.

      If we click on refresh you'll see that it changes from creating to available and once it's in an available state this means that we can attach it to EC2 instances.

      And that's what we're going to do so we're going to right click and select attach volume.

      Now you're able to attach this volume to EC2 instances but crucially only those in the same availability zone.

      EBS is an availability zone scoped service and so you can only attach EBS volumes to EC2 instances within that same availability zone.

      So if we select the instance box you'll only see instances in that same availability zone.

      Now at this point go ahead and select instance 1 in availability zone A.

      Once you've selected it you'll see that the device field is populated and this is the device ID that the instance will see for this volume.

      So this is how the volume is going to be exposed to the EC2 instance.

      So if we want to interact with this instance inside the operating system this is the device that we'll use.

      Now different operating systems might see this in slightly different ways.

      So as this warning suggests certain Linux kernels might rename SDF to XVDF.

      So we've got to be aware that when you do attach a volume to an EC2 instance you need to get used to how that's seen inside the operating system.

      How we can identify it and how we can configure it within the operating system for use.

      And I'm going to demonstrate that in the next part of this demo lesson.

      So at this point just go ahead and click on attach and this will attach this volume to the EC2 instance.

      Once that's attached to the instance and you see the state change to in use then just scroll up on the left hand side and select instances.

      We're going to go ahead and connect to instance 1 in availability zone A.

      This is the instance that we just attached that EBS volume to so we want to interact with this instance and see how we can see the EBS volume.

      So right click on this instance and select connect and then you could either connect with an SSH client or use instance connect and to keep things simple we're going to connect from our browser so select the EC2 instance connect option make sure the user's name is set to EC2-user and then click on connect.

      So now we connected to this EC2 instance and it's at this point that we'll start needing the commands that are listed inside the lesson commands document and again this is attached to this lesson.

      So first we need to list all the block devices which are connected to this instance and we're going to use the LSBLK command.

      Now if you're not comfortable with Linux don't worry just take this nice and slowly and understand at a high level all the commands that we're going to run.

      So the first one is LSBLK and this is list block devices.

      So if we run this we'll be able to see a list of all of the block devices connected to this EC2 instance.

      You'll see the root device this is the device that's used to boot the instance it contains the instance operating system you'll see that it's 8 gig in size and then this is the EBS volume that we just attached to this instance.

      You'll see that device ID so XVDF and you'll see that it's 10 gig in size.

      Now what we need to do next is check whether there is a file system on this block device.

      So this block device we've created it with EBS and then we've attached it to this instance.

      Now we know that it's blank but it's always safe to check if there's any file system on a block device.

      So to do that we run this command.

      So we're going to check are there any file systems on this block device.

      So press enter and if you see just data that indicates that there isn't any file system on this device and so we need to create one.

      You can only mount file systems under Linux and so we need to create a file system on this raw block device this EBS volume.

      So to do that we run this command.

      So shoo-doo again is just giving us admin permissions on this instance.

      MKFS is going to make a file system.

      We specify the file system type with hyphen t and then XFS which is a type of file system and then we're telling it to create this file system on this raw block device which is the EBS volume that we just attached.

      So press enter and that will create the file system on this EBS volume.

      We can confirm that by rerunning this previous command and this time instead of data it will tell us that there is now an XFS file system on this block device.

      So now we can see the difference.

      Initially it just told us that there was data, so raw data on this volume and now it's indicating that there is a file system, the file system that we just created.

      Now the way that Linux works is we mount a file system to a mount point which is a directory.

      So we're going to create a directory using this command.

      MKDIR makes a directory and we're going to call the directory forward slash EBS test.

      So this creates it at the top level of the file system.

      This signifies root which is the top level of the file system tree and we're going to make a folder inside here called EBS test.

      So go ahead and enter that command and press enter and that creates that folder and then what we can do is to mount the file system that we just created on this EBS volume into that folder.

      And to do that we use this command, mount.

      So mount takes a device ID, so forward slash dev forward slash xvdf.

      So this is the raw block device containing the file system we just created and it's going to mount it into this folder.

      So type that command and press enter and now we have our EBS volume with our file system mounted into this folder.

      And we can verify that by running a df space hyphen k.

      And this will show us all of the file systems on this instance and the bottom line here is the one that we've just created and mounted.

      At this point I'm just going to clear the screen to make it easier to see and what we're going to do is to move into this folder.

      So cd which is change directory space forward slash EBS test and then press enter and that will move you into that folder.

      Once we're in that folder we're going to create a test file.

      So we're going to use this command so shudu nano which is a text editor and we're going to call the file amazing test file dot txt.

      So type that command in and press enter and then go ahead and type a message.

      It can be anything you just need to recognize it as your own message.

      So I'm going to use cats are amazing and then some exclamation marks.

      Then I'm going to press control o and enter to save that file and then control x to exit again clear the screen to make it easier to see.

      And then I'm going to do an LS space hyphen LA and press enter just to list the contents of this folder.

      So as you can see we've now got this amazing test file dot txt.

      And if we cat the contents of this so cat amazing test file dot txt you'll see the unique message that you just typed in.

      So at this point we've created this file within the folder and remember the folder is now the mount point for the file system that we created on this EBS volume.

      So the next step that I want you to do is to reboot this EC2 instance.

      To do that type sudo space and then reboot and press enter.

      Now this will disconnect you from this session.

      So you can go ahead and close down this tab and go back to the EC2 console.

      Just go ahead and click on instances.

      Okay, so this is the end of part one of this lesson.

      It was getting a little bit on the long side and so I wanted to add a break.

      It's an opportunity just to take a rest or grab a coffee.

      Part two will be continuing immediately from the end of part one.

      So go ahead complete the video and when you're ready join me in part two.

    1. Overwriting existing notes for object 056ca11c01b47e2bfe1e51178b65c80bbdeef7b0

      It seems that you're able to make notes on commits. Since a commit can be referenced by a tag, or branch, you can make notes on those, too -- kind of.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Zhou et al. analyze the factors controlling the activation and maintenance of a sustained cell cycle block in response to persistent DNA DSBs. By conditionally depleting components of the DDC using auxin-inducible degrons, the authors verified that some of them are only required for the activation (e.g., Dun1) or the maintenance (e.g., Chk1) of the DSB-dependent cell cycle arrest, while others such as Ddc2, Rad24, Rad9 or Rad53 are required for both processes. Notably, they further show that after a prolonged arrest (>24 h) in a strain carrying two DSBs, the DDC becomes dispensable and the mitotic block is then maintained by SAC proteins such as Mad1, Mad2 or the mitotic exit network (MEN) component Bub2.

      Strengths:

      The manuscript dissects the specific role of different components of the DDC and the SAC during the induction of a cell cycle arrest induced by DNA damage, as well as their contribution for the short-term and long-term maintenance of a DNA DSB-induced mitotic block. Overall, the experiments are well described and properly executed, and the data in the manuscript are clearly presented. The conclusions drawn are generally well supported by the experimental data. Their observations contribute to drawing a clearer picture of the relative contribution of these factors to the maintenance of genome stability in cells exposed to permanent DNA damage.

      Weaknesses:

      The main weakness of the study is that it is fundamentally based on the use of the auxin-inducible degron (AID) strategy to deplete proteins. This widely used method allows an efficient depletion of proteins in the cell. However, the drawback is that a tag is added to the protein, which can affect the functionality of the targeted protein or modify its capacity to interact with others. In fact, three of the proteins that are depleted using the AID systems are shown to be clearly hypomorphic, and hence their capacity to induce a strong checkpoint response might be compromised. A corroboration of at least some of the results using an alternative manner to eliminate the proteins would help to strengthen the conclusions of the manuscript.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      To hopefully contribute to more strongly support the conclusions drawn by the authors, I am including a series of concerns regarding the manuscript, as well as some suggestions that could be useful to address these issues:

      (1) The main results of this study derive from the use of auxin-inducible degron (AID)-tagged proteins. Despite the great advantages of the AID strategy to conditionally deplete proteins, the AID tag can affect the normal function of a protein. In fact, some of the AID-labeled DDC components generated in this work are shown to be hypomorphic. Hence, the manuscript would have benefited from the additional confirmation of some of the observations using a different way to eliminate the proteins (e.g., temperature-sensitive mutants).

      Most ts mutants are also hypomorphic; hence we don’t see there is much advantage to their use. The addition of the AID to these proteins alone does not interfere with the ability to sustain checkpoint arrest as demonstrated in Figure S1. Instead we found that by overexpressing Rad9-AID we could demonstrate that inactivating Rad9 after 15 h behaved the same way as the inactivation of Ddc2, significantly strengthening our finding that the DDC checkpoint becomes dispensable while the SAC takes over. 

      (2) In cells depleted of Rad53-AID, the deletion of CHK1 stimulates an earlier release from a mitotic arrest induced by two DSBs (Figures 2D and 3C). Likewise, the authors claim that a faster escape from the cell cycle block can also be observed when upstream factors such as Ddc2, Rad9, or Rad24 are depleted in the absence of CHK1 (Figures 2A-C and Figures 3D-F). However, this earlier release from the cell cycle arrest, if at all, is only slightly noticeable in a Rad9-AID background (Figures 2B and 3E). In this sense, it is also worth pointing out that Rad9-AID chk1Δ (Figure 3E) and Rad24-AID chk1Δ (Figure 3F) cells were only evaluated up to 7 h, while in all other instances, cells were followed for 9 h, which hinders a fair assessment of the differences in the release from the cell cycle arrest.

      As noted above, we have now been able to examine Rad9 over the long-time frame.

      (3) Although only 25% of the cells depleted for Dun1 remained in G2/M arrest 7 h following the induction of two DSBs, it is shocking that Rad53 was nonetheless still phosphorylated after the cells had escaped the cell cycle blockage (Figure 4A).

      This persistence of Rad53 phosphorylation is also seen with the inactivation of Mad2, allowing escape in spite of continued Rad53 phosphorylation.

      (4) Generation of Rad9-AID2 and Rad24-AID2 strains did not fully restore the function of these proteins, since most cells had adapted 24 h after induction of two DSBs (Figure S1C). Nonetheless, Rad9-AID2 and Rad24-AID2 are still likely more stable than their AID counterparts, and hence the authors could have instead used the AID2 proteins for the experiments in Figure 2 to better evaluate the role of Rad9 and Rad24 in the maintenance of the DDC-dependent arrest.

      We note again that we have found a way to study Rad9 up to 24 h. 

      (5) Deletion of BFA1 has been shown to promote the escape from a cell cycle arrest triggered by telomere uncapping (Wang et al. 2000, Hu et al. 2001, Valerio-Santiago et al. 2013). Likewise, while cells carrying the cdc5-T238A allele cannot adapt to a checkpoint arrest induced by one irreparable DSB, BFA1 deletion rescues the adaptation defect of this mutant CDC5 allele (Rawal et al., 2016). The authors show how, using AID-degrons of Bfa1 and Bub2, that only Bub2, but not Bfa1, is required to maintain a prolonged cell cycle arrest after the induction of two DSBs. To reinforce this point, and as shown for mad2Δ cells (Figure S6A), the authors could perform a complete time course using both the Bfa1-AID and a bfa1Δ mutant to demonstrate that they do indeed show the same behavior in terms of the adaptation to a two DSB-induced cell cycle arrest.

      We thank the reviewer for noting these other instances where bfa1D promoted an escape from arrest. We tested a 2-DSB bfa1 deletion, data has been added to Figure S9E-F. We did not observe a difference in the percentage of cells escaping arrest between the 2-DSB bfa1 deletion and the 2-DSB BFA1-AID strains.

      (6) Bypass or adaptation of a checkpoint-induced cell cycle arrest in S. cerevisiae often leads to cells entering a new cell cycle without doing cytokinesis and, hence, to the accumulation of rebudded cells. However, the experiments shown in the manuscript only account for G1 or budded cells with either one or two nuclei. Do any of the mutants show cytokinesis problems and subsequent rebudding of the cells? If so, this should have been also noted and quantified in the corresponding assays.

      In the cases we have studied we have not seen instances where the cells re-bud without completing mitosis (at least as assessed by the formation of budded cells with two distinct DAPI staining masses). In the morphological assays we have done, we score the continuation of the cell cycle by the appearance of multiple buds, G1, and small budded cells. In our adaptation assays when cells escaped G2/M arrest they formed microcolonies indicating no short-term deficiency in cell division.

      (7) The location of the DSB relative to the centromere of a chromosome seems to be a factor that determines the capacity of the SAC to sustain a prolonged cell cycle arrest. The authors discuss the possibility that the DSB could somehow affect the structure of the kinetochore. Did they evaluate whether Mad1 or Mad2 were more actively recruited to kinetochores in those strains that more strongly trigger the SAC after induction of the DSBs?

      We have not attempted to follow Mad1/2 recruitment. ChIP-seq could be used to monitor Mad1/2 localization at the 16 centromeres in response to DSBs and the spread of g-H2AX across the centromere. Our previous data showed that g-H2AX could spread across the centromere region and could create a change that would be detected by Mad1/2.  This change does not, however, affect the mitotic behavior of a strain in which the H2A genes have been modified to the possibly phosphomimetic H2A-S129E allele.

      (8) The authors could speculate in the discussion about the reasons that could explain why the DDC is required for the maintenance of checkpoint arrest at early stages but then becomes dispensable for the preservation of a prolonged cell DNA DSB-induced cycle arrest, which is instead sustained at later stages by the SAC.

      Our suggestion is that cells would have adapted, but modification of the centromere region engages SAC.

      Finally, some minor issues are:

      (1) The lines in the graphs that display the results from adaptation assays (e.g., Figures 1B and 1E) or cell and nuclear morphology (e.g., Figures 1D and 1G) are too thick. This makes it sometimes difficult to distinguish the actual percentages of cells in each category, particularly in the experiments monitoring nuclear division.

      Fixed

      (2) While both the adaptation assay and the analysis of nuclear division in Figures 1E and 1G, respectively, show a complete DDC-dependent arrest at 4h, the Western blot in Figure 1F suggests that Rad53 is not phosphorylated at that time point. Do these figures represent independent experiments? Ideally, the analysis of cell budding and nuclear division, which is performed in liquid cultures, and the Western blot displaying Rad53 phosphorylation should correspond to the same experiment.

      Cell budding in liquid cultures and adaptation assays were performed in triplicate with 3 biological replicates and the collective results are shown in each graph showing the percentage of large-budded cells. Western blot samples were collected in each liquid culture experiment. The western blot in 1G is a representative western blot.

      (3) It is somewhat confusing that the blots for the proteins are not displayed in the same order in Figures 2A (Rad53 at the top) and 2B or 2C (Rad53 in the middle).

      Fixed.  We place Rad53 – the relevant protein - at the top.

      Reviewer #2 (Recommendations For The Authors):

      (1) Yeast with the two breaks responds to DNA damage checkpoint (DDC) until sometimes 4-15 h post DNA damage. Since the auxin-induced degradation does not completely deplete all the tagged proteins in cells, the results should be more carefully considered and not to interpret if the checkpoint entry or maintenance depends on each target protein's ability to induce Rad53 phosphorylation. It should be theoretically possible if checkpoint maintenance requires only a modest amount of checkpoint factors especially because the experiments involve the induction of one or two DSBs. The low levels of DDC factors may be insufficient for Rad53 activation but could still be effective for cell cycle arrest. Indeed, the Haber group showed that the mating type switch did not induce Rad53 phosphorylation but still invoked detectable DNA damage response. To test such possibilities, the authors might consider employing yet another marker for DDC such as H2A or Chk1 phosphorylation besides Rad53 autophosphorylation. Alternatively, the authors might check if auxin-induced depletion also disrupts break-induced foci formation for checkpoint maintenance or their enrichment at DNA breaks using ChIP assays at various points post-damage.

      DAPI staining of Ddc2-AID cells show that when IAA is added 4 h after DSB induction (Figure S3A), cells escape G2/M arrest as evidenced by the increase in large-budded cells with 2 DAPI signals, small budded cells, and G1 cells. Overexpression of Ddc2 can sustain the checkpoint past 24 h, but without SAC proteins like Mad2 they will eventually adapt (Figure S6B).

      That Rad9-AID or Rad24-AID in the absence of added auxin (but in the presence of TIR1) is unable to sustain arrest suggests to us that low levels of Rad9 or Rad24 are not sufficient to maintain arrest.  As the reviewer notes, normal MAT switching doesn’t cause Rad53 phosphorylation or arrest, though early damage-induced events such as H2A phosphorylation do occur.  But our point is that Rad9 or Ddc2 is needed to maintain arrest only up to a certain point, after which they become superfluous and a different checkpoint arrest is imposed. At that point apparently a low level of these proteins plays no obvious role.

      (2) It is interesting that DDC no longer responds to the damage signaling after 15 h of DSB-induced prolonged checkpoint arrest after two DNA double-strand breaks. Is this also applicable to other adaptation mutants? The results might improve the broad impact of the current conclusions. It is also possible that the transition from DDC to SPC depends on simply the changes in signaling or in part due to the molecular changes in the status of DNA breaks or its flanking regions. Indeed, the proposed model suggests that the spreading of H2A phosphorylation to centromeric regions induces SAC and thus mitotic arrest. The authors could measure H2A phosphorylation near the centromere using ChIP assays at various intervals post-DNA damage. It is particularly interesting if depletion of Ddc2 at 15 h post DNA damage does not alter the level of H2A phosphorylation at or near centromere.

      Our previous data have suggested that the involvement of the SAC in prolonging DSB-induced arrest involved post-translational modification of centromeric chromatin such as the Mec1- and Tel1-dependent phosphorylation of the histone H2A (Dotiwala). In budding yeast there is also a similar DSB-induced modification of histone H2B (Lee et al.). To ask if there is an intrinsic activation of the SAC if the regions around centromeres were modified by checkpoint kinase phosphorylation, we examined cell cycle progression in strains in which histone H2A or histone H2B was mutated to their putative phosphomimetic forms (H2A-S129E and H2B-T129E).  As shown in Figure S11, there was no effect on the growth rate of these strains, or of the double mutant, suggesting that cells did not experience a delay in entering mitosis because of these modifications. We note that although histone H2A-S129E is recognized by an antibody specific for the phosphorylation of histone H2A-S129, the mutation to S129E may not be fully phosphomimetic. 

      (3) It is puzzling why Rad9-AID or Rad24-AID are proficient for DDC establishment but cannot sustain permanent arrest in the two break cells. It appears Rad53 phosphorylation for DDC is weaker in cells expressing Rad9-AID or Rad24-AID according to Fig.2B and C even though their protein level before IAA treatment is still robust. This might also explain why the results of depleting Rad53 and Rad9 are very different. It also raises concern if the effect of Rad24 depletion on checkpoint maintenance is in part due to the weaker checkpoint establishment. It might be necessary to use the AID2 system to redo Rad24 depletion to exclude such a possibility.

      We believe that the AID mutants are very sensitive to the low level of IAA present in yeast.  The instability of the protein is entirely dependent on the TIR1 SCF factor, so the proteins themselves are not intrinsically defective; they are just subject to degradation.  Overexpressing Rad9 allowed us to evaluate its role at late time points. 

      (4) It is intriguing that the switch from DDC to SAC might take place at around 12 h when yeasts with a single unrepairable break ignore DDC and resume cell cycling (so-called "adaptation"). Since 4h and 15h are far apart and the transition point from DDC to SAC likely takes place between these two points, it will be very helpful to analyze and compare cell cycle exit after 24 h by treating IAA at multiple points between 4-15h.

      When we add IAA to Mad2-AID and Mad1-AID 4 h after DSB induction, cells remain arrested for up to 12 h after DSB induction. At 15 h cells begin to exit checkpoint arrest indicating that the handoff of checkpoint arrest must occur between 12 to 15 h after DSB induction. If we degraded DNA damage checkpoint proteins at any point before Mad2, Mad1, and Bub2 begin to contribute to checkpoint arrest, then arrested cells will likely adapt in a similar manner to when IAA was added 4 h after DSB induction.

      (5) Some of the Western blot quality is poor. For instance, in Figure 6C, Mad1-AID level after IAA addition is not compelling especially because the TIR level (the loading control) is also very low.

      In Figure 6C, while the relative levels of TIR1 are similar in the IAA treated and untreated samples, there is no detectable amount of Mad1-AID in the IAA treated samples indicating that Mad1-AID was successful degraded with the AID system.

      (6) Fig. 8 is complex. It might be helpful to define the different types of arrows in the figure. The legend also has a spelling error, Rad23 should be Rad24.

      We’ve defined what each arrow means in the legend and corrected the spelling error in the figure legend.

      Reviewer #3 (Recommendations For The Authors):

      Major concerns:

      Much of the manuscript states that two unrepairable DSBs lead to a long and severe G2/M arrest. Two main cytological approaches are used to make this statement: bud size and number on plates after micromanipulation (microcolony assay), and cell and nuclear morphology in liquid cultures. While the latter gives a clear pattern that can be assigned to a G2/M block as expected by DDC, i.e. metaphase-like mononucleated cells with large buds, the former can only tell whether cells eventually reach a second S phase (large budded cells on the plate can be in a proper G2/M arrest, but can also be in an anaphase block or even in the ensuing G1). The authors always performed the microcolony assay, but there are several cases where the much more informative budding/DAPI assay is missing. These include Dun1-aid and others, but more importantly chk1D and its combinations with DDC proteins. Incidentally, for the microcolony assay, it is more accurate to label the y-axis of the corresponding graphs (and in the figure legends and main text) with something like "large budded cells"; "G2/M arrested cells" is misleading.

      Figures have been updated to more accurately reflect what we are measuring.

      The results obtained with the Bfa1/Bub2 partner are intriguing. These two proteins form a complex whose canonical function is to prevent exit from mitosis until the spindle is properly aligned, acting in a distinct subpathway within the SAC that blocks MEN rather than anaphase onset. The data presented by the authors suggest that, on the one hand, both SAC subpathways work together to block the cell cycle. However, why does canonical SAC (Mad1/Mad2) inactivation not lead to a transition from G2/M (metaphase-like) arrested cells to anaphase-like arrest maintained by Bfa1-Bub2? Since Bfa1-Bub2 is a target of DDC, is it possible that DDC knockdown also inactivates this checkpoint, allowing adaptation? On the other hand, can the authors provide more data to confirm and strengthen their claim of a Bfa1-independent Bub2 role in prolonged arrest? Perhaps long-term protein localization and PTM changes. Bub2-independent roles for Bfa1 have been reported, but not vice versa, to the best of my knowledge.

      In the mitotic exit network Bfa1/Bub2 prime activation of the pathway by bringing Tem1 to spindle pole bodies. Phosphorylation of Bfa1 causes Tem1 to be released and phosphorylate Cdc5 to trigger exit by MEN. It has been shown that DNA damage, in a cdc13-1 ts mutant, phosphorylates Bfa1 in a Rad53 and Dun1 dependent manner. This phosphorylation of Bfa1 could release Tem1 and prime cells to exit checkpoint arrest when cells pass through anaphase. Looking at Tem1 localization to spindle pole bodies and interactions with Bfa1/Bub2 in response to DNA damage might give insight into why cells don’t experience an anaphase-like arrest when they are released by either deactivation of the DNA damage checkpoint or SAC.

      We have previously shown that a deletion of bub2 in a 1-DSB background shortens DSB-induced checkpoint arrest. Deletion of bfa1 in a 2-DSB background showed ~80-70% of cells stuck in a large-budded state as measured through an adaptation assay tracking the morphology of G1 cells on a YP-Gal plate and DAPI staining. Deletion or degradation of bfa1 might not release cells from arrest because the Mad2/Mad1 prevent cells from transitioning into anaphase. Our DAPI data for Bub2-AID shows an increase in cells with 2 DAPI signals (transition into anaphase) and small budded cells indicating that degradation of Bub2 is releasing cells into anaphase and allowing cells to complete mitosis.

      Further suggestions:

      It would be richer if authors could provide more than one experimental replicate in some panels (e.g., S1A,B; S4A; and S6B).

      S1C confirms that Rad9-AID and Rad24-AID will adapt by 24 h even with the point mutant TIR1(F74G) which has lower basal degradation than TIR1. S4A has been updated with additional experimental replicates. The 48 h timepoint after DSB induction was to show the importance of Mad2 even when Ddc2 is overexpressed.

      Figure 1: Rearrange figure panels when they are first mentioned in the text. For example, it makes more sense to have the plate adaptation assay as panel B for both 1-DSB and 2-DSB strains, budding plus DAPI as panel C, and Rad53 as panel D.

      These figures have been rearranged in the order that they are mentioned in the paper.

      Figure 5: Correct Ph-5-IAA in the Rad53 WBs (it should be 5-Ph-IAA).

      This has been corrected.

      Figure S2: The straight line under the "+IAA" text box is misleading. I think it should also cover the "-2" time point, right? Also, check the figure legend. Information is missing and does not correspond to the figure layout.

      This has been corrected.

      Figure S3: Perhaps "Cell cycle profile as determined by budding and DAPI staining" is a better and more accurate legend title.

      The legend title has been updated to “Cell cycle profile as determined by budding and DAPI staining in Ddc2-AID and Rad53-AID mutants ± IAA 4 h after galactose.”

      Figure S5: Detection of both Rad53 and Ddc2 in the same blot could lead to misinterpretation as hyperphosphorylated Rad53 appears to coincide with Ddc2 migration.

      Figure S5A-B are representative western blots where Rad53 was probed to show activation of the DNA damage checkpoint by Rad53 phosphorylation. When measuring the relative abundance of Ddc2 we did not probe all blots for Rad53.

      Table S1: Include the post-hoc test used for comparisons after ANOVA.

      A Sidak post-hoc test was used in PRISM for the one-way ANOVA test. PRISM listed the Sidak post-hoc test as the recommended test to correct for multiple comparisons. A column has been added to S. Table 1 to show which post-hoc test was used.

      Page 10, line 4: The putative additive effect of chk1 knockout with Dun1 depletion should also be compared to chk1 alone (in Figure 3A).

      We address the additive effect of chk1 knockout with Dun1-AID depletion in a later section on Page 11, line 6. Since we had not explored possible effects from downstream targets of Rad53 for prolonging checkpoint arrest when Rad53 was depleted, we did not mention the effect of the chk1 knockout on Dun1 depletion.

      Page 14, second paragraph, line 4: "Figure 6A-D", is it not?

      Figure S6A is measuring checkpoint arrest in a deletion of mad2 in a 2-DSB strain. Figure 6A-D shows how degradation of Mad2-AID and Mad1-AID after the handoff of arrest causes cells to exit the checkpoint in a Rad53 independent manner.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Review:

      Summary:

      Bursicon is a key hormone regulating cuticle tanning in insects. While the molecular mechanisms of its function are rather well studied--especially in the model insect Drosophila melanogaster, its effects and functions in different tissues are less well understood. Here, the authors show that bursicon and its receptor play a role in regulating aspects of the seasonal polyphenism of Cacopsylla chinensis. They found that low temperature treatment activated the bursicon signaling pathway during the transition from summer form to winter form and affect cuticle pigment and chitin content, and cuticle thickness. In addition, the authors show that miR-6012 targets the bursicon receptor, CcBurs-R, thereby modulating the function of bursicon signaling pathway in the seasonal polyphenism of C. chinensis. This discovery expands our knowledge of the roles of neuropeptide bursicon action in arthropod biology.

      However, the study falls short of its claim that it reveals the molecular mechanisms of a seasonal polyphenism. While cuticle tanning is an important part of the pear psyllid polyphenism, it is not the equivalent of it. First, there are other traits that distinguish between the two morphs, such as ovarian diapause (Oldfield, 1970), and the role of bursicon signaling in regulating these aspects of polyphenism were not measured. Thus, the phenotype in pear psyllids, whereby knockdown bursicon reduces cuticle tanning seems to simply demonstrate the phenotypes of Drosophila mutants for bursicon receptor (Loveall and Deitcher, 2010, BMC Dev Biol) in another species (Fig. 2I, 4H). Second, the study fails to address the threshold nature of cuticular tanning in this species, although it is the threshold response (specifically, to temperature and photoperiod) that distinguishes this trait as a part of a polyphenism. Whereas miR-6012 was found to regulate bursicon expression, there no evidence is provided that this microRNA either responds to or initiates a threshold response to temperature. In principle, miR-6012 could regulate bursicon whether or not it is part of a polyphenism. Thus, the impact of this work would be significantly increased if it could distinguish between seasonal changes of the cuticle and a bona fide reflection of polyphenism.

      Thanks for your valuable suggestion. We concur with the review’s comment that cuticle tanning does not equate to the C. chinensis polyphenism. To better reflect the core focus of our research, we have revised the title to "Neuropeptide Bursicon and its receptor mediated the transition from summer-form to winter-form of Cacopsylla chinensis".

      In response to the reviewer's inquiry regarding the threshold nature of cuticular tanning in C. chinensis, we have included a detailed analysis of the phenotypic changes (including nymph phenotypes, cuticle pigment absorbance, and cuticle thickness) during the transition from summer-form to winter-form in C. chinensis at distinct time intervals (3, 6, 9, 12, 15 days) under different temperature conditions (10°C and 25°C). As shown in Figure S1, nymphs exhibit a light yellow and transparent coloration at 3, 6, and 9 days, while nymphs at 12 and 15 days display shades of yellow-green or blue-yellow under 25°C conditions. At 10°C conditions, the abdomen end turns black at 3, 6, and 9 days. By the 12 days, numerous light black stripes appear on the chest and abdomen of nymphs at 10°C. At 15 days, nymphs exhibit an overall black-brown appearance, featuring dark brown stripes on the left and right sides of each chest and abdominal section. Furthermore, the end of the abdomen and back display a large black-brown coloration at 10°C (Figure S1A). The UV absorbance of the total pigment extraction at a 300 nm wavelength markedly increases following 10°C exposure for 6, 9, 12, and 15 days compared to the 25°C treatment group (Figure S1B). Cuticle thicknesses also increased following 10°C exposure for 6, 9, 12, and 15 days compared to the 25°C treatment group (Figure S1C). The detailed results (L122-143), materials and methods (L647-652), and discussion (L319-322) have been added in our revised manuscript.

      Regarding the response of miR-6012 to temperature, we have already determined its expression at 3, 6, 10 days under different temperatures in the previous Figure 5E. We now included additional time intervals (9, 12, 15 days) in the updated Figure 5E. Our results indicate a significant decrease in the expression levels of miR-6012 after 10°C treatment for 3, 6, 9, 12, 15 days compared to the 25°C treatment group. Detailed information regarding this has been integrated into the Materials and Methods (Line 608-610) of our revised manuscript.

      Strengths:

      This study convincingly identifies homologs of the genes encoding the bursicon subunits and its receptor, showing an alignment with those of another psyllid as well as more distant species. It also demonstrates that the stage- and tissue-specific levels of bursicon follow the expected patterns, as informed by other insect models, thus validating the identity of these genes in this species. They provide strong evidence that the expression of bursicon and its receptor depend on temperature, thereby showing that this trait is regulated through both parts of the signaling mechanism.

      Several parallel measurements of the phenotype were performed to show the effects of this hormone, its receptor, and an upstream regulator (miR-6012), on cuticle deposition and pigmentation (if not polyphenism per se, as claimed). Specifically, chitin staining and TEM of the cuticle qualitatively show difference between controls and knockdowns, and this is supported by some statistical tests of quantitative measurements (although see comments below). Thus, this study provides strong evidence that bursicon and its receptor play an important role in cuticle deposition and pigmentation in this psyllid.

      The study identified four miRNAs which might affect bursicon due to sequence motifs. By manipulating levels of synthetic miRNA agonists, the study successfully identified one of them (miR-6012) to cause a cuticle phenotype. Moreover, this miRNA was localized (by FISH) to the cuticle, body-wide. To our knowledge, this is the first demonstrated function for this miRNA, and this study provides a good example of using a gene of known function as an entry point to discovering others influencing a trait. Thus, this finding reveals another level of regulation of cuticle formation in insects.

      Weaknesses:

      (1) The introduction to this manuscript does not accurately reflect progress in the field of mechanisms underlying polyphenism (e.g., line 60). There are several models for polyphenism that have been used to uncover molecular mechanisms in at least some detail, and this includes seasonal polyphenisms in Hemiptera. Therefore, the justification for this study cannot be predicated on a lack of knowledge, nor is the present study original or unique in this line of research (e.g., as reviewed by Zhang et al. 2019; DOI: 10.1146/annurev-ento-011118-112448). The authors are apparently aware of this, because they even provide other examples (lines 104-108); thus the introduction seems misleading as framed.

      Thanks for your excellent suggestion. We have added the paper of Zhang et al. 2019 which recommended by reviewer (DOI: 10.1146/annurev-ento-011118-112448) in Line 57 of our revised manuscript. The statement has been revised to “However, the specific molecular mechanism underling temperature-dependent polyphenism still require further clarification” in Line 60-61 of our revised manuscript.

      (2) The data in Figure 2H show "percent of transition." However, the images in 2I show insects with tanned cuticle (control) vs. those without (knockdown). Yet, based on the description of the Methods provided, there appears to be no distinction between "percent of transition" and "percent with tanning defects". This an important distinction to make if the authors are going to interpret cuticle defects as a defect in the polyphenism. Furthermore, there is no mention of intermediate phenotypes. The data in 2H are binned as either present or absent, and these are the phenotypes shown in 2I. Was the phenotype really an all-or-nothing response? Instead of binning, which masks any quantitative differences in the tanning phenotypes, the authors should objectively quantify the degree of tanning and plot that. This would show if and to what degree intermediate tanning phenotypes occurred, which would test how bursicon affects the threshold response. This comment also applies to the data in Figures 4G and 6G. Since cuticle tanning is present in more insect than just those with seasonal polyphenism, showing how this responds as a threshold is needed to make claims about polyphenism.

      We appreciate your insightful comments. As shown in Figure 1 of our published paper (Zhang et al., 2013; doi.org/10.7554/eLife.88744.3) and Figure 2C-2I of the current manuscript, the transition from summer-form to winter-form entails not only external cuticular tanning but also alterations in internal cuticular chitin levels and cuticle thickness. While external cuticular tanning serves as a prominent and easily observable indicator of this transition, it is crucial to acknowledge that internal changes also play a significant role and should be taken into consideration. Therefore, we propose that the term "percent of transition" may be more suitable than "percent with tanning defects" to describe this process accurately.

      In order to provide a more visually comprehensive understanding of the phenotypic changes during the transition from summer-form to winter-form, we have included images at different time points (3, 6, 9, 12, 15 days) under different temperature conditions in Figure S1A of our revised manuscript. Specifically, under the 10°C condition, nymphs exhibit abdomen tanning after 6 and 9 days of treatment, while the thorax remains untanned. By days 12 to 15, both the abdomen and thorax of the nymphs show tanning, resulting in the majority of summer-form nymphs transitioning into winter-form, as depicted in Figure 2I for comparison. This observation indicates the presence of a critical threshold for cuticle tanning of C. chinensis following exposure to 10°C. Nymphs that did not undergo the transition to winter-form succumbed to the cold, highlighting the absence of intermediate phenotypes at 12-15 days under the 10°C condition. The UV absorbance of the total pigment extraction at a 300 nm wavelength markedly increases following 10°C exposure for 6, 9, 12, and 15 days compared to the 25°C treatment group (Figure S1B). Additionally, cuticle thickness shows an increase following 10°C exposure for 6, 9, 12, and 15 days compared to the 25°C treatment group (Figure S1C). These results highlight the relationship between the threshold of cuticular tanning and the transition process. The detailed description and information have been added in Results (L122-143), Materials and Methods (L647-652), and Discussion (L319-322) of our manuscript.

      (3) This study also does not test the threshold response of cuticle phenotypes to levels of bursicon, its receptor, or miR-6012. Hormone thresholds are the most widespread and, in most systems where polyphenism has been studied, the defining characteristic of a polyphenism (e.g., Nijhout, 2003, Evol Dev). Quantitative (not binned) measurements of a polyphenism marker (e.g., chitin) should be demonstrated to result as a threshold titer (or in the case of the receptor, expression level) to distinguish defects in polyphenism from those of its component trait.

      Thanks for your valuable feedback. We have supplemented additional data on the phenotypes (Figure S1A), cuticle pigment absorbance (Figure S1B), cuticle thickness (Figure S1C), expression levels of bursicon (Figure 1E and 1F), its receptors (Figure 3G), and miR-6012 (Figure 5E) corresponding to nymphs treated over different time periods (3, 6, 9, 12, 15 days) under both 10°C and 25°C conditions in our revised manuscript.

      While all these identified markers exhibit a strong correlation with the transition from summer-form to winter-form, it is important to note that they are not suitable as definitive thresholds due to the nature of relative gene expression quantification and chitin content assessment, rather than absolute quantitation. Further, given that tanning hormones are neuropeptides present in trace amounts in insects, unlike steroid hormones, determining their titers poses a considerable challenge.

      (4) Cuticle issue:

      (a) Unlike Fig. 6D and F, Figs. 2D and F do not correspond to each other. Especially the lack and reduction of chitin in ds-a+b! By fluorescence microscopy there is hardly any signal, whereas by TEM there is a decent cuticle. Additionally, the dsGFP control cuticle in 2D is cut obliquely with a thick and a thin chitin layer. This is misleading.

      Thanks for your insightful feedback. We have replaced the previous WGA chitin staining images in the dsCcbursα+β treatment of Figure 2D with new representative images aligning with Figure 2F. Furthermore, the presence of both thin and thick chitin layers observed in the dsEGFP treatment of Figure 2D could potentially be ascribed to the chitin content in the insect midgut or fat body as previously discussed (Zhu et al., 2016). It is notable that during the process of cuticle staining, the chitin located in the midgut and fat body of C. chinensis may exhibit green fluorescence, leading to the appearance of a thin chitin layer. A detailed analysis and elucidation of these observations have been added in the discussion section (Lines 347-352) of our revised manuscript.

      Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and Functions of Chitin in Insects. Annu Rev Entomol. 2016;61:177-196. doi:10.1146/annurev-ento-010715-023933.

      (b) In Figs. 2F and 4F, the endocuticle appears to be missing, a portion of the procuticle that is produced post-molting. As tanning is also occurring post-molting, there seems to be a general problem with cuticle differentiation at this time point. This may be a timing issue. Please clarify.

      Thank you for your suggestion. The insect cuticle typically comprises three distinct layers (endocuticle, exocuticle, and epicuticle), with the thickness of each layer varying among different insect species. Cuticle differentiation is closely linked to the molting cycle of insects (Mrak et al., 2017). In our study, nymphal cuticles exhibited normal differentiation patterns, characterized by a thin epicuticle and comparable widths of the endocuticle and exocuticle following dsEGFP treatment, as illustrated in Figure 2F and 4F. Conversely, nymphs treated with dsCcBurs-α, dsCcBurs-β, and dsCcburs-R displayed impaired development, manifesting only the exocuticle without a discernible endocuticle layer. These findings suggest that bursicon genes and their receptor play a pivotal role in regulating insect cuticle development (Costa et al., 2016). We have added some discussion about these results in Lines 356-367 of our revised manuscript.

