estaurantes y hoteles
Esta tabla se ve muy pinchona
estaurantes y hoteles
Esta tabla se ve muy pinchona
Si tienes un negocio de comida, sabes que mantener los productos bien conservados no es solo una necesidad, sino una prioridad.
Más que hablar de necesidad y prioridad, creo que podrías abordarlo de que es una obllgación / requerimiento de COFEPRIS https://www.gob.mx/cms/uploads/attachment/file/158493/Gu_a_de_buenas_pr_cticas_de_higiene_en_establecimientos_de_servicios_de_alimentos_y_bebidas.pdf
Author response:
Reviewer #1:
The manuscript Xu et al. explores the regulation of the microtubule minus end protein CAMSAP2 localization to the Golgi by the Serine/threonine-protein kinase MARK2 (PAR1, PAR1B). The authors utilize immunofluorescence and biochemical approaches to demonstrate that MARK2 is localized at the Golgi apparatus via its spacer domain. They show that depletion of this protein alters Golgi morphology and diminishes CAMSAP2 localization to the Golgi apparatus. The authors combine mass spectroscopy and immunoprecipitation to show that CAMSAP2 is phosphorylated at S835 by MARK2, and that this phosphorylation regulates localization of CAMSAP2 at Golgi membranes. Further, the authors identify USO1 (p115) as the Golgi resident protein mediating CAMSAP2 recruitment to the Golgi apparatus following S835 phosphorylation. The authors would need to address the following queries to support their conclusions.
We sincerely thank the reviewer for their valuable time and effort in evaluating our manuscript. We deeply appreciate the constructive feedback and insightful suggestions, which have been instrumental in improving the quality and clarity of our study. We have carefully considered all the comments and have made the necessary revisions to address the concerns raised.
Major Comments
(1) Dynamic localization of CAMSAP2 during Golgi reorientation
- The authors use fixed wound edges assays and co-localization analysis to describe changes in CAMSAP2 positioning during Golgi reorientation in response to polarizing cues (a free wound edge in this case). In Figure 1C, they present a graphical representation of quantified immunofluorescence images, using color coding to to describe the three states of Golgi reorientation in response to a wound (green, blue, red indicating non-polarised, partial and complete Golgi reorientation, respectively). They then use these 'colour coded' classifications to quantitate CAMSAP2/GM130 co-localization.It is unclear why the authors have not just used representative immunofluorescence images in the main figures. Transparent, color overlays could be placed over the cells in the representative images to indicate which of the three described states each cell is currently exhibiting. However, for clarity, I would recommend changing the color coded 'states' to a descriptor rather than a color. i.e. Figure 1D x axis labels should be 'complete' and 'partial', instead of 'red' and 'blue'.
Thank you for this insightful suggestion. We have added representative immunofluorescence images with transparent color overlay to indicate the three Golgi orientation states. These images are included in Supplementary Figure 2B-C, providing a clear visual reference for the quantitative data. Additionally, we have revised the x-axis labels in Figure 1E from "Red" and "Blue" to "Complete" and "Partial" to ensure clarity and consistency with the descriptive terminology in the text. These changes are described in the Results section (page 7, lines 15-19) and the figure legend (page 29, lines 27-29).
We believe these updates improve the clarity and accessibility of our figures and hope they address the reviewer’s concerns.
- note- figure 2 F-G, is semi quantitative, why did the authors not just measure Golgi angle using the nucleus and Golgi distribution?
We appreciate the reviewer’s comment on this point. Following the recommendation, we have performed an additional analysis measuring Golgi orientation angles based on the nucleus-Golgi distribution. This quantitative approach complements our initial semi-quantitative analysis and provides a more precise assessment of Golgi orientation during cell migration.
The new data have been incorporated into Supplementary Figure 1F-H. These results clearly demonstrate the consistency between the quantitative and semi-quantitative methods, further validating our findings and highlighting the dynamic changes in Golgi orientation during cell migration. These changes are described in the Results section (page 6, lines 24-31).