      Mrak, P., Bogataj, U., Štrus, J., & Žnidaršič, N. (2017). Cuticle morphogenesis in crustacean embryonic and postembryonic stages. Arthropod structure & development, 46(1), 77–95. https://doi.org/10.1016/j.asd.2016.11.001

      Costa, C. P., Elias-Neto, M., Falcon, T., Dallacqua, R. P., Martins, J. R., & Bitondi, M. (2016). RNAi-mediated functional analysis of Bursicon genes related to adult cuticle formation and tanning in the Honeybee, Apis mellifera. PloS one, 11(12), e0167421. https://doi.org/10.1371/journal.pone.0167421

      (c) To provide background information, it would be useful analyze cuticle formation in the summer and winter morphs of controls separately by light and electron microscopy. More baseline data on these two morphs is needed.

      Thanks for your valuable feedback. To provide more background information about cuticle formation, we supplied the results of nymph phenotypes, cuticle pigment absorbance, and cuticle thickness at distinct time intervals (3, 6, 9, 12, 15 days) under different temperatures of 10°C and 25°C in Figure S1 of our revised manuscript. Hope these results can help better understand the baseline data on these two morphs.

      (d) For the TEM study, it is not clear whether the same part of the insect's thorax is being sectioned each time, or if that matters. There is not an obvious difference in the number of cuticular layers, but only the relative widths of those layers, so it is difficult to know how comparable those images are. This raises two questions that the authors should clarify. First, is it possible that certain parts of the thoracic cuticle, such as those closer to the intersegmental membrane, are naturally thinner than other parts of the body? Second, is the tanning phenotype based on the thickness or on the number of chitin layers, or both? The data shown later in Figure 4I, J convincingly shows that the biosynthesis pathway for chitin is repressed, but any clarification of what this might mean for deposition of chitin would help to understand the phenotypes reported. Also, more details on how the data in Fig. 2G were collected would be helpful. This also goes for the data in Fig. 4 (bursicon receptor knockdowns).

      Thanks for your great comment. The TEM investigation adhered to a standardized protocol was used as previous description (Zhang et al., 2023), Initially, insect heads were uniformly excised and then fixed in 4% paraformaldehyde. Subsequently, a consistent cutting and staining procedure was executed at a uniform distance above the insect's thorax. The dorsal region of the thorax was specifically chosen for subsequent fluorescence imaging or transmission electron microscopy assessments with the specific objective of quantifying cuticle thickness. Regarding the measurement of cuticle thickness, use the built-in measuring ruler on the software to select the top and bottom of the same horizontal line on the cuticle. Measure the cuticle of each nymph at two close locations. Six nymphs were used for each sample. Randomly select 9 values and plot them. The related description has been added in the Materials and Methods (Line 660-668) of our revised manuscript.

      Zhang, S.D., Li, J.Y., Zhang, D.Y., Zhang, Z.X., Meng, S.L., Li, Z., & Liu, X.X. (2023). MiR-252 targeting temperature receptor CcTRPM to mediate the transition from summer-form to winter-form of Cacopsylla chinensis. eLife, 12. https://doi.org/10.7554/eLife.88744

      (5) Tissue issue:

      The timed experiments shown in all figures were done in whole animals. However, we know from Drosophila that Bursicon activity is complex in different tissues. There is, thus, the possibility, that the effects detected on different days in whole animals are misleading because different tissues--especially the brain and the epidermis, may respond differentially to the challenge and mask each other's responses. The animal is small, so the extraction from single tissue may be difficult. However, this important issue needs to be addressed.

      Thanks for your excellent suggestion. We express our heartfelt appreciation to the reviewer for their valuable input regarding the challenges involved in dissecting various tissue sections from the diminutive early instar nymphs of C. chinensis. In light of the metamorphic transition of C. chinensis across developmental stages, this study concentrated on examining the extensive phenotypic alterations. Consequently, intact samples of C. chinensis were specifically chosen for for qPCR analysis. The related descriptions have been added in the Materials and Methods (Line 513, 517, 553, 555, and 613) and Discussion (Line 327-329) of our revised manuscript.

      (6) No specific information is provided regarding the procedure followed for the rescue experiments with burs-α and burs-β (How were they done? Which concentrations were applied? What were the effects?). These important details should appear in the Materials and Methods and the Results sections.

      Thanks for your excellent suggestion. For the rescue experiments, the dsRNA of CcBurs-R and proteins of burs α-α, burs β-β homodimers, or burs α-β heterodimer (200 ng/μL) were fed together. The concentration of heterodimer protein of CcBurs-α+β was 200 ng/μL. The heterodimer protein of CcBurs-α+β fully rescued the effect of RNAi-mediated knockdown on CcBurs-R expression, while α+α or β+β homodimers did not (Figure 3F). Feeding the α+β heterodimer protein fully rescued the defect in the transition percent and morphological phenotype after CcBurs-R knockdown (Figure 4G-4H). We have added the detailed methods of rescued experiments and specific concentrations in the Materials and Methods (Line 561-563), and Results (Line 263) of our revised manuscript.

      (7) Pigmentation

      (a) The protocol used to assess pigmentation needs to be validated. In particular, the following details are needed: Were all pigments extracted? Were pigments modified during extraction? Were the values measured consistent with values obtained, for instance, by light microscopy (which should be done)?

      Thanks for your excellent comment. Our protocol for pigment extracted as detailed in Bombyx mori, the cuticles were pulverized in liquid nitrogen and then dissolved in 30 milliliters of acidified methanol (Futahashi et al., 2012; Osanai-Futahashi et al., 2012). Thus, all cuticle pigments were dissected and treated with acidified methanol. Pigments were not modified during extraction.. The details description have been integrated into the Materials and Methods (Line 630-633) of our revised manuscript.

      Futahashi, R., Kurita, R., Mano, H., & Fukatsu, T. (2012). Redox alters yellow dragonflies into red. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12626–12631. https://doi.org/10.1073/pnas.1207114109

      Osanai-Futahashi, M., Tatematsu, K. I., Yamamoto, K., Narukawa, J., Uchino, K., Kayukawa, T., Shinoda, T., Banno, Y., Tamura, T., & Sezutsu, H. (2012). Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. The Journal of biological chemistry, 287(21), 17706–17714. https://doi.org/10.1074/jbc.M111.321331

      (b) In addition, pigmentation occurs post-molting; thus, the results could reflect indirect actions of bursicon signaling on pigmentation. The levels of expression of downstream pigmentation genes (ebony, lactase, etc) should be measured and compared in molting summer vs. winter morphs.

      Thanks for your valuable suggestion. Actually, we already studied the function of some downstream pigmentation genes, including ebony, Lactase, Tyrosine hydroxylase, Dopa decarboxylase, and Acetyltransferase. The variations in the expression patterns of these genes are closely tied to the molting dynamics of nymphs undergoing transitions between summer-form and winter-form. These findings will put in another manuscript currently being prepared for submission, thus detailed outcomes are not suitable for inclusion in the current manuscript.

      (8) L236: "while the heterodimer protein of CcBurs α+β could fully rescue the effect of CcBurs-R knockdown on the transition percent (Figure 4G 4H)". This result seems contradictory. If CcBurs-R is the receptor of bursicon, the heterodimer protein of CcBurs α+β should not be able to rescue the effect of CcBurs-R knockdown insects. How can a neuropeptide protein rescue the effect when its receptor is not there! If these results are valid, then the CcBurs-R would not be the (sole) receptor for CcBurs α+β heterodimer. This is a critical issue for this manuscript and needs to be addressed (also in L337 in Discussion).

      Thanks for your insightful suggestion. Following the administration of dsCcBur-R to C. chinensis, the expression of CcBurs-R exhibited a reduction of approximately 66-82% as depicted in Figure 4A, rather than complete suppression. Activation of endogenous CcBurs-R through feeding of the α+β heterodimer protein results in an increase in CcBurs-R expression, with the effectiveness of the rescue effect contingent upon the dosage of the α+β heterodimer protein. Consequently, the capacity of the α+β heterodimer protein to effectively mitigate the impacts of CcBurs-R knockdown on the conversion rate is clearly demonstrated. We have added additional discussion in Line 396-403 of our revised manuscript.

      (9) Fig. 5D needs improvement (the magnification is poor) and further explanation and discussion. mi6012 and CcBurs-R seem to be expressed in complementary tissues--do we see internal tissues also (see problem under point 2)? Again, the magnification is not high enough to understand and appreciate the relationships discussed.

      Thanks for your valuable suggestion. In order to enhance the resolution of the magnified images, we conducted FISH co-localization of miR-6012 and CcBurs-R in 3rd instar nymphs and obtained detailed zoomed-in images. As shown in the magnified view of Figure 5D, miR-6012 and CcBurs-R appear to exhibit complementary expression patterns in tissues. During the FISH assays, epidermis transparency of C. chinensis was achieved via decolorization treatment. Noteworthy observations from Figure 3G and Figure 5E reveal an inverse correlation in the expression profiles of CcBurs-R and miR-6012. Consequently, the FISH results distinctly highlight a significant disparity in the expression levels of CcBurs-R and miR-6012 within the same tissue. We have added related explanation and discussion in Line 291-293 of our revised manuscript.

      (10) The schematic in Fig. 7 is a useful summary, but there is a part of the logic that is unsupported by the data, specifically in terms of environmental influence on cuticle formation (i.e., plasticity). What is the evidence that lower temperatures influence expression of miR-6012? The study measures its expression over life stages, whether with an agonist or not, over a single temperature. Measuring levels of expression under summer form-inducing temperature is necessary to test the dependence of miR-6012 expression on temperature. Otherwise, this result cannot be interpreted as polyphenism control, but rather the control of a specific trait.

      Thanks for your great suggestion. We actually conducted the assessment of miR-6012 expression at specific time intervals (3, 6, 9, 12, 15 days) under different temperatures of 10°C and 25°C. As depicted in Figure 5E, the expression levels of miR-6012 were notably reduced at 10°C compared to 25°C. Additionally, the evaluation of agomir-6012 expression level of C. chinensis under 25°C conditions at various time points (3, 6, 9, 12, 15 days) revealed no significant changes. Hence, we suggest that the impact of miR-6012 on the seasonal morphological transition is influenced upon temperature.

      Recommendations for the authors:

      The authors report a novel role of Bursicon and its receptor in regulating the seasonal polyphenism of Cacopsylla chinensis. They found that low temperature treatment (10°C) activated the Bursicon signaling pathway during the transition from summer-form to winter-form, which influences cuticle pigment content, cuticle chitin content, and cuticle thickness. Moreover, the authors identified miR-6012 and show that it targets CcBurs-R, thereby modulating the function of Bursicon signaling pathway in the seasonal polyphenism of C. chinensis. This discovery expands our knowledge of multiple roles of neuropeptide bursicon action in arthropod biology. However, the m

      anuscript does have several major weaknesses, described under "Public review", which the authors need to address.

      Major issues:

      (1) L152-154 Fig S2E and S2F: Bursicon has been shown to be expressed in the CNS in a specific set of neurons. For example, In the larval CNS of Manduca sexta, bursicon expression is restricted to the subesophageal ganglion (SG), thoracic ganglia, and first abdominal ganglion. Pharate pupae and pharate adults show expression of this heterodimer in all ganglia. In Drosophila larvae, expression of a bursicon heterodimer is confined to abdominal ganglia. The additional neurons in the ventral nerve cord express only burs. In pharate adults, bursicon is produced by neurons in the SG and abdominal ganglia. I am wondering where bursicon subunits are expressed in the C. chinensis CNS? Since the authors have the antibodies, it would be useful to include immunocytochemical staining of bursicon alpha and beta in the CNS. The qPCR results from head or other tissues (Fig S2E and S2F) is not the most informative way to document localization of gene expression. Regarding the qPCR results, they show that the cuticle and the fat body express CcBurs-α and CcBurs-β. Can the authors confirm this unexpected results independently?

      Thanks for your insightful comment. In this study, we did not directly used antibodies targeting bursicon subunits, instead, the bursicon subunits along with a histidine tag were integrated into the expression vector pcDNA3.1 using homologous recombination. The experimental procedures were executed as follows: initially, the histidine tag was fused to the pcDNA3.1-mCherry vector through homologous recombination to generate the recombinant plasmid pcDNA3.1-his-mCherry. Subsequently, the amino acid sequences of the two bursicon subunits were introduced into the pcDNA3.1-his-mCherry vector via homologous recombination to produce the recombinant plasmids pcDNA3.1-CcBurs-α-his-mCherry and pcDNA3.1-CcBurs-β-his-mCherry. Finally, the P2A sequence was incorporated into the vector using reverse PCR to yield the recombinant plasmids pcDNA3.1-CcBurs-α-his-P2A-mCherry and pcDNA3.1-CcBurs-β-his-P2A-mCherry. Consequently, the bursicon subunits, along with the histidine tag, were capable of generating fusion proteins with the histidine tag. Western blot analysis was conducted using antibodies targeting the histidine tag, enabling the detection of histidine expression, which corresponds to the expression of the bursicon subunits. However, they are not suitable to conduct the in vivo immunocytochemical staining of bursicon alpha and beta in the CNS.

      Due to the diminutive size of the C. chinensis nymphs, dissection of the central nervous system (CNS) was unfeasible, precluding specific assessment of bursicon expression in the CNS. Prior literature has documented the expression of bursicon subunits in the epidermis and fat body of C. chinensis. Studies suggest that bursicon subunits not only play a role in the melanization and sclerotization processes of insect epidermis but also have significant roles in insect immunity (An et al., 2012). The presence of bursicon subunits in the epidermis, gut, and fat body of C. chinensis may indicate their crucial roles in the immune functions of these tissues. Further investigation is required to elucidate the specific immune functions they perform, hinting at the potential expression of these bursicon subunits in these two tissues.

      An, S., Dong, S., Wang, Q., Li, S., Gilbert, L. I., Stanley, D., & Song, Q. (2012). Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish. PloS one, 7(3), e34510. https://doi.org/10.1371/journal.pone.0034510

      (2) L222: "CcBurs-R is the Bursicon receptor of C. chinensis". Is this statement supported by affinity binding assay results?

      Thanks for your excellent suggestion. We employed a fluorescence-based assay to quantify calcium ion concentrations and investigate the binding affinities of bursicon heterodimers and homodimers to the bursicon receptor across varying concentrations. Our findings suggest that activation of the receptor by the burs α-β heterodimer leads to significant alterations in intracellular calcium ion levels, whereas stimulation with burs α-α and burs β-β homodimers, in conjunction with Adipokinetic hormone (AKH), maintains consistent intracellular calcium ion levels. Consequently, this research definitively identifies CcBurs-R as the bursicon receptor. For further details, please refer to the Materials and Methods (Lines 493-504), Results (Lines 231-239), and Discussion (Lines 377-384) of our revised manuscript.

      (3) L245 Figure 4I-4J: Since knockdown of bursicon and its receptor cause a decrease pigment accumulation in the cuticle, it would be useful to examine 1-2 rate limiting enzyme-encoding genes in the bursicon regulated cuticle darkening process if possible (as was done for genes involved in cuticle thickening).

      Thanks for your excellent comment. Following the further study, a thorough analysis was conducted to evaluate the impact of bursicon and its receptor on the expression levels of Lactase, Tyrosine hydroxylase, Dopa decarboxylase, Acetyltransferase, and the effects of RNA interference targeting these genes on the seasonal morphological transition. The findings underscored their role in the bursicon-mediated cuticle darkening process. However, as this section is slated for inclusion in an upcoming manuscript intended for submission, it is deemed unsuitable for incorporation into the current manuscript.

      Minor issues:

      (1) L75 "stronger resistance (Ge et al., 2019; Tougeron et al., 2021)". Stronger resistance to what? Stronger resistance to environmental stress or weather condition? Please clarify.

      Thanks for your excellent suggestion. We have changed the statement to “stronger resistance to weather condition” in Line 75 of our revised manuscript.

      (2) L132 Figure 1A and 1B: Bursicon sequence was first identified and functionally characterized in Drosophila melanogaster: is there any reason why Drosophila bursicon sequences were not included in the comparison?

      Thanks for your excellent comment. We have added the sequence of Burs-α and Burs-β of D. melanogaster in the sequence alignment results of Figure 1A and 1B of our revised manuscript.

      (3) Although the authors clearly identify and validate the function for the bursicon genes and its receptor's, there is no mention of whether duplicates of this gene are also present in the pear psyllid. This has been known to happen in otherwise conserved hormone pathways (e.g., insulin receptor in some insects), so a formal check of this should be done.

      Thanks for your excellent comment. As shown in Figure S2A-S2B and 3B, there are two bursicon subunit genes and only one bursicon receptor gene in our selected insect species, for examples Drosophila melanogaster, Diaphorina citri, Bemisia tabaci, Nilaparvata lugens, and Sogatella furcifera. In our transcriptome database of C. chinensis, we also only identified two bursicon subunit genes and only one bursicon receptor gene.

      (4) Line 41: Here, as in the title, "fascinating" is a subjective judgement that does not improve a study's presentation.

      Thanks for your great comment. We have changed "fascinating" to "transformation" in Line 41 and also revised the title of our revised manuscript.

      (5) Line 44: What makes some fields "cutting-edge" and others not?

      Thanks for your excellent suggestion. The expression of "in cutting-edge fields" has been deleted in Line 44 of our revised manuscript.

      (6) Line 97: This is a peculiar choice of reference for the concept of slower development in cold temperatures. The concept of degree-days and growth rates is old and widespread in entomology.

      Thanks for your insightful comment. The reference of Nyamaukondiwa et al., 2011 in Line 95 has been deleted in our revised manuscript.

      (7) Lines 149-150: What justifies the assumption that higher levels of expression mean a more important role? This gene might be just as necessary for development of the summer form, even if expressed at lower levels.

      Thanks for your excellent suggestion. This sentence has been revised to “Increased gene expression levels may potentially contribute to the transition from summer-form to winter-form in C. chinensis.” in Line 168-169 of our revised manuscript.

      (8) The blue arrow in Fig. 7 is confusing.

      Thanks for your excellent suggestion. In Figure 7, the blue arrow represents the down-regulated expression of miR-6012. We have added a description about the blue arrow in Figure 7 of our revised manuscript.

    1. Another reason why it saves time is that here you canimply things instead of having to express them in full,for your Card-System and its Headings need only to beclear to yourself (see p. 67), whereas a complete Essayor Speech must be in Sentences and must be clear toyour readers or hearers as well. In the Cards you canuse all kinds of Abbreviations (p. 70) : these, again,need only be clear to yourself.

      Miles touches on the interplay of knowledge written down on index cards and the knowledge which is kept only in one's mind. Some practitioners in the space from 2013-2024 seem to imply that they're writing almost everything out in far deeper detail than Miles would indicate. In his incarnation, much of the knowledge might be more quickly indicated by a short sentence or heading which the brain can associate to longer explanations.

      This sort of indexing is akin to some of the method potentially seen in Marshall Mathers' zettelkasten.


      I'm creating a tag here for "card index for productivity" to track the idea of productivity in writing which I'm specifically using separately from the tag "card index as productivity system" which is used to describe their use for project tracking systems in systems like GTD, Memindex, etc.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Many thanks to the editors for the reviewing of the revised manuscript.

      We are very grateful to the Reviewers for their time and for the appreciation of the revision.

      We thank the Reviewer 3 for acknowledging the use of sulforhodamine B (SRB) fluorescence as a real-time readout of astrocyte volume dynamics. Experimental data in brain slices were provided to validate this approach.<br /> The incomplete matching of our observation with early reported data in cultured astrocytes (e.g., Solenov et al., AJP-Cell, 2004), might reflect certain of their properties differing from the slice/in vivo counterparts as discussed in the manuscript.<br /> The study (T.R. Murphy et al., Front Cell Neurosci., 2017) showed that AQP4 knockout increased astrocyte swelling extent in response to hypoosmotic solution in brain slices (Fig 9), and discussed '... AQP4 can provide an efficient efflux pathway for water to leave astrocytes.’ Correspondingly, our data suggest that AQP4 mediate astrocyte water efflux in basal conditions.<br /> We have discussed the study (Igarashi et al., NeuroReport 2013); our current data would help to understand the cellular mechanisms underlying the finding of Igarashi et al.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Pham and colleagues provide an illuminating investigation of aquaporin-4 water flux in the brain utilizing ex vivo and in vivo techniques. The authors first show in acute brain slices, and in vivo with fiber photometry, SRB-loaded astrocytes swell after inhibition of AQP4 with TGN-020, indicative of tonic water efflux from astrocytes in physiological conditions. Excitingly, they find that TGN-020 increases the ADC in DW-MRI in a region-specific manner, potentially due to AQP4 density. The resolution of the DW-MRI cannot distinguish between intracellular or extracellular compartments, but the data point to an overall accumulation of water in the brain with AQP4 inhibition. These results provide further clarity on water movement through AQP4 in health and disease.

      Overall, the data support the main conclusions of the article, with some room for more detailed treatment of the data to extend the findings.

      Strengths:

      The authors have a thorough investigation of AQP4 inhibition in acute brain slices. The demonstration of tonic water efflux through AQP4 at baseline is novel and important in and of itself. Their further testing of TGN-020 in hyper- and hypo-osmotic solutions shows the expected reduction of swelling/shrinking with AQP4 blockade.

      Their experiment with cortical spreading depression further highlights the importance of water efflux from astrocytes via AQP4 and transient water fluxes as a result of osmotic gradients. Inhibition of AQP4 increases the speed of tissue swelling, pointing to a role in the efflux of water from the brain.

      The use of DW-MRI provides a non-invasive measure of water flux after TGN-020 treatment.

      We thank the reviewer for the insightful comments.

      Weaknesses:

      The authors specifically use GCaMP6 and light sheet microscopy to image their brain sections in order to identify astrocytic microdomains. However, their presentation of the data neglects a more detailed treatment of the calcium signaling. It would be quite interesting to see whether these calcium events are differentially affected by AQP4 inhibition based on their cellular localization (ie. processes vs. soma vs. vascular end feet which all have different AQP4 expressions).

      Following the suggestion, we provide new data on the effect of AQP4 inhibition on spontaneous calcium signals in perivascular astrocyte end-feet. As shown now in Fig.S2, acute application of TGN020 induced Ca2+ oscillations in astrocyte end-feet regions where the GCaMP6 labeling lines the profile of the blood vessel. It is noted that on average, the strength of basal Ca2+ signals in the end-feet is higher than that observed across global astrocyte territories (4.65 ± 0.55 vs. 1.45 ± 0.79, p < 0.01), as does the effect of TGN (8.4 ± 0.62 vs. 6.35 ± 0.97, p < 0.05; Fig S2 vs. Fig 2B). This likely reflects the enrichment of AQP4 in astrocyte end-feet. We describe the data in Fig.S2, and on page 8, line 20 – 23.  

      We now use the transgenic line GLAST-GCaMP6 for cytosolic GCaMP6 expression in astrocytes. Spontaneous calcium signals, reflected by transient fluorescence rises, occur in discrete micro-domains whereas the basal GCaMP6 fluorescence in the soma is weak. In the present condition, it is difficult to unambiguously discriminate astrocyte soma from the highly intermingled processes. 

      The authors show the inhibition of AQP4 with TGN-020 shortens the onset time of the swelling associated with cortical spreading depression in brain slices. However, they do not show quantification for many of the other features of CSD swelling, (ie. the duration of swelling, speed of swelling, recovery from swelling).

      Regarding the features of the CSD swelling, we have performed new analysis to quantify the duration of swelling, speed of swelling and the recovery time from swelling in control condition and in the presence of TGN-020. The new analysis is now summarized in Fig. S5. Blocking AQP4 with TGN-020 increases the swelling speed, prolongs the duration of swelling and slows down the recovery from swelling, confirming our observation that acute inhibition of AQP4 water efflux facilitates astrocyte swelling while restrains shrinking. We describe the result on page 11, line 19-21. 

      Significance:

      AQP4 is a bidirectional water channel that is constitutively open, thus water flux through it is always regulated by local osmotic gradients. Still, characterizing this water flux has been challenging, as the AQP4 channel is incredibly water-selective. The authors here present important data showing that the application of TGN-020 alone causes astrocytic swelling, indicating that there is constant efflux of water from astrocytes via AQP4 in basal conditions. This has been suggested before, as the authors rightfully highlight in their discussion, but the evidence had previously come from electron microscopy data from genetic knockout mice.

      AQP4 expression has been linked with the glymphatic circulation of cerebrospinal fluid through perivascular spaces since its rediscovery in 2012 [1]. Further studies of aging[2], genetic models[3], and physiological circadian variation[4] have revealed it is not simply AQP4 expression but AQP4 polarization to astrocytic vascular endfeet that is imperative for facilitating glymphatic flow. Still, a lingering question in the field is how AQP4 facilitates fluid circulation. This study represents an important step in our understanding of AQP4's function, as the basal efflux of water via AQP4 might promote clearance of interstitial fluid to allow an influx of cerebrospinal fluid into the brain. Beyond glymphatic fluid circulation, clearly, AQP4-dependent volume changes will differentially alter astrocytic calcium signaling and, in turn, neuronal activity.

      (1) Iliff, J.J., et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci Transl Med, 2012. 4(147): p. 147ra111.

      (2) Kress, B.T., et al., Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 2014. 76(6): p. 845-61.

      (3) Mestre, H., et al., Aquaporin-4-dependent Glymphatic Solute Transport in the Rodent Brain. eLife, 2018. 7.

      (4) Hablitz, L., et al., Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications, 2020. 11(1).

      We thank the reviewer in acknowledging the significance of our study and the functional implication in brain glymphatic system. We have now highlighted the mentioned studies as well as the potential implication glymphatic fluid circulation (page 4, line 9-10; page 5, line 1-3; and page 19, line 3-10). 

      Reviewer #2 (Public Review):

      Summary:

      The paper investigates the role of astrocyte-specific aquaporin-4 (AQP4) water channel in mediating water transport within the mouse brain and the impact of the channel on astrocyte and neuron signaling. Throughout various experiments including epifluorescence and light sheet microscopy in mouse brain slices, and fiber photometry or diffusion-weighted MRI in vivo, the researchers observe that acute inhibition of AQP4 leads to intracellular water accumulation and swelling in astrocytes. This swelling alters astrocyte calcium signaling and affects neighboring neuron populations. Furthermore, the study demonstrates that AQP4 regulates astrocyte volume, influencing mainly the dynamics of water efflux in response to osmotic challenges or associated with cortical spreading depolarization. The findings suggest that AQP4-mediated water efflux plays a crucial role in maintaining brain homeostasis, and indicates the main role of AQP4 in this mechanism. However authors highlight that the report sheds light on the mechanisms by which astrocyte aquaporin contributes to the water environment in the brain parenchyma, the mechanism underlying these effects remains unclear and not investigated. The manuscript requires revision.

      Strengths:

      The paper elucidates the role of the astrocytic aquaporin-4 (AQP4) channel in brain water transport, its impact on water homeostasis, and signaling in the brain parenchyma. In its idea, the paper follows a set of complimentary experiments combining various ex vivo and in vivo techniques from microscopy to magnetic resonance imaging. The research is valuable, confirms previous findings, and provides novel insights into the effect of acute blockage of the AQP4 channel using TGN-020.

      We thank the reviewer for the constructive comments.

      Weaknesses:

      Despite the employed interdisciplinary approach, the quality of the manuscript provides doubts regarding the significance of the findings and hinders the novelty claimed by the authors. The paper lacks a comprehensive exploration or mention of the underlying molecular mechanisms driving the observed effects of astrocytic aquaporin-4 (AQP4) channel inhibition on brain water transport and brain signaling dynamics. The scientific background is not very well prepared in the introduction and discussion sections. The important or latest reports from the field are missing or incompletely cited and missconcluded. There are several citations to original works missing, which would clarify certain conclusions. This especially refers to the basis of the glymphatic system concept and recently published reports of similar content. The usage of TGN-020, instead of i.e. available AER-270(271) AQP4 blocker, is not explained. While employing various experimental techniques adds depth to the findings, some reasoning behind the employed techniques - especially regarding MRI - is not clear or seemingly inaccurate. Most of the time the number of subjects examined is lacking or mentioned only roughly within the figure captions, and there are lacking or wrongly applied statistical tests, that limit assessment and reproducibility of the results. In some cases, it seems that two different statistical tests were used for the same or linked type of data, so the results are contradictory even though appear as not likely - based on the figures. Addressing these limitations could strengthen the paper's impact and utility within the field of neuroscience, however, it also seems that supplementary experiments are required to improve the report.

      The current data hint at a tonic water efflux from astrocyte AQP4 in physiological condition, which helps to understand brain water homeostasis and the functional implication for the glymphatic system. The underlying molecular and cellular mechanisms appear multifaceted and functionally interconnected, as discussed (page 14 line 8 –page 15, line 3). We agree that a comprehensive exploration will further advance our understanding.

      The introduction and discussion are now strengthened by incorporating the important advances in glymphatic system while highlighting the relevant studies. 

      The use of TGN-020 was based on its validation by wide range of ex vivo and in vivo studies including the use of heterologous expression system and the AQP4 KO mice. The validation of AER-270(271, the water soluble prodrug) using AQP4 KO mice is reported recently (Giannetto et al., 2024). AER-271 was noted to impact brain water ADC (apparent diffusion coefficient evaluated by diffusion-weighted MRI) in AQP4 KO mice ~75 min after the drug application (Giannetto et al., 2024). This likely reflects that AER270(271) is also an inhibitor for κΒ nuclear factor (NF-κΒ) whose inhibition could reduce CNS water content independent of AQP4 targeting (Salman et al., 2022). In addition, the inhibition efficiency of AER-270(271) seems lower than TGN-020 (Farr et al., 2019; Giannetto et al., 2024; Huber et al., 2009; Salman et al., 2022). We have now supplemented this information in the manuscript (page 7, line 1-6 and page15, line 7-17).

      The description on the DW-MRI is now updated (page 4, line 10-14). 

      We also performed new experiments and data analysis as described in a point-to-point manner below in the section ‘Recommendations For The Authors’.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors propose that astrocytic water channel AQP4 represents the dominant pathway for tonic water efflux without which astrocytes undergo cell swelling. The authors measure changes in astrocytic sulforhodamine fluorescence as the proxy for cell volume dynamics. Using this approach, they perform a technically elegant series of ex vivo and in vivo experiments exploring changes in astrocytic volume in response to AQP4 inhibitor TGN-020 and/or neuronal stimulation. The key finding is that TGN-020 produces an apparent swelling of astrocytes and modifies astrocytic cell volume regulation after spreading depolarizations. Additionally, systemic application of TGN-020 produced changes in diffusion-weighted MRI signal, which the authors interpret as cellular swelling. This study is perceived as potentially significant. However, several technical caveats should be strongly considered and perhaps addressed through additional experiments.

      Strengths:

      (1) This is a technically elegant study, in which the authors employed a number of complementary ex vivo and in vivo techniques to explore functional outcomes of aquaporin inhibition. The presented data are potentially highly significant (but see below for caveats and questions related to data interpretation).

      (2) The authors go beyond measuring cell volume homeostasis and probe for the functional significance of AQP4 inhibition by monitoring Ca2+ signaling in neurons and astrocytes (GCaMP6 assay).

      (3) Spreading depolarizations represent a physiologically relevant model of cellular swelling. The authors use ChR2 optogenetics to trigger spreading depolarizations. This is a highly appropriate and much-appreciated approach.

      We thank the reviewer for the effort in evaluating our work.

      Weaknesses:

      (1) The main weakness of this study is that all major conclusions are based on the use of one pharmacological compound. In the opinion of this reviewer, the effects of TGN-020 are not consistent with the current knowledge on water permeability in astrocytes and the relative contribution of AQP4 to this process.

      Specifically: Genetic deletion of AQP4 in astrocytes reduces plasmalemmal water permeability by ~two-three-fold (when measured a 37oC, Solenov et al., AJP-Cell, 2004). This is a significant difference, but it is thought to have limited/no impact on water distribution. Astrocytic volume and the degree of anisosmotic swelling/shrinkage are unchanged because the water permeability of the AQP4null astrocytes remains high. This has been discussed at length in many publications (e.g., MacAulay et al., Neuroscience, 2004; MacAulay, Nat Rev Neurosci, 2021) and is acknowledged by Solenov and Verkman (2004).

      Keeping this limitation in mind, it is important to validate astrocytic cell volume changes using an independent method of cell volume reconstruction (diameter of sulforhodamine-labeled cell bodies? 3D reconstruction of EGFP-tagged cells? Else?)

      Solenov and coll. used the calcein quenching assay and KO mice demonstrating AQP4 as a functional water channel in cultured astrocytes (Solenov et al., 2004). AQP4 deletion reduced both astrocyte water permeability and the absolute amplitude of swelling over comparable time, and also slowed down cell shrinking, which overall parallels our results from acute AQP4 blocking. Yet in Solenovr’s study, the time to swelling plateau was prolonged in AQP4 KO astrocytes, differing from our data from the pharmacological acute blocking. This discrepancy may be due to compensatory mechanisms in chronic AQP4 KO, or reflect the different volume responses in cultured astrocytes from brain slices or in vivo results as suggested previously (Risher et al., 2009). 

      Soma diameter might be an indicator of cell volume change, yet it is challenging with our current fluorescence imaging method that is diffraction-limited and insufficient to clearly resolve the border of the soma in situ. In addition, the lateral diameter of cell bodies may not faithfully reflect the volume changes that can occur in all three dimensions. Rapid 3D imaging of astrocyte volume dynamics with sufficient high Z-axis resolution appears difficult with our present tools. 

      We have now accordingly updated the discussion with relevant literatures being cited (page 17 line 14 – page 18, line 3).

      (2) TGN-020 produces many effects on the brain, with some but not all of the observed phenomena sensitive to the genetic deletion of AQP4. In the context of this work, it is important to note that TGN020 does not completely inhibit AQP4 (70% maximal inhibition in the original oocyte study by Huber et al., Bioorg Med Chem, 2009). Thus, besides not knowing TGN-020 levels inside the brain, even

      "maximal" AQP4 inhibition would not be expected to dramatically affect water permeability in astrocytes.

      This caveat may be addressed through experiments using local delivery of structurally unrelated AQP4 blockers, or, preferably, AQP4 KO mice.

      It is an important point that TGN-020 partially blocks AQP4, implying the actual functional impact of AQP4 per se might be stronger than what we observed. TGN provides a means to acutely probe AQP4 function in situ, still we agree, its limitation needs be acknowledged. We mention this now on page 15, line 7-9 and 14-17.

      We agree that local delivery of an alternative blocker will provide additional information. Meanwhile, local delivery requires the stereotaxic implantation of cannula, which would cause inflammations to surrounding astrocytes (and neurons). The recently introduced AQP4 blocker AER-270(271) has received attention that it influences brain water dynamics (ADC in DW-MRI) in AQP4 KO mice (Giannetto et al., 2024), recalling that AER-270(271) is also an inhibitor for κΒ nuclear factor (NF-κΒ). This pathway can potentially perturb CNS water content and influence brain fluid circulation, in an AQP4independent manner (Salman et al., 2022). The inhibition efficiency on mouse AQP4 of AER-270 (~20%, Farr et al., 2019; Salman et al., 2022) appears lower than TGN-020 (~70%, Huber et al., 2009).

      We chose to use the pharmacological compound to achieve acute blocking of AQP4 thereby avoiding the chronic genetics-caused alterations in brain structural, functional and water homeostasis. Multiple lines of evidence including the recent study (Gomolka et al., 2023), have shown that AQP4 KO mice alters brain water content, extracellular space and cellular structures, which raises concerns to use the transgenic mouse to pinpoint the physiological functions of the AQP4 water channel. 

      We have now mentioned the concerns on AQP4 pharmacology by supplementing additional literatures in the field (page 15, line 8-18). 

      (3) This reviewer thinks that the ADC signal changes in Figure 5 may be unrelated to cellular swelling. Instead, they may be a result of the previously reported TGN-020-induced hyphemia (e.g., H. Igarashi et al., NeuroReport, 2013) and/or changes in water fluxes across pia matter which is highly enriched in AQP4. To amplify this concern, AQP4 KO brains have increased water mobility due to enlarged interstitial spaces, rather than swollen astrocytes (RS Gomolka, eLife, 2023). Overall, the caveats of interpreting DW-MRI signal deserve strong consideration.

      The previous observation show that TGN-020 increases regional cerebral blood flow in wild-type mice but not in AQP4 KO mice (Igarashi et al., 2013). Our current data provide a possible mechanism explanation that TGN-020 blocking of astrocyte AQP4 causes calcium rises that may lead to vasodilation as suggested previously (Cauli and Hamel, 2018). We now add updates to the discussion on page 15, line 3-7.

      We are in line with the reviewer regarding the structural deviations observed with the AQP4 KO mice

      (Gomolka et al., 2023), now mentioned on page 19, line 3-5. Following the Reviewer’s suggestion, we have also updated the interpretation of the DW-MRI signal and point that in addition to being related to the astrocyte swelling, the ADC signal changes may also be caused by indirect mechanisms, such as the transient upregulation of other water-permeable pathways in compensating AQP4 blocking. We now describe this alternative interpretation and the caveats of the DW-MRI signals (page 20, line 1-8). 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Private recommendations

      My more broad experimental suggestions are in the "weaknesses" section. Some minor points that would improve the manuscript are included below:

      (1) A more detailed explanation for why SRB fluorescence reflects the astrocyte volume changes, whereas typical intracellular GFP does not.

      As an engineered fluorescence protein, the GFP has been used to tag specific type of cells. Meanwhile, as a relatively big protein (MW, 26.9 kDa), the diffusion rate of EGFP is expected to be much less than SRB, a small chemical dye (MW, 558.7 Da). Also, the IP injection of SRB enables geneticsless labeling of brain astrocytes, so to avoid the influence of protein overexpression on astrocyte volume and water transport responses. We have now stated this point in the manuscript (page 13, line 21 – page 14, line 4).

      (2) Figure 1 panel B should have clear labels on the figure and a description in the legend to delineate which part of the panel refers to hyper- or hypo-osmotic treatment.

      We have now updated the figure and the legend.  

      (3) For Figure 2, what is the rationale for analyzing the calcium signaling data between the cell types differently?

      We analyzed calcium micro-domains for astrocytes as their spontaneous signals occur mainly in discrete micro-domains (Shigetomi et al., 2013). While for neurons, we performed global analysis by calculating the mean fluorescence of imaging field of view, because calcium signal changes were only observed at global level rather than in micro-domains. This information is now included (page 24, line1820).

      (4) For Figure 3, the authors mention that TGN-020 likely caused swelling prior to the hypotonic solution administration. Do they have any measurements from these experiments prior to the TGN-020 application to use as a "true baseline" volume?

      The current method detects the relative changes in astrocyte volume (i.e., transmembrane water transport), which nevertheless is blind to the absolute volume value. We have no readout on baseline volumes.  

      (5) For Figures 3 and 4, did the authors see any evidence for regulatory volume decrease? And is this impaired by TGN-020? It is a well-characterized phenomenon that astrocytes will open mechanosensitive channels to extrude ions during hypo-osmotic induced swelling. This process is dependent on AQP4 and calcium signaling [5]

      Mola and coll. provided important results demonstrating the role of AQP4 in astrocyte volume regulation (Mola et al., 2016). In the present study in acute brain slices, when we applied hypotonic solution to induce astrocyte swelling, our protocol did not reveal rapid regulatory volume decrease (e.g., Fig. 3D). When we followed the volume changes of SRB-labeled astrocytes during optogenetically induced CSD, we observed the phase of volume decrease following the transient swelling (Fig. 4F), where the peak amplitude and the degree of recovery were both reduced by inhibiting AQP4 with TGN020. These data imply that regulatory astrocyte volume decrease may occur in specific conditions, which intriguingly has been suggested to be absent in brain slices and in vivo (e.g., Risher et al., 2009). We have not specifically investigated this phenomenon, and now briefly discuss this point on page18 line 6-14.

      (6) Figure 5 box plots do not show all data points, could the authors modify to make these plots show all the animals, or edit the legend to clarify what is plotted?

      We have now updated the plot and the legend. This plot is from all animals (n = 7 per condition).

      (7) pg. 9 line 6, there is a sentence that seems incomplete or otherwise unfinished. "We first followed the evoked water efflux and shrinking induced by hypertonic solution while."

      Fixed (now, page 9 line 17-18). 

      (8)  During the discussion on pg 13 line 11, it may be more clear to describe this as the cotransport of water into the cells with ions/metabolites as reviewed by Macaulay 2021 [6].

      We agree; the text is modified following this suggestion (now page14, line 12-13).  

      (1) Iliff, J.J., et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci Transl Med, 2012. 4(147): p. 147ra111.

      (2) Kress, B.T., et al., Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 2014. 76(6): p. 845-61.

      (3) Mestre, H., et al., Aquaporin-4-dependent Glymphatic Solute Transport in the Rodent Brain. eLife, 2018. 7.

      (4) Hablitz, L., et al., Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications, 2020. 11(1).

      (5) Mola, M., et al., The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia, 2016. 64(1).

      (6) MacAulay, N., Molecular mechanisms of brain water transport. Nat Rev Neurosci, 2021. 22(6): p. 326-344.

      We thank the reviewer. These important literatures are now supplemented to the manuscript together with the corresponding revisions.

      Reviewer #2 (Recommendations For The Authors):

      In its concept, the paper is interesting and provides additional value - however, it requires revision.

      Below, I provide the following remarks for the following sections/ pages/lines:

      ABSTRACT/page 2 (remarks here refer to the rest of the manuscript, where these sentences are repeated):

      - It seems that the 'homeostasis' provides not only physical protection, but also determines the diffusion of chemical molecules...' Please correct the sentence as it is grammatically incorrect.

      It is now corrected (page 2, line 1).

      - The term 'tonic water' is not clear. I understand, after reading the paper, that it is about tonicity of the solutes injected into the mouse.

      We use the term ‘tonic’ to indicate that in basal conditions, a constant water efflux occurs through the APQ4 channel.

      - 'tonic aquaporin water efflux maintains volume equilibrium' - I believe it is about maintaining volume and osmotic equilibrium?

      This description is now refined (now page 2, line 10).

      - It is not clear whether the tonic water outflow refers to the cellular level or outflow from the brain parenchyma (i.e., glymphatic efflux)

      It refers to the cellular level. 

      INTRODUCTION/page 3:

      - 'clearance of waste molecules from the brain as described in the glymphatic system' - The original papers describing the phenomena are not cited: Iliff et al. 2012, 2013, Mestre et al. 2018, as well as reviews by Nedergaard et al.

      Indeed. We have now cited these key literatures (now page 4, line 10).

      - 'brain water diffusion is the basis for diffusion-weighted magnetic resonance imaging (DW-MRI)' - The statement is wrong. it is the mobility of the water protons that DWI is based on, but not the diffusion of molecules in the brain. This should be clarified and based on the DW-MRI principle and the original works by Le Bihan from 1986, 1988, or 2015.

      This sentence is now updated (page 4, line10-14).

      - Similarly, I suggest correcting or removing the citations and the sentence part regarding the clinical use of DWI, as it has no value here. Instead, it would be worth mentioning what actually ADC reflects as a computational score, and what were the results from previous studies assessing glymphatic systems using DWI. This is especially important when considering the mislocalization of the AQP4 channel.

      We now states recent studies using DW-MRI to evaluate glymphatic systems (page 4, line16-17).  

      - 'In the brain, AQP4 is predominantly expressed in astrocytes'-please review the citations. I suggest reading the work by Nielsen 1997, Nagelhus 2013, Wolburg 2011, and Li and Wang from 2017. To my best knowledge, in the brain AQP4 is exclusively expressed in astrocytes.

      Thanks for the reviewer. It is described that while enriched in astrocytes, AQP4 is also expressed in ependymal cells lining the ventricles (e.g., (Mayo et al., 2023; Verkman et al., 2006)). ‘predominantly’ is now removed (page 4, line 21).

      - The conclusion: ' Our finding suggests that aquaporin acts as a water export route in astrocytes in physiological conditions, so as to counterbalance the constitutive intracellular water accumulation caused by constant transmitter and ion uptake, as well as the cytoplasmic metabolism processes. This mechanism hence plays a necessary role in maintaining water equilibrium in astrocytes, thereby brain water homeostasis' seems to be slightly beyond the actual findings in the paper. I suggest clarifying according to the described phenomena.

      We have now refined the conclusion sticking to the experimental observations (page 5, line16-18).

      - The introduction lacks important information on existing AQP4 blockers and their effects, pros and cons on why to use TGN-020. Among others, I would refer to recent work by Giannetto et al 2024, as well as previous work of Mestre et al. 2018 and Gomolka et al. 2023.

      We initiated the study by using TGN-020 as an AQP4 blocker because it has been validated by wide range of ex vivo and in vivo studies as documented in the text (page 7, line 1-6). We also update discussions on the recent advances in validating the AQP4 blocker AER-270(271) while citing the relevant studies (page 15, line 7-17).  

      RESULTS:

      - Page 5, lines 19-20: '...transport, we performed fluorescence intensity translated (FIT) imaging.' - this term was never introduced in the methods so it is difficult for the reader to understand it at first sight. -'To this end,' - it is not clear which action refers to 'this'. (is it about previous works or the moment that the brain samples were ready for imaging? Please clarify, as it is only starting to be clear after fully reading the methods.

      We now refine the description give the principle of our imaging method first, then explain the technical steps. To avoid ambiguity, the term ‘To this end’ is removed. The updated text is now on page 6, line 1-3.  

      - From page 6 onwards - all references to Figures lack information to which part of the figure subpanel the information refers (top/middle bottom or left/middle/right).

      We apologize. The complementary indication is now added for figure citations when applicable.  

      - 'whereas water export and astrocyte shrinking upon hyperosmotic manipulation increased astrocyte fluorescence (Figure 1B). Hence, FIT imaging enables real-time recording of astrocyte transmembrane water transport and volume dynamics.' - this part seems to be undescribed or not clear in the methods.

      We have now refined this description (page 6, line 19-20).

      - Page 6, lines 17-22: TGN-020. In addition to the above, I suggest familiarizing also with the following works by Igarashi 2011. doi: 10.1007/s10072-010-0431-1, and by Sun 2022. doi: 10.3389/fimmu.2022.870029.

      These studies are now cited (page 7, line 3-4).

      - Page 7: ' AQP4 is a bidirectional channel facilitating... ' - AQP4 water channel is known as the path of least resistance for water transfer, please see Manley, Nature Medicine, 2000 and Papadopoulos, Faseb J, 2004.

      This sentence is now updated (page 7, line 12-13).

      - ' astrocyte AQP4 by TGN-020 caused a gradual decrease in SRB fluorescence intensity, indicating an intracellular water accumulation' - tissue slice experiment is a very valuable method. However it seems right, the experiment does not comment on the cell swelling that may occur just due to or as a superposition of tissue deterioration and the effect of TGN-020. The AQP4 channel is blocked, and the influx of water into astrocytes should be also blocked. Thus, can swelling be also a part of another mechanism, as it was also observed in the control group? I suggest this should be addressed thoroughly.

      We performed this experiment in acute brain slices to well control the pharmacological environment and gain spatial-temporal information. Post slicing, the brain slices recovered > 1hr prior to recording, so that the slices were in a stable state before TGN-020 application as evidenced by the stable baseline. The constant decrease in the control trace is due to photobleaching which did not change its curve tendency in response to vehicle. TGN-020, in contrast, caused a down-ward change suggesting intracellular water accumulation and swelling. 

      The experiment was performed at basal condition without active water influx; a decrease in SRB fluorescence hints astrocyteintracellular water buildup. This result shows that in basal condition, astrocyte aquaporin mediates a constant (i.e., tonic) water efflux; its blocking causes intracellular water accumulation and swelling. 

      We have accordingly updated the description of this part (page 7, line 15-20).

      - From the Figure 1 legend: Only 4 mice were subjected to the experiment, and only 1 mouse as a control. I suggest expanding the experiment and performing statistics including two-way ANOVA for data in panels B, C, and D, as no results of statistical tests confirm the significance of the findings provided.

      The panel B confirms that cytosolic SRB fluorescence displays increasing tendency upon water efflux and volume shrinking, and vice versa. As for the panel C, the number of mice is now indicated. Also, the downward change in the SRB fluorescence was now respectively calculated for the phases prior and post to TGN (and vehicle) application, and this panel is accordingly updated. TGN-020 induced a declining in astrocyte SRB fluorescence, which is validated by t-test performed in MATLAB. To clarify, we now add cross-link lines to indicate statistical significance between the corresponding groups (Fig 1C, middle). As for panel D, we calculated the SRB fluorescence change (decrease) relative to the photobleaching tendency illustrated by the dotted line. The significance was also validated by t-test performed in MATLAB.  

      - Figure 1: Please correct the figure - pictures in panel A are low quality and do not support the specificity of SRB for astrocytes. Panels B-D are easier to understand if plotted as normal X/Y charts with associated statistical findings. Some drawings are cut or not aligned.

      In GFAP-EGFP transgenic, astrocytes are labeled by EGFP. SRB labeling (red fluorescence) shows colocalization with EGFP-positive astrocytes, meanwhile not all EGFP-positive astrocytes are labeled by SRB. The PDF conversion procedure during the submission may also somehow have compromised image quality. We have tried to update and align the figure panels.  

      - Page 12: ' TGN-020 increased basal water diffusion within multiple regions including the cortex,

      hippocampus and the striatum in a heterogeneous manner (Figure 5C).'

      This sentence is updated now (page 12, line 12 – page13, line 2). It reads ‘The representative images reveal the enough image quality to calculate the ADC, which allow us to examine the effect of TGN-020 on water diffusion rate in multiple regions (Fig. 5C).’

      - The expression of AQP4 within the brain parenchyma is known to be heterogenous. Please familiarize yourself with works by Hubbard 2015, Mestre 2018, and Gomolka 2023. A correlation between ADC score and AQP4 expression ROI-wise would be useful, but it is not substantial to conduct this experiment.

      We thank the reviewer. This point is stressed on page 19, line 12-14.

      DISCUSSION:

      - Most of the issues are commented on above, so I suggest following the changes applied earlier. -Page 16: 'We show by DW-MRI that water transport by astrocyte aquaporin is critical for brain water homeostasis.' This statement is not clear and does not refer to the actual impact of the findings. DWI is allowed only to verify the changes of ADC fter the application of TGN-020. I suggest commenting on the recent report by Giannetto 2024 here.

      This sentence is now refined (page 19, line 1-2), followed by the updates commenting on the recent studies employing DW-MRI to evaluate brain fluid transport, including the work of (Giannetto et al., 2024) (page 19, line 3-10). 

      METHODS:

      - Page 18: no total number of mice included in all experiments is provided, as well as no clearly stated number of mice used in each experiment. Please correct.

      We have now double checked the number of the mice for the data presented and updated the figure legends accordingly (e.g., updates in legends fig1, fig5, etc).

      -  Page 18, line 7: 'Axscience' is not a producer of Isoflurane, but a company offering help with scientific manuscript writing. If this company's help was used, it should be stated in the acknowledgments section. Reference to ISOVET should be moved from line 15 to line 7.

      We apologize. We did not use external writing help, and now have removed the ‘Axcience’. The Isoflurane was under the mark ‘ISOVET’ from ‘Piramal’. This info is now moved up (page 21, line 11). 

      - Page 18, line 9: ' modified artificial cerebrospinal fluid (aCSF)'. Additional information on the reason for the modified aCSF would be useful for the reader.

      In this modified solution, the concentration of depolarizing ions (Na+, Ca2+) was reduced to lower the potential excitotoxicity during the tissue dissection (i.e., injury to the brain) for preparing the brain slices. Extra sucrose was added to balance the solution osmolarity. This solution has been used previously for the dissection and the slicing steps in adult mice (Jiang et al., 2016). We now add this justification in the text and quote the relevant reference (page 21, line14-16). 

      - Page 19, line 6: a reasoning for using Tamoxifen would be helpful for the reader.

      The Glast-CreERT2 is an inducible conditional mouse line that expresses Cre recombinase selectively in astrocytes upon tamoxifen injection. We now add this information in the text (page 22, line 10-11). 

      - Line 8 - 'Sigma'

      Fixed.

      - Line 7/8: It is not clear if ethanol is of 10% solution or if proportions of ethanol+tamoxifen to oil were of 1:9. The reasoning for each performed step is missing.

      We have now clarified the procedure (page 22, line 11-15).

      - Line 10: '/' means 'or'?

      Here, we mean the bigenic mice resulting from the crossing of the heterozygous Cre-dependent GCaMP6f and Glast-CreERT2 mouse lines. We now modify it to ‘Glast-CreERT2::Ai95GCaMP6f//WT’, in consistence with the presentation of other mouse lines in our manuscript (page 22, line 16).

      - Lines 22-23: being in-line with legislation was already stated at the beginning of the Methods so I suggest combining for clearance.

      Done. 

      - Page 21, line 4: it is good to mention which printer was used, but it would be worth mentioning the material the chamber was printed from - was it ABS?

      Yes. We add this info in the text now (page 24, line 5).

      - Line 9 -'PI' requires spelling out.

      It is ‘Physik Instrumente’, now added (page 24, line 10).

      - Line 11-12: What is the reason for background subtraction - clearer delineation of astrocytes/ increasing SNR in post-processing, or because SRB signal was also visible and changing in the background over time? Was the background removed in each frame independently (how many frames)? How long was the time-lapse and was the F0 frame considered as the first frame acquired? The background signal should be also measured and plotted alongside the astrocytic signal, as a reference (Figure 1). This should be clarified so that steps are to be followed easily.

      We sought to follow the temporal changes in SRB fluorescence signal. The acquired fluorescent images contain not only the SRB signals, but also the background signals consisting of for instance the biological tissue autofluorescence, digital camera background noise and the leak light sources from the environments. The value of the background signal was estimated by the mean fluorescence of peripheral cell-free subregions (15 × 15 µm²) and removed from all frames of time-lapse image stack. The traces shown in the figures reflect the full lengths of the time-lapse recordings. F0 was identified as the mean value of the 10 data points immediately preceding the detected fluorescence changes. The text is now updated (page 24 line 21 - page 25 line 5).

      - Line 15: Was astrocyte image delineation performed manually or automatically? Where was the center of the region considered in the reference to the astrocyte image? It would be good to see the regions delineated for reference.

      Astrocytes labeled by SRB were delineated manually with the soma taken as the center of the region of interest. We now exemplify the delineated region in Fig 1A, bottom.

      - Page 22, line 2: 'x4 objective'.

      Added (now, page 25, line 16). 

      - Line 3: 'barrels' - reference to publication or the explanation missing.

      The relevant reference is now added on barrel cortex (Erzurumlu and Gaspar, 2020) (page 25, line 19-20). 

      - Line 19: were the coordinates referred to = bregma?

      Yes. This info is now added (page 26, line 12). 

      - Line 20: was the habituation performed directly at the acquisition date? It is rather difficult to say that it was a habituation, but rather acute imaging. I suggest correcting, that mice were allowed to familiarize themselves with the setup for 30 minutes prior to the imaging start.

      In this context, although it is a very nice idea and experiment, the influence of acute stress in animals familiar with the setup only from the day of acquisition is difficult to avoid. It is a major concern, especially when considering norepinephrine as a master driver of neuronal and vascular activity through the brain, and strong activation of the hypothalamic-adrenal axis in response to acute stress. It is well known, that the response of monoamines is reduced in animals subjected to chronic v.s acute stress, but still larger than that if the stressor is absent.

      Major remark: The animals should, preferably, be imaged at least after 3 days of habituation based on existing knowledge. I suggest exploring the topic of the importance of habituation. It is difficult though, to objectively review these findings without considering stress and associated changes in vascular dynamics.

      Many thanks for the reviewer to help to precise this information. The text is accordingly updated to describe the experiment (now page 26, line 14). 

      - Page 23, line 17: number of animals included in experiments missing.

      The number of animals is added in Methods (page 27, line 12) and indicated in the legend of Figure 5. 

      - Line 18/19: were the respiratory effects observed after injection of saline or TGN-020? Since DWI was performed, the exclusion of perfusive flow on ADC is impossible.

      I suggest an additional experiment in n=3 animals per group, verifying the HR (and if possible BP) response after injection of TGN-020 and saline in mice.

      The respiratory rate has been recorded. We added the averaged respiratory rate before and after injection of TGN-020 or saline (now, Fig. S6; page 13, line 5-6).

      - Line 22: Please, provide the model of the scanner, the model of the cryoprobe, as well as the model of the gradient coil used, otherwise it is difficult to assess or repeat these experiments.

      We have now added the information of MRI system in Methods section (page 27, line17-21).

      - Page 24: line 3/4: although the achieved spatial resolution of DWI was good and slightly lower than desired and achievable due to limitations of the method itself as well as cryoprobe, it is acceptable for EPI in mice.

      Still, there is no direct explanation provided on the reasoning for using surface instead of volumetric coil, as well as on assuming an anisotropic environment (6 diffusion directions) for DWI measurements. This is especially doubtful if such a long echo-time was used alongside lower-thanpossible spatial resolution. Longer echo time would lower the SNR of the depicted signal but also would favor the depiction of signal from slow-moving protons and larger water pools. On the other hand, only 3 b-values were used, which is the minimum for ADC measurements, while a good research protocol could encompass at least 5 to increase the accuracy of ADC estimation and avoid undersampling between 250 and 1800 b-values. What was the reason for choosing this particular set of b-values and not 50, 600, and 2000? Besides, gradient duration time was optimally chosen, however, I have concerns about the decision for such a long gradient separation times.

      If the protocol could have been better optimized, the assessment could have been also performed in respiratory-gated mode, allowing minimization of the effects of one of the glymphatic system driving forces.

      Thus, I suggest commenting on these issues.

      We chose the cryoprobe to increase the signal-to-noise ratio (SNR) in DW-MRI with long echo-time and high b-value. The volume coil has a more homogeneous SNR in the whole brain rather than the cryoprobe, but SNR should be reduced compared with cryoprobe. We confirmed that, even at the ventral part of the brain, the image quality of DW-MRI images was enough to investigate the ADC with cryoprobe (Fig. 5B-C). This is mentioned now in Methods (page 27, line 17-21).

      We performed DW-MRI scanning for 5 min at each time-point using the condition of anisotropic resolution and 3 b-values, to investigate the time-course of ADC change following the injection of TGN020. Because the effect of TGN-020 appears about dozen of minutes post the injection (Igarashi et al., 2011), fast DW-MRI scanning is required. If isotropic DW-MRI with lower echo-time and more direction is used, longer scan time at each time point is required, maybe more than 1h. We agree that three bvalues is minimum to calculate the ADC and more b-values help to increase the accuracy. However, to achieve the temporal resolution so as to better catch the change of water diffusion, we have decided to use the minimum b-values. The previous study also validates the enough accuracy of DW-MRI with three b-values (Ashoor et al., 2019). Furthermore, previous study that used long diffusion time (> 20 ms) and long echo time (40 ms) shows the good mean diffusivity (Aggarwal et al., 2020), supporting that our protocol is enough to investigate the ADC. We have now updated the description (page 28 line 5-9).  The reason why we choose the b = 250 and 1800 s/mm² is that 2000 s/mm² seems too high to get the good quality of image. In the previous study, we have optimized that ADC is measurable with b = 0, 250, and 1800 s/mm² (Debacker et al., 2020). 

      - Page 24, line 7: What was the post-processing applied for images acquired over 70 minutes? Did it consider motion-correction, co-registration, or drift-correction crucial to avoid pitfalls and mismatches in concluding data?

      The motion correction and co-registration were explained in Methods (page 28, line 12-14).

      Also, were these trace-weighted images or magnitude images acquired since DTI software was used for processing - while ADC fitting could be reliably done in Matlab, Python, or other software. Thus, was DSI software considering all 3 b-values or just used 0 and 1800 for the calculation of mean diffusivity for tractography (as ADC). The details should be explained.

      DSIstudio was used with all three b values (b = 0, 250, and 1800 s/mm²) to calculate the ADC. We added the description in Methods (page 28, line 16-18).

      To make sure that the results are not affected by the MR hardware, I suggest performing 3 control measurements in a standard water phantom, and presenting the results alongside the main findings.

      Thanks for this suggestion. We have performed new experiments and now added the control measurement with three phantoms, that is water, undecane, and dodecane. These new data are summarized now in Fig. S7, showing the stability of ADC throughout the 70 min scanning. We have updated the description on Method part (page 28, line 9-11) and on the Results (page 13, line 6-8).  

      - Line 13: were the ROI defined manually or just depicted from previously co-registered Allen Brain atlas?

      The ROIs of the cortex, the hippocampus, and the striatum were depicted with reference to Allen mouse brain atlas (https://scalablebrainatlas.incf.org/mouse/ABA12). This is explained in Methods (page 28, line 14-16).

      - Line 10: why the average from 1st and 2nd ADC was not considered, since it would reduce the influence of noise on the estimation of baseline ADC?

      We are sorry that it was a typo. The baseline was the average between 1st and 2nd ADC. We corrected the description (page 28, line 20).

      STATISTIC:

      Which type of t-test - paired/unpaired/two samples was used and why? Mann-Whitney U-tets are used as a substitution for parametric t-tests when the data are either non-parametric or assuming normal distribution is not possible. In which case Bonferroni's-Holm correction was used? - I couldn't find any mention of any multiple-group analysis followed by multiple comparisons. Each section of the manuscript should have a description of how the quantitative data were treated and in which aim. I suggest carefully correcting all figures accordingly, and following the remarks given to the Figure 1.

      We used unpaired t-test for data obtained from samples of different conditions. Indeed, MannWhitney U-test is used when the data are non-parametric deviating from normal distributions.  Bonferroni-Holm correction was used for multiple comparisons (e.g., Fig. 4D-E).

      Reviewer #3 (Recommendations For The Authors):

      I think that the following statement is insufficient: "The authors commit to share data, documentation, and code used in analysis". My understanding is eLife expects that all key data to be provided in a supplement.

      We thank the reviewer; we follow the publication guidelines of eLife. 

      References

      Aggarwal, M., Smith, M.D., and Calabresi, P.A. (2020). Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med 84, 1564-1578.

      Ashoor, M., Khorshidi, A., and Sarkhosh, L. (2019). Estimation of microvascular capillary physical parameters using MRI assuming a pseudo liquid drop as model of fluid exchange on the cellular level. Rep Pract Oncol Radiother 24, 3-11.

      Cauli, B., and Hamel, E. (2018). Brain Perfusion and Astrocytes. Trends in neurosciences 41, 409-413.

      Debacker, C., Djemai, B., Ciobanu, L., Tsurugizawa, T., and Le Bihan, D. (2020). Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS One 15, e0229702.

      Erzurumlu, R.S., and Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 40, 6460-6473.

      Farr, G.W., Hall, C.H., Farr, S.M., Wade, R., Detzel, J.M., Adams, A.G., Buch, J.M., Beahm, D.L., Flask, C.A., Xu, K., et al. (2019). Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience 404, 484-498.

      Giannetto, M.J., Gomolka, R.S., Gahn-Martinez, D., Newbold, E.J., Bork, P.A.R., Chang, E., Gresser, M., Thompson, T., Mori, Y., and Nedergaard, M. (2024). Glymphatic fluid transport is suppressed by the aquaporin-4 inhibitor AER-271. Glia.

      Gomolka, R.S., Hablitz, L.M., Mestre, H., Giannetto, M., Du, T., Hauglund, N.L., Xie, L., Peng, W., Martinez, P.M., Nedergaard, M., et al. (2023). Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 12.

      Huber, V.J., Tsujita, M., and Nakada, T. (2009). Identification of aquaporin 4 inhibitors using in vitro and in silico methods. Bioorg Med Chem 17, 411-417.

      Igarashi, H., Huber, V.J., Tsujita, M., and Nakada, T. (2011). Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 32, 113-116.

      Igarashi, H., Tsujita, M., Suzuki, Y., Kwee, I.L., and Nakada, T. (2013). Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport 24, 324-328.

      Jiang, R., Diaz-Castro, B., Looger, L.L., and Khakh, B.S. (2016). Dysfunctional Calcium and Glutamate Signaling in Striatal Astrocytes from Huntington's Disease Model Mice. J Neurosci 36, 3453-3470.

      Mayo, F., Gonzalez-Vinceiro, L., Hiraldo-Gonzalez, L., Calle-Castillejo, C., Morales-Alvarez, S., Ramirez-Lorca, R., and Echevarria, M. (2023). Aquaporin-4 Expression Switches from White to Gray Matter Regions during Postnatal Development of the Central Nervous System. Int J Mol Sci 24.

      Mola, M.G., Sparaneo, A., Gargano, C.D., Spray, D.C., Svelto, M., Frigeri, A., Scemes, E., and Nicchia, G.P. (2016). The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia 64, 139-154.

      Risher, W.C., Andrew, R.D., and Kirov, S.A. (2009). Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57, 207-221.

      Salman, M.M., Kitchen, P., Yool, A.J., and Bill, R.M. (2022). Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci 43, 30-42.

      Shigetomi, E., Bushong, E.A., Haustein, M.D., Tong, X., Jackson-Weaver, O., Kracun, S., Xu, J., Sofroniew, M.V., Ellisman, M.H., and Khakh, B.S. (2013). Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141, 633-647.

      Solenov, E., Watanabe, H., Manley, G.T., and Verkman, A.S. (2004). Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286, C426-432.

      Verkman, A.S., Binder, D.K., Bloch, O., Auguste, K., and Papadopoulos, M.C. (2006). Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758, 10851093.

    1. The fact that many here are maintainers of Ruby implementations also has a biased effect on new features, as they might represent a burden on them. I'm not saying this is a bad thing, I love the diversity of points of view that this brings! OTOH, it's fair that people that do take time to discuss things here have a bigger influence on the direction that Ruby follows.
    1. Peridata

      for - omni-optionai - omni-contextual - omni-transitional - omni-repurpose

      deep coupling powered by

      coevolutionary easy to refactoraboe extensable

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Zhou et al offers new high resolution Cryo-EM structures of two human biotin-dependent enzymes: propionyl-CoA carboxylase (PCC) and methycrotonyl-CoA carboxylase (MCC). While X-ray crystal structures and Cryo-EM structures have previously been reported for bacterial and trypanosomal versions of MCC and for bacterial versions of PCC, this marks one of the first high resolution Cryo-EM structures of the human version of these enzymes. Using the biotin cofactor as an affinity tag, this team purified a group of four different human biotin-dependent carboxylases from cultured human Expi 293F (kidney) cells (PCC, MCC, acetyl-CoA carboxylase (ACC), and pyruvate carboxylase). Following further enrichment by size-exclusion chromatography, they were able to vitrify the sample and pick enough particles of MCC and PCC to separately refine the structures of both enzymes to relatively high average resolutions (the Cryo-EM structure of ACC also appears to have been determined from these same micrographs, though this is the subject of a separate publication). To determine the impact of substrate binding on the structure of these enzymes and to gain insights into substrate selectivity, they also separately incubated with propionyl-CoA and acetyl-CoA and vitrified the samples under active turnover conditions, yielding a set of cryo-EM structures for both MCC and PCC in the presence and absence of substrates and substrate analogues.

      Strengths:

      The manuscript has several strengths. It is clearly written, the figures are clear and the sample preparation methods appear to be well described. This study demonstrates that Cryo-EM is an ideal structural method to investigate the structure of these heterogeneous samples of large biotin-dependent enzymes. As a consequence, many new Cryo-EM structures of biotin-dependent enzymes are emerging, thanks to the natural inclusion of a built-in biotin affinity tag. While the authors report no major differences between the human and bacterial forms of these enzymes, it remains an important finding that they demonstrate how/if the structure of the human enzymes are or are not distinct from the bacterial enzymes. The MCC structures also provide evidence for a transition for BCCP-biotin from an exo-binding site to an endo-binding site in response to acetyl-CoA binding. This contributes to a growing number of biotin-dependent carboxylase structures that reveal BCCP-biotin binding at locations both inside (endo-) and outside (exo-) of the active site.

      Weaknesses:

      There are some minor weaknesses. Notably, there are not a lot of new insights coming from this paper. The structural comparisons between MCC and PCC have already been described in the literature and there were not a lot of significant changes (outside of the exo- to endo- transition) in the presence vs. absence of substrate analogues. There are sections of this manuscript that do not sufficiently clarify what represents a new insight from the current set of structures (there are few of them), vs. what is largely recapitulating what has been seen in previous structures.

      There is not a great deal of depth of analysis in the discussion. For example, no new insights were gained with respect to the factors contributing to substrate selectivity (the factors contributing to selectivity for propionyl-CoA vs. acetyl-CoA in PCC). The authors acknowledge that they are limited in their interpretations as a consequence of the acyl groups being unresolved in all of the structures. They offer a simple, overarching and not particularly insightful explanation that the longer acyl group in propionyl-CoA may mediate stronger hydrophobic interactions that stabilize the alpha carbon of the acyl group at the proper position. The authors did not take the opportunity to describe the specific interactions that may be responsible for the stronger hydrophobic interaction nor do they offer any plausible explanation for how these might account for an astounding difference in the selectivity for propionyl-CoA vs. acetyl-CoA. Essentially, the authors concede that these cryo-EM structures offer no new insights into the structural basis for substrate selectivity in PCC, confirming that these structures do not yet fully capture the proper conformational states.

      Some of these minor deficiencies aside, the overall aim of contributing new cryo-EM structures of the human MCC and PCC has been achieved. While I am not a cryo-EM expert, I see no flaws in the methodology or approach. While the contributions from these structures are somewhat incremental, it is nevertheless important to have these representative examples of the human enzymes and it is noteworthy to see a new example of the exo-binding site in a biotin-dependent enzyme.

    1. eLife Assessment

      This work presents a valuable finding on how the interplay between transcription factors SOX2 and OCT4 establishes the pluripotency network in early mouse embryos. Despite the high quality of the data, the evidence supporting the claims of the authors is currently incomplete and would benefit from more omics analysis such as H3K4me1 and H3K27ac CUT&Tag. The work will be of interest to biologists working on embryonic development.

    1. Reviewer #1 (Public review):

      Hotinger et al. explore the population dynamics of Salmonella enterica serovar Typhimurium in mice using genetically tagged bacteria. In addition to physiological observations, pathology assessments, and CFU measurements, the study emphasizes quantifying host bottleneck sizes that limit Salmonella colonization and dissemination. The authors also investigate the genetic distances between bacterial populations at various infection sites within the host.

      Initially, the study confirms that pretreatment with the antibiotic streptomycin before inoculation via orogastric gavage increases the bacterial burden in the gastrointestinal (GI) tract, leading to more severe symptoms and heightened fecal shedding of bacteria. This pretreatment also significantly reduces between-animal variation in bacterial burden and fecal shedding. The authors then calculate founding population sizes across different organs, discovering a severe bottleneck in the intestine, with founding populations reduced by approximately 10^6-fold compared to the inoculum size. Streptomycin pretreatment increases the founding population size and bacterial replication in the GI tract. Moreover, by calculating genetic distances between populations, the authors demonstrate that, in untreated mice, Salmonella populations within the GI tract are genetically dissimilar, suggesting limited exchange between colonization sites. In contrast, streptomycin pretreatment reduces genetic distances, indicating increased exchange.

      In extraintestinal organs, the bacterial burden is generally not substantially increased by streptomycin pretreatment, with significant differences observed only in the mesenteric lymph nodes and bile. However, the founding population sizes in these organs are increased. By comparing genetic distances between organs, the authors provide evidence that subpopulations colonizing extraintestinal organs diverge early after infection from those in the GI tract. This hypothesis is further tested by measuring bacterial burden and founding population sizes in the liver and GI tract at 5 and 120 hours post-infection. Additionally, they compare orogastric gavage infection with the less injurious method of infection via drinking, finding similar results for CFUs, founding populations, and genetic distances. These results argue against injuries during gavage as a route of direct infection.

      To bypass bottlenecks associated with the GI tract, the authors compare intravenous (IV) and intraperitoneal (IP) routes of infection. They find approximately a 10-fold increase in bacterial burden and founding population size in immune-rich organs with IV/IP routes compared to orogastric gavage in streptomycin-pretreated animals. This difference is interpreted as a result of "extra steps required to reach systemic organs."

      While IP and IV routes yield similar results in immune-rich organs, IP infections lead to higher bacterial burdens in nearby sites, such as the pancreas, adipose tissue, and intraperitoneal wash, as well as somewhat increased founding population sizes. The authors correlate these findings with the presence of white lesions in adipose tissue. Genetic distance comparisons reveal that, apart from the spleen and liver, IP infections lead to genetically distinct populations in infected organs, whereas IV infections generally result in higher genetic similarity.

      Finally, the authors investigate GI tract reseeding, identifying two distinct routes. They observe that the GI tracts of IP/IV-infected mice are colonized either by a clonal or a diversely tagged bacterial population. In clonally reseeded animals, the genetic distance within the GI tract is very low (often zero) compared to the bile population, which is predominantly clonal or pauciclonal. These animals also display pathological signs, such as cloudy/hardened bile and increased bacterial burden, leading the authors to conclude that the GI tract was reseeded by bacteria from the gallbladder bile. In contrast, animals reseeded by more complex bacterial populations show that bile contributes only a minor fraction of the tags. Given the large founding population size in these animals' GI tracts, which is larger than in orogastrically infected animals, the authors suggest a highly permissive second reseeding route, largely independent of bile. They speculate that this route may involve a reversal of known mechanisms that the pathogen uses to escape from the intestine.

      The manuscript presents a substantial body of work that offers a meticulously detailed understanding of the population dynamics of S. Typhimurium in mice. It quantifies the processes shaping the within-host dynamics of this pathogen and provides new insights into its spread, including previously unrecognized dissemination routes. The methodology is appropriate and carefully executed, and the manuscript is well-written, clearly presented, and concise. The authors' conclusions are well-supported by experimental results and thoroughly discussed. This work underscores the power of using highly diverse barcoded pathogens to uncover the within-host population dynamics of infections and will likely inspire further investigations into the molecular mechanisms underlying the bottlenecks and dissemination routes described here.

      Major point:

      Substantial conclusions in the manuscript rely on genetic distance measurements using the Cavalli-Sforza chord distance. However, it is unclear whether these genetic distance measurements are independent of the founding population size. I would anticipate that in populations with larger founding population sizes, where the relative tag frequencies are closer to those in the inoculum, the genetic distances would appear smaller compared to populations with smaller founding sizes independent of their actual relatedness. This potential dependency could have implications for the interpretation of findings, such as those in Figures 2B and 2D, where antibiotic-pretreated animals consistently exhibit higher founding population sizes and smaller genetic distances compared to untreated animals.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors have developed a valuable method based on a fully cell-free system to express a channel protein and integrate it into a membrane vesicle in order to characterize it biophysically. The study presents a useful alternative to study channels that are not amenable to being studied by more traditional methods.

      Strengths:

      The evidence supporting the claims of the authors is solid and convincing. The method will be of interest to researchers working on ionic channels, allowing them to study a wide range of ion channel functions such as those involved in transport, interaction with lipids, or pharmacology.

      Weaknesses:

      The inclusion of a mechanistic interpretation of how the channel protein folds into a protomer or a tetramer to become functional in the membrane would strengthen the study.

      Work from other labs has described key factors which can improve expression and artificial lipid integration of cellfree derived transmembrane proteins (PMIDs: 35520093, 29625253, 26270393) . However, a significant number of additional experiments would be needed to elucidate the exact biophysical properties governing channel assembly of synthetically derived polycystins. We carried out additional biochemical experiments to address these concerns (see new Figure 1— figure supplement 1 D, E). We used fluorescence-detection size-exclusion chromatography (FSEC) with the goal of understanding how much of the CFE-derived protomers are biochemically folding and assembly into functional tetramers upon incorporation into SUVs. When compared to protein recombinant sources from HEK cells, the production of assembled channels is less than 4% when using the CFE+SUV approach, an estimate based on the oligomer peak fluorescence. In the absence of chaperones found in cells, the assembly of synthetically derived protomers into tetramers is likely intrinsic to the chemical properties of the proteins, and the biophysical principles governing helical membrane protein when inserted into the lipid membrane  (PMID:35133709). We have added our interpretation in lines 111-121.

      Reviewer #2 (Public Review):

      It is challenging to study the biophysical properties of organelle channels using conventional electrophysiology. The conventional reconstitution methods require multiple steps and can be contaminated by endogenous ionophores from the host cell lines after purification. To overcome this challenge, in this manuscript, Larmore et al. described a fully synthetic method to assay the functional properties of the TRPP channel family. The TRPP channels are an important organelle ion channel family that natively traffic to primary cilia and ER organelles. The authors utilized cell-free protein expression and reconstitution of the synthetic channel protein into giant unilamellar vesicles (GUV), the single channel properties can be measured using voltage-clamp electrophysiology. Using this innovative method, the authors characterized their membrane integration, orientation, and conductance, comparing the results to those of endogenous channels. The manuscript is well-written and may present broad interest to the ion channel community studying organelle ion channels. Particularly because of the challenges of patching native cilia cells, the functional characterization is highly concentrated in very few labs. This method may provide an alternative approach to investigate other channels resistant to biophysical analysis and pharmacological characterization.

      Thank you for evaluating our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It would be useful to explain how the Polycystin protein is folded under the experimental conditions used. The expression data shown in Figure 1 Supplement 1B show different protein concentrations of protomer or tetramer. However, it is not described how each form is identified and distinguished. It is also important to mention in the manuscript that this method is only applicable to membrane channels that do not require chaperons for its folding and expression into the membrane. How is the tetramer mechanistically conformed? In line 184, it is stated that this method can be leveraged for studying the effects of channel subunit composition. Would this method allow the expression of two different subunit proteins in order to produce a heteromeric channel?

      In Figure 1—figure supplement 1B, total fluorescence from the synthesized channel-GFP was measured. Protein concentration was calculated based on the linear regression of the GFP standards. Monomeric protein concentration was reported directly from total fluorescence. Tetrameric protein concentration was calculated by dividing the fluorescence by four, and subsequently calculating the concentration based off the GFP standards. 

      This is a good point. Based on your suggestion, we carried out additional biochemical experiments (see new Figure 1— figure supplement 1 D, E). We used fluorescence-detection size-exclusion chromatography (FSEC) with the goal of understanding how much of the CFE-derived protomers are biochemically folding and assembly into functional tetramers upon incorporation into SUVs. As controls we produced recombinant PKD2-GFP and PKD2L1GFP channels as elution time standards and to compare the relative production of tetrameric channels generated when using the two expression systems. The synthetically derived polycystin channels indeed produced tetramers and protomers, which supports feasibility of using this method to assay their functional properties.  When compared to protein recombinant sources from HEK cells, the production of assembled channels is less than 4% when using the CFE+SUV approach, an estimate based on the oligomer peak fluorescence. We speculate that assembly of synthetically derived protomers into tetramers is likely intrinsic to the chemical properties of the proteins, and the biophysical principles governing helical membrane protein when inserted into the lipid membrane (PMID: 35133709). Although an interesting question, a systematic analysis of these channel-lipid interactions is beyond the scope of this eLife Report but can be addressed in future studies. The limitation of using this method to characterize channels which fold and membrane integrate without the aid of molecular chaperones is now stated in lines 201205. In principle, the CFE-GUV method can be deployed to co-express different subunits to produce heteromeric channels. We have modified the text lines 192-197 to be clearer on this point.

      (2) The type of plasmid (and promoter) required for this methodology should be mentioned.

      Added to the methods (lines 210-211). “PKD2 and PKD2L1 are in pET19b plasmid under T7 promoter.”

      (3) Since this paper is methodological, it would be useful to have some information about the stability of the GUVs containing the synthetic channel. In Methods, it is stated that GUV vesicles are used on the same day (line 207). And in line 193 it says that the reactions (?) are placed at 4{degree sign}C for storage.

      Restated in lines 226-228: GUVs are electroformed and used for electrophysiology the same day. SUVs with channel incorporated are stored at 4°C for 3 days.

      (4) A comment reasoning why the PKD2 protein is more frequently incorporated into the membrane in comparison to PKD2L1 should be included. A brief description of the differences between these two proteins would also be helpful for the reader.

      In terms of overall protein production and oligomeric assembly— more PKD2L1 channels are produced compared to PKD2 (see new Figure 1C, and Figure 1— figure supplement 1 D, E). In lines 149-155 we note single channel openings were frequently observed for the high expressing PKD2L1 channels, but this often resulted in patch instability. As a result, GUV patches with lower expressing PKD2-GFP channel were more stable and thus more successfully recorded from. We have revised the text to be clearer on this point.

      (5) There are no methods for preparing hippocampal neurons or IMCD cells shown in Figure 4 Supplement 1. Instead, the method of mammalian cultures provided corresponds to HEK 293T cells.

      This information has been added to lines 273-284.

      (6) Minor:

      In Figure 2C, please include the actual % of the Cell488+Surface647+Clear lumen vesicles.

      Added

      Line 99, 108: Figures 1B and 1C are swapped. Please correct.

      Corrected in figure and figure legends.

      Line 108: misspelling: effect.

      Done

      Line 109: check sentence: verb is missing.

      Sentence now reads “Minimal changes in fluorescence were detected when a control plasmid (Ctrl) encoding a non- fluorescent protein (dihyrofolate reductase) was used in the reaction.”

      Line 145: recoding. Correct.

      Recoding changed to recordings

      Line 169: "from" is missing (recorded from MCD cilia).

      Added

      Line 169: In Table 1, the PKD2 K+ conductance magnitudes recorded from IMCD cilia were significantly smaller, not larger as stated, than those assayed using CFE-GUV system. Please correct.

      Corrected

      Line 180: "of" is missing (adaptation of CFE derived...).

      Corrected

      Line 182: "to" is missing (generalized to other channels).

      Corrected

      Line 193: "in" 4ºC, correct at.

      Corrected

      Line 197: replace "mole" for "mol".

      Corrected

      Line 207: are used "within the" same day.

      Corrected

      Line 210: c-terminally. C-should be capital letter.

      Corrected

      Line 231: n-terminally. N- should be capital letter.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      The authors validated their method using PKD2 and PKD2L1 channels, demonstrating the potential of this approach. However, a few points merit further clarification or validation:

      (1) Stability of the protein vesicles for recording. The authors observed membrane instability during voltage transitions. It would be beneficial to discuss potential solutions to enhance stability.

      In lines 197-202, we have added a discussion of potential solutions to enhance stability. CsF in the intracellular saline could be added to stabilize the GUV membranes. CsF is frequently added to stabilize whole cell membranes in HTS planer patch clamp recording. We did not explore this formulation because Cs+ would limit outward polycystin conductance. We also suggest but did not test altering the membrane formulation of GUVs with additional cholesterol to stabilize these recordings.

      (2) Validation. Further discussion on how broadly this method can be applied to other channels would strengthen the manuscript.

      We have included further discussion on this point in lines 190-206. 

      (3) Protein production estimated by a standard GFP absorbance assay. The estimation of protein production using GFP absorption may be affected by improperly folded protein. Additional validation methods could be considered.

      C-terminal GFP fluorescence has been widely used in expression systems to designate proper folding of the target protein upstream of the GFP-tag (PMID: 22848743, PMID: 21805523, PMID: 35520093). Nonetheless we have conducted additional experiments designed to estimate the amount of assembled PKD2 and PKD2L1 channels generated using the CFE method. In the new Figure 1— figure supplement 1 D, E, we carried out fluorescencedetection size-exclusion chromatography and compared channel assembly of recombinant and CFE+SUV derived PKD2-GFP and PKD2L1-GFP. Here, we clearly observed tetrameric and protomeric forms of the channels using the synthetic approach, which supports feasibility of using this method to assay their functional properties (see new Figure 1— figure supplement 1 D, E).  When compared to protein recombinant sources from HEK cells, the production of assembled channels is less than 4% when using the CFE+SUV approach, an estimate based on the oligomer peak fluorescence. 

      (4) Single channels were observed more frequently from PKD2 incorporated GUVs compared to PKD2L1. Does this just randomly happen or is there a reason behind this difference?

      In terms of overall protein production and oligomeric assembly— more PKD2L1 channels are produced compared to PKD2 (Figure 1C, and Figure 1— figure supplement 1 D, E). This is apparent whether the channels are produced recombinantly in cells or when using the cell-free method (Figure 1— figure supplement 1 D, E). In lines 149-155, we note single channel openings were frequently observed but that the high expression of the PKD2L1 often resulted in patch instability. As a result, GUV patches the lower expressing PKD2-GFP channel were more stable and thus more successfully recorded from. As requested, we have included a brief description of the two proteins in lines 76-78. 

      (5) Additional validation or clarification for examining the channel orientation may strengthen the manuscript.

      We have modified the text to make this point clearer. 

      (6) Advantage and limitations. The authors compared the recordings from hippocampal primary cilia membranes, noting differences in conductance magnitudes compared to the GUV method. Further discussing the limitations and advantages of this approach for the biophysical properties of organelle channels would be beneficial.

      We have revised the final paragraph to discuss the limitations of this method.

      (7) Including experiments that demonstrate ligand-induced activation or inhibition to further validate the current using this method would strengthen the manuscript (optional, not required).

      Despite our best attempts, exchange of the external bath to apply inhibitors (Gd3+, La3+) resulted in GUV patch instability. Our plans are to investigate ways to stabilize the high resistance seals to develop pharmacological screening using the CFE+GUV method.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to investigate the role of ORMDL3 in regulating Type 1 interferon (IFN) responses and its effect on tumor growth inhibition. The study focuses on the mechanisms involving the RIG-I pathway and USP10-mediated degradation and attempts to establish a link between ORMDL3 expression and the effectiveness of cancer therapy. The authors also explore the broader implications of ORMDL3 in immune signaling, particularly within the context of Type 1 IFN signaling and its therapeutic potential.

      Strengths:

      • The manuscript explores a novel aspect of cancer immunology by examining the relationship between ORMDL3 and Type 1 IFN signaling, potentially offering new therapeutic avenues.<br /> • A variety of experimental approaches are employed, including knockdown models, overexpression assays, and protein interaction analyses, to elucidate the role of ORMDL3 in modulating immune responses.<br /> • The findings suggest a potential mechanism by which ORMDL3 affects the tumor microenvironment and immune responses, which could have significant implications for understanding cancer progression and therapy.

      Weaknesses:

      • The study does not clearly establish the relationship between Type 1 IFN and cancer therapy, and more robust data are needed to support the claim that tumor growth inhibition occurs via Type 1 IFN upregulation following ORMDL3 knockdown.<br /> • There is ambiguity regarding whether ORMDL3 has a positive or negative role in the Type 1 IFN pathway, especially given conflicting findings in the literature that link higher ORMDL3 levels to increased Type 1 IFN expression.<br /> • The use of certain experimental models, such as HEK293T cells (which are not typical Type 1 IFN producers), raises concerns about the validity and generalizability of the results. Further clarity is needed regarding the rationale for using the same tag in overexpression experiments.<br /> • The manuscript contains several inconsistencies and lacks detailed explanations of critical areas, such as the mechanism by which ORMDL3 facilitates USP10 transfer to RIG-I despite no direct interaction between ORMDL3 and RIG-I.

    2. Author response:

      • The study does not clearly establish the relationship between Type 1 IFN and cancer therapy, and more robust data are needed to support the claim that tumor growth inhibition occurs via Type 1 IFN upregulation following ORMDL3 knockdown.

      We thank the reviewer’s concern. In Figure 6 we detected the expression of IFNB1 and ISGs in MC38 and LLC tumor upon ORMDL3 knockdown. At the mean time, we also used IHC to explore the abundance of RIG-I and ORMDL3 in these tumors. In addition, in figure S5 we performed western blots to detect the expression of RIG-I with or without ORMDL3 knockdown. All these results support our hypothesis that that ORMDL3 is a negative regulator of interferon via modulating RIG-I abundance.

      • There is ambiguity regarding whether ORMDL3 has a positive or negative role in the Type 1 IFN pathway, especially given conflicting findings in the literature that link higher ORMDL3 levels to increased Type 1 IFN expression.

      We appreciate the reviewer’s concern. In our system and experiments, we validated that ORMDL3 is a negative regulator of interferon, although there is also literature that links higher ORMDL3 levels to increased type-I IFN response. ORMDL3 has been reported associated with rhinovirus-induced childhood asthma (Nature.  2007;448(7152):470-473; N Engl J Med. 2013 Apr 11;368(15):1398-407), and ORMDL3 level is positively associated with rhinovirus abundance (N Engl J Med. 2013 Apr 11;368(15):1398-407).  There are reports indicating that ORMDL3 supports the replication of rhinovirus (for example, Am J Respir Cell Mol Biol. 2020 Jun;62(6):783-792). This phenomenon is consistent with our findings that higher ORMDL3 expression leads to lower interferon production, which facilitates viral replication. We believe that the different experimental conclusions obtained in these experiments are due to different experiment condition and different stimulation. In our research, we provided comprehensive studies at the molecular, cellular, and animal levels to support the conclusion that ORMDL3 is a negative regulator of type-I interferon.

      • The use of certain experimental models, such as HEK293T cells (which are not typical Type 1 IFN producers), raises concerns about the validity and generalizability of the results. Further clarity is needed regarding the rationale for using the same tag in overexpression experiments.

      We thank the reviewer’s suggestion. Besides HEK293T, in Figure 1C and 1D we also used A549 and BMDM to overexpress ORMDL3 and stimulate them with polyI:C or polyG:C, Our results showed that ORMDL3 especially inhibits RLR signaling. Additionally, in Figure 3H we found that the endogenous RIG-I expression decreased when we overexpressed ORMDL3 in BMDM. Regarding the issue of using different protein tags, we plan to use different tags to validate our results.

      • The manuscript contains several inconsistencies and lacks detailed explanations of critical areas, such as the mechanism by which ORMDL3 facilitates USP10 transfer to RIG-I despite no direct interaction between ORMDL3 and RIG-I.

      There are some ERMC (ER-mitochondria contact) proteins that mediate the interaction between ER and mitochondria. ORMDL3 locates in ER, and it has been reported to be associated with calcium transportation. At the meantime, the calcium transfer between ER and mitochondria plays an important role in protein synthesis. It is possible that some ERMC proteins mediate the interaction between ORMDL3 and MAVS. In addition,  we also validated that ORMDL3 interacts with USP10 (Figure 5B). Although ORMDL3 and RIG-I do not interact directly, we generated a mechanistic model that ORMDL3 and MAVS recruit USP10 and RIG-I to ERMCS respectively, thus USP10 could form a complex with RIG-I (Figure 5C) and regulate the stability of RIG-I upon RNA sensing.

    1. Not that it couldn't be done, but I'll suggest that following the structure/order of a Luhmann-artig zettelkasten may be a bit more limiting or difficult for creating fiction.

      There's a rich history of researching, outlining, and writing with card indexes as part of the creative process. Perhaps looking briefly at some examples particularly focusing on fiction may be helpful? Once you've done this, you can pick and choose the portions and affordances that work best for your preferred way of thinking and working.

      Some quick examples:

      Perhaps querying my digital zettelkasten may be helpful for you? Start with: https://hypothes.is/users/chrisaldrich?q=tag%3A%27card+index+for+writing%27

      Ultimately, you can only spend so much time going down the rabbit hole of how you ought to do this work and taking suggestions or reading about how others have done it. The more difficult but more fruitful portion is to pick a method which seems like it will work for you and experiment with it by actually using or evolving it for yourself. How you start may not necessarily be how you end, but you won't know what's best for you if you don't start. Practice, practice, practice will get you much farther faster.

      reply to u/Atreides_Lion at https://reddit.com/r/Zettelkasten/comments/1ft4r3z/a_very_important_matter_for_me/

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The overall writing is very difficult to follow and the authors need to work on significant re-writing. 

      Thank you for your comment. We have rewritten the text and asked an immunology expert, who is also a native English speaking editor, to review it.

      (2) The paper in its current form really lacks detail and it is NOT possible for readers to repeat or follow their methods. For example: a) It is not clear whether the authors checked the serum to see if the mice were producing antibodies before they sacrificed them to harvest spleen/blood i.e. using ELISA? b) How long after administration of the second dose were the mice sacrificed? c) What cell types are taken for single B cell sorting? Splenocytes or PBMC?

      Thank you for your comment. We have revised the methodology section thoroughly to ensure that the readers can follow and replicate the method. Our responses to the specific examples raised are as follows:

      a) We did not examine the serum titer after immunization. An increased serum titer, as determined by ELISA, does not always reflect the number of cross-reactive B cells because we expected the serum titer to consist of polyclonal antibodies, which are a mixture of PR8-reactive, H2-reactive, and cross-reactive clones. We thus anticipated that we would not obtain enough cross-reactive B cells after a series of immunizations. After comparing various immunization methods, including different adjuvants and immunization sites, using the readout of the number of cross-reactive B cells, we decided to adopt the immunization protocol presented in this paper.

      b) We sacrificed the mice two weeks after the second immunization (see Supplementary Figure 5).

      c) For this experiment, we used CD43 MACS B cells from the spleen purified with negatively charged beads (see Supplementary Figure 6).

      (3) According to the authors, 77 clones were sorted from the PR8+ and H2+ double positive quadrant. It is surprising that after transfection and re-analyzing of bulk antibody presenting EXPI cells on FACS, only 13 clones (or 8 clones? - unclear) seemed to be truly cross-reactive. If that is the case, the approach is not as efficient as the authors claimed.

      Thank you for your comment. To isolate high affinity antibodies, we gated the high fluorescent intensity population of cross-reactive B cells during Ig-expressing 293 cell sorting, as shown in Fig 2B, while we collected a wide intensity population of cross-reactive cells during splenocyte sorting. The narrow gating reduced the number of clones. We, however, cannot quantify how many clones we lost in the process, but we achieved a cloning efficiency exceeding 75%. To avoid any confusion, we have clarified this point by attaching additional supplementary figures (Supplementary Figures 5 and 6).

      Reviewer #2 (Public Review):

      (4) A His tagged antigen was used for immunization and H1-his was used in all assays. Either the removal of His specific clones needs to be done before selection, or a different tag needs to be used in the subsequent assays.

      Thank you for your comment. As pointed out, the possibility of antibody generation in regions other than HA cannot be ruled out since the immunized antigen and the detection antigen were the same. However, as shown in Table 1, the cross-reactive antibodies obtained in this study exhibited characteristic binding abilities to each of the six types of HA. If these were antibodies recognizing His, they would bind to all six types of HA. This indicates that these cross-reactive antibodies were not His-specific clones.

      We have incorporated information on this potential caveat into the discussion (page 12, lines 4-9).

      (5) This assay doesn't directly test the neutralization of influenza but rather equates viral clearance to competitive inhibition. The results would be strengthened with the demonstration of a functional antibody in vivo with viral clearance.

      Thank you for your constructive comment. While we agree that demonstration of a functional antibody in vivo with viral clearance would strengthen our results, this is clearly out of the scope of our current study and will be subject of future research.

      (6) Limitations of this new technique are as follows: there is a significant loss of cells during FACs, transfection and cloning efficiency are critical to success, and well-based systems limit the number of possible clones (as the author discussed in the conclusions). Early enrichment of the B cells could improve efficiency, such as selection for memory B cells.

      Thank you for your comment. Our cloning efficiency for sorted B cells exceeded 75%. However, we selected high binders of cross-reactive B cells during Ig-expressing 293 functional screening on purpose, as shown in Figure 2B, while we collected all cross-reactive B cells during B cell sorting (see attached Supplementary Figure 5). This functional selection step reduced the number of clones. We clarified this point by attaching additional supplementary figures (Supplementary Figures 5 and 6).

      Our sorted cross-reactive B cells are most likely CD38+ memory B cells, as shown in Supplementary Figure 6.

      Reviewer #1 (Recommendations For The Authors):

      a) It is advised for the authors to provide a flow chart with time stamps to prove the many statements made in the paper. For example, it is stated that "we demonstrated efficient isolation of influenza cross-reactive antibodies with high affinity from mouse germinal B cells over 4 days". It is not clear how this was calculated.

      Thank you for your comment. We have prepared a time-stamped flow chart (Supplementary Figure 5).

      b) The papers cited by the authors are relatively old if not outdated. There are many papers published focusing on efficient isolation of mAbs for SARS-CoV-2 research. For example, the paper by Lima et al (Nat Comm 2022, 13:7733) used a very similar strategy for rapid isolation of cross-reactive mAbs by FACS sorting followed by cloning of paired heavy and light chains from single B cells. The authors need to incorporate citations from the latest publications in this field.

      Thank you for your comment. The paper by Lima et al. (Nat Comm 2022, 13:7733) has been cited in the Discussion as ref 28.

      c) Figure 2 needs much more detail for readers to follow.

      Thank you for your comment. We have revised the legend of Figure 2 accordingly and added additional supplementary figures (Supplementary Figures 5 and 6) to increase clarity.

    1. if (!skip_kasan_poison) { kasan_poison_pages(page, order, init); /* Memory is already initialized if KASAN did it internally. */ if (kasan_has_integrated_init()) init = false; }

      bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);

      bool should_skip_kasan_poison(...) { bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); }

      Skip KASAN memory poisoning is based on the configuration (depending on which kind of KASAN: generic or tag-based)

    1. adding to what clemp wrote. Structure or categorisation is earned imo and emergent from working with my material. Any categorisation, indexing, tagging also is personal imo meaning no external standard as to how things should be organised applies in any way. Structures are personal tools and can be temporary. Which ones do you need and can add to over time while your interacting with your material? That way there’s a ratchet effect, but no need to structure everything as a separate task. I start everything I do with a search in my stuff. I add to the things I find and seem relevant at that time as tags the things I was searching for. If I found a piece about gardening while searching for things about health, I will add that health relation as tag. Or as link to another note. This lengthens the traces of my work with my material, and longer traces I’m more likely to cross. Over time I will see the stuff emerge that is most relevant to me over time. The start for me is when I save something external I always add the following 2 things: the reason I wanted to save it, what made me interested, in my own words (might include some tags). And always a link to something already in my notes that I associate it with. For me the switch in mindset is that there is no intrinsic information contained in anything I keep, all meaning is in my own eyes when I use it later. Any structuring reflects that, and I work form the assumption there are no objective descriptors I must use as categories or tags etc. Rather than organize/structure during note taking, I organize/structure during note using. With my initial remark and internal link as curation to help me on my way.

      my comment, in response to someone getting lost in up front organising of notes, and ending up in a 'mess'. Embrace the mess, lengthen traces to stumble upon, earn structure (they're a personal tool not an outside standard or demand). Organise during note usage rather than during note taking, except for curation when saving something external with a remark (tags sometimes) and an internal link.

  8. docdrop.org docdrop.org
    1. When I ask my students if they have tracking programs at schools they have attended or where they completed their student teaching, many of them routinely answer "no." When I inquire about gifted and talented (GAT or TAG) programs, many of them instinctively begin to describe, in detail, the differentiated curricu-lum, enrichment opportunities, and vastly different experiences each program entails.

      It points out that when students are asked about tracking programs in their schools, many say there aren't any. However, when asked about gifted and talented programs, they can easily describe how different those programs are. This shows that students might not realize how tracking affects their education, even though they notice the differences in opportunities for gifted students. It raises questions about fairness in education and how these experiences shape their views on learning. Why do you think some students don't see tracking as an issue?

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study provides an incremental advance to the scavenger receptor field by reporting the crystal structures of the domains of SCARF1 that bind modified LDL such as oxidized LDL and acylated LDL. The crystal packing reveals a new interface for the homodimerization of SCARF1. The authors characterize SCARF1 binding to modified LDL using flow cytometry, ELISA, and fluorescent microscopy. They identify a positively charged surface on the structure that they predict will bind the LDLs, and they support this hypothesis with a number of mutant constructs in binding experiments.

      Strengths:

      The authors have crystallized domains of an understudied scavenger receptor and used the structure to identify a putative binding site for modified LDL particles. An especially interesting set of experiments is the SCARF1 and SCARF2 chimeras, where they confer binding of modified LDLs to SCARF2, a related protein that does not bind modified LDLs, and use show that the key residues in SCARF1 are not conserved in SCARF2.

      Weaknesses:

      While the data largely support the conclusions, the figures describing the structure are cursory and do not provide enough detail to interpret the model or quality of the experimental X-ray structure data. Additionally, many of the flow cytometry experiments lack negative controls for non-specific LDL staining and controls for cell surface expression of the SCARF constructs. In several cases, the authors interpret single data points as increased or decreased affinity, but these statements need dose-response analysis to support them. These deficiencies should be readily addressable by the authors in the revision.

      The paper is a straightforward set of experiments that identify the likely binding site of modified LDL on SCARF1 but adds little in the way of explaining or predicting other binding interactions. That a positively charged surface on the protein could mediate binding to LDL particles is not particularly surprising. This paper would be of greater importance if the authors could explain the specificity of the binding of SCARF1 to the various lipoparticles that it does or does not bind. Incorporating these mutants into an assay for the biological role of SCARF1 would be powerful.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Wang and colleagues provided mechanistic insights into SCARF1 and its interactions with the lipoprotein ligands. The authors reported two crystal structures of the N-terminal fragments of SCARF1 ectodomain (ECD). On the basis of the structural analysis, the authors further investigated the interactions between SCARF1 and modified LDLs using cell-based assays and biochemical experiments. Together with the two structures and supporting data, this work provided new insights into the diverse mechanisms of scavenger receptors and especially the crucial role of SCARF1 in lipid metabolism.

      Strengths:

      The authors started by determining the crystal structures of two fragments of SCARF1 ECD. The superposition of the two high-resolution structures, together with the predicted model by AlphaFold, revealed that the ECD of SCARF1 adopts a long-curved conformation with multiple EGF-like domains arranged in tandem. Non-crystallographic and crystallographic two-fold symmetries were observed in crystals of f1 and f2 respectively, indicating the formation of SCARF1 homodimers. Structural analysis identified critical residues involved in dimerization, which were validated through mutational experiments. In addition, the authors conducted flow cytometry and confocal experiments to characterize cellular interactions of SCARF1 with lipoproteins. The results revealed the vital role of the 133-221aa region in the binding between SCARF1 and modified LDLs. Moreover, four arginine residues were identified as crucial for modified LDL recognition, highlighting the contribution of charge interactions in SCARF1-lipoprotein binding. The lipoprotein binding region is further validated by designing SCARF1/SCARF2 chimeric molecules. Interestingly, the interaction between SCARF1 and modified LDLs could be inhibited by teichoic acid, indicating potential overlap in or sharing of binding sites on SCARF1 ECD.

      The author employed a nice collection of techniques, namely crystallographic, SEC, DLS, flow cytometry, ELISA, and confocal imaging. The experiments are technically sound and the results are clearly written, with a few concerns as outlined below. Overall, this research represents an advancement in the mechanistic investigation of SCARF1 and its interaction with ligands. The role of scavenger receptors is critical in lipid homeostasis, making this work of interest to the eLife readership.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Wang et. al. described the crystal structures of the N-terminal fragments of Scavenger receptor class F member 1 (SCARF1) ectodomains. SCARF1 recognizes modified LDLs, including acetylated LDL and oxidized LDL, and it plays an important role in both innate and adaptive immune responses. They characterized the dimerization of SCARF1 and the interaction of SCARF1 with modified lipoproteins by mutational and biochemical studies. The authors identified the critical residues for dimerization and demonstrated that SCARF1 may function as homodimers. They further characterized the interaction between SCARF1 and LDLs and identified the lipoprotein ligand recognition sites, the highly positively charged areas. Their data suggested that the teichoic acid inhibitors may interact with SCARF1 in the same areas as LDLs.

      Strengths:

      The crystal structures of SCARF1 were high quality. The authors performed extensive site-specific mutagenesis studies using soluble proteins for ELISA assays and surface-expressed proteins for flow cytometry.

      Weaknesses:

      (1) The schematic drawing of human SCARF1 and SCARF2 in Fig 1A did not show the differences between them. It would be useful to have a sequence alignment showing the polymorphic regions.

      The schematic drawing in Fig.1A is to give a brief idea about the two molecules, the sequence alignment may take too much space in the figure. A careful alignment between SCARF1 and SCARF2 can be found in Ref. 24 (Ishii, et al., J Biol Chem, 2002. 277, 39696-702) an also mentioned in p.4.

      (2) The description of structure determination was confusing. The f1 crystal structure was determined by SAD with Pt derivatives. Why did they need molecular replacement with a native data set? The f2 crystal structure was solved by molecular replacement using the structure of the f1 fragment. Why did they need to use EGF-like fragments predicted by AlphaFold as search models?

      The crystal structure of f1 was first determined by SAD using Pt derivatives, but soaking of Pt reduced the resolution of the crystals, therefore we use this structure as a search model for a native data set that had higher resolution for further refinement. For the structural determination of f2, the molecular replacement using f1 structure was not able to show the initial density of the extra region in f2 (residues 133-209), which was missing in f1. Therefore, the EGF-like domains of SCARF1 modeled by AlphaFold were applied as search models for this region (p.18).

      (3) It's interesting to observe that SCARA1 binds modified LDLs in a Ca2+-independent manner. The authors performed the binding assays between SCARF1 and modified LDLs in the presence of Ca2+ or EDTA on Page 9. However, EDTA is not an efficient Ca2+ chelator. The authors should have performed the binding assays in the presence of EGTA instead.

      The binding assays in the presence of EGTA are included in the revised manuscript (Fig. S7) (p.9), which also suggest that SCARA1 binds OxLDL in a Ca2+-independent manner.

      (4) The authors claimed that SCARF1Δ353-415, the deletion of a C-terminal region of the ectodomain, might change the conformation of the molecule and generate hinderance for the C-terminal regions. Why didn't SCARF1Δ222-353 have a similar effect? Could the deletion change the interaction between SCARF1 and the membrane? Is SCARF1Δ353-415 region hydrophobic?

      The truncation mutants were constructed to roughly locate the binding region of lipoproteins on SCARF1, and the overall results showed that the sites might locate at the region of 133-221. Mutant Δ222-353 may also affect the conformation, but it still had binding with OxLDL like wild type, suggesting the binding sites were retained in this mutant. Mutant Δ353-415 showed a reduction of binding, implying that the binding sites might be retained but binding was affected, we think it might be due to the conformational change that could reduce the binding or accessibility of lipoproteins. Since this region locates closer to the membrane, it’s possible that it may change the interaction with the membrane. In the AF model, Δ353-415 region does not seem to be more hydrophobic than other regions (Fig. S2C).

      (5) What was the point of having Figure 8? Showing the SCARF1 homodimers could form two types of dimers on the membrane surface proposed? The authors didn't have any data to support that.

      Fig. 8 shows a potential model of the SCARF1 dimers on the cell surface by combining the structural information from crystals and AF predictions. The two dimers in the figure are identical but with different viewing angles. The lipoprotein binding sites are also indicated (Fig. 8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors need to show examples of the electron density for both structures.

      Electron density examples of the two structures are shown in Fig. S2A.

      Figure 1)

      The figure does not show enough details of the structure. The text mentions hydrogen-bond and disulfide bonds that stabilize the loops, these should be shown.

      Disulfide bonds of the two structures are shown in Fig. 1.

      Figure 2)

      D) The full gel should be shown.

      E) Rather than just relying on changes in gel filtration elution volumes, the authors do the appropriate experiment and measure the hydrodynamic radius of the WT and mutant ectodomains by DLS. However, they need to show plots of the size distribution, not just mean radial values, in order to show if the sample is monodisperse.

      The full gel and plots of DLS are shown in Fig. S3A-B.

      Figure 3)

      I have concerns about the rigor of the experiments in panels A-D. The authors include a non-transfected control but do not appear to have treated non-transfected cells with the lipoproteins to evaluate the specificity of binding. Every cell binding assay (flow  or confocal) must show the data from non-transfected cells treated with each lipoprotein, as each lipoprotein species could have a unique non-specific binding pattern. The authors show these controls in Figure 6, but these controls are necessary in every experiment.

      In Fig. 3A, since several lipoproteins were included in the figure, we use non-transfected cells without lipoprotein treatment as a negative control. The OxLDL or AcLDL treated non-transfected cells were also used as negative controls and shown in Fig. 3B-C. LDL, HDL or OxHDL may have their own non-specific binding patterns, the treatment of LDL, HDL or OxHDL with the transfected cells all gave negative results (Fig. 3A and D).

      Cell-surface of the SCARF1 variants is a major concern. The constructs the authors use are tagged with a GFP on the cytosolic side. However, the Methods to do indicate if they gate on GFP+ transfected cells for analytical flow. Such gating may have been used because the staining experiments in Figures 3 and 4 show uniform cell populations, whereas the staining done with an anti-SCARF1 Ab in S4 shows most of the cells not expressing the protein on the surface. Please clarify.

      Data for the anti-SCARF1 Ab assay is gated for GFP in the revised Fig. S4, and  the non-transfected cells are included as a control.

      The authors must demonstrate cell-surface staining with an epitope tag on the extracellular side and clarify if the analyzed cells are gated for surface expression. The anti-SCARF antibody used in S4 may not recognize the truncated or mutant SCARFs equally. Cell-surface expression in the flow experiments cannot be inferred from confocal experiments because the flow experiments have a larger quantitative range.

      Anti-SCARF1 antibody assay provides an estimation of the surface expression of the proteins. If the epitope of the antibody was mutated or removed in the mutants, most likely it would lose binding activity. Including an epitope tag on the ectodomain could be an option, but if truncation or mutation changes the conformation of the ectodomain, the accessibility of the epitope may also be affected, and addition of an extra sequence or domain, such as an epitope tag, may affect the surface expression of proteins sometimes.

      In several places, the authors infer increased or decreased affinity from mean fluorescent intensity values of a single concentration point without doing appropriate dose-curves. These experiments need to be done or else the mentions of changes in apparent affinities should be removed.

      We add a concentration for the WT interaction with OxLDL (Fig. S6, p.9) and the manuscript is also modified accordingly.

      Figure 7

      The concentration of teichoic acid used to inhibit modified LDL binding should be indicated and a dose-curve analysis should be done comparing teichoic acid to some non-inhibitory bacterial polymer.

      The concentration of teichoic acids used in the inhibition assays is 100 mg/ml (p.21). Unfortunately, we don’t have other bacterial polymers in the lab and not sure about the potential inhibitory effects.

      Reviewer #2 (Recommendations For The Authors):

      Major points:

      (1) The SCARF1 ECD contains three N-linked glycosylation sites (N289, N382, N393). It remains unclear whether these modifications are involved in SCARF1 binding to modified LDLs. Is it possible to design some experiments to investigate the effect of N-glycans on the recognition of modified LDLs? In particular, N382 and N393 are included in 353-415aa and the truncation mutant of SCARF1Δ353-415aa resulted in reduced binding with OxLDL in Fig.3G. Or whether the reduced binding is only due to the potential conformational changes caused by the deletion of the C-terminal region of the ECD?

      A previous study regarding the N-glycans (N289, N382, N393) of SCARF1 (ref.17) has shown that they may affect the proteolytic resistance, ligand-binding affinity and subcellular localization of SCARF1, which is not quite surprising as lipoproteins are large particles, the N-glycans on the surface of SCARF1 could affect accessibility or affinity for lipoproteins. But the exact roles of each glycan could be difficult to clarify as they might also be involved in protein folding and trafficking.

      The reduction of the binding of OxLDL for the mutant SCARF1 Δ353-415aa may be due to the conformational change or the loss of the glycans or both.

      (2) The authors speculated that the dimeric form of SCARF1 may be more efficient in recognizing lipoproteins on the cell surface. Please highlight the critical region/sites for ligand binding in Figure 8 and discuss the structural basis of dimerization improving the binding.

      The binding sites for lipoproteins on SCARF1 are indicated in Fig. 8. According to our data, it might be possible the conformation of the dimeric form of SCARF1 makes it more accessible to the ligands on the cell surface as implied by flow cytometry (p.14-15), but still needs further evidence on this.

      (3) Could the two salt bridges (D61-K71, R76-D98) observed in f1 crystals be found in f2 crystals? They seemed to be a little far from the defined dimeric interface (F82, S88, Y94) and how important are these to SCARF1 dimerization?

      The two salt bridges observed in f1 crystal are not found in f2 crystal (distances are larger than 5.0 Å), suggesting they are not required for dimerization (p. 7-8), but may be helpful in some cases.

      (4) The monomeric mutants (S88A/Y94A, F82A/S88A/Y94A) exhibited opposite affinity trends to OxLDL in ELISA and flow cytometry. The authors proposed steric hinderance of the dimers coated onto the plates as the potential explanation for this observation. However, the method of ELISA stated that OxLDLs, instead of SCARF1 ECD, were coated onto the plates. So what's the underlying reason for the inconsistency in different assays?

      Thanks. ELISA was done by coating OxLDLs on the plates as described in the Methods. But still, a dimeric form of SCARF1 may only bind one OxLDL coated on the plates due to steric hinderance. We correct this on p.12.

      Minor points:

      (1) Figure 2D and Figure S3 - please label the molecular weight marker on the SEC traces to indicate the native size of various purified proteins.

      The elution volume of SEC not only reflects the molecular weight, but it’s also affected by the conformation or shape of protein. The ectodomain of SCARF1 has a long curved conformation, the elution volumes of the monomeric or dimeric forms of SCARF1 do not align well with the standard molecular weight marker and elute much earlier in SEC. We include the standard molecular weight marker in Fig. S3C-D.

      (2) Could the authors provide SEC profiles of f1 and f2 that were used in crystallographic study?

      The SEC profiles of f1 and f2 for crystallization are shown in Fig. S5 (p.6).

      (3) The legend of Figure 3A states that the NC in flow cytometry assay represents the non-transfected cells, but please confirm whether the NC in Fig. 3A-C corresponds to non-transfected cells or no lipoprotein.

      NC in Fig. 3A represents the non-transfected cells, and no lipoproteins were added in this case as several lipoproteins are included in Fig. 3A. The lipoprotein (OxLDL or AcLDL) treated non-transfected cells (NC) were shown in Fig. 3B-C as negative controls.

    1. Reviewer #2 (Public review):

      The manuscript by Yorek et al explores the role of fatty acids, particularly unsaturated fatty acids, in lipid droplet accumulation and lipolysis in tumor-associated macrophages (TAMs). Using flow cytometry, immunofluorescent imaging, and TEM, the authors observed that unsaturated fatty acids, such as linoleic acids (LA), tend to induce lipid droplet accumulation in the ER of macrophages, but not in the lysosomes. This phenomenon led them to examine the key enzymes involved in lipid droplet/TAG biosynthesis, where they found incubation of LA upregulates GPAT/DGAT and C/EBPα. In vitro studies, data from public databases, single-cell RNA sequencing of splenic macrophages, and more show that FABP4 emerges as an important mediator for C/EBPα activation. This is further confirmed by FABP4-knockout macrophages, where lipid accumulation and utilization of unsaturated fatty acids were compromised in macrophages through inhibition of LA-induced lipolysis. Using the co-culture system and immunohistochemical analysis, they found that the high FABP4 expression in TAMs, which are observed in metastatic breast cancer tissue, promotes breast cancer cell migration in vitro.

      This study is important since the impact of tumor microenvironment is crucial for the development of breast cancer. The individual experiments are well-designed and structured. However, the logic connecting to the next step is a bit difficult to follow, especially when combined with incomplete statistical analysis in some figures, making the conclusion less convincing. For instance, the comparison of macrophage FABP4 expression between breast cancer patients with or without metastasis illustrates the importance of FABP4 expression in metastasis, yet there is no examination of the expression of other key enzymes in the lipolysis or lipid biosynthesis pathway nor there is any correlation with parameters that would reflect patients' consumption of fatty acids. Similarly, an in vivo study comparing FABP4 knockout mice with or without unsaturated fatty acids would yield more compelling evidence. The statistical analysis was largely focused on the sets of unsaturated fatty acids when data from both types of fatty acids were present. In some cases, significant changes are observed in the sets of saturated fat, but there is no explanation of why only the data from unsaturated fats are important for investigation.

      Overall, there is solid evidence for the importance of FABP4 expression in TAMs on metastatic breast cancer as well as lipid accumulation by LA in the ER of macrophages. A stronger rationale for the exclusive contribution of unsaturated fatty acids to the utilization of TAMs in breast cancer and a more detailed description and statistical analysis of data will strengthen the findings and resulting claims.

    2. Reviewer #3 (Public review):

      Summary:

      Regulated metabolism has only recently been recognized as a key component of cancer biology, and even more recently recognized as a significant modulator of the tumor microenvironment (TME). TAMs in the TME play a major role in supporting cancer cell survival and growth/spread, as well as generating an immunosuppressive ME to suppress anti-tumor immunity. Specific regulation of lipid metabolism in this context, in particular how lipids are stored and subsequently mobilized for metabolism, is largely unexplored - especially in the immunological components of the TME.

      In this manuscript, the authors build on their previous observations that the fatty acid-binding protein FABP4 plays an important role in macrophage function and that FABP4 expression in tumor associated macrophages (TAM) promotes breast cancer progression. They demonstrate:

      (1) Unlike saturated fatty acids (FA), unsaturated FA promotes lipid droplet (LD) accumulation in murine macrophages. LD is the primary intracellular storage depot for FA.

      (2) Unsaturated FA activates the FABP4-C/EBPalpha axis to upregulate transcription of the enzymes involved in the synthesis of neutral triacylglycerol (TAG) is an essential step in the formation of the neutral lipid core of LD. It should be noted that the authors speculate that UFA-activated FABP4 translocates to the nucleus to activate PPARgamma, which is known to induce C/EBPalpha expression, but do not directly test the involvement of PPARgamma in this axis.

      (3) FABP4 deficiency compromises unsaturated FA-mediated lipid accumulation and utilization in murine macrophages.

      (4) FABP4-mediated lipid metabolism in macrophages (TAMS) contributes to breast cancer metastasis, in in-vitro of tumor migration induced by murine macrophages and in correlative studies from human patient breast cancer biopsies.

      From these studies, the manuscript concludes that FABP4 plays a pivotal role in mediating lipid droplet formation and lipolysis in TAM, which provides lipids to breast cancer cells that contribute to their growth and metastasis.

      These are significant findings, as they provide new insight into the mechanistic regulation of TAM biology via regulation of lipid metabolism, as well as define new biomarkers and potential novel therapeutic targets.

      The findings are strong in the studies that mechanistically define the role of FAB4 in lipid accumulation and utilization in murine macrophages. However, evidence is less compelling regarding TAM biology and human breast cancer in 3 main areas:

      First, while there is clear in vitro evidence that co-cultured murine macrophages genetically deficient in FABP4 (or their conditioned media) do not enhance breast cancer cell motility and invasion, these macrophages are not bonafide TAM - which may have different biology. The use of actual TAM in these experiments would be more compelling. Perhaps more importantly, there is no in vivo data in tumor-bearing mice that macrophage deficiency of FABP4 affects tumor growth or metastasis - which are doable experiments given the availability of the FABP4 KO mice.

      Second, no data is presented that the mechanisms/biology that are elegantly demonstrated in the murine macrophages also occur in human macrophages - which would be foundational to translating these findings into human breast cancer. It seems like straightforward in vitro studies in human monocytes/macrophages could be done to recapitulate the main characteristics seen in the murine macrophages.

      Third, while the data from the human breast cancer specimens is very intriguing, it is difficult to ascertain how accurate IHC is in determining that the CD163+ cells (TAM) are in fact the same cells expressing FABP4 - which is the central premise of these studies. Demonstrating that IHC has the resolution to do this would be important. Additionally, the in vitro characterization of FABP4 expression in human macrophages would also add strength to these findings.

      In summary, the strengths of this manuscript are the significance of metabolic regulation of the immune tumor microenvironment (TME), and the careful mechanistic delineation of FABP4 involvement in mediating lipid droplet formation and lipolysis in murine macrophages. The weaknesses of the work are the lack of direct experimental evidence that human macrophages behave in the same way as murine macrophages, the incomplete characterization of the role of FABP4 expression in TAM in modulating tumor growth in vivo (in murine models), and whether it can be definitively determined that FABP4 is being primarily expressed in the CD163+ macrophages in human breast cancer samples.

      Strengths:

      (1) Regulated metabolism has only recently been recognized as a key component of cancer biology, and even more recently recognized as a significant modulator of the tumor microenvironment (TME). TAMs in the TME play a major role in supporting cancer cell survival and growth/spread, as well as generating an immunosuppressive ME to suppress anti-tumor immunity.

      (2) Regulation of lipid metabolism in this context is largely unexplored, especially in the immunological components of the TME.

      (3) The work builds on the authors' previous work on the role of FABP4 plays an important role in macrophage function including FABP4 expression in TAM promotes breast cancer progression (Hao et al, Cancer Res 2018). This paper identified FABP4-expressing macrophages as being pro-tumorigenic via upregulation of IL-6STAT3 signaling.

      (4) The careful and thorough mechanistic delineation of FABP4 involvement in mediating lipid droplet formation and lipolysis in murine macrophages.

      (5) The intriguing observations that FABP4-mediated lipid metabolism in macrophages contributes to breast cancer metastasis, in in vitro of tumor migration induced by murine macrophages and in correlative studies from human patient breast cancer biopsies that CD163+ cell numbers (putatively TAM) and FABP4 expression was associated with increased metastatic disease and poor overall survival.

      (6) Identification of FABP4 both a prognostic biomarker and a potential therapeutic target to modulate the pro-tumor immune TME.

      Weaknesses:

      (1) While the authors speculate that UFA-activated FABP4 translocates to the nucleus to activate PPARgamma, which is known to induce C/EBPalpha expression, they do not directly test involvement of PPARgamma in this axis.

      (2) While there is clear in vitro evidence that co-cultured murine macrophages genetically deficient in FABP4 (or their conditioned media) do not enhance breast cancer cell motility and invasion, these macrophages are not bonafide TAM - which may have different biology. Use of actual TAM in these experiments would be more compelling. Perhaps more importantly, there is no in vivo data in tumor bearing mice that macrophage-deficiency of FABP4 affects tumor growth or metastasis.

      (3) Related to this, the authors find FABP4 in the media and propose that macrophage secreted FABP4 is mediating the tumor migration - but don't do antibody neutralizing experiments to directly demonstrate this.

      (4) No data is presented that the mechanisms/biology that are elegantly demonstrated in the murine macrophages also occurs in human macrophages - which would be foundational to translating these findings into human breast cancer.

      (5) While the data from the human breast cancer specimens is very intriguing, it is difficult to ascertain how accurate IHC is in determining that the CD163+ cells (TAM) are in fact the same cells expressing FABP4 - which is central premise of these studies. Demonstration that IHC has the resolution to do this would be important. Additionally, the in vitro characterization of FABP4 expression in human macrophages would also add strength to these findings.

    1. Reviewer #2 (Public review):

      Summary:

      The authors tried to determine how PA28g functions in oral squamous cell carcinoma (OSCC) cells. They hypothesized it may act through metabolic reprogramming in the mitochondria.

      Strengths:

      They found that the genes of PA28g and C1QBP are in an overlapping interaction network after an analysis of a genome database. They also found that the two proteins interact in coimmunoprecipitation and pull-down assays using the lysate from OSCC cells with or without expression of the exogenous genes. They used truncated C1QBP proteins to map the interaction site to the N-terminal 167 residues of C1QBP protein. They observed the levels of the two proteins are positively correlated in the cells. They provided evidence for the colocalization of the two proteins in the mitochondria, the effect on mitochondrial form and function in vitro and in vivo OSCC models, and the correlation of the protein expression with the prognosis of cancer patients.

      Weaknesses:

      Many data sets are shown in figures that cannot be understood without more descriptions, either in the text or the legend, e.g., Figure 1A. Similarly, many abbreviations are not defined.

      Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Figure 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Figure 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Figure 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.

      The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation and be analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.

      To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupts the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Figure 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Figure 1G is a quantification of Western blot data that should be shown.

      The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Figure 1I, more Flag-C1QBP 1-167 was pulled down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?

      The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect

  9. Sep 2024
    1. Welcome back and in this lesson I want to cover a few really important topics which will be super useful as you progress your general IT career, but especially so for anyone who is working with traditional or hybrid networking.

      Now I want to start by covering what a VLAN is and why you need them, then talk a little bit about Trump connections and finally cover a more advanced version of VLANs called Q in Q.

      Now I've got a lot to cover so let's just jump in and get started straight away.

      Let's start with what I've talked about in my technical fundamentals lesson so far.

      This is a physical network segment.

      It has a total of eight devices, all connected to a single, layer 2 capable device, a switch.

      Each LAN, as I talked about before, is a shared broadcast domain.

      Any frames which are addressed to all Fs will be broadcast on all ports of the switch and reach all devices.

      Now this might be fine with eight devices but it doesn't scale very well.

      Every additional device creates yet more broadcast traffic.

      Because we're using a switch, each port is a different collision domain and so by using a switch rather than a layer 1 hub we do improve performance.

      Now this local network also has three distinct groups of users.

      We've got the game testers in orange, we've got sales in blue and finance in green.

      Now ideally we want to separate the different groups of devices from one another.

      In larger businesses you might have a requirement for different segments of the network from normal devices, for servers and for other infrastructure.

      Different segments for security systems and CCTV and maybe different ones for IoT devices and IP telephony.

      Now if we only had access to physical networks this would be a challenge.

      Let's have a look at why.

      Let's say that we talk each of the three groups and split them into either different floors or even different buildings.

      On the left finance, in the middle game testers and on the right sales.

      Each of these buildings would then have its own switch and the switches in those buildings would be connected to devices also in those buildings.

      Which for now is all the finance, all the game tester and all the sales teams and machines.

      Now these switches aren't connected and because of that each one is its own broadcast domain.

      This would be how things would look in the real world if we only had access to physical networking.

      And this is fine if different groups don't need to communicate with us so we don't require cross domain communication.

      The issue right now is that none of these switches are connected so the switches have no layer 2 communications between them.

      If we wanted to do cross building or cross domain communications then we could connect the switches.

      But this creates one larger broadcast domain which moves us back to the architecture on the previous screen.

      What's perhaps more of a problem in this entirely physical networking world is what happens if a staff member changes role but not building.

      In this case moving from sales to game tester.

      In this case you need to physically run a new cable from the middle switch to the building on the right.

      If this happens often it doesn't scale very well and that is why some form of virtual local area networking is required.

      And that's why VLANs are invaluable.

      Let's have a look at how we support VLANs using layer 2 as the OSI 7-Line model.

      This is a normal Ethernet frame.

      In the context of this lesson what's important is that it has a source and destination MAC address fields together with a payload.

      Now the payload carries the data.

      The source MAC address is the MAC address of the device which is creating and sending the frame.

      The destination MAC address can contain a specific MAC address which means that it's a unique S-frame to a frame that's destined for one other device.

      Or it can contain all F's which is known as a broadcast.

      And it means that all of the devices on the same layer 2 network will see that frame.

      What a standard frame doesn't offer us is any way to isolate devices into different parts, different networks.

      And that's where a new standard comes in handy which is known as 802.1Q, also known as .1Q. .1Q changes the frame format of the standard Ethernet frame by adding a new field, a 32-bit field in the middle in Scion.

      The maximum size of the frame as a result can be larger to accommodate this new data. 12 bits of this 32-bit field can be used to store values from 0 through to 4095.

      This represents a total of 4096 values.

      This is used for the VLAN ID or VID.

      A 0 in this 12-bit value signifies no VLAN and 1 is generally used to signify the management VLAN.

      The others can be used as desired by the local network admin.

      What this means is that any .1Q frames can be a member of over 4,000 VLANs.

      And this means that you can create separate virtual LANs or VLANs in the same layer 2 physical network.

      A broadcast frame so anything that's destined to all PEPs would only reach all the devices which are in the same VLAN.

      Essentially, it creates over 4,000 different broadcast domains in the same physical network.

      You might have a VLAN for CCTV, a VLAN for servers, a VLAN for game testing, a VLAN for guests and many more.

      Anything that you can think of and can architect can be supported from a networking perspective using VLANs.

      But I want you to imagine even bigger.

      Think about a scenario where you as a business have multiple sites and each site is in a different area of the country.

      Now each site has the same set of VLANs.

      You could connect them using a dedicated wide area network and carry all of those different company specific VLANs and that would be fine.

      But what if you wanted to use a comms provider, a service provider who could provide you with this wide area network capability?

      What if the comms provider also uses VLANs to distinguish between their different clients?

      Well, you might face a situation where you use VLAN 1337 and another client of the comms provider also uses VLAN 1337.

      Now to help with this scenario, another standard comes to the rescue, 802.1AD.

      And this is known as Q in Q, also known as provider bridging or stacked VLANs.

      This adds another space in the frame for another VLAN field.

      So now instead of just the one field for 802.1Q VLANs, now you have two.

      You keep the same customer VLAN field and this is known as the C tag or customer tag.

      But you add another VLAN field called the service tag or the S tag.

      This means that the service provider can use VLANs to isolate their customer traffic while allowing each customer to also use VLANs internally.

      As the customer, you can tag frames with your VLANs and then when those frames move onto the service provider network, they can tag with the VLAN ID which represents you as a customer.

      Once the frame reaches another of your sites over the service provider network, then the S tag is removed and the frame is passed back to you as a standard .1Q frame with your customer VLAN still tagged.

      Q in Q tends to be used for larger, more complex networks and .1Q is used in smaller networks as well as cloud platforms such as AWS.

      For the remainder of this lesson, I'm going to focus on .1Q though if you're taking an advanced networking course of mine, I will be returning to the Q in Q topic in much more detail.

      For now though, let's move on and look visually at how .1Q works.

      This is a cut down version of the previous physical network I talked about, only this time instead of the three groups of devices we have two.

      So on the left we have the finance building and on the right we have game testers.

      Inside these networks we have switches and connected to these switches are two groups of machines.

      These switches have been configured to use 802.1Q and ports have been configured in a very specific way which I'm going to talk about now.

      So what makes .1Q really cool is that I've shown these different device types as separate buildings but they don't have to be.

      Different groupings of devices can operate on the same layer to switch and I'll show you how that works in a second.

      With 802.1Q ports and switches are defined as either access ports or trunk ports and access ports generally has one specific VLAN ID or vid associated with it.

      A trunk conceptually has all VLAN IDs associated with it.

      So let's say that we allocate the finance team devices to VLAN 20 and the game tester devices to VLAN 10.

      We could easily hit any other numbers, remember we have over 4,000 to choose from, but for this example let's keep it simple and keep 10 and 20.

      Now right now these buildings are separate broadcast domains because they have separate switches which are not connected and they have devices within them.

      Two laptops connected to switch number one for the finance team and two laptops connected to switch number two for the game tester team.

      Now I mentioned earlier that we have two types of switch ports in a VLAN cable network.

      The first are access ports and the ports which the orange laptops on the right are connected to are examples of access ports.

      Access ports communicate with devices using standard Ethernet which means no VLAN tags are applied to the frames.

      So in this case the laptop at the top right sends a frame to the switch and let's say that this frame is a broadcast frame.

      When the frame exits an access port it's tagged with a VLAN that the access port is assigned to.

      In this case VLAN 10 which is the orange VLAN.

      Now because this is a broadcast frame the switch now has to decide what to do with the frame and the default behaviour for switches is to forward the broadcast out of all ports except the one that it was received on.

      For switches using VLANs this is slightly different.

      First it forwards to any other access ports on the same VLAN but the tagging will be removed.

      This is important because devices connected to access ports won't always understand 802.1Q so they expect normal untagged frames.

      In addition the switch will fold frames over any trunk ports.

      A trunk port in this context is a port between two switches for example this one between switch two and switch one.

      Now a trunk port is a connection between two dot 1Q capable devices.

      It forwards all frames and it includes the VLAN tagging.

      So in this case the frame will also be forwarded over to switch one tagged as VLAN 10 which is the gain tester VLAN.

      So tagged dot 1Q frames they only get forwarded to other access ports with the same VLAN but they have the tag stripped or they get forwarded across trunk ports with the VLAN tagging intact.

      And this is how broadcast frames work.

      For unicast ones which go to a specific single MAC address well these will be either forwarded to an access port in the same VLAN that the specific device is on or if the switch isn't aware of the MAC address of that device in the same VLAN then it will do a broadcast.

      Now let's say that we have a device on the finance VLAN connected to switch two.

      And let's say that the bottom left laptop sends a broadcast frame on the finance VLAN.

      Can you see what happens to this frame now?

      Well first it will go to any other devices in the same VLAN using access ports meaning the top left laptop and in that case the VLAN tag will be removed.

      It will also be forwarded out of any trunk ports tagged with VLAN 20 so the green finance VLAN.

      It will arrive at switch two with the VLAN tag still there and then it will be forwarded to any access ports on the same VLAN so VLAN 20 on that switch but the VLAN tagging will be removed.

      Using virtual LANs in this way allows you to create multiple virtual LANs or VLANs.

      With this visual you have two different networks.

      The finance network in green so the two laptops on the left and the one at this middle bottom and then you have the gain testing network so VLAN 10 meaning the orange one on the right.

      Both of these are isolated.

      Devices cannot communicate between VLANs which are led to networks without a device operating between them such as a layer 3 router.

      Both of these virtual networks operate over the top of the physical network and it means that now we can configure this network in using virtual configuration software which can be configured on the switches.

      Now VLANs are how certain things within AWS such as public and private vifs on direct connect works so keep this lesson in mind when I'm talking about direct connect.

      A few summary points though that I do want to cover before I finish up with this lesson.

      First VLANs allow you to create separate layer 2 network segments and these provide isolation so traffic is isolated within these VLANs.

      If you don't configure and deploy a router between different VLANs then frames cannot leave that VLAN boundary so they're virtual networks and these are ideal if you want to configure different virtual networks for different customers or if you want to access different networks for example when you're using direct connect to access VPCs.

      VLANs offer separate broadcast domains and this is important.

      They create completely separate virtual network segments so any broadcast frames within a VLAN won't leave that VLAN boundary.

      If you see any mention of 802.1Q then you know that means VLANs.

      If you see any mention of VLANs stacking or provide a bridging or 802.1AD or Q in Q this means nested VLANs.

      So having a customer tag and a service tag allowing you to have VLANs in VLANs and these are really useful if you want to use VLANs on your internal business network and then use a service provider to provide wide area network connectivity who also uses VLANs and if you are doing any networking exams then you will need to understand Q in Q as well as 802.1Q.

      So with that being said that's everything I wanted to cover.

      Go ahead and complete this video and when you're ready I'll look forward to you joining me in the next.

    1. 1) the aggressors outnumbered the target of aggression (“strength in numbers”), (2) equal numbers of aggressors and targets of aggression (“fair fight”), and (3) the targets of aggression outnumbered the aggressor (“outnumbered”). We were able to assign observations to 1 of these 3 categories in 1,704 of the 2,014 instances (852 observations that noted the precise numbers of crows and ravens involved in the interaction, and 852 additional observations that described a flock of crows and a solitary raven involved in the interaction).

      This breakdown of classical aggression tactics I believe helped mitigate the lack of individual-specific behaviors being observed. I also think it highlights the fact that within the crow social circle there are both hierarchies as well as the fascinating (albeit strange) existence of clique-like behavior and tag-teaming to agitate or attack other birds.

    1. Author response:

      We sincerely thank the reviewers for their thoughtful, critical, and constructive comments, which will help us in further exploring the mechanisms by which LDH regulates glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation future studies. The following is our responses to the reviewers' comments.

      Reviewer #1 (Public Review):

      Summary:

      Zeng et al. have investigated the impact of inhibiting lactate dehydrogenase (LDH) on glycolysis and the tricarboxylic acid cycle. LDH is the terminal enzyme of aerobic glycolysis or fermentation that converts pyruvate and NADH to lactate and NAD+ and is essential for the fermentation pathway as it recycles NAD+ needed by upstream glyceraldehyde-3-phosphate dehydrogenase. As the authors point out in the introduction, multiple published reports have shown that inhibition of LDH in cancer cells typically leads to a switch from fermentative ATP production to respiratory ATP production (i.e., glucose uptake and lactate secretion are decreased, and oxygen consumption is increased). The presumed logic of this metabolic rearrangement is that when glycolytic ATP production is inhibited due to LDH inhibition, the cell switches to producing more ATP using respiration. This observation is similar to the well-established Crabtree and Pasteur effects, where cells switch between fermentation and respiration due to the availability of glucose and oxygen. Unexpectedly, the authors observed that inhibition of LDH led to inhibition of respiration and not activation as previously observed. The authors perform rigorous measurements of glycolysis and TCA cycle activity, demonstrating that under their experimental conditions, respiration is indeed inhibited. Given the large body of work reporting the opposite result, it is difficult to reconcile the reasons for the discrepancy. In this reviewer's opinion, a reason for the discrepancy may be that the authors performed their measurements 6 hours after inhibiting LDH. Six hours is a very long time for assessing the direct impact of a perturbation on metabolic pathway activity, which is regulated on a timescale of seconds to minutes. The observed effects are likely the result of a combination of many downstream responses that happen within 6 hours of inhibiting LDH that causes a large decrease in ATP production, inhibition of cell proliferation, and likely a range of stress responses, including gene expression changes.

      Strengths:

      The regulation of metabolic pathways is incompletely understood, and more research is needed, such as the one conducted here. The authors performed an impressive set of measurements of metabolite levels in response to inhibition of LDH using a combination of rigorous approaches.

      Weaknesses:

      Glycolysis, TCA cycle, and respiration are regulated on a timescale of seconds to minutes. The main weakness of this study is the long drug treatment time of 6 hours, which was chosen for all the experiments. In this reviewer's opinion, if the goal was to investigate the direct impact of LDH inhibition on glycolysis and the TCA cycle, most of the experiments should have been performed immediately after or within minutes of LDH inhibition. After 6 hours of inhibiting LDH and ATP production, cells undergo a whole range of responses, and most of the observed effects are likely indirect due to the many downstream effects of LDH and ATP production inhibition, such as decreased cell proliferation, decreased energy demand, activation of stress response pathways, etc.

      We appreciate the reviewer’s critical comments. The main argument is whether the inhibition of LDH induces a temporal perturbation in glycolysis, the TCA cycle, and OXPHOS, or if it leads to a shift to a new steady state. We argue that this shift represents a transition between two steady states; specifically, GNE-140 treatment drives metabolism from one steady state to another.

      Before conducting the experiment, we performed a time course experiment, measuring glucose consumption and lactate production in cells treated with GNE-140. The results demonstrated a very good linearity, indicating that the glycolytic rate remained constant—thus confirming that glycolysis was at steady state. Given the tight coupling between glycolysis, the TCA cycle, and OXPHOS, we infer that the TCA cycle and OXPHOS were also at steady state. However, this ‘infer’ requires further confirmation.

      Multiple published reports have shown that LDH inhibition in cancer cells causes a shift from fermentative ATP production to respiratory ATP production. This notion persists because it is often compared to the well-established Crabtree and Pasteur effects, where cells toggle between fermentation and respiration based on glucose and oxygen availability. However, in the Pasteur or Crabtree effects, the deprivation of oxygen—the terminal electron acceptor—drives the switch, which is fundamentally different from LDH inhibition.

      Reviewer #2 (Public Review):

      Summary:

      Zeng et al. investigated the role of LDH in determining the metabolic fate of pyruvate in HeLa and 4T1 cells. To do this, three broad perturbations were applied: knockout of two LDH isoforms (LDH-A and LDH-B), titration with a non-competitive LDH inhibitor (GNE-140), and exposure to either normoxic (21% O2) or hypoxic (1% O2) conditions. They show that knockout of either LDH isoform alone, though reducing both protein level and enzyme activity, has virtually no effect on either the incorporation of a stable 13C-label from a 13C6-glucose into any glycolytic or TCA cycle intermediate, nor on the measured intracellular concentrations of any glycolytic intermediate (Figure 2). The only apparent exception to this was the NADH/NAD+ ratio, measured as the ratio of F420/F480 emitted from a fluorescent tag (SoNar).

      The addition of a chemical inhibitor, on the other hand, did lead to changes in glycolytic flux, the concentrations of glycolytic intermediates, and in the NADH/NAD+ ratio (Figure 3). Notably, this was most evident in the LDH-B-knockout, in agreement with the increased sensitivity of LDH-A to GNE-140 (Figure 2). In the LDH-B-knockout, increasing concentrations of GNE-140 increased the NADH/NAD+ ratio, reduced glucose uptake, and lactate production, and led to an accumulation of glycolytic intermediates immediately upstream of GAPDH (GA3P, DHAP, and FBP) and a decrease in the product of GAPDH (3PG). They continue to show that this effect is even stronger in cells exposed to hypoxic conditions (Figure 4). They propose that a shift to thermodynamic unfavourability, initiated by an increased NADH/NAD+ ratio inhibiting GAPDH explains the cascade, calculating ΔG values that become progressively more endergonic at increasing inhibitor concentrations.

      Then - in two separate experiments - the authors track the incorporation of 13C into the intermediates of the TCA cycle from a 13C6-glucose and a 13C5-glutamine. They use the proportion of labelled intermediates as a proxy for how much pyruvate enters the TCA cycle (Figure 5). They conclude that the inhibition of LDH decreases fermentation, but also the TCA cycle and OXPHOS flux - and hence the flux of pyruvate to all of those pathways. Finally, they characterise the production of ATP from respiratory or fermentative routes, the concentration of a number of cofactors (ATP, ADP, AMP, NAD(P)H, NAD(P)+, and GSH/GSSG), the cell count, and cell viability under four conditions: with and without the highest inhibitor concentration, and at norm- and hypoxia. From this, they conclude that the inhibition of LDH inhibits the glycolysis, the TCA cycle, and OXPHOS simultaneously (Figure 7).

      Strengths:

      The authors present an impressively detailed set of measurements under a variety of conditions. It is clear that a huge effort was made to characterise the steady-state properties (metabolite concentrations, fluxes) as well as the partitioning of pyruvate between fermentation as opposed to the TCA cycle and OXPHOS.

      A couple of intermediary conclusions are well supported, with the hypothesis underlying the next measurement clearly following. For instance, the authors refer to literature reports that LDH activity is highly redundant in cancer cells (lines 108 - 144). They prove this point convincingly in Figure 1, showing that both the A- and B-isoforms of LDH can be knocked out without any noticeable changes in specific glucose consumption or lactate production flux, or, for that matter, in the rate at which any of the pathway intermediates are produced. Pyruvate incorporation into the TCA cycle and the oxygen consumption rate are also shown to be unaffected.

      They checked the specificity of the inhibitor and found good agreement between the inhibitory capacity of GNE-140 on the two isoforms of LDH and the glycolytic flux (lines 229 - 243). The authors also provide a logical interpretation of the first couple of consequences following LDH inhibition: an increased NADH/NAD+ ratio leading to the inhibition of GAPDH, causing upstream accumulations and downstream metabolite decreases (lines 348 - 355).

      Weaknesses:

      Despite the inarguable comprehensiveness of the data set, a number of conceptual shortcomings afflict the manuscript. First and foremost, reasoning is often not pursued to a logical conclusion. For instance, the accumulation of intermediates upstream of GAPDH is proffered as an explanation for the decreased flux through glycolysis. However, in Figure 3C it is clear that there is no accumulation of the intermediates upstream of PFK. It is unclear, therefore, how this traffic jam is propagated back to a decrease in glucose uptake. A possible explanation might lie with hexokinase and the decrease in ATP (and constant ADP) demonstrated in Figure 6B, but this link is not made.

      We appreciate the reviewer's critical comment. In Figure 3C, there is no accumulation of F6P or G6P, which are upstream of PFK1. This is because the PFK1-catalyzed reaction sets a significant thermodynamic barrier. Even with treatment using 30 μM GNE-140, the ∆GPFK1 (Gibbs free energy of the PFK1-catalyzed reaction) remains -9.455 kJ/mol (Figure 3D), indicating that the reaction is still far from thermodynamic equilibrium, thereby preventing the accumulation of F6P and G6P.

      We agree with the reviewer that hexokinase inhibition may play a role, this requires further investigation.

      The obvious link between the NADH/NAD+ ratio and pyruvate dehydrogenase (PDH) is also never addressed, a mechanism that might explain how the pyruvate incorporation into the TCA cycle is impaired by the inhibition of LDH (the observation with which they start their discussion, lines 511 - 514).

      We agree with the reviewer’s comment. In this study, we did not explore how the inhibition of LDH affects pyruvate incorporation into the TCA cycle. As this mechanism was not investigated, we have titled the study: "Elucidating the Kinetic and Thermodynamic Insights into the Regulation of Glycolysis by Lactate Dehydrogenase and Its Impact on the Tricarboxylic Acid Cycle and Oxidative Phosphorylation in Cancer Cells."

      It was furthermore puzzling how the ΔG, calculated with intracellular metabolite concentrations (Figures 3 and 4) could be endergonic (positive) for PGAM at all conditions (also normoxic and without inhibitor). This would mean that under the conditions assayed, glycolysis would never flow completely forward. How any lactate or pyruvate is produced from glucose, is then unexplained.

      This issue also concerned me during the study. However, given the high reproducibility of the data, we consider it is true, but requires explanation.

      The PGAM-catalyzed reaction is tightly linked to both upstream and downstream reactions in the glycolytic pathway. In glycolysis, three key reactions catalyzed by HK2, PFK1, and PK are highly exergonic, providing the driving force for the conversion of glucose to pyruvate. The other reactions, including the one catalyzed by PGAM, operate near thermodynamic equilibrium and primarily serve to equilibrate glycolytic intermediates rather than control the overall direction of glycolysis, as previously described by us (J Biol Chem. 2024 Aug 8;300(9):107648).

      The endergonic nature of the PGAM-catalyzed reaction does not prevent it from proceeding in the forward direction. Instead, the directionality of the pathway is dictated by the exergonic reaction of PFK1 upstream, which pushes the flux forward, and by PK downstream, which pulls the flux through the pathway. The combined effects of PFK1 and PK may account for the observed endergonic state of the PGAM reaction.

      However, if the PGAM-catalyzed reaction were isolated from the glycolytic pathway, it would tend toward equilibrium and never surpass it, as there would be no driving force to move the reaction forward.

      Finally, the interpretation of the label incorporation data is rather unconvincing. The authors observe an increasing labelled fraction of TCA cycle intermediates as a function of increasing inhibitor concentration. Strangely, they conclude that less labelled pyruvate enters the TCA cycle while simultaneously less labelled intermediates exit the TCA cycle pool, leading to increased labelling of this pool. The reasoning that they present for this (decreased m2 fraction as a function of DHE-140 concentration) is by no means a consistent or striking feature of their titration data and comes across as rather unconvincing. Yet they treat this anomaly as resolved in the discussion that follows.

      GNE-140 treatment increased the labeling of TCA cycle intermediates by [13C6]glucose but decreased the OXPHOS rate, we consider the conflicting results as an 'anomaly' that warrants further explanation. To address this, we analyzed the labeling pattern of TCA cycle intermediates using both [13C6]glucose and  [13C5]glutamine. Tracing the incorporation of glucose- and glutamine-derived carbons into the TCA cycle suggests that LDH inhibition leads to a reduced flux of glucose-derived acetyl-CoA into the TCA cycle, coupled with a decreased flux of glutamine-derived α-KG, and a reduction in the efflux of intermediates from the cycle. These results align with theoretical predictions. Under any condition, the reactions that distribute TCA cycle intermediates to other pathways must be balanced by those that replenish them. In the GNE-140 treatment group, the entry of glutamine-derived carbon into the TCA cycle was reduced, implying that glucose-derived carbon (as acetyl-CoA) entering the TCA cycle must also be reduced, or vice versa.

      This step-by-step investigation is detailed under the subheading "The Effect of LDHB KO and GNE-140 on the Contribution of Glucose Carbon to the TCA Cycle and OXPHOS" in the Results section in the manuscript.

      In the Discussion, we emphasize that caution should be exercised when interpreting isotope tracing data. In this study, treatment of cells with GNE-140 led to an increase labeling percentage of TCAC intermediates by [13C6]glucose (Figure 5A-E). However, this does not necessarily imply an increase in glucose carbon flux into TCAC; rather, it indicates a reduction in both the flux of glucose carbon into TCAC and the flux of intermediates leaving TCAC. When interpreting the data, multiple factors must be considered, including the carbon-13 labeling pattern of the intermediates (m1, m2, m3, ---) (Figure 5G-K), replenishment of intermediates by glutamine (Figure 5M-V), and mitochondrial oxygen consumption rate (Figure 5W). All these factors should be taken into account to derive a proper interpretation of the data. 

      Reviewer #3 (Public Review):

      Hu et al in their manuscript attempt to interrogate the interplay between glycolysis, TCA activity, and OXPHOS using LDHA/B knockouts as well as LDH-specific inhibitors. Before I discuss the specifics, I have a few issues with the overall manuscript. First of all, based on numerous previous studies it is well established that glycolysis inhibition or forcing pyruvate into the TCA cycle (studies with PDKs inhibitors) leads to upregulation of TCA cycle activity, and OXPHOS, activation of glutaminolysis, etc (in this work authors claim that lowered glycolysis leads to lower levels of TCA activity/OXPHOS). The authors in the current work completely ignore recent studies that suggest that lactate itself is an important signaling metabolite that can modulate metabolism (actual mechanistic insights were recently presented by at least two groups (Thompson, Chouchani labs). In addition, extensive effort was dedicated to understanding the crosstalk between glycolysis/TCA cycle/OXPHOS using metabolic models (Titov, Rabinowitz labs). I have several comments on how experiments were performed. In the Methods section, it is stated that both HeLa and 4T1 cells were grown in RPMI-1640 medium with regular serum - but under these conditions, pyruvate is certainly present in the medium - this can easily complicate/invalidate some findings presented in this manuscript. In LDH enzymatic assays as described with cell homogenates controls were not explained or presented (a lot of enzymes in the homogenate can react with NADH!). One of the major issues I have is that glycolytic intermediates were measured in multiple enzyme-coupled assays. Although one might think it is a good approach to have quantitative numbers for each metabolite, the way it was done is that cell homogenates (potentially with still traces of activity of multiple glycolytic enzymes) were incubated with various combinations of the SAME enzymes and substrates they were supposed to measure as a part of the enzyme-based cycling reaction. I would prefer to see a comparison between numbers obtained in enzyme-based assays with GC-MS/LC-MS experiments (using calibration curves for respective metabolites, of course). Correct measurements of these metabolites are crucial especially when thermodynamic parameters for respective reactions are calculated. Concentrations of multiple graphs (Figure 1g etc.) are in "mM", I do not think that this is correct.

      While the roles of lactate as a signaling metabolite and metabolic models are important areas of research, our work focuses on different aspects.

      It is true that cell homogenates contain many enzymes that use NAD as a hydride acceptor or NADH as a hydride donor. However, in our assay system, the substrates are pyruvate and NADH, meaning only enzymes that catalyze the conversion of pyruvate + NADH to NAD + lactate can utilize NADH. Other enzymes do not interfere with this reaction. Although some enzymes may also catalyze this reaction, their catalytic efficiency is markedly lower than that of LDH, ensuring the validity of this assay.

      Similarly, the assays for glycolytic intermediates are validated by the substrate specificity.

      We have developed an LC-MS methodology for some glycolytic intermediates, but the accuracy of quantification remains unsatisfactory due to inherent limitations of this methodology.

    2. Reviewer #2 (Public Review):

      Summary:

      Zeng et al. investigated the role of LDH in determining the metabolic fate of pyruvate in HeLa and 4T1 cells. To do this, three broad perturbations were applied: knockout of two LDH isoforms (LDH-A and LDH-B), titration with a non-competitive LDH inhibitor (GNE-140), and exposure to either normoxic (21% O2) or hypoxic (1% O2) conditions. They show that knockout of either LDH isoform alone, though reducing both protein level and enzyme activity, has virtually no effect on either the incorporation of a stable 13C-label from a 13C6-glucose into any glycolytic or TCA cycle intermediate, nor on the measured intracellular concentrations of any glycolytic intermediate (Figure 2). The only apparent exception to this was the NADH/NAD+ ratio, measured as the ratio of F420/F480 emitted from a fluorescent tag (SoNar).

      The addition of a chemical inhibitor, on the other hand, did lead to changes in glycolytic flux, the concentrations of glycolytic intermediates, and in the NADH/NAD+ ratio (Figure 3). Notably, this was most evident in the LDH-B-knockout, in agreement with the increased sensitivity of LDH-A to GNE-140 (Figure 2). In the LDH-B-knockout, increasing concentrations of GNE-140 increased the NADH/NAD+ ratio, reduced glucose uptake, and lactate production, and led to an accumulation of glycolytic intermediates immediately upstream of GAPDH (GA3P, DHAP, and FBP) and a decrease in the product of GAPDH (3PG). They continue to show that this effect is even stronger in cells exposed to hypoxic conditions (Figure 4). They propose that a shift to thermodynamic unfavourability, initiated by an increased NADH/NAD+ ratio inhibiting GAPDH explains the cascade, calculating ΔG values that become progressively more endergonic at increasing inhibitor concentrations.

      Then - in two separate experiments - the authors track the incorporation of 13C into the intermediates of the TCA cycle from a 13C6-glucose and a 13C5-glutamine. They use the proportion of labelled intermediates as a proxy for how much pyruvate enters the TCA cycle (Figure 5). They conclude that the inhibition of LDH decreases fermentation, but also the TCA cycle and OXPHOS flux - and hence the flux of pyruvate to all of those pathways. Finally, they characterise the production of ATP from respiratory or fermentative routes, the concentration of a number of cofactors (ATP, ADP, AMP, NAD(P)H, NAD(P)+, and GSH/GSSG), the cell count, and cell viability under four conditions: with and without the highest inhibitor concentration, and at norm- and hypoxia. From this, they conclude that the inhibition of LDH inhibits the glycolysis, the TCA cycle, and OXPHOS simultaneously (Figure 7).

      Strengths:

      The authors present an impressively detailed set of measurements under a variety of conditions. It is clear that a huge effort was made to characterise the steady-state properties (metabolite concentrations, fluxes) as well as the partitioning of pyruvate between fermentation as opposed to the TCA cycle and OXPHOS.

      A couple of intermediary conclusions are well supported, with the hypothesis underlying the next measurement clearly following. For instance, the authors refer to literature reports that LDH activity is highly redundant in cancer cells (lines 108 - 144). They prove this point convincingly in Figure 1, showing that both the A- and B-isoforms of LDH can be knocked out without any noticeable changes in specific glucose consumption or lactate production flux, or, for that matter, in the rate at which any of the pathway intermediates are produced. Pyruvate incorporation into the TCA cycle and the oxygen consumption rate are also shown to be unaffected.

      They checked the specificity of the inhibitor and found good agreement between the inhibitory capacity of GNE-140 on the two isoforms of LDH and the glycolytic flux (lines 229 - 243). The authors also provide a logical interpretation of the first couple of consequences following LDH inhibition: an increased NADH/NAD+ ratio leading to the inhibition of GAPDH, causing upstream accumulations and downstream metabolite decreases (lines 348 - 355).

      Weaknesses:

      Despite the inarguable comprehensiveness of the data set, a number of conceptual shortcomings afflict the manuscript. First and foremost, reasoning is often not pursued to a logical conclusion. For instance, the accumulation of intermediates upstream of GAPDH is proffered as an explanation for the decreased flux through glycolysis. However, in Figure 3C it is clear that there is no accumulation of the intermediates upstream of PFK. It is unclear, therefore, how this traffic jam is propagated back to a decrease in glucose uptake. A possible explanation might lie with hexokinase and the decrease in ATP (and constant ADP) demonstrated in Figure 6B, but this link is not made.

      The obvious link between the NADH/NAD+ ratio and pyruvate dehydrogenase (PDH) is also never addressed, a mechanism that might explain how the pyruvate incorporation into the TCA cycle is impaired by the inhibition of LDH (the observation with which they start their discussion, lines 511 - 514).

      It was furthermore puzzling how the ΔG, calculated with intracellular metabolite concentrations (Figures 3 and 4) could be endergonic (positive) for PGAM at all conditions (also normoxic and without inhibitor). This would mean that under the conditions assayed, glycolysis would never flow completely forward. How any lactate or pyruvate is produced from glucose, is then unexplained.

      Finally, the interpretation of the label incorporation data is rather unconvincing. The authors observe an increasing labelled fraction of TCA cycle intermediates as a function of increasing inhibitor concentration. Strangely, they conclude that less labelled pyruvate enters the TCA cycle while simultaneously less labelled intermediates exit the TCA cycle pool, leading to increased labelling of this pool. The reasoning that they present for this (decreased m2 fraction as a function of DHE-140 concentration) is by no means a consistent or striking feature of their titration data and comes across as rather unconvincing. Yet they treat this anomaly as resolved in the discussion that follows.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer 2:

      In addition, it is still unacceptable for me that the number of ovulated oocytes in mice at 6 months of age is only one third of young mice (10 vs 30; Fig. S1E). The most of published literature show that mice at 12 months of age still have ~10 ovulated oocytes.

      We disagree with the reviewer’s comment, and the concerns raised were not shared by the other reviewers.  We have reported our data with full transparency (each data point is plotted). In the current study, we observed an intermediate phenotype in gamete number (assessed by both ovarian follicle counts and ovulated eggs) when comparing 6 month old mice to 6 week or 10 month old mice; this is as expected. It is well accepted that follicle counts are highly mouse strain dependent.  Although the reviewer mentions that mice at 12 months have ~10 ovulated oocytes, no actual references are provided nor are the mouse strain or other relevant experimental details mentioned.  Therefore, we do not know how these quoted metrics relate to the female FVB mice used in our current study.   As clearly explained and justified in our manuscript, we used mice at 6 months and 10 months to represent a physiologic aging continuum. 

      Moreover, based on the follicle counting method used in the present study (Fig. S1D), there are no antral follicles observed in mice at 6 months and 10 months of age, which is not reasonable.

      This statement is incorrect. Antral follicles were present at 6 and 10 months of age, but due to the scale of the y-axis and the normalization of follicle number/area in Fig. S1D, the values are small.  The absolute number of antral follicles per ovary (counted in every 5th section) was 31.3 ± 3.8 follicles for 6-week old mice, 9.3 ± 2.3 follicles for 6-month old mice, and 5.3 ± 1.8 follicles for 10-month old mice.  Moreover, it is important to note that these ovaries were not collected in a specific stage of the estrous cycle, so the number of antral follicles may not be maximal.  In addition, as described in the Materials and Methods, antral follicles were only counted when the oocyte nucleus was present in a section to avoid double counting.  Therefore, this approach (which was applied consistently across samples) could potentially underestimate the total number.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript by Bomba-Warczak describes a comprehensive evaluation of long-lived proteins in the ovary using transgenerational radioactive labelled 15N pulse-chase in mice. The transgenerational labeling of proteins (and nucleic acids) with 15N allowed the authors to identify regions enriched in long-lived macromolecules at the 6 and 10-month chase time points. The authors also identify the retained proteins in the ovary and oocyte using MS. Key findings include the relative enrichment in long-lived macromolecules in oocytes, pregranulosa cells, CL, stroma, and surprisingly OSE. Gene ontology analysis of these proteins revealed enrichment for nucleosome, myosin complex, mitochondria, and other matrix-type protein functions. Interestingly, compared to other post-mitotic tissues where such analyses have been previously performed such as the brain and heart, they find a higher fractional abundance of labeled proteins related to the mitochondria and myosin respectively.

      Response: We thank the reviewer for this thoughtful summary of our work.  We want to clarify that our pulse-chase strategy relied on a two-generation stable isotope-based metabolic labelling of mice using 15N from spirulina algae (for reference, please see (Fornasiero & Savas, 2023; Hark & Savas, 2021; Savas et al., 2012; Toyama et al., 2013)).  We did not utilize any radioactive isotopes.

      Strengths:

      A major strength of the study is the combined spatial analyses of LLPs using histological sections with MS analysis to identify retained proteins.

      Another major strength is the use of two chase time points allowing assessment of temporal changes in LLPs associated with aging.

      The major claims such as an enrichment of LLPs in pregranulosa cells, GCs of primary follicles, CL, stroma, and OSE are soundly supported by the analyses, and the caveat that nucleic acids might differentially contribute to this signal is well presented.

      The claims that nucleosomes, myosin complex, and mitochondrial proteins are enriched for LLPs are well supported by GO enrichment analysis and well described within the known body of evidence that these proteins are generally long-lived in other tissues.

      Weaknesses:

      Comment 1: One small potential weakness is the lack of a mechanistic explanation of if/why turnover may be accelerating at the 6-10 month interval compared to 1-6.

      Response 1: At the 6-month time point, we detected more long lived proteins than the 10 month time point in both the ovary and the oocyte.  We anticipated this because proteins are degraded over time, and substantially more time has elapsed at the later time point.  Moreover, at the 6–10-month time point, age-related tissue dysfunction is already evident in the ovary.  For example, in 6-9 month old mice, there is already a deterioration of chromosome cohesion in the egg which results in increased interkinetochore distances (Chiang et al., 2010), and by 10 months, there are multinucleated giant cells present in the ovarian stroma which is consistent with chronic inflammation (Briley et al., 2016).  Thus, the observed changes in protein dynamics may be another early feature of aging progression in the ovary.  

      Comment 2: A mild weakness is the open-ended explanation of OSE label retention. This is a very interesting finding, and the claims in the paper are nuanced and perfectly reflect the current understanding of OSE repair. However, if the sections are available and one could look at the spatial distribution of OSE signal across the ovarian surface it would interesting to note if label retention varied by regions such as the CLs or hilum where more/less OSE division may be expected. 

      Response 2: We agree that the enrichment of long-lived molecules in the OSE is interesting. To make interpretable conclusions about the dynamics of long-lived molecules in the OSE, we would need to generate a series of samples at precise stages of the estrous cycle or ideally across a timecourse of ovulation to capture follicular rupture and repair.  These samples do not currently exist and are beyond the scope of this study. However, this idea is an important future direction and it has been added to the discussion (lines 221-223). Furthermore, from a practical standpoint, MIMS imaging is resource and time intensive. Thus, we are not able to readily image entire ovarian sections.  Instead, we focused on structures within the ovary and took select images of follicles, stroma, and OSE.  We, therefore, do not have a comprehensive series of images of the OSE from the entire ovarian section for each mouse analyzed.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Bomba-Warczak et al. applied multi-isotope imaging mass spectrometry (MIMS) analysis to identify the long-lived proteins in mouse ovaries during reproductive aging, and found some proteins related to cytoskeletal and mitochondrial dynamics persisting for 10 months.

      Response: We thank the reviewer for their summary and feedback.

      Strengths:

      The manuscript provides a useful dataset about protein turnover during ovarian aging in mice.

      Weaknesses:

      Comment 1: The study is pretty descriptive and short of further new findings based on the dataset. In addition, some results such as the numbers of follicles and ovulated oocytes in aged mice are not consistent with the published literature, and the method for follicle counting is not accurate. The conclusions are not fully supported by the presented evidence.

      Response 1: We agree with the reviewer that this study is descriptive. Our goal, as stated, was to use a discovery-based approach to define the long-lived proteome of the ovary and oocyte across a reproductive aging continuum.  As the prominent aging researcher, Dr. James Kirkland, stated: “although ‘descriptive’ is sometimes used as a pejorative term…descriptive or discovery research leading to hypothesis generation has become highly sophisticated and of great relevance to the aging field (Kirkland, 2013).”  We respectfully disagree with the reviewer that our study is short of new findings. In fact, this is the first time that a stable two-generation stable isotope-based metabolic labelling of mice in combination with two different state-of-the-art mass spectrometry methods has been used to identify and localize long lived molecules in the ovary and oocyte along this particular reproductive aging continuum in an unbiased manner.  We have identified proteins groups that were previously not known to be long lived in the ovary and oocyte.  Our hope is that this long-lived proteome will become an important hypothesis-generating resource for the field of reproductive aging.

      The age-dependent decline in number of follicles and eggs ovulated in mice has been well established by our group as well as others (Duncan et al., 2017; Mara et al., 2020).  Thus, we are unclear about the reviewer’s comments that our results are not consistent with the published literature.  The absolute numbers of follicles and eggs ovulated as well as the rate of decline with age are highly strain dependent.  Moreover, mice can have a very small ovarian reserve and still maintain fertility (Kerr et al., 2012).  In our study, we saw a consistent age-dependent decrease in the ovarian reserve (Figure 1 – figure supplement 1 D), the number of oocytes collected from large antral follicles following hyperstimulation with PMSG (used for LC-MS/MS), and the number of eggs collected from the oviduct following hyperstimulation and superovulation with PMSG and hCG (Figure 1 – figure supplement 1 E and F).  In all cases, the decline was greater in 10 month old compared to 6 month old mice demonstrating a relative reproductive aging continuum even at these time points.

      Our research team has significant expertise in follicle classification and counting as evidenced by our publication record (Duncan et al., 2017; Kimler et al., 2018; Perrone et al., 2023; Quan et al., 2020).  We used our established methods which we have further clarified in the manuscript text (lines 395-397).  Follicle counts were performed on every 5th tissue section of serial sectioned ovaries, and 1 ovary from 3 mice per timepoint were counted. Therefore, follicle counts were performed on an average of 48-62 total sections per ovary. The number of follicles was then normalized per total area (mm2) of the tissue section, and the counts were averaged. Figure 1 – figure supplement 1 C and D represents data averaged from all ovarian sections counted per mouse.   It is important to note that the same criteria were applied consistently to all ovaries across the study, and thus regardless of the technique used, the relative number of follicles or oocytes across ages can be compared.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Bomba-Warczak et al focused on reproductive aging, and they presented a map for long-lived proteins that were stable during reproductive lifespan. The authors used MIMS to examine and show distinct molecules in different cell types in the ovary and tissue regions in a 6 month mice group, and they also used proteomic analysis to present different LLPs in ovaries between these two timepoints in 6-month and 10-month mice. The authors also examined the LLPs in oocytes in the 6-months mice group and indicated that these were nuclear, cytoskeleton, and mitochondria proteins.

      Response: We thank the reviewer for their summary and feedback.

      Strengths:

      Overall, this study provided basic information or a 'map' of the pattern of long-lived proteins during aging, which will contribute to the understanding of the defects caused by reproductive aging.

      Weaknesses:

      Comment 1: The 6-month mice were used as an aged model; no validation experiments were performed with proteomics analysis only.  

      Response 1:  We did not select the 6-month time point to be representative of the “aged model” but rather one of two timepoints on the reproductive aging continuum – 6 and 10 months.  In the manuscript (Figure 1 – figure supplement 1) we have demonstrated the relevance of the two timepoints by illustrating a decrease in follicle counts, number of fully grown oocytes collected, and number of eggs ovulated as well as a tendency towards increased stromal fibrosis (highlighted in the main text lines 78-85).  Inclusion of the 6-month timepoint ultimately turned out to be informative and essential as many long-lived proteins were absent by the 10 month timepoint. These results suggest that important shifts in the proteome occur during mid to advanced reproductive age.  The relevance of these timepoints is mentioned in the discussion (lines 247-270).

      Two independent mass spectrometry approaches (MIMS and LC-MS/MS) were used to validate the presence of long-lived macromolecules in the ovary and oocyte. Studies focused on the role of specific long-lived proteins in oocyte and ovarian biology as well as how they change with age in terms of function, turnover, and modification are beyond the scope of the current study but are ongoing.  We have acknowledged these important next steps in the manuscript text (lines 286-288, 311-312).

      It is important to note, that oocytes are biomass limited cells, and their numbers decrease with age.  Thus, we had to select ages where we could still collect enough from the mice available to perform LC-MS/MS. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Comment 1: The writing and figures are beautiful - it would be hard to improve this manuscript.

      Response 1: We greatly appreciate this enthusiastic evaluation of our work.

      Comment 2: In Fig S1E/F it would help to list the N number here. Why are there 2 groups at 6-12 wk?

      Response 2:  We did not have 6 month and 10-month-old mice available at the same time to be able to run the hyperstimulation and superovulation experiment in parallel.  Therefore, we performed independent experiments comparing the number of eggs collected from either 6-month-old or 10 month old mice relative to 6-12 week old controls.  In each trial, eggs were collected from pooled oviducts from between 3-4 mice per age group, and the average total number of eggs per mouse was reported.  Each point on the graph corresponds to the data from an individual trial, and two trials were performed.  This has been clarified in the figure legend (lines 395-397).  Of note, while addressing this reviewer’s comments, we noticed that we were missing Materials and Methods regarding the collection of eggs from the oviduct following hyperstimulation and superovulation with PMSG and hCG.  This information has now been added in Methods Section, lines 477-481.

      Comment 3: The manuscript would benefit from an explanation of why the pups were kept on a 1-month N15 diet after birth, since the oocytes are already labeled before birth, and granulosa at most by day 3-4. Would ZP3 have not been identified otherwise?

      Response 3:   The pups used in this study were obtained from fully labeled female dams that were maintained on an15N diet.  These pups had to be kept with their mothers through weaning.  To limit the pulse period only through birth, the pups would have had to be transferred to unlabeled foster mothers.  However, this would have risked pup loss which would have significantly impacted our ability to conduct the studies given that we only had 19 labeled female pups from three breeding pairs.  We have clarified this in the manuscript text in lines 78-80.  It is hard to know, without doing the experiment, whether we would have detected ZP3 if we only labeled through birth.  The expression of ZP3 in primordial follicles, albeit in human, would suggest that this protein is expressed quite early in development.

      Comment 4: What is happening to the mitochondria at 6-10 months? Does their number change in the oocyte? Is there a change in the rate of fission? Any chance to take a stab at it with these or other age-matched slides?

      Response 4:  The reviewer raises an excellent point.  As mentioned previously in the Discussion (lines 290-301), there are well documented changes in mitochondrial structure and function in the oocyte in mice of advanced reproductive age.  However, there is a paucity of data on the changes that may happen at earlier mid-reproductive age time points.  From the oocyte mitochondrial proteome perspective, our data demonstrate a prominent decline in the persistence of long-lived proteins between 6 and 10 months, and this occurs in the absence of a change in the total pool of mitochondrial proteins (both long and short lived populations) as assessed by spectral counts or protein IDs (figure below).  These data, which we have added into Figure 3 – figure supplement 1 and in the manuscript text (lines 164-170) are suggestive of similar numbers of mitochondria at these two timepoints. It would be informative to do a detailed characterization of oocyte mitochondrial structure and function within this window to see if there is a correlation with this shift in long lived mitochondrial proteins.  Although this analysis is beyond the scope of the current manuscript, it is an important next line of inquiry which we have highlighted in the manuscript text (lines 255-257 and 311-312).

      Reviewer #2 (Recommendations For The Authors):

      Several concerns are raised as shown below.

      Comment 1: In Fig. 2F, it is surprising that ZP3 disappeared in the ovary from mice at the age of 10 months by MIMS analysis, because quite a few oocytes with intact zona pellucida can still be obtained from mice at this age. Notably, ZP would not be renewed once formed.

      Response 1: To clarify, Figure 2F shows LC-MS/MS data and not MIMS data.  As mentioned in the Discussion, the detection of long-lived pools of ZP3 at 6 months cannot be derived from newly synthesized zona pellucidae in growing follicles because they would not have been present during the pulse period.  The only way we could detect ZP3 at 6 months is if it forms a primitive zona scaffold in the primordial follicle or if ZPs from atretic follicles of the first couple of waves of folliculogenesis incorporate into the extracellular matrix of the ovary.  The lack of persistence of ZP3 at 10 months could be due to protein degradation. Should ZP3 indeed form a primitive zona, its loss at 10 months would be predicted to result in poor formation of a bona fide zona pellucida upon follicle growth.  Interestingly, aging has been associated with alterations in zona pellucida structure and function.   These data open novel hypotheses regarding the zona pellucida (e.g. a primitive zona scaffold and part of the extracellular matrix) and will require significant further investigation to test. These points are highlighted in the Discussion lines 227-245.

      Comment 2: To determine whether those proteins that can not be identified by MIMS at the time point of 10 months are degraded or renewed, the authors should randomly select some of them to examine their protein expression levels in the ovary by immunoblotting analysis.

      Response 2: To clarify, proteins were identified by LC-MS/MS and not MIMS which was used to visualize long lived macromolecules.   Each protein will be comprised of old pools (15N containing) and newly synthesized pools (14N containing).  Degradation of the old pool of protein does not mean that there will be a loss of total protein.  Moreover, immunoblotting cannot distinguish old and newly synthesized pools of protein. Where overall peptide counts are listed for each protein identified at both time points.  As peptides derive from proteins, the table provided with the manuscript reflects what immunoblotting would, but on a larger and more precise scale.

      Comment 3: I think those proteins that can be identified by MIMS at the time point of 6 months but not 10 months deserve more analyses as they might be the key molecules that drive ovarian aging.

      Response 3:  This comment conflicts with comment 2 from Reviewer #3 (Recommendations For The Authors).  This underscores that different researchers will prioritize the value and follow up of such rich datasets differently.  We agree that the LLP identified at 6 months are of particular interest to reproductive aging, and we are planning to follow up on these in future studies.

      Comment 4:  Figure 1 – figure supplement 1 C-F, compared with the published literature, the numbers of follicles at different developmental stages and ovulated oocytes at both ages of 6 months and 10 months were dramatically low in this study. For 6-month-old female mice, the reproductive aging just begins, thus these numbers should not be expected to decrease too much. In addition, follicle counting was carried out only in an area of a single section, which is an inaccurate way, because the numbers and types of follicles in various sections differ greatly. Also, the data from a single section could not represent the changes in total follicle counts.

      Response 4: We have addressed these points in response to Comment 1 in the Reviewer #2 Public Review, and corresponding changes in the text have been noted.    

      Comment 5:  The study lacks follow-up verification experiments to validate their MIMS data.

      Response 5: Two independent mass spectrometry approaches (MIMS and LC-MS/MS) were used to validate the presence of long-lived macromolecules in the ovary and oocyte. Studies focused on the role of specific long-lived proteins in oocyte and ovarian biology as well as how they change with age in terms of function, turnover, and modification are beyond the scope of the current study but ongoing.  We have acknowledged these important next steps in the manuscript text (lines 286-288 and 311-312).

      Reviewer #3 (Recommendations For The Authors):

      Comment 1: The authors used the 6-month mice group to represent the aged model, and examined the LLPs from 1 month to 6 months. Indeed, 6-month-old mice start to show age-related changes; however, for the reproductive aging model, the most widely accepted model is that 10-month-old age mice start to show reproductive-related changes and 12-month-old mice (corresponding to 35-40 year-old women) exhibit the representative reproductive aging phenotypes. Therefore, the data may not present the typical situation of LLPs during reproductive aging.

      Response 1: As described in the response to Comment 1 in the Reviewer #3 Public Review, there were clear logistical and technical feasibility reasons why the 6 month and 10-month timepoints were selected for this study.  Importantly, however, these timepoints do represent a reproductive aging continuum as evidenced by age-related changes in multiple parameters.  Furthermore, there were ultimately very few LLPs that remained at 10 months in both the oocyte and ovary, so inclusion of the 6-month time point was an important intermediate.  Whether the LLPs at the 6-month timepoint serve as a protective mechanism in maintaining gamete quality or whether they contribute to decreased quality associated with reproductive aging is an intriguing dichotomy which will require further investigation.  This has been added to the discussion (lines 247-257).

      Comment 2:  Following the point above, the authors examined the ovaries in 6 months and 10 months mice by proteomics, and found that 6 months LLPs were not identical compared with 10 months, while there were Tubb5, Tubb4a/b, Tubb2a/b, Hist2h2 were both expressed at these two time points (Fig 2B), why the authors did not explore these proteins since they expressed from 1 month to 10 months, which are more interesting.

      Response 2:  The objective of this study was to profile the long-lived proteome in the ovary and oocyte as a resource for the field rather than delving into specific LLPs at a mechanistic level.  That being said, we wholeheartedly agree with the reviewer that the proteins that were identified at both 6 month and 10 months are the most robust and long lived and worthy of prioritizing for further study.  Interestingly, Tubb5 and Tubb4a have high homology to primate-specific Tubb8, and Tubb8 mutations in women are associated with meiosis I arrest in oocytes and infertility (Dong et al., 2023; Feng et al., 2016).  Thus, perturbation of these specific proteins by virtue of their long-lived nature may be associated with impaired function and poor reproductive outcomes.  We have highlighted the importance of these LLPs which are present at both timepoints and persist to at least 10 months in the manuscript text (lines 259-270).

      Comment 3:  The authors also need to provide a hypothesis or explanation as to why LLDs from 6 months LLPs were not identical compared with 10 months.

      Response 3:  We agree that LLDs identified at 10 months should be also identified as long-lived at 6 months. This is a common limitation of mass spectrometry-based proteomics where each sample is prepared and run individually, which introduces variability between biological replicates, especially when it comes to low abundant proteins. It is key to note that just because we do not identify a protein, it does not mean the protein is not there – it merely means that we were not able to detect it in this particular experiment, but low levels of the protein may still be there. To compensate for this known and inherent variability, we have applied stringent filtering criteria where we required long-lived peptides to be identified in an independent MS scan (alternative is to identify peptide in either heavy or light scan and use modeling to infer FA value based on m/z shift), which gave us peptides of highest confidence. Ideally, these experiments would be done using TMT (tandem mass tag) approach. However, TMT-based experiments typically require substantial amount of input (80-100ug per sample) which unfortunately is not feasible with oocytes obtained from a limited number of pulse-chased animals.  We have added this explanation to the discussion (lines 265-270).

      Comment 4:  The reviewer thinks that LLPs from 6 months to 10 months may more closely represent the long-lived proteins during reproductive aging.

      Response 4:  We fully agree that understanding the identity of LLPs between the 6 month and 10 month period will be quite informative given that this is a dynamic period when many of LLPs get degraded and thus might be key to the observed decline in reproductive aging. This is a very important point that we hope to explore in future follow-up studies.

      Comment 5: The authors used proteomics for the detection of ovaries and oocytes, however, there are no validation experiments at all. Since proteomics is mainly for screening and prediction, the authors should examine at least some typical proteins to confirm the validity of proteomics. For example, the authors specifically emphasized the finding of ZP3, a protein that is critical for fertilization.

      Response 5:  Thank you, we agree that closer examination of proteins relevant and critical for fertilization is of importance.  However, a detailed analysis of specific proteins fell outside of the scope of this study which aimed at unbiased identification of long-lived macromolecules in ovaries and oocytes. We hope to continue this important work in near future.

      Comment 6: For the oocytes, the authors indicated that cytoskeleton, mitochondria-related proteins were the main LLPs, however, previous studies reported the changes of the expression of many cytoskeleton and mitochondria-related proteins during oocyte aging. How do the authors explain this contrary finding?   

      Response 6:  Our findings are not contrary to the studies reporting changes in protein expression levels during oocyte aging – the two concepts are not mutually exclusive. The average FA value at 6-month chase for oocyte proteins is 41.3 %, which means that while 41.3% of long-lived proteins pool persisted for 6 months, the other 58.7% has in fact been renewed. With the exception of few mitochondrial proteins (Cmkt2 and Apt5l), and myosins (Myl2 and Myh7), which had FA values close to 100% (no turnover), most of the LLPs had a portion of protein pools that were indeed turned over. Moreover, we included new data analysis illustrating that we identify comparable number of mitochondrial proteins between the two time points, indicating that while the long-lived pools are changing over time, the total content remains stable (Figure 3 – figure supplement 1E-G).

      Comment 7:  The authors also should provide in-depth discussion about the findings of the current study for long-lived proteins. In this study, the authors reported the relationship between these "long-lived" proteins with aging, a process with multiple "changes". Do long-lived proteins (which are related to the cytoskeleton and mitochondria) contribute to the aging defects of reproduction? or protect against aging?

      Response 7: This is a very important comment and one that needs further exploration. The fact is – we do not know at this moment whether these proteins are protective or deleterious, and such a statement would be speculative at this stage of research into LLPs in ovaries and oocytes. Future work is needed to address this question in detail.

      Briley, S. M., Jasti, S., McCracken, J. M., Hornick, J. E., Fegley, B., Pritchard, M. T., & Duncan, F. E. (2016). Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction, 152(3), 245-260. https://doi.org/10.1530/REP-16-0129

      Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M., & Lampson, M. A. (2010). Evidence that Weakened Centromere Cohesion Is a Leading Cause of Age-Related Aneuploidy in Oocytes. Current Biology, 20(17), 1522-1528. https://doi.org/10.1016/j.cub.2010.06.069

      Dong, J., Jin, L., Bao, S., Chen, B., Zeng, Y., Luo, Y., Du, X., Sang, Q., Wu, T., & Wang, L. (2023). Ectopic expression of human TUBB8 leads to increased aneuploidy in mouse oocytes. Cell Discov, 9(1), 105. https://doi.org/10.1038/s41421-023-00599-z

      Duncan, F. E., Jasti, S., Paulson, A., Kelsh, J. M., Fegley, B., & Gerton, J. L. (2017). Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell, 16(6), 1381-1393. https://doi.org/10.1111/acel.12676

      Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Tian, G., Luchniak, A., Fukuda, Y., Li, B., Yu, M., Chen, J., Xu, Y., Guo, L., Qu, R., Wang, X., Sun, Z., Liu, M., . . . Wang, L. (2016). Mutations in TUBB8 and Human Oocyte Meiotic Arrest. N Engl J Med, 374(3), 223-232. https://doi.org/10.1056/NEJMoa1510791

      Fornasiero, E. F., & Savas, J. N. (2023). Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci, 48(2), 106-118. https://doi.org/10.1016/j.tibs.2022.08.011

      Hark, T. J., & Savas, J. N. (2021). Using stable isotope labeling to advance our understanding of Alzheimer's disease etiology and pathology. J Neurochem, 159(2), 318-329. https://doi.org/10.1111/jnc.15298

      Kerr, J. B., Hutt, K. J., Michalak, E. M., Cook, M., Vandenberg, C. J., Liew, S. H., Bouillet, P., Mills, A., Scott, C. L., Findlay, J. K., & Strasser, A. (2012). DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol Cell, 48(3), 343-352. https://doi.org/10.1016/j.molcel.2012.08.017

      Kimler, B. F., Briley, S. M., Johnson, B. W., Armstrong, A. G., Jasti, S., & Duncan, F. E. (2018). Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction, 155(6), 553-562. https://doi.org/10.1530/REP-18-0089

      Kirkland, J. L. (2013). Translating advances from the basic biology of aging into clinical application. Exp Gerontol, 48(1), 1-5. https://doi.org/10.1016/j.exger.2012.11.014

      Mara, J. N., Zhou, L. T., Larmore, M., Johnson, B., Ayiku, R., Amargant, F., Pritchard, M. T., & Duncan, F. E. (2020). Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY), 12(10), 9686-9713. https://doi.org/10.18632/aging.103237

      Perrone, R., Ashok Kumaar, P. V., Haky, L., Hahn, C., Riley, R., Balough, J., Zaza, G., Soygur, B., Hung, K., Prado, L., Kasler, H. G., Tiwari, R., Matsui, H., Hormazabal, G. V., Heckenbach, I., Scheibye-Knudsen, M., Duncan, F. E., & Verdin, E. (2023). CD38 regulates ovarian function and fecundity via NAD(+) metabolism. iScience, 26(10), 107949. https://doi.org/10.1016/j.isci.2023.107949

      Quan, N., Harris, L. R., Halder, R., Trinidad, C. V., Johnson, B. W., Horton, S., Kimler, B. F., Pritchard, M. T., & Duncan, F. E. (2020). Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiationdagger. Biol Reprod, 102(1), 133-144. https://doi.org/10.1093/biolre/ioz164

      Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R., 3rd, & Hetzer, M. W. (2012). Extremely long-lived nuclear pore proteins in the rat brain. Science, 335(6071), 942. https://doi.org/10.1126/science.1217421

      Toyama, B. H., Savas, J. N., Park, S. K., Harris, M. S., Ingolia, N. T., Yates, J. R., 3rd, & Hetzer, M. W. (2013). Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell, 154(5), 971-982. https://doi.org/10.1016/j.cell.2013.07.037

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Jang et al. describes the application of new methods to measure the localization GTP-binding signaling proteins (G proteins) on different membrane structures in a model mammalian cell line (HEK293). G proteins mediate signaling by receptors found at the cell surface (GPCRs), with evidence from the last 15 years suggesting that GPCRs can induce G-protein mediated signaling from different membrane structures within the cell, with variation in signal localization leading to different cellular outcomes. While it has been clearly shown that different GPCRs efficiently traffic to various intracellular compartments, it is less clear whether G proteins traffic in the same manor, and whether GPCR trafficking facilitates "passenger" G protein trafficking. This question was a blind spot in the burgeoning field of GPCR localized signaling in need of careful study, and the results obtained will serve as an important guide post for further work in this field.<br /> The extent to which G proteins localize to different membranes within the cell is the main experimental question tested in this manuscript. This question is pursued by through two distinct methods, both relying on genetic modification of the G-beta subunit with a tag. In one method, G-beta is modified with a small fragment of the fluorescent protein mNG, which combines with the larger mNG fragment to form a fully functional fluorescent protein to facilitate protein trafficking by fluorescent microscopy. This approach was combined with expression of fluorescent proteins directed to various intracellular compartments (different types of endosomes, lysosome, endoplasmic reticulum, golgi, mitochondria) to look for colocalization of G-beta with these markers. These experiments showed compelling evidence that G-beta co-localizes with markers at the plasma membrane and the lysosome, with weak or absent co-localization for other markers. A second method for measuring localization relied on fusing G-beta with a small fragment from a miniature luciferase (HiBit) that combines with a larger luciferase fragment (LgBit) to form an active luciferase enzyme. Localization of G-beta (and luciferase signal) was measured using a method known as bystander BRET, which relies on expression of a fluorescent protein BRET acceptor in different cellular compartments. Results using bystander BRET supported findings from fluorescence microscopy experiments. These methods for tracking G protein localization were also used to probe other questions. The activation of GPCRs from different classes had virtually no impact on the localization of G-beta, suggesting that GPCR activation does not result in shuttling of G proteins through the endosomal pathway with activated receptors.

      In the revised version of this manuscript the authors have performed informative and important new experiments in addition to adding new text to address conceptual questions. These new data and discussions are commendable and address most or all of the weaknesses listed in the initial review.

      Strengths:

      The question probed in this study is quite important and, in my opinion, understudied by the pharmacology community. The results presented here are an important call to be cognizant of the localization of GPCR coupling partners in different cellular compartments. Abundant reports of endosomal GPCR signaling need to consider how the impact of lower G protein abundance on endosomal membranes will affect the signaling responses under study.

      *The work presented is carefully executed, with seemingly high levels of technical rigor. These studies benefit from probing the experimental questions at hand using two different methods of measurement (fluorescent microscopy and bystander BRET). The observation that both methods arrive at the same (or a very similar) answer inspires confidence about the validity of these findings.

      Weaknesses:

      *As noted by the authors, they do not demonstrate that the tagged G-beta is predominantly found within heterotrimeric G protein complexes. In the revised manuscript the authors have added new discussion text on why it is likely that G-beta is mostly found in complexes. This line of reasoning is convincing, although more robust experimental methods for assessing the assembly status of G-beta could be a valuable target for future experimental developments.

    2. Reviewer #3 (Public review):

      Summary:

      This article addresses an important and interesting question concerning intracellular localization and dynamics of endogenous G proteins. The fate and trafficking of G protein-coupled receptors (GPCRs) have been extensively studied but so far little is known about the trafficking routes of their partner G proteins that are known to dissociate from their respective receptors upon activation of the signaling pathway. Authors utilize modern cell biology tools including genome editing and bystander bioluminescence resonance energy transfer (BRET) to probe intracellular localization of G proteins in various membrane compartments in steady state and also upon receptor activation. Data presented in this manuscript shows that while G proteins are mostly present on the plasma membrane, they can be also detected in endosomal compartments, especially in late endosomes and lysosomes. This distribution, according to data presented in this study, seems not to be affected by receptor activation. These findings will have implications in further studies addressing GPCR signaling mechanisms from intracellular compartments.

      Strengths:

      The methods used in this study are adequate for the question asked. Especially use of genome-edited cells (for addition of the tag on one of the G proteins) is a great choice to prevent effects of overexpression. Moreover, use of bystander BRET allowed authors to probe intracellular localization of G proteins in a very high-throughput fashion. By combining imaging and BRET authors convincingly show that G proteins are very low abundant on early endosomes (also ER, mitochondria, and medial Golgi), however seem to accumulate on membranes of late endosomal compartments. Moreover, authors also looked at the dynamics of G protein trafficking by tracking them over multiple time points in different compartments.

      Weaknesses:

      While authors provide a novel dataset, many questions regarding G protein trafficking remain open. For example, it is not entirely clear which pathway is utilized to traffic G proteins from the plasma membrane to intracellular compartments. Additionally, future studies should also include more quantitative details considering G-protein distribution in different compartments as well as more detailed dynamic data on G protein internalization as well as intracellular trafficking kinetics.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Jang et al. describes the application of new methods to measure the localization of GTP-binding signaling proteins (G proteins) on different membrane structures in a model mammalian cell line (HEK293). G proteins mediate signaling by receptors found at the cell surface (GPCRs), with evidence from the last 15 years suggesting that GPCRs can induce G-protein mediated signaling from different membrane structures within the cell, with variation in signal localization leading to different cellular outcomes. While it has been clearly shown that different GPCRs efficiently traffic to various intracellular compartments, it is less clear whether G proteins traffic in the same manner, and whether GPCR trafficking facilitates "passenger" G protein trafficking. This question was a blind spot in the burgeoning field of GPCR localized signaling in need of careful study, and the results obtained will serve as an important guidepost for further work in this field. The extent to which G proteins localize to different membranes within the cell is the main experimental question tested in this manuscript. This question is pursued through two distinct methods, both relying on genetic modification of the G-beta subunit with a tag. In one method, G-beta is modified with a small fragment of the fluorescent protein mNG, which combines with the larger mNG fragment to form a fully functional fluorescent protein to facilitate protein trafficking by fluorescent microscopy. This approach was combined with the expression of fluorescent proteins directed to various intracellular compartments (different types of endosomes, lysosome, endoplasmic reticulum, Golgi, mitochondria) to look for colocalization of G-beta with these markers. These experiments showed compelling evidence that G-beta co-localizes with markers at the plasma membrane and the lysosome, with weak or absent co-localization for other markers. A second method for measuring localization relied on fusing G-beta with a small fragment from a miniature luciferase (HiBit) that combines with a larger luciferase fragment (LgBit) to form an active luciferase enzyme. Localization of Gbeta (and luciferase signal) was measured using a method known as bystander BRET, which relies on the expression of a fluorescent protein BRET acceptor in different cellular compartments. Results using bystander BRET supported findings from fluorescence microscopy experiments. These methods for tracking G protein localization were also used to probe other questions. The activation of GPCRs from different classes had virtually no impact on the localization of G-beta, suggesting that GPCR activation does not result in the shuttling of G proteins through the endosomal pathway with activated receptors.

      Strengths:

      The question probed in this study is quite important and, in my opinion, understudied by the pharmacology community. The results presented here are an important call to be cognizant of the localization of GPCR coupling partners in different cellular compartments. Abundant reports of endosomal GPCR signaling need to consider how the impact of lower G protein abundance on endosomal membranes will affect the signaling responses under study.

      The work presented is carefully executed, with seemingly high levels of technical rigor. These studies benefit from probing the experimental questions at hand using two different methods of measurement (fluorescent microscopy and bystander BRET). The observation that both methods arrive at the same (or a very similar) answer inspires confidence about the validity of these findings.

      Weaknesses:

      The rationale for fusing G-beta with either mNG2(11) or SmBit could benefit from some expansion. I understand the speculation that using the smallest tag possible may have the smallest impact on protein performance and localization, but plenty of researchers have fused proteins with whole fluorescent proteins to provide conclusions that have been confirmed by other methods. Many studies even use G proteins fused with fluorescent proteins or luciferases. Is there an important advantage to tagging G-beta with small tags? Is there evidence that G proteins with full-size protein tags behave aberrantly? If the studies presented here would not have been possible without these CRISPR-based tagging approaches, it would be helpful to provide more context to make this clearer. Perhaps one factor would be interference from newly synthesized G proteins-fluorescent protein fusions en route to the plasma membrane (in the ER and Golgi).

      There are several advantages to using small peptide tags that we did not fully explain. From a practical standpoint the most important advantage of using the HiBit tag instead of full-length Nanoluc is that it allows us to restrict luminescence output to cells transiently transfected with LgBit. In this way untransfected cells contribute no background signal. Although we did not take advantage of it here, this also applies to fluorescent protein complementation, and will be useful for visualizing proteins in individual cells within tissues. The HiBit tag also allows PAGE analysis by probing membranes with LgBit (as in Fig. 1). We are not aware of evidence that tagging Gb or Gg subunits on the N terminus results in aberrant behavior, while there is some evidence that Ga subunits tagged with full-size protein tags (in some positions) have altered functional properties (PMID: 16371464). We do think that editing endogenous genes is critical, as studies using transient overexpression (usually driven by strong promoters) have sometimes reported accumulation of tagged G proteins in the biosynthetic pathway (e.g., PMID: 17576765), as the reviewer suggests. Ga and Gbg appear to be mutually dependent on each other for appropriate trafficking to the plasma membrane (reviewed in PMID: 23161140), therefore the native (presumably matched) stoichiometry is likely to be critical.

      To clarify this context the revised manuscript includes the following:

      “For bioluminescence experiments we added the HiBit tag (Schwinn et al., 2018) and isolated clonal “HiBit-b1“ cell lines. An advantage of this approach over adding a full-length Nanoluc luciferase is that it requires coexpression of LgBit to produce a complemented luciferase. This limits luminescence to cotransfected cells and thus eliminates background from untransfected cells.”

      “Some studies using overexpressed G protein subunits have suggested that a large pool of G proteins is located on intracellular membranes, including the Golgi apparatus (Chisari et al., 2007; Saini et al., 2007; Tsutsumi et al., 2009), whereas others have indicated a distribution that is dominated by the plasma membrane (Crouthamel et al., 2008; Evanko, Thiyagarajan, & Wedegaertner, 2000; Marrari et al., 2007; Takida & Wedegaertner, 2003). A likely factor contributing to these discrepant results is the stoichiometry of overexpressed subunits, as neither Ga nor Gbg traffic appropriately to the plasma membrane as free subunits (Wedegaertner, 2012). Our gene-editing approach presumably maintains the native subunit stoichiometry, providing a more accurate representation of native G protein distribution.”

      As noted by the authors, they do not demonstrate that the tagged G-beta is predominantly found within heterotrimeric G protein complexes. If there is substantial free G-beta, then many of the conclusions need to be reconsidered. Perhaps a comparison of immunoprecipitated tagged G beta vs immunoprecipitated supernatant, with blotting for other G protein subunits would be informative.

      We do think that HiBit-b1 exists predominantly within heterotrimeric complexes, for several reasons. First, overexpression studies have shown that Gbg requires association with Ga to traffic to the plasma membrane, and that by itself Gbg is retained on the endoplasmic reticulum

      (PMID: 12609996; PMID: 12221133). We find almost no endogenous Gb1 on the endoplasmic reticulum, and a high density on the plasma membrane. Second, we are able to detect large increases in free HiBit-Gbg after G protein activation using free Gbg sensors (e.g. Fig. 1). Third, many proteins that bind to free Gbg are found entirely in the cytosol of HEK 293 cells (e.g. PMID: 10066824), suggesting there is not a large population of free Gbg. We have added discussion of these points to the revised manuscript as follows:

      “Endogenous Ga and Gb subunits are expressed at approximately a 1:1 ratio, and Gb subunits are tightly associated with Gg and inactive Ga subunits (Cho et al., 2022; Gilman, 1987; Krumins & Gilman, 2006). Moreover, proteins that bind to free Gbg dimers are found in the cytosol of unstimulated HEK 293 cells, suggesting at most only a small population of free Gbg in these cells. Therefore, we assume that the large majority of mNG-b1 and HiBit-b1 subunits in unstimulated cells are part of heterotrimers.”

      “Notably, when Gbg dimers are expressed alone they accumulate on the endoplasmic reticulum

      (Michaelson et al., 2002; Takida & Wedegaertner, 2003). That we detect almost no endogenous Gbg on the endoplasmic reticulum supports our conclusion that the large majority of Gbg in unstimulated HEK 293 cells is associated with Ga, although we cannot rule out a small population of free Gbg.”

      We do not entirely understand the suggested experiment, as free Gbg will still be largely associated with the membrane fraction. Notably, we find almost no HiBit-b1 in the supernatant after lysis in hypotonic buffer and preparation of membrane fractions, and the small amount that we do find does not change if Ga is overexpressed.

      Additional context and questions:

      (1) There exists some evidence that certain GPCRs can form enduring complexes with G-betagamma (PubMed: 23297229, 27499021). That would seem to offer a mechanism that would enable receptor-mediated transport of G protein subunits. It would be helpful for the authors to place the findings of this manuscript in the context of these previous findings since they seem somewhat contradictory.

      We agree. In our original submission we noted “It is possible that other receptors will influence G protein distribution using mechanisms not shared by the receptors we studied.” In the revised manuscript we have added:

      “For example, a few receptors are thought to form relatively stable complexes with Gbg, which could provide a mechanism of trafficking to endosomes (Thomsen et al., 2016; Wehbi et al., 2013).”

      (2) There is some evidence that GaS undergoes measurable dissociation from the plasma membrane upon activation (see the mechanism of the assay in PubMed: 35302493). It seems possible that G-alpha (and in particular GaS) might behave differently than the G-beta subunit studied here. This is not entirely clear from the discussion as it now stands.

      Indeed, there is abundant evidence that some Gas translocates away from the plasma membrane upon activation. We referred to translocation of “some Ga subunits” in the introduction, although we did not specify that Gas is by far the most studied example. In a previous study (PMID: 27528603) we found that overexpressed Gas samples many intracellular membranes upon activation and returns to the plasma membrane when activation ceases. This is similar to activation-dependent translocation of free Gbg dimers. Because these translocation mechanisms depend on activation and are reversible they are unlikely to be a major source of inactive heterotrimers for intracellular membranes.

      We did a poor job of making it clear that we intentionally avoided translocation mechanisms that operate only during receptor and G protein stimulation. In the revised manuscript we have added new data showing reversible activation-dependent translocation of endogenous HiBitGb1.

      (3) The authors say "The presence of mNG-b1 on late endosomes suggested that some G proteins may be degraded by lysosomes". The mechanism of lysosomal degradation by proteins on the outside of the lysosome is not clear. It would be helpful for the authors to clarify.

      We agree we didn’t connect the dots here. Our initial idea was that G proteins on the surface of late endosomes might reach the interior of late endosomes and then lysosomes by involution into multivesicular bodies. However, the reviewer correctly points out that much of the G protein associated with lysosomes still appears to be on the cytosolic surface, where it would not be subject to degradation. In fact, since lysosomes can fuse with the plasma membrane under certain circumstances, this could even represent a pathway for recycling G proteins to the plasma membrane.

      We have revised the text to avoid giving the impression that lysosomes degrade G proteins, since we have scant evidence that this occurs. In the revised discussion we point out that we do not know the fate of G proteins located on the surface of lysosomes and speculate that these could be returned to the plasma membrane:

      “We do not know the fate of G proteins located on the surface of lysosomes. Since lysosomes may fuse with the plasma membrane under certain circumstances (Xu & Ren, 2015), it is possible that this represents a route of G protein recycling to the plasma membrane.”

      (4) Although the authors do a good job of assessing G protein dilution in endosomal membranes, it is unclear how this behavior compares to the measurement of other lipidanchored proteins using the same approach. Is the dilution of G proteins what we would expect for any lipid-anchored protein at the inner leaflet of the plasma membrane?

      This is a great question. To begin to address it we have studied a model lipid-anchored protein consisting of mNeongreen2 anchored to the plasma membrane by the C terminus of HRas, which is palmitoylated and prenylated. We find that this protein is also diluted on endocytic vesicles, although to a lesser degree than heterotrimeric G proteins. We have added a section to the results and a new figure supplement describing these results:

      “To test if other peripheral membrane proteins are similarly depleted from endocytic vesicles, we performed analogous experiments by overexpressing mNG bearing the C-terminal membrane anchor of HRas (mNG-HRas ct). We found that mNG-HRas ct was also less abundant on FM464-positive endocytic vesicles than expected based on plasma membrane abundance, although not to the same extent as mNG-b1 (Figure 4 - figure supplement 2); mNG-HRas ct density on FM4-64-positive vesicles was 64 ± 17% (mean ± 95% CI; n=78) of the nearby plasma membrane.”

      Reviewer #2 (Public Review):

      This is an interesting method that addresses the important problem of assessing G protein localization at endogenous levels. The data are generally convincing.

      Specific comments

      Methods:

      The description of the gene editing method is unclear. There are two different CRISPR cell lines made in two different cell backgrounds. The methods should clearly state which CRISPR guides were used on which cell line. It is also not clear why HiBit is included in the mNG-β1 construct. Presumably, this is not critical but it would be helpful to explicitly note. In general, the Methods could be more complete.

      We have added the following to the methods to clarify that the same gRNA was used to produce both cell lines:

      “The human GNB1 gene was targeted at a site corresponding to the N-terminus of the Gb1 protein; the sequence 5’-TGAGTGAGCTTGACCAGTTA-3’ was incorporated into the crRNA, and the same gRNA was used to produce both HiBit-b1 and mNG-b1 cell lines.”

      We have added the following to the methods to clarify why HiBit is included in the mNG-b1 construct:

      “HiBit was included in the repair template for producing mNG-b1 cells to enable screening for edited clones using luminescence.”

      Results:

      The explanation of validation experiments in Figures 1 C and D is incomplete and difficult to follow. The rationale and explanation of the experiments could be expanded. In addition, because this is an interesting method, it would be helpful to know if the endogenous editing affects normal GPCR signaling. For example, the authors could include data showing an Isoinduced cAMP response. This is not critical to the present interpretation but is relevant as a general point regarding the method. Also, it may be relevant to the interpretation of receptor effects on G protein localization.

      We have expanded the rationale and explanation of experiments in Figures 1C and D by adding:

      “For example, we observed agonist-induced BRET between the D2 dopamine receptor and mNG-b1, an interaction that requires association with endogenous Ga subunits (Figure 1C). Similarly, we observed BRET between HiBit-b1 and the free Gbg sensor memGRKct-Venus after activation of receptors that couple Gi/o, Gs, and Gq heterotrimers, indicating that HiBit-b1 associated with endogenous Ga subunits from these three families (Figure 1D).”

      We have done the suggested cAMP experiment and provide the data in a new figure supplement:

      “We also found that cyclic AMP accumulation in response to stimulation of endogenous b adrenergic receptors was similar in edited cell lines and their unedited parent lines (Figure 1 - figure supplement 1).”

      Discussion:

      The conclusion that beta-gamma subunits do not redistribute after GPCR activation seems new and different from previous reports. Is this correct? Can the authors elaborate on how the results compare to previous literature?

      Many previous studies have indeed shown that free Gbg dimers can redistribute after GPCR activation and sample intracellular membranes. Our initial focus was on possible changes in heterotrimer distribution after GPCR activation, but in retrospect we should have directly addressed free Gbg translocation and made the distinction clear. 

      In the revised manuscript we show that during stimulation we observe changes consistent with modest translocation of endogenous Gbg from the plasma membrane and sampling of intracellular compartments. To our knowledge this is the first demonstration of endogenous Gbg translocation.

      We have added:

      “With overexpressed G proteins free Gbg dimers translocate from the plasma membrane and sample intracellular membrane compartments after activation-induced dissociation from Ga subunits. Consistent with this, we observed small decreases in bystander BRET at the plasma membrane and small increases in bystander BRET at intracellular compartments during activation of GPCRs, suggesting that endogenous Gbg subunits undergo similar translocation (Figure 5- figure supplement 1). Notably, these changes occurred at room temperature, suggesting that endocytosis was not involved, and developed over the course of minutes. The latter observation and the small magnitude of agonist-induced changes are both consistent with expression of primarily slowly-translocating endogenous Gg subtypes in HEK 293 cells. Moreover, as shown previously for overexpressed Gbg, the changes we observed with endogenous Gbg were readily reversible (Figure 5- figure supplement 1), suggesting that most heterotrimers reassemble at the plasma membrane after activation ceases.”

      Can the authors note that OpenCell has endogenously tagged Gβ1 and reports more obvious internal localization? Can the authors comment on this point?

      OpenCell has tagged GNB1 and the Leonetti group kindly provided a parent cell line we used to add a slightly different tag. Although their study did not identify any specific intracellular compartments, our impression is that most of the internal structures visible in their images are likely to be lysosomes, as they are large, round and often have a clear lumen. Overall their images and ours are comfortingly similar. We have added:

      “Unsurprisingly, our images are quite similar to those made as part of previous study that labeled Gb1 subunits with mNG2 (Cho et al., 2022).”

      Notably, the Leonetti group has recently reported the subcellular distribution of many untagged proteins using a proteomic approach. They find that Gb1 is enriched on the plasma membrane and lysosomes but is not enriched on endosomes, the Golgi apparatus, endoplasmic reticulum or mitochondria (https://www.biorxiv.org/content/10.1101/2023.12.18.572249v1). We have cited this work in the revised manuscript.

      Is this the first use of CRISPR / HiBit for BRET assay? It would be helpful to know this or cite previous work if not. Also, as this is submitted as a tools piece, the authors might say a little more about the potential application to other questions.

      The only previous study we are aware of utilizing a similar combination of methods is a 2020 report from the group of Dr. Stephen Hill, in which the authors studied binding of fluorescent ligands to HiBit-tagged GPCRs. This work is now cited.

      We have also added the following to our previous brief statement about potential applications:

      “In addition, it may also be possible to use these cells in combination with targeted sensors to study endogenous G protein activation in different subcellular compartments. More broadly, our results show that subcellular localization of endogenous membrane proteins can be studied in living cells by adding a HiBit tag and performing bystander BRET mapping. Applied at large scale this approach would have some advantages over fluorescent protein complementation, most notably the ability to localize endogenous membrane proteins that are expressed at levels that are too low to permit fluorescence microscopy.”

      Reviewer #3 (Public Review):

      Summary:

      This article addresses an important and interesting question concerning intracellular localization and dynamics of endogenous G proteins. The fate and trafficking of G protein-coupled receptors (GPCRs) have been extensively studied but so far little is known about the trafficking routes of their partner G proteins that are known to dissociate from their respective receptors upon activation of the signaling pathway. The authors utilize modern cell biology tools including genome editing and bystander bioluminescence resonance energy transfer (BRET) to probe intracellular localization of G proteins in various membrane compartments in steady state and also upon receptor activation. Data presented in this manuscript shows that while G proteins are mostly present on the plasma membrane, they can be also detected in endosomal compartments, especially in late endosomes and lysosomes. This distribution, according to data presented in this study, seems not to be affected by receptor activation. These findings will have implications in further studies addressing GPCR signaling mechanisms from intracellular compartments.

      Strengths:

      The methods used in this study are adequate for the question asked. Especially, the use of genome-edited cells (for the addition of the tag on one of the G proteins) is a great choice to prevent the effects of overexpression. Moreover, the use of bystander BRET allowed authors to probe the intracellular localization of G proteins in a very high-throughput fashion. By combining imaging and BRET authors convincingly show that G proteins are very low abundant on early endosomes (also ER, mitochondria, and medial Golgi), however seem to accumulate on membranes of late endosomal compartments.

      Weaknesses:

      While the authors provide a novel dataset, many questions regarding G protein trafficking remain open. For example, it is not entirely clear which pathway is utilized to traffic G proteins from the plasma membrane to intracellular compartments. Additionally, future studies should also address the dynamics of G protein trafficking, for example by tracking them over multiple time points.

      We agree, there is much more to do.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      On page 7 the text says "the difference did reach significance (Figure 5D)". It looks like the difference did not reach significance. Please check on this.

      Thank you, this was an unfortunately significant typo.

      Reviewer #3 (Recommendations For The Authors):

      This article addresses an important and interesting question concerning intracellular localization and dynamics of endogenous G proteins. While the posed question is indeed a grand one and the methods used by the authors are novel, I believe that the data presented in this manuscript are still insufficient to support all claims posed by the authors. Below I list my major concerns:

      (1) The authors claim that they provide a "detailed subcellular map of endogenous G protein distribution", however, the map is in my opinion not sufficiently detailed (e.g. trans-Golgi network is not included) and not quantitative enough (e.g. % of proteins present on one compartment vs. the other as authors claim that BRET signals "cannot be directly compared between different compartments"). To strengthen this statement, except for providing more extensive and quantitative data, it would be beneficial to provide such a "map" as an illustration based on the findings presented in this article.

      “Detailed” is certainly a subjective term. While we maintain that our description of endogenous G protein distribution is far more detailed than any previous study, we now simply claim to provide a “subcellular map”. We have added images of TGNP (TGN46; TGOLN2), showing that endogenous G proteins are readily detectable on the structures labeled by this marker. These data are now provided in Figure 3 – figure supplement 7.

      We did not claim that our study was quantitative- we did not try to count G proteins. However, if we use published estimates of total G proteins and surface area for HEK 293 cells we estimate that there are roughly 2,500 G proteins µm-2 on the plasma membrane and 500 G proteins µm-2 on endocytic vesicles. For other intracellular compartments relative density can be approximated by inspecting images, but a truly quantitative estimate would require a surface area standard analogous to FM4-64 for each compartment. The percentage of the total G protein pool on a given compartment is, in our opinion, less important than the density of G proteins on that compartment, as the latter is more likely to affect the efficiency of local signal transduction. Since we do not claim to have accurate G protein density estimates for many intracellular compartments, we prefer to provide several raw images for each compartment rather than a schematized map.

      Bystander BRET values cannot be compared directly across compartments due to differences in expression and energy transfer efficiency of different markers and compartment surface area. This method is well suited for following changes in distribution as a function of time or after perturbations and for sensitive detection of weak colocalization but can only provide approximate “maps” of absolute distribution.

      (2) Probing of the intracellular distribution of these proteins, especially after GPCR activation, includes a single chosen timepoint. I believe that the manuscript would greatly benefit from including some dynamic data on internalization and intracellular trafficking kinetics. What is the turnover of tested G proteins? What is the fraction that is going to recycling compartments and/or lysosomes? Authors could perhaps turn to other methods to be able to dynamically track proteins over time e.g. via photoconversion techniques.

      Because G protein trafficking appears to be largely constitutive there is no easy way for us to assess how long it takes G proteins to transit various intracellular compartments, although we agree this would be interesting. As the reviewer suggests, dynamic data on constitutive trafficking would require methods (such as photoconversion) not currently available to us for endogenous G proteins. Accordingly, we have made no claims regarding the kinetics of G protein trafficking. As for possible redistribution after GPCR activation, in the revised manuscript we have added 5- and 15-minute timepoints after agonist stimulation for our bystander BRET mapping (Figure 5- figure supplement 2). These timepoints were chosen to correspond to persistent signaling mediated by internalized receptors. 

      (3) Exemplary images with cells showing significant colocalization with lysosomal compartments seem to contain more intracellular vesicles visible in the mNG channel than in the case of the other compartment. Is it an effect of the treatment to stain lysosomes? It would be beneficial to compare it with some endogenous marker e.g. LAMP1 without additional treatments.

      The visibility of intracellular vesicles in our lysosome images likely reflects our selection of cells and regions with visible and abundant lysosomes, specifically peripheral regions directly adhered to the coverslip, rather than treatment with lysosomal stains (LV 633 and dextran). As suggested, we now include images of cells expressing LAMP1 as an alternative lysosome marker (Figure 3 - figure supplement 6).

      (4) The authors probe an abundance of G proteins along the constitutive endocytic pathway. However, to prove that G proteins are not de-palmitoylated rather than endocytosed authors should perform control experiments where endocytosis is blocked e.g. pharmacologically or via a knockdown approach. Additionally, various endocytic pathways can be probed.

      We did not claim that depalmitoylation plays no role in delivery of G proteins to internal compartments. In fact, we pointed out that we cannot at present rule out other pathways and delivery mechanisms. Importantly, if some of the G proteins that we detect along the endocytic pathway do arrive there by trafficking through the cytosol this would only strengthen our major conclusion that endocytosis is inefficient.

      Having said this, we have now conducted extensive experiments investigating the role of palmitate cycling in the trafficking of heterotrimeric G proteins and the small G protein H-Ras. Our results suggest that a depalmitoylation-repalmitoylation cycle is not important for the distribution of heterotrimers, but these findings will be the subject of a separate publication focused on this specific question for both large and small G proteins.

      We agree that it will be interesting to probe different endocytic pathways, as suggested using a genetic approach. Our main interest here was in endocytic membranes that were defined functionally (with FM4-64 or internalized receptors) rather than biochemically.

      Minor comments:

      (5) "Imaging" paragraph in the Methods section refers to a non-existent figure called "SI Appendix S9".

      Thank you.

      (6) It is not clear what was used as a "control" in Figure 5E.

      “Control” refers to DPBS vehicle alone. This information is now added to the legend for Figure 5E.

    1. Introduction

      This webpage has multiple images without descriptive alt tags. This creates an accessibility barrier for individuals with visual impairments. Often times, people who are blind rely on assistive technologies such as text-to-speech software to access web content. Without descriptive alt tags, tools cannot provide meaningful context for the images, preventing users from having the full online experience.

      For example, even as someone without visual impairments, I find it challenging to understand the image below without any context. If I find it frustrating, it must be even more difficult for those with physical disabilities. Therefore, it is essential to ensure that every image has a descriptive alt tag of 125 characters or less. This description should be concise yet detailed enough to effectively convey the image’s content.

      ** I was unable to highlight the image, so this was the closest item I could highlight.**

    1. Reviewer #1 (Public Review):

      The study identifies the epigenetic reader SntB as a crucial transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus, although the precise molecular mechanisms remain elusive. Using homologous recombination, researchers constructed sntB gene deletion (ΔsntB), complementary (Com-sntB), and HA tag-fused sntB (sntB-HA) strains. Results indicated that deletion of the sntB gene impaired mycelial growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization compared to the wild type (WT). The defects in the ΔsntB strain were reversible in the Com-sntB strain.

      Further experiments involving ChIP-seq and RNA-seq analyses of sntB-HA and WT, as well as ΔsntB and WT strains, highlighted SntB's significant role in the oxidative stress response. Analysis of the catalase-encoding catC gene, which was upregulated in the ΔsntB strain, and a secretory lipase gene, which was downregulated, underpinned the functional disruptions observed. Under oxidative stress induced by menadione sodium bisulfite (MSB), the deletion of sntB reduced catC expression significantly. Additionally, deleting the catC gene curtailed mycelial growth, conidial production, and sclerotia formation, but elevated reactive oxygen species (ROS) levels and aflatoxin production. The ΔcatC strain also showed reduced susceptibility to MSB and decreased aflatoxin production compared to the WT.

      This study outlines a pathway by which SntB regulates fungal morphogenesis, mycotoxin synthesis, and virulence through a sequence of H3K36me3 modification to peroxisomes and lipid hydrolysis, impacting fungal virulence and mycotoxin biosynthesis.

      The authors have achieved the majority of their aims at the beginning of the study, finding target genes, which led to catC mediated regulation of development, growth and aflatoxin metabolism. Overall most parts of the study are solid and clear.

      Comments on revision:

      The authors have thoroughly addressed all the concerns I raised. The current manuscript is robust and effectively presents evidence supporting its claims. The overall quality of the manuscript has significantly improved.

    1. Reviewer #3 (Public review):

      Summary:

      This paper identifies GTSE1 as a potential substrate of cyclin D1-CDK4/6 and shows that GTSE1 correlates with cancer prognosis, probably through an effect on cell proliferation. The main problem is that the phosphorylation analysis relies on the over-expression of cyclin D1. It is unclear if the endogenous cyclin D1 is responsible for any phosphorylation of GTSE1 in vivo, and what, if anything, this moderate amount of GTSE1 phosphorylation does to drive proliferation.

      Strengths:

      There are few bonafide cyclin D1-Cdk4/6 substrates identified to be important in vivo so GTSE1 represents a potentially important finding for the field. Currently, the only cyclin D1 substrates involved in proliferation are the Rb family proteins.

      Weaknesses:

      The main weakness is that it is unclear if the endogenous cyclin D1 is responsible for phosphorylating GTSE1 in the G1 phase. For example, in Figure 2G there doesn't seem to be a higher band in the phos-tag gel in the early time points for the parental cells. This experiment could be redone with the addition of palbociclib to the parental to see if there is a reduction in GTSE1 phosphorylation and an increase in the amount in the G1 phase as predicted by the authors' model.

      The experiments involving palbociclib do not disentangle cell cycle effects. Adding Cdk4 inhibitors will progressively arrest more and more cells in the G1 phase and so there will be a reduction not just in Cdk4 activity but also in Cdk2 and Cdk1 activity. More experiments, like the serum starvation/release in Figure 2G, with synchronized populations of cells would be needed to disentangle the cell cycle effects of palbociclib treatment.

      It is unclear if GTSE1 drives the G1/S transition. Presumably, this is part of the authors' model and should be tested.

      The proliferation assays need to be more quantitative. Figure 4B should be plotted on a log scale so that the slope can be used to infer the proliferation rate of an exponentially increasing population of cells. Figure 4c should be done with more replicates and error analysis since the effects shown in the lower right-hand panel are modest.

    2. Author response:

      Reviewer #1:

      Summary:

      García-Vázquez et al. identify GTSE1 as a novel target of the cyclin D1-CDK4/6 kinases. The authors show that GTSE1 is phosphorylated at four distinct serine residues and that this phosphorylation stabilizes GTSE1 protein levels to promote proliferation.

      Strengths:

      The authors support their Kindings with several previously published results, including databases. In addition, the authors perform a wide range of experiments to support their Kindings.

      Weaknesses:

      I feel that important controls and considerations in the context of the cell cycle are missing. Cyclin D1 overexpression, Palbociclib treatment and apparently also AMBRA1 depletion can lead to major changes in cell cycle distribution, which could strongly inKluence many of the observed effects on the cell cycle protein GTSE1. It is therefore important that the authors assess such changes and normalize their results accordingly.

      We have approached the question of GTSE1 phosphorylation to account for potential cell cycle effects from multiple angles:  

      (i) We conducted in vitro experiments with puriIied, recombinant proteins and shown that GTSE1 is phosphorylated by cyclin D1-CDK4 in a cell-free system (Figure 2A-C). This experiment provides direct evidence of GTSE1 phosphorylation by cyclin D1-CDK4 without the inIluence of any other cell cycle effectors.  

      (ii) We present data using synchronized AMBRA1 KO cells (Figure 2G and Supplementary Figure 3B).  As shown previously (Simoneschi et al., Nature 2021, PMC8875297), AMBRA1 KO cells progress faster in the cell cycle but they are still synchronized as shown, for example by the mitotic phosphorylation of Histone H3. Under these conditions we observed that while phosphorylation of GTSE1 in parental cells peaks at the G2/M transition, AMBRA1 KO cells exhibited sustained phosphorylation of GTSE1 across all cell cycle phases.  This is evident when using Phos-tag gels as in the current top panel of Figure 2G. We now re-run one the biological triplicates of the synchronized cells using higher concentration of Zn+2-Phos-tag reagent and lower voltage to allow better separation.  Under these conditions, GTSE1 phosphorylation is more apparent. In the new version of the paper, we will either show both blots or substitute the old panel with the new one. This experiment provides evidence that high levels of cyclin D1 in AMBRA1 KO cells affect GTSE1 independently of the speciIic points in the cell cycle.  

      (iii) The relative short half-life of GTSE1 (<4 hours) makes its levels sensitive to acute treatments such as Palbococlib or AMBRA1 depletion. The effects of these treatments on GTSE1 levels are measurable within a time frame too short to affect cell cycle progression in a meaningful way. For example, we used cells with fusion of endogenous AMBRA1 to a mini-Auxin Inducible Degron (mAID) at the N-terminus. This system allows for rapid and inducible degradation of AMBRA1 upon addition of auxin, thereby minimizing compensatory cellular rewiring. Again, we observed an increase in GTSE1 levels upon acute ablation of AMBRA1 (i.e., in 8 hours) (Figure 3B), when no signiIicant effects on cell cycle distribution are observed (please see Simoneschi et al., Nature 2021, PMC8875297 and Rona et al., Mol. Cell 2024, PMC10997477). 

      All together, these lines of evidence support our conclusion that GTSE1 is a target of cyclin D1-CDK4, independent of cell cycle effects. In conclusion, as stated in the Discussion section, GTSE1 has been established as a substrate of mitotic cyclins, but we observed that overexpression of cyclin D1-CDK4 induce GTSE1 phosphorylation at any point of the cell cycle. Thus, we propose that GTSE1 is phosphorylated by CDK4 and CDK6 particularly in pathological states, such as cancers displaying overexpression of D-type cyclins beyond the G1 phase. In turn, GTSE1 phosphorylation induces its stabilization, leading to increased levels that, as expected based on the existing literature, contribute to enhanced cell proliferation. So, the cyclin D1-CDK4/6 kinase-dependent phosphorylation of GTSE1 induces its stabilization independently of the cell cycle.  

      Reviewer #2:

      Summary:

      The manuscript by García-Vázquez et al identifies the G2 and S phases expressed protein

      1(GTSE1) as a substrate of the CycD-CDK4/6 complex. CycD-CDK4/6 is a key regulator of the G1/S cell cycle restriction point, which commits cells to enter a new cell cycle. This kinase is also an important therapeutic cancer target by approved drugs including Palbocyclib. Identification of substrates of CycD-CDK4/6 can therefore provide insights into cell cycle regulation and the mechanism of action of cancer therapeutics. A previous study identified GTSE1 as a target of CycB-Cdk1 but this appears to be the first study to address the phosphorylation of the protein by Cdk4/6.

      The authors identified GTSE1 by mining an existing proteomic dataset that is elevated in AMBRA1 knockout cells. The AMBRA1 complex normally targets D cyclins for degradation. From this list, they then identified proteins that contain a CDK4/6 consensus phosphorylation site and were responsive to treatment with Palbocyclib. 

      The authors show CycD-CDK4/6 overexpression induces a shift in GTSE1 on phostag gels that can be reversed by Palbocyclib. In vitro kinase assays also showed phosphorylation by CDK4. The phosphorylation sites were then identified by mutagenizing the predicted sites and phostag got to see which eliminated the shift. 

      The authors go on to show that phosphorylation of GTSE1 affects the steady state level of the protein. Moreover, they show that expression and phosphorylation of GTSE1 confer a growth advantage on tumor cells and correlate with poor prognosis in patients.

      Strengths:

      The biochemical and mutagenesis evidence presented convincingly show that the GTSE1 protein is indeed a target of the CycD-CDK4 kinase. The follow-up experiments begin to show that the phosphorylation state of the protein affects function and has an impact on patient outcomes. 

      Weaknesses:

      It is not clear at which stage in the cell cycle GTSE1 is being phosphorylated and how this is affecting the cell cycle. Considering that the protein is also phosphorylated during mitosis by CycB-Cdk1, it is unclear which phosphorylation events may be regulating the protein.

      In cells that do not overexpress cyclin D1, GTSE1 is phosphorylated at the G2/M transition, consistent with the known cyclin B1-CDK1-mediated phosphorylation of this protein. However, AMBRA1 KO cells exhibited high levels of cyclin D1 throughout the cell cycle and sustained phosphorylation of GTSE1 across all cell cycle points (Figure 2G and Supplementary Figure 3B). Please see also answer to Reviewer #1.  Moreover, we show that, compared to the amino acids phosphorylated by cyclin D1-CDK4, cyclin B1-CDK1 phosphorylates GTSE1 on either additional residues or different sites (Figure 2H). Finally, we show that expression of a phospho-mimicking GTSE1 mutant leads to accelerated growth and an increase in the cell proliferative index (Figure 4C).  However, we have not evaluated how phosphorylation affects the cell cycle distribution.  We will perform FACS analyses and include them in the new version. 

      Reviewer #3:

      Summary:

      This paper identifies GTSE1 as a potential substrate of cyclin D1-CDK4/6 and shows that GTSE1 correlates with cancer prognosis, probably through an effect on cell proliferation. The main problem is that the phosphorylation analysis relies on the over-expression of cyclin D1. It is unclear if the endogenous cyclin D1 is responsible for any phosphorylation of GTSE1 in vivo, and what, if anything, this moderate amount of GTSE1 phosphorylation does to drive proliferation.

      Strengths: 

      There are few bonafide cyclin D1-Cdk4/6 substrates identified to be important in vivo so GTSE1 represents a potentially important finding for the field. Currently, the only cyclin D1 substrates involved in proliferation are the Rb family proteins.

      Weaknesses:

      The main weakness is that it is unclear if the endogenous cyclin D1 is responsible for phosphorylating GTSE1 in the G1 phase. For example, in Figure 2G there doesn't seem to be a higher band in the phos-tag gel in the early time points for the parental cells. This experiment could be redone with the addition of palbociclib to the parental to see if there is a reduction in GTSE1 phosphorylation and an increase in the amount in the G1 phase as predicted by the authors' model. The experiments involving palbociclib do not disentangle cell cycle effects. Adding Cdk4 inhibitors will progressively arrest more and more cells in the G1 phase and so there will be a reduction not just in Cdk4 activity but also in Cdk2 and Cdk1 activity. More experiments, like the serum starvation/release in Figure 2G, with synchronized populations of cells would be needed to disentangle the cell cycle effects of palbociclib treatment.    

      In normal cells, GTSE1 is phosphorylated at the G2/M transition in a cyclin B1-CDK1dependent manner.  During G1, when the levels of cyclin D1 peak, GTSE1 is not phosphorylated. This could be due to a higher affinity between GTSE1 and mitotic cyclins as compared to G1 cyclins or to a higher concentration of mitotic cyclins compared to G1 cyclins.  We show that higher levels of cyclin D1 induce GTSE1 phosphorylation during interphase, but we do not rely only on the overexpression of exogenous cyclin D1. In fact, we observe similar effect when we deplete endogenous AMBRA1, resulting in the stabilization of endogenous cyclin D1.  As mentioned in the Discussion section, we propose that GTSE1 is phosphorylated by CDK4 and CDK6 particularly in pathological states, such as cancers displaying overexpression of D-type cyclins (i.e., the overexpression appears to overcome the lower afIinity of the cyclin D1-GTSE1 complex). In sum, our study suggests that overexpression of cyclin D1, which is often observed in cancers cells beyond the G1 phase, induces phosphorylation of GTSE1 at all points in the cell cycle displaying high levels of cyclin D1.  Please see also response to Reviewer #1.  Concerning the experiments involving palbociclib, we limited confounding effects on the cell cycle by treating cells with palbociclib for only 4-6 hours. Under these conditions, there is simply not enough time for the cells to arrest in G1.

      It is unclear if GTSE1 drives the G1/S transition. Presumably, this is part of the authors' model and should be tested.

      We are not claiming that GTSE1 drives the G1/S transition.  GTSE1 is known to promote cell proliferation, but how it performs this task is not well understood.  Our experiments indicate that, when overexpressed, cyclin D1 promotes GTSE1 phosphorylation and its consequent stabilization.  In agreement with the literature, we show that higher levels of GTSE1 promote cell proliferation.  To measure cell cycle distribution upon expressing various forms of GTSE1, we will now perform FACS analyses and include them in the new version. 

      The proliferation assays need to be more quantitative. Figure 4B should be plotted on a log scale so that the slope can be used to infer the proliferation rate of an exponentially increasing population of cells. Figure 4c should be done with more replicates and error analysis since the effects shown in the lower right-hand panel are modest.

      In Figure 4B, we plotted data in a linear scale as done in the past (Donato et al. Nature Cell Biol. 2017, PMC5376241) to better represent the changes in total cell number overtime.  The experiments in Figure 4C were performed in triplicate. Error analysis was not included for simplicity, given the complexity of the data. We will include the other two sets of experiments in the revised version.  While the effects shown in the lower right-hand panel of Figure 4C are modest, they demonstrate the same trend as those observed in the AMBRA KO cells (Figure 4C and Simoneschi et al., Nature 2021, PMC8875297). It's important to note that this effect is achieved through the stable expression of a single phosphomimicking protein, whereas AMBRA KO cells exhibit changes in numerous cell cycle regulators.

      We appreciate the constructive comments and suggestions made by the reviewers, and we believe that the resulting additions and changes will improve the clarity and message of our study.

    1. The point of GPL licenses is to protect the user of the software, not the developer. If you want "protection" as a developer, use MIT (disclaimer of warranty). GPL "infects" other parts of a system to combat a work-around which was used to violate the software freedom of the user, by firewalling sections of GPL'ed code from the rest of the system. If you don't care about your users' software freedom in the first place, then (L)GPL is the wrong choice.
      • goal: protect user rights/freedoms
      • non-goal: protect developer rights/freedoms
    1. Ma‐Nee Chacaby is a respected Two‐Spirit Elder from northwestern Ontario. Photo: Ruth Kivilahti

      <ALT> tag is available to describe the image on the screen which makes it accessible to people with visual impairments

    1. The judges also ruled on reparations claims, awarding between 200 million to one billion Guinean francs (approximately US$23,000 to $115,000) for the different groups of victims, including those who have suffered physical and psychological trauma.

      what pitfalls come with putting a price tag on trauma / harm? when is the debt paid?

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank both reviewers for their detailed and critical assessment of our work. Below we provide a step-by-step response to your concerns.

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript presents data demonstrating the function of BRI1 in removing the H3K27me3 epigenetic marks in genes involved in seed coat development in Arabidopsis. The results support that BRI1 may function here independently of brassinosteroid. The work combines genetics with a large panel of mutant lines, phenotyping by quantitative microscopy and chemical treatment, H3K27me3 profiling by CUT&TAG, and data mining for published gene profiling. The introduction is adequately informative, complete and explaining the state-of-the-art to the readers. The result part may be a bit lengthy (especially the first part) and some parts may be a bit repetitive.

      Thank you for your positive assessment of our work and for the constructive criticism. Below we respond to each of your points.

      Major

      1. Seed size is dependent of multiple factors. And few are explained here, notably the number of seeds per silique, the number of ovule per silique, the position of the silique of the branch (related to the age of the meristem), the total number of produced siliques (fertilised flowers) by the inflorescence meristem and the plant. And maybe if produced by the main and lateral branches. Were the authors consistent in the evaluation of analyzed siliques coming from the same type of branches, same age of the meristem, etc? Especially as some of the analysed mutants are dwarf, which is a sign of different plant fitness compared to WT.

      This is a valid point. We did aim to analyze seeds coming from the main inflorescences of the plants and at similar stages of shoot development. This was harder to achieve in some genotypes, as indeed some BR and JMJ mutants have different plant architectures. However, we did repeat those experiments multiple times and always found consistent differences between the WTs and the mutants. See also our response to your next point and to the first point raised by Reviewer 2, as well as our new Fig. S6.

      1. The seed perimeter measurements in BR mutant seeds (Figure S6) are variable. Are you sue the ovule size does not have any influence? What about presenting the relative size as earlier in the text?

      Yes, this is particularly true for the Col-0 vs dwf5 comparison. The reason for this is that a different growth chamber was used for this experiment (greenhouse vs a climate chamber). We have observed that absolute seed growth phenotypes can change depending on the environmental conditions, which is something we are currently studying. However, importantly, we do not see changes in relative growth of the mutants when compared to the WT, independently of the growth conditions. That is, BR mutants produce consistently smaller seeds than the WT, independently of the conditions in which the plants are grown. To illustrate this point, we now add a new Figure, Fig. S6, where we show four independent biological replicates of assays comparing seed size between WT and det2 or bri1. These replicates were done in different growth chambers.

      Indeed, presenting the data as relative size would solve this issue, but we worried that we would be hiding the "real" values by doing so. However, if the Reviewer and Editor deem it necessary, we could replot the data as relative to WT.

      1. The number of evaluated samples is often {plus minus} n = 30, sometimes less, meaning less than what a silique contains of seeds. Did the authors evaluate the variability and reproductibility of their measurements, e.g, how many siliques per plant, how many plants, how many biological repeats? For example, in Figure S6, the number of measured ovules were as low as 16, which could be the reason why no significant difference in size were observed (low statitical strength). The variation in the Col WT is already visible. Is this variation significant?

      On average we pooled seeds from 6-10 siliques coming from 2-3 different plants of the same genotype. We then took microscopic photos of 60 to 100 random seeds in those pools. Out of those, 30 random photos were used for the measurements. You are right this is an important point. We now added this information to the Methods section.

      Moreover, we did calculate whether the sample size we were using provided enough statistical power. For the differences that we see, of around 50 um in perimeter, 26 samples would have been enough to achieve 80% statistical power, which most studies use as standard. In most of our experiments we used closer to 30 samples, which gives us 95% power.

      Indeed, the left-most panel on Fig S6B is the exception. With that plot we mostly wanted to test if ovules produced by BR mutants were smaller than those of WT plants. That does not seem to be the case, even if the sample size is small. However, if deemed necessary, we can repeat those measurements with a higher sample number.

      1. You indicate (line 149) that REF6 is not expressed in the gametophyte but GFP signal is observed in the cytoplasm for the central cell in Fig 1. The same goes for the expression pattern with the GUS line in Figure S2. (Line 290) One can not exclude expression in the endosperm or embryo with the presented pictures, or in the seed coat in older seeds.

      We interpreted those diffuse signals in the cytoplasm of the gametophyte as background noise, as REF6 should be nuclearly localized. But we could be wrong. We therefore made changes to the text in lines 150-152 to reflect this.

      And you are right that REF6 is expressed in the endosperm and embryo in later stages of development. We mention this in lines 157-159.

      1. Make sure that you do not overstate your result conclusions, or add a reference to some of the statements. For example, line 185, for the choice of 3 DAP time point and the fact that seed coat development is based on cell expansion and interaction with the endosperm. Another example, in line 262, is where it is stated that the jmj mutants are compromised in ovule and pollen development. This was not assessed. You only checked the reduced seed set, not the fitness of the gametophytes. Or in line 337, where you indicate that KLUH is not expressed in all integument layers.

      Thank you for pointing this out. For the claim that seed size at early time points is dictated only by the seed coat and endosperm, and not by the embryo, we added the appropriate reference. For the claim that jmj mutants are compromised in ovule development, this was based on our observations of Fig. S3C. We do see malformed or absent megagametophytes in jmj mutants. For pollen development, you are correct that we did not formally address this. We rephrased the sentence to reflect that. For the statement that KLU is not expressed in all integument cell layers, we added the reference.

      1. Another example of this is in line 289 where you stated "a sporophytic function of JMJs at early stages of seed development, [..] and to a zygotic function at the later stages of seed development". I am not sure on what data do you base this conclusion as in all three categories (endosperm, embryo, seed coat) in Fig 2 and S5, genes are expressed in pre-globular stages. And again in line 475: "seed coat growth genes are expressed independentlyof fertilization". Do you have any evidence, a reference?

      The evidence for a sporophytic JMJ function at early stages of seed development, and zygotic function at later stages, comes from our observations that jmj seed phenotypes are maternal in origin at early stages, but become zygotic later in development. But you are correct that we have to be careful with this interpretation. We now modified that sentence accordingly.

      For the data of Fig 2E and Fig S5, we cannot rule out that some putative REF6 target genes are also expressed even when in the absence of REF6. The expression of those genes is also likely controlled by other factors. The point we wanted to make with those plots is that REF6 may have different target genes in different seed tissues, thus potentially regulating different developmental processes in a tissue-specific manner. We mention this in lines 288-290.

      For your second point, we added the adequate reference.

      1. (around lines 461) I understand that using a 35S promoter is not a good strategy as it would affect many other tissues. Did you consider using a tissue-specific approach as presented in Figure 4?

      We suppose you mean the 35S::ELF6 construct. Yes, this makes sense and we did spend quite some time trying to come up with a good strategy. However, we failed to find a suitable promoter. The issue is that we would need a promoter that is active in all (or most) seed coat layers, but only after fertilization. There are promoters like those of TT genes which are active post-fertilization, but only in one cell layer, and thus likely not useful for our purpose. And there are other promoters, like those of STK or ANT, which are expressed in most integument cell layers, but are also expressed during integument development, and not just after fertilization. So they would have the same issue as the 35S promoter. Unfortunately, so far we have not identified a promoter that would be useful for this kind of experiment, which is why we went with a constitutive promoter, but which is specific to the sporophytic tissues.

      1. You observed that the triple swn clf bri mutant is less dwarf than bri1 mutant and stated in line 483 that it is larger, has more leaves, grow tallerm and flower later and longer. Do you have any qunatitative data? If not, I would state that these observations are qualitative from growing plant aside.

      You are correct that this was based on qualitative assessments, rather than on quantitative data (as it was not the point of the manuscript). We now indicate this in lines 489-490.

      Minor: 1. The title should precise the studies species, here Arabidopsis thaliana. Also the title of one of the part could be rephrased. "in a zygotic manner" sounds strange.

      We modified both title and subtitle, as suggested.

      1. Scale bars are missing in many figures.

      Fixed.

      1. The font size in the graphs is small. The authors may use the empty space of the figures to increase the size of the graphs for clarity. Guidelines could be found here https://tpc.msubmit.net/html/TPC_Detailed_Figure_Guidelines.pdf, as example of good practices.

      You are right. We revised all the figures and increased the font size, especially in the plot labels.

      1. Be consitent in the mutant name, e.g., brz1-D is also presented as brz1-d.

      Fixed.

      1. Figure legend S1: I would not use the word "extremely" while you still have 30% seed set. Extremely would qualifiy for

      We suppose you mean Fig. S3. We corrected the legend.

      1. Figure S8 is missing the WT control for comparison.

      Fixed.

      1. Figure S12, stats are missing

      Fixed.

      1. I would recommend to add a line in the Supplemental tables with the name as this name disappears from the file name during upload. It would help the readers to navigate the data.

      We now made it so the top line is static and is always visible.

      1. Methods: Are all the lines listed used in the study? SR2200 is missing for the method, and please indicate the selection marker for each of the generated lines for open-access of the data if other researchers later use your lines.

      You are right that some references had been left over from a previous document. We now updated the list of lines.

      And indeed, we forgot to mention the use of SR2200. It is now added to the Methods section. We also added the information on the selection markers for the lines we generated.

      1. You have a duplicate for reference Vukašinovíc et al.

      Fixed.

      1. Line 393, remove "s" in embryo and endosperm, in coat (line 674), in size (lines 684, 686

      Fixed.

      1. Line 410, write RPS5A in upper case.

      Fixed throughout the manuscript.

      1. LIne 676, the sentence "...H3K27me3 to be removed from the integuments." I would recomend to be more precise. For example "H3K27mme3 marks to be removed from genes to be expressed in the integuments" or something like that.

      We rephrased this sentence to "We thus hypothesized that BR signaling would be required for JMJ function, allowing for H3K27me3 to be removed from genes necessary for seed coat formation."

      Significance

      The authors provide novel information on the step-wise regulation of seed coat development and its influence on seed size. This is a topic of general interest, beyond the plant model Arabidopsis, especially in the context of reduced seed set caused by (a)biotic stress. The results of this study are valuable to understand seed size regulation in differnet growth context or species. The group previously showed that the auxin phytohormone is necessary after fertilization to initiate seed coat differentiation by inhibiting PRC2. However, as seed coat develops mainly as cell elongation, the epigenetic marks are not diluted by cell division and needs to be actively removed. This study provides insight into this process by identifcation 2 JMJ proteins responsible for removing H3K27me3 marks in the seed coat after fertilization to initiation seed coat development and regulating seed size. BRI1, BES1 and BZR1 are involved in this process, indepently of brassinosteroid, to guide JMJ to their target loci. While the study bring some genetic evidence of this process, molecular insight is still missing. Notably the identification of the target genes and how BRI1 is regulated/activated upon fertilization. Or how auxin and BRI1 co-regulate the process. These questions appear how of scope of this current study.

      Thank you for the assessment. Indeed, the identification of BRI1 downstream genes is out of scope of this work. As you point out earlier in the review, the manuscript is already quite long, and adding such data would make it even more so.

      Reviewer #2

      In this study, Pankaj et al. investigate the role of brassinosteroids and H3K27me3 in seed development, particularly in controlling seed size. They demonstrate that defects in these pathways affect seed size control and suggest that this control occurs in the maternal seed coat. This paper presents novel findings that merit publication and would be of interest to the plant community. However, the data interpretation and presentation could be improved. Additionally, I have a few comments that necessitate further analysis and revision.

      Thank you for the careful and critical assessment of our work. Below we respond to each of the points you raised.

      Major Comments

      1. My main concern is the use of seed size measurement as a proxy for seed coat development. Mature seed size measurements can vary significantly with growth conditions, so it is crucial that the authors present at least three independent experiments (wild type and mutant grown in parallel) in a single box plot to ensure data reliability. Additionally, due to the high number of seeds analyzed, significant changes are often observed, though they are not always reproducible. The authors should standardize their seed measurements, using either seed area or seed perimeter.

      You are right that we do see some variation in seed size between experiments. And, indeed, we suspect this is due to slightly different plant growth conditions, for example when different growth chambers are used. As you suggest, we now show data from four independent biological replicates of seed size comparisons of WT and BR mutants. This is in the new Fig. S6. As you can see, although we do see variations in absolute seed sizes, depending on the growth conditions, there is a consistent difference between WT and mutant seeds across experiments.

      1. It would be beneficial to include data on cell division and cell elongation in the seed coat if the authors aim to extend the seed size phenotype to a seed coat phenotype.

      This is indeed a good point. However, we already showed in a previous publication that seed coat growth is driven by cell elongation and not cell division (https://elifesciences.org/articles/20542). But you are right that this is important to point out. We mention it in lines 66-67.

      1. It is challenging to be fully convinced by the seed coat specificity of the phenotype, as the authors observe variations in total seed set and phenotypic differences in self-crosses and when the mutants are used paternally. Some of the observed phenotypes do not support their hypothesis. In all mutant analyses, the authors should complement their phenotype analysis using seed coat-specific promoters and include heterozygote measurements, as done in some figures.

      We assume you mean the effect of jmj mutations. For BR mutants, we do show data supporting a seed coat effect (Fig. 4). For PRC2 mutants, that has also been previously described (doi.org/10.7554/eLife.20542 and doi.org/10.1073/pnas.1117111108).

      For the JMJ mutants, you are right that we cannot be 100% sure that their effect is purely sporophytic. We now modified the text accordingly to reflect this (see also the response to point 6 of Reviewer 1). We indeed show that REF6 and ELF6 are expressed in the sporophytic tissues of the ovule and that the double mutant has seed coat defects (smaller seed coats and defects in accumulation of proanthocyanidins). And although we can say that those defects are maternal in nature, we can not 100% conclude that they are simply due to the effect of those JMJs in the sporophyte. There may be gametophytic effects that we cannot rule out, even though we do not see either protein expressed in embryo sacs. Thank you for pointing this out.

      Doing a tissue-specific rescue of these phenotypes would be very informative indeed, but also very hard. As we mention in the response to point 7 of Reviewer 1, we do not currently have suitable promoters for this. So we simply cannot run such experiments in a reasonable time frame.

      Overall, we now tried to be more careful in our conclusions and avoid claiming that the effect of JMJs is purely sporophytic. We can make that argument for the BR machinery and for PRC2, but not necessarily for JMJs. You are correct in that assessment.

      1. The authors need to include a fluorescent reporter for ELF6; tissue-specific expression cannot be conclusively determined with the GUS reporter.

      We did obtain an ELF6::GFP line from Caroline Dean's lab (https://www.pnas.org/doi/full/10.1073/pnas.1605733113), but could not see much expression during endosperm or seed coat development. As you can see from that publication, even in embryos and in roots the expression of ELF6:GFP is very blurry. It seems ELF6 is simply expressed at very low levels. We therefore used the GUS reporter, as a more sensitive means to visualize where ELF6 is expressed. You are right that the results are not as precise as that obtained with a fluorescent reporter. However, note that we simply claim that ELF6 is expressed in the integuments and seed coat (line 155). This can be clearly seen in Fig. 1B. The blue product of the β-glucuronidase reaction should be immotile and not travel between tissues (also note that there are no plasmodesmata between endosperm and seed coat). Therefore, we believe that GUS is a suitable reporter to test the seed coat expression of ELF6.

      1. Text editing: In some places, the text is unclear and could benefit from simplification. The authors should replace the term "seed coat formation," as developmentally, integuments are already present before fertilization. The authors are not studying the formation of the seed coat but rather its growth. They should also clarify the term "PRC2 removal." It is unclear whether the authors mean PRC2 lack of expression in the integument, PRC2 eviction from chromatin, or removal of H3K27me3.

      Thank you for noting that. It is very important to us that the text is clear to the reader. If you could indicate where the text is unclear, we are happy to simplify it.

      Regarding the wording, we refer to "seed coat formation" because the seed coat only indeed forms after fertilization. Before fertilization, the sporophytic tissues that cover the megagametophyte are called integuments, and not seed coat. Therefore, we see the seed coat as "forming" from the integuments (i.e., the integuments become seed coat via growth and differentiation).

      With PRC2 removal we indeed mean reduction of expression of PRC2 components. We now make this clear in lines 54-55.

      Minor Comments

      1. L151: Is REF6 expressed in zygotic tissues?

      Reviewer 1 also raised this question. We now added this information to lines 148-150.

      1. Confirm mutant complementation with the different reporter lines.

      All mutant lines that we used have been previously described to be either loss-of-function or hypomorphic mutants. We did not use any mutant line that has not been previously described. We added all references to the corresponding publications in the Methods.

      1. Confirm by qPCR that JMJ13 is indeed not expressed in seeds.

      We tested JMJ13 as a possible factor involved in H3K27me3 removal in the seed coat due to it being described, together with ELF6 and REF6, as one of the three main H3K27 demethylases. But there are, in fact, transcriptomic datasets showing that the expression of JMJ13 is indeed very low or absent in seeds: see RNAseq data in Table S3 in doi.org/10.3389/fpls.2022.998664. Moreover we checked CPMs on published seed scRNAseq datasets (doi.org/10.1038/s41477-021-00922-0) and JMJ13 (AT5G46910) has zero transcript counts in these datasets.

      Because of these two independent instances showing that the expression of JMJ13 is extremely low in seeds (or even totally absent), together with the analysis that we did of the fluorescent reporter line, we believe this is sufficient evidence that this JMJ is specific to the pollen during reproductive development. Note that the reporter that we used is strongly expressed in pollen grains, as had been previously described (doi.org/10.1038/s41556-020-0515-y).

      Even so, if the Reviewer and the Editor deem it necessary that we check JMJ13 expression by qPCR, we can of course do so.

      1. Fig1a and Fig1b: Align the panels in the figure.

      Done.

      1. L183-189: This section is unclear.

      I am sorry that the section is not clear. If you direct us to the points that need to be cleared, we are happy to make changes.

      1. There may be a PDF artifact, but most figures have unattractive misaligned boxes.

      We went through every figure and made slight modifications to avoid such artifacts. We hope they now appear more clear in the new version.

      1. Change the color in Fig 2a.

      Fixed.

      1. The introduction is heavily self-cited. The authors should try to include a broader range of literature.

      It is not clear to us why the Reviewer sees it like that. We only refer to three of our publications in the Introduction. One review manuscript and two research manuscripts. We cite almost 40 manuscripts in the introduction. Therefore, citing three of our works does not seem out of line to us, especially since those manuscripts laid the foundation for this work.

      1. Fig3F: Typo in "microM."

      Fixed.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript presents data demonstrating the function of BRI1 in removing the H3K27me3 epigenetic marks in genes involved in seed coat development in Arabidopsis. The results support that BRI1 may function here independently of brassinosteroid. The work combines genetics with a large panel of mutant lines, phenotyping by quantitative microscopy and chemical treatment, H3K27me3 profiling by CUT&TAG, and data mining for published gene profiling. The introduction is adequately informative, complete and explaining the state-of-the-art to the readers. The result part may be a bit lengthy (especially the first part) and some parts may be a bit repetitive.

      Major comments:

      1. Seed size is dependent of multiple factors. And few are explained here, notably the number of seeds per silique, the number of ovule per silique, the position of the silique of the branch (related to the age of the meristem), the total number of produced siliques (fertilised flowers) by the inflorescence meristem and the plant. And maybe if produced by the main and lateral branches. Were the authors consistent in the evaluation of analyzed siliques coming from the same type of branches, same age of the meristem, etc? Especially as some of the analysed mutants are dwarf, which is a sign of different plant fitness compared to WT.

      2. The seed perimeter measurements in BR mutant seeds (Figure S6) are variable. Are you sue the ovule size does not have any influence? What about presenting the relative size as earlier in the text?

      3. The number of evaluated samples is often {plus minus} n = 30, sometimes less, meaning less than what a silique contains of seeds. Did the authors evaluate the variability and reproductibility of their measurements, e.g, how many siliques per plant, how many plants, how many biological repeats? For example, in Figure S6, the number of measured ovules were as low as 16, which could be the reason why no significant difference in size were observed (low statitical strength). The variation in the Col WT is already visible. Is this variation significant?

      4. You indicate (line 149) that REF6 is not expressed in the gametophyte but GFP signal is observed in the cytoplasm for the central cell in Fig 1. The same goes for the expression pattern with the GUS line in Figure S2. (Line 290) One can not exclude expression in the endosperm or embryo with the presented pictures, or in the seed coat in older seeds.

      5. Make sure that you do not overstate your result conclusions, or add a reference to some of the statements. For example, line 185, for the choice of 3 DAP time point and the fact that seed coat development is based on cell expansion and interaction with the endosperm. Another example, in line 262, is where it is stated that the jmj mutants are compromised in ovule and pollen development. This was not assessed. You only checked the reduced seed set, not the fitness of the gametophytes. Or in line 337, where you indicate that KLUH is not expressed in all integument layers.

      6. Another example of this is in line 289 where you stated "a sporophytic function of JMJs at early stages of seed development, [..] and to a zygotic function at the later stages of seed development". I am not sure on what data do you base this conclusion as in all three categories (endosperm, embryo, seed coat) in Fig 2 and S5, genes are expressed in pre-globular stages. And again in line 475: "seed coat growth genes are expressed independentlyof fertilization". Do you have any evidence, a reference?

      7. (around lines 461) I understand that using a 35S promoter is not a good strategy as it would affect many other tissues. Did you consider using a tissue-specific approach as presented in Figure 4?

      8. You observed that the triple swn clf bri mutant is less dwarf than bri1 mutant and stated in line 483 that it is larger, has more leaves, grow tallerm and flower later and longer. Do you have any qunatitative data? If not, I would state that these observations are qualitative from growing plant aside.

      Minor comments:

      1. The title should precise the studies species, here Arabidopsis thaliana. Also the title of one of the part could be rephrased. "in a zygotic manner" sounds strange.

      2. Scale bars are missing in many figures.

      3. The font size in the graphs is small. The authors may use the empty space of the figures to increase the size of the graphs for clarity. Guidelines could be found here https://tpc.msubmit.net/html/TPC_Detailed_Figure_Guidelines.pdf, as example of good practices.

      4. Be consitent in the mutant name, e.g., brz1-D is also presented as brz1-d.

      5. Figure legend S1: I would not use the word "extremely" while you still have 30% seed set. Extremely would qualifiy for <5%, I guess.

      6. Figure S8 is missing the WT control for comparison.

      7. Figure S12, stats are missing

      8. I would recommend to add a line in the Supplemental tables with the name as this name disappears from the file name during upload. It would help the readers to navigate the data.

      9. Methods: Are all the lines listed used in the study? SR2200 is missing for the method, and please indicate the selection marker for each of the generated lines for open-access of the data if other researchers later use your lines.

      10. You have a duplicate for reference Vukašinovíc et al.

      11. Line 393, remove "s" in embryo and endosperm, in coat (line 674), in size (lines 684, 686

      12. Line 410, write RPS5A in upper case.

      13. LIne 676, the sentence "...H3K27me3 to be removed from the integuments." I would recomend to be more precise. For example "H3K27mme3 marks to be removed from genes to be expressed in the integuments" or something like that.

      Cross-commenting:

      I have been comparing our peer-review reports of the manuscript and found much similarity on our assessment:

      1. The seed size assemment and how this relates to seed coat development

      2. The GUS expression of ELF6 is not sufficient for the provided conclusion of the ELF6 expression

      3. The same would be for REP6

      4. Use of tissue-specific (seed coat specific) promoters to confirm the conclusion.

      Significance

      The authors provide novel information on the step-wise regulation of seed coat development and its influence on seed size. This is a topic of general interest, beyond the plant model Arabidopsis, especially in the context of reduced seed set caused by (a)biotic stress. The results of this study are valuable to understand seed size regulation in differnet growth context or species. The group previously showed that the auxin phytohormone is necessary after fertilization to initiate seed coat differentiation by inhibiting PRC2. However, as seed coat develops mainly as cell elongation, the epigenetic marks are not diluted by cell division and needs to be actively removed. This study provides insight into this process by identifcation 2 JMJ proteins responsible for removing H3K27me3 marks in the seed coat after fertilization to initiation seed coat development and regulating seed size. BRI1, BES1 and BZR1 are involved in this process, indepently of brassinosteroid, to guide JMJ to their target loci. While the study bring some genetic evidence of this process, molecular insight is still missing. Notably the identification of the target genes and how BRI1 is regulated/activated upon fertilization. Or how auxin and BRI1 co-regulate the process. These questions appear how of scope of this current study.

      My filed of expertise: hormones, plant reproduction, Arabidopis, oilseed rape, microscopy, transformation

    1. Reviewer #1 (Public review):

      This study describes a useful antibody-free method to map G-quadruplexes in vertebrate cells. The analysis of the data is solid but it remains primarily descriptive and does not substantially add to existing publications (such as PMID:34792172 for example). Nevertheless, the datasets generated here might constitute a good starting point for more functional studies.

      Comments on revised version:

      It is disappointing to see that the authors decided to brush aside most of the comments made by the three referees, even though these comments were largely consistent with each other. As a result, the revised manuscript is not substantially changed or improved. Legitimate concerns regarding the specificity of the Cut&Tag signals were not addressed and therefore remain. The sensitivity of the HBD-seq signals to a combination of RNase A and RNase H does not demonstrate that HBD-seq specifically reports the presence of RNA:DNA hybrids. The new Figure 9 comparing HepG4-seq to existing datasets does not unequivocally demonstrate the superiority of the Hemin-based strategy to map G4s.

    2. Reviewer #3 (Public review):

      Summary:

      The authors developed and optimized the methods for detecting G4s and R-loops independent of BG4 and S9.6 antibody, and mapped genomic native G4s and R-loops by HepG4-seq and HBD-seq, revealing that co-localized G4s and R-loops participate in regulating transcription and affecting the self-renewal and differentiation capabilities of mESCs.

      Strengths:

      By utilizing the peroxidase activity of G4-hemin complex and combining proximity labeling technology, the authors developed HepG4-seq (high throughput sequencing of hemin-induced proximal labelled G4s) , which can detect the dynamics of G4s in vivo. Meanwhile, the "GST-His6-2xHBD"-mediated CUT&Tag protocol (Wang et al., 2021) was optimized by replacing fusion protein and tag, the optimized HBD-seq avoids the generation of GST fusion protein aggregates and can reflect the genome-wide distribution of R-loops in vivo.

      The authors employed HepG4-seq and HBD-seq to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). The data indicate that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes.

      Combined with Dhx9 ChIP-seq and co-localized G4s and R-loops data in wild-type and dhx9KO mESCs, the authors found that the helicase Dhx9, a major regulator of co-localized G4s and R-loops, affects the self-renewal and differentiation capacities of mESCs.

      In conclusion, the authors provide an approach to study the interplay between G4s and R-loops, shedding light on the important roles of co-localized G4s and R-loops in development and disease by regulating the transcription of related genes.

      Weaknesses:

      As we know, there are at least two structure data of S9.6 antibody very recently, and the questions about the specificity of the S9.6 antibody on RNA:DNA hybrids should be finished. The authors referred (Hartono et al., 2018; Konig et al., 2017; Phillips et al., 2013) need to be updated, and the author's bias against S9.6 antibodies needs also to be changed. In contrast to S9.6 CUT&Tag and other inactive ribonucleotide H1-based methods including MapR (inactive ribonucleotide H1-mediated CUT&Run) (Yan et al., 2019)and GST-2xHBD CUT&Tag (Wang et al., 2021), HBD-seq did not perform satisfactorily and its binding specificity was questionable.

      Although HepG4-seq is an effective G4s detection technique, and the authors have also verified its reliability to some extent, given the strong link between ROS homeostasis and G4s formation, hemin's affinity for different types of G4s and their differences in peroxidase activities, whether HepG4-seq reflects the dynamics of G4s in vivo more accurately than existing detection techniques still needs to be more carefully corroborated.

      The authors focus on the interaction of non-B DNA structures G4s and R-loops and their roles in development and disease by regulating the transcription of related genes. Compared to the complex regulatory network of G4s and R-loops, the authors provide limited mechanistic insight into the major regulator of co-localized G4s and R-loops, helicase Dhx9. However, the authors propose that "A degron system-mediated simultaneous and/or stepwise degradation system of multiple regulators will help us elucidate the interplaying effects between G4s and R-loops." is attractive. The main innovations of this article are the proposal of new antibody-independent methods for detecting G4s and the optimization of the GST-2xHBD CUT&Tag (Wang et al., 2021) method for detecting R-loops. Unfortunately, however, the reliability and accuracy of these methods are still debatable, and the reference value of the G4s and R-loops datasets based on these methods is relatively limited.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The manuscript proposes an alternative method by SDS-PAGE calibration of Halo-Myo10 signals to quantify myosin molecules at specific subcellular locations, in this specific case filopodia, in epifluorescence datasets compared to the more laborious and troublesome single molecule approaches. Based on these preliminary estimates, the authors developed further their analysis and discussed different scenarios regarding myosin 10 working models to explain intracellular diffusion and targeting to filopodia. 

      Strengths: 

      I confirm my previous assessment. Overall, the paper is elegantly written and the data analysis is appropriately presented. Moreover, the novel experimental approach offers advantages to labs with limited access to high-end microscopy setups (super-resolution and/or EM in particular), and the authors proved its applicability to both fixed and live samples. 

      Weaknesses: 

      Myself and the other two reviewers pointed to the same weakness, the use of protein overexpression in U2OS. The authors claim that Myosin10 is not expressed by U2OS, based on Western blot analysis. Does this completely rule out the possibility that what they observed (the polarity of filopodia and the bulge accumulation of Myo10) could be an artefact of overexpression? I am afraid this still remains the main weakness of the paper, despite being properly acknowledged in the Limitations.

      Respectfully, our observations do not capture an “artefact” of overexpression but rather the “response” to overexpression. Our goal in this project was to overexpress Myo10 in a situation where it is the limiting reagent for generating filopodia. As Reviewer 3 notes below, overexpression shows that filopodial tips “can accommodate a surprisingly (shockingly) large number of motors.” This is exactly the point. Reviewer 2 considered our handling of this issue to be a strength of the paper. As far as whether bulges occur in endogenous Myo10 systems, please see our comments to Reviewer 3. 

      I consider all the remaining issues I expressed during the first revision solved. 

      Reviewer #2 (Public Review): 

      Summary: 

      The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing. 

      Strengths: 

      The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggests a clustering of Myo10 is a feature of this motor. 

      One of the main critiques of the manuscript was that the results were derived from experiments with overexpressed Myo10 and therefore are hard to extrapolate to physiological conditions. The authors counter this critique with the argument that their results provide insight into a system in which Myo10 is a limiting factor for controlling filopodia formation. They demonstrate that U20S cells do not express detectable levels of Myo10 (supplementary Figure 1E) and thus introducing Myo10 expression demonstrates how triggering Myo10 expression impacts filopodia. An example is given how melanoma cells often heavily upregulate Myo10. 

      In addition, the revised manuscript addresses the concerns about the method to quantitate the number of Myo10 molecules per cell and therefore puncta in the cell. The authors have now made a good faith effort to correct for incomplete labeling of the HALO tag (Figure 2A-C, supplementary Figure 2D-E). The authors also address the concerns about variability in transfection efficiency (Figure 1D-E). 

      A very interesting addition to the revised manuscript was the quantitation of the number of Myo10 molecules present during an initiation event when a newly formed filopodia just starts to elongate from the plasma membrane. They conclude that 100s of Myo10 molecules are present during an initiation event. They also examined other live cell imaging events in which growth occurs from a stable filopodia tip and correlated with elongation rates. 

      Weaknesses: 

      The authors acknowledge that a limitation of the study is that all of the experiments were performed with overexpressed Myo10. They address this limitation in the discussion but also provide important comparisons for how their work relates to physiological conditions, such as melanoma cells that only express large amounts of Myo10 when they are metastatic. Also, the speculation about how fascin can outcompete Myo10 should include a mechanism for how the physiological levels of fascin can complete with the overabundance of Myo10 (page 10, lines 401-408). 

      We have expanded the discussion about fascin competing with high concentrations of Myo10 in filopodial tips on pg. 15. The key feature is that fascin binding in a bundle is essentially irreversible, so it wins if any space opens up and it manages to bind before the next Myo10 arrives.

      Reviewer #3 (Public Review): 

      Summary 

      The work represents progress in quantifying the number of Myo10 molecules present in the filopodia tip. It reveals that cells overexpressing fluorescently labeled Myo10 that the tip can accommodate a wide range of Myo10 motors, up to hundreds of molecules per tip. 

      The revised, expanded manuscript addresses all of this reviewer's original comments. The new data, analysis and writing strengthen the paper. Given the importance of filopodia in many cellular/developmental processes and the pivotal, as yet not fully understood role of Myo10 in their formation and extension, this work provides a new look at the nature of the filopodial tip and its ability to accommodate a large number of Myo10 motor proteins through interactions with the actin core and surrounding membrane. 

      Specific comments - 

      (1) One of the comments on the original work was that the analysis here is done using cells ectopically expressing HaloTag-Myo10. The author's response is that cells express a range of Myo10 levels and some metastatic cancer cells, such as breast cancer, have significantly increased levels of Myo10 compared to non-transformed cell lines. It is not really clear how much excess Myo10 is present in those cells compared to what is seen here for ectopic expression in U2OS cells, making a direct correspondence difficult.

      We agree, a direct correspondence is difficult, and is further complicated by other variables (e.g., expression levels of Myo10 activators, cargoes, fascin, or other filopodial components) that may differ among cell lines. Properly sorting this out will require additional work in a few key cellular systems.

      However, there are two points to keep in mind that somewhat mitigate this concern. First, because ectopic expression of Myo10 causes an ~30x increase in the number of filopodia, the activated Myo10 population is divided over that larger filopodial population. Second, the log-normal distribution of Myo10 across filopodia has a long tail, which means that some cells with low levels of Myo10 will concentrate that Myo10 in a few filopodia. 

      In response to comments about the bulbous nature of many filopodia tips the authors point out that similar-looking tips are seen when cells are immunostained for Myo10, citing Berg & Cheney (2002). In looking at those images as well as images from papers examining Myo10 immunostaining in metastatic cancer cells (Arjonen et al, 2014, JCI; Summerbell et al, 2020, Sci Adv) the majority of the filopodia tips appear almost uniformly dot-like or circular. There is not too much evidence of the elongated, bulbous filopodial tips seen here.

      Yes, the tips in Berg and Cheney are circular, but their size varies considerably (just as a balloon is roughly circular, its size varies with the amount of air it contains). Non-bulbous filopodial tips have a theoretical radius of ~100 nm, which is below the diffraction limit. However, many of the filopodial tips are larger than the diffraction limit in Berg and Cheney, Fig. 1a. We cropped and zoomed in the images to show each fully visible filopodial tip

      We attempted to perform a similar analysis of the images in Arjonen and Summerbell. Unfortunately, their images are too small to do so. 

      However, in reconsidering the approach and results, it is the case that the finding here do establish the plasticity of filopodia tips that can accommodate a surprisingly (shockingly) large number of motors. The authors discuss that their results show that targeting molecules to the filopodia tip is a relatively permissive process (lines 262 - 274). That could be an important property that cells might be able to use to their advantage in certain contexts. 

      (2) The method for arriving at the intensity of an individual filopodium puncta (starting on line 532 and provided in the Response), and how this is corrected for transfection efficiency and the cell-to-cell variation in expression level is still not clear to this reviewer. The first part of the description makes sense - the authors obtain total molecules/cell based on the estimation on SDS-PAGE using the signal from bound Halo ligand. It then seems that the total fluorescence intensity of each expressing cell analyzed is measured, then summed to get the average intensity/cell. The 'total pool' is then arrived at by multiplying the number of molecules/cell (from SDS-PAGE) by the total number of cells analyzed. After that, then: 'to get the number of molecules within a Myo10 filopodium, the filopodium intensity was divided by the bioreplicate signal intensity and multiplied by 'total pool.' ' The meaning of this may seem simple or straightforward to the authors, but it's a bit confusing to understand what the 'bioreplicate signal intensity' is and then why it would be multiplied by the 'total pool'. This part is rather puzzling at first read.

      We agree, such information is critical. We have now revised this description with more precise terms and have included a formula on pg. 20.

      Since the approach described here leads the authors to their numerical estimates every effort should be made to have it be readily understood by all readers. A flow chart or diagram might be helpful. 

      We have added a diagram of the calculations to the supplemental material (Figure 1—figure supplement 3). We hope that both changes will make it easier for others to follow our work.

      (3) The distribution of Myo10 punctae around the cell are analyzed (Fig 2E, F) and the authors state that they detect 'periodic stretches of higher Myo10 density along the plasma membrane' (line 123) and also that there is correlation and anti-correlation of molecules and punctae at opposite ends of the cells. 

      In the first case, it is hard to know what the authors really mean by the phrase 'periodic stretches'. It's not easy to see a periodicity in the distribution of the punctae in the many cells shown in Supp Fig 3. Also, the correlation/anti-correlation is not so easily seen in the quantification shown in Fig 2F. Can the authors provide some support or clarification for what they are stating? 

      The periodic pattern that we refer to is most apparent in the middle panels of Fig. 2E, F. These panels show the density of Myo10 puncta. These puncta numbers closely correspond to filopodia counts, with the caveat that some filopodia might have multiple puncta. This periodic density might not be as apparent in the raw data shown in Supp. Fig. 3. We have therefore rewritten this paragraph to clarify our observations (pg. 6).

      (4) The authors are no doubt aware that a paper from the Tyska lab that employs a completely different method of counting molecules arrives at a much lower number of Myo10 molecules at the filopodial tip than is reported here was just posted (Fitz & Tyska, 2024, bioRxiv, DOI: 10.1101/2024.05.14.593924). 

      While it is not absolutely necessary for the authors to provide a detailed discussion of this new work given the timing, they may wish to consider adding a note briefly addressing it. 

      We are aware of this manuscript and that it uses a different approach for calibrating the fluorescence signal in microscopy. However, we are not comfortable commenting on that manuscript at this time, given that it has not yet been peer reviewed with the chance for author revisions.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations For The Authors): 

      The manuscript the authors are now presenting does not comply with the formatting limits of a Short report, but it is instead presented as a full article type. I believe the authors could shorten the Discussion, and meet the criteria for a more appropriate Short Report format. 

      For instance, I continue to believe that the study of truncation variants could sustain the claim that membrane binding represents the driving force that leads to Myo10 accumulation. I understand the authors want to address these mechanisms in a follow-up story, for this reason, I encourage them to shorten the discussion, which seems unnecessarily long for a technique-based manuscript.

      In the first round of review, Reviewer 3 asked us to expand the discussion. Given that, we are happy with where we have landed on the length of the discussion.

      Figure 2, could include some images to facilitate the readers on the different messages of the two rose plots E and F, by picking one of the examples from the supplementary Figure 3 

      We have now added a supplemental figure showing an example cell (Fig. 2 figure supplement 2). But please note that the averaging of ~150 cells (Fig. 2E, F) should be more reliable to show these overall trends.

      Reviewer #2 (Recommendations For The Authors): 

      Also, the speculation about how fascin can outcompete Myo10 should include a mechanism for how the physiological levels of fascin can complete with the overabundance of Myo10 (page 10, lines 401-408). 

      As noted above, we have now clarified this point. 

      Reviewer #3 (Recommendations For The Authors): 

      line 495 - what is GOC? 

      We have now defined this oxygen scavenger system in the main text.

      lines 603/604 - it is stated that 'velocity analysis does not only account for Myo10 punctum that moved away from the starting point of the trajectory.' It's not clear what this really means. 

      The sentence now reads: "For Figure 4 parts G-H, note that velocity analysis includes a few Myo10 puncta that switch direction within a single trajectory (e.g., a retracting punctum that then elongates)."

      References #4 and #14 are the same. 

      Thank you for catching that; it has now been corrected.

      Fig 1C - the plot for signal intensity versus fmol of protein has numbers for the standard and then live and fixed cells. While the R2 value is quite good, it seems a bit odd that the three (?) data points for live cells are all quite small relative to the fixed cells and all bunched together at the left side of the plot. 

      As mentioned in the main text, the time post-transfection has a noticeable effect on the level of Myo10 expression. The three fixed-cell bioreplicates had higher Myo10 expression because they were analyzed 48 hours post-transfection compared to the three live-cell bioreplicates (24 hours). Therefore, the fixed cell data points are larger in value because they represent more molecules, and the live cell data points are on the left side of the plot because they represent fewer molecules.