- While it is established that the Golgi is dispersed during reorientation in wound edge migration, the Golgi apparatus also becomes dispersed/less condensed prior to cell division. As the authors have used fixed images - how are they sure that the Golgi morphology or CAMSAP2 localization in 'blue cells' are indicative of Golgi reorientation and not division? Live imaging of cells expressing CAMSAP2, and an additional Golgi marker could be used to demonstrate that the described changes in Golgi morphology and CAMSAP2 localization are occurring during the rear-to-front transition of the Golgi.
Thank you for raising this important question. To address this concern, we carefully examined the nuclear morphology of dispersed Golgi cells and found no evidence of mitotic features, indicating that these cells are not undergoing division (Figure 1A, Supplemental Figure 2A). Furthermore, during the scratch wound assay, we use 2% serum to culture the cells, which helps minimize the impact of cell division. This analysis has been added to the Results section (page7, lines 19-22 in the revised manuscript).
Additionally, we conducted live-cell imaging, as suggested, using cells expressing a Golgi marker. This approach confirmed that Golgi dispersion occurs transiently during reorientation in cell migration. The new live-cell imaging data have been incorporated into Supplementary Figure 2A, and the corresponding description has been updated in the Results section (page 7, lines 2-5).
Finally, considering that overexpression of CAMSAP2 can lead to artifactually condensed Golgi structures, we used endogenous staining to observe CAMSAP2 localization at different stages of migration. These observations provide a clearer understanding of CAMSAP2 dynamics during Golgi reorientation and are now presented in revised Figure 1A-B. This information has been described in the Results section (page 7, lines 5-10).
We hope these additions and clarifications address the reviewer’s concerns. Once again, we are deeply grateful for this constructive feedback, which has greatly improved the robustness of our study.
(2) MARK2 localization to the Golgi apparatus
- The authors investigated the positioning of endogenous MARK2 via immunofluorescence staining, and exogenous flag-tagged MARK2 in a KO background. The description of the protocol required to visualize Golgi localization of MARK2 is inconsistent between the results and methods text. The results text reads as through the 2% serum incubation occurs as a blocking step following fixation. Conversely, the methods section describes the 2% serum incubation as occurring just prior to fixation as a form of serum starvation. The authors need to clarify which of these protocols is correct. Further, whilst I can appreciate that the mechanistic understanding of why serum starvation is required for MARK2 Golgi localization is beyond the scope of the current work, the authors should at a minimum speculate in the discussion as to why they think it might occur.
We sincerely thank the reviewer for the constructive feedback on the localization of MARK2 at the Golgi. Due to the complexity and variability of this phenomenon, we decided to remove the related data from the current manuscript to maintain the rigor of our study. However, we have included a discussion of this phenomenon in the Discussion section (page 13, lines 31-39 and page 14, 1-6in the revised manuscript) and plan to further investigate it in future studies.
The localization of MARK2 at the Golgi was initially observed in experiments following serum starvation, where cells were fixed and stained (The data is not displayed). This observation was supported by the loss of Golgi localization in MARK2 knockdown cells, indicating the specificity of the antibody (The data is not displayed). However, this phenomenon was not consistently observed across all cells, likely due to its transient nature.We speculate that the localization of MARK2 to the Golgi depends on its activity and post-translational modifications. For example, phosphorylation at T595 has been reported to regulate the translocation of MARK2 from the plasma membrane to the cytoplasm (Hurov et al., 2004). Serum starvation might induce modifications or conformational changes in MARK2, leading to its temporary Golgi localization. Additionally, we hypothesize that this localization may coincide with specific Golgi dynamics, such as the transition from dispersed to ribbon-like structures during cell migration.
We also acknowledge the inconsistency in the Results and Methods sections regarding serum starvation. We confirm that serum starvation was performed prior to fixation as an experimental condition, rather than as a blocking step in immunostaining. This clarification has been incorporated into the revised Methods section (page 24, lines 11-12).
We hope this clarification, along with our planned future studies, adequately addresses the reviewer’s concerns. Once again, we deeply appreciate the reviewer’s valuable comments, which have provided important insights for our ongoing work. References:
Hurov, J.B., Watkins, J.L., and Piwnica-Worms, H. (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14 (8): 736-741.
- The authors should strengthen their findings by using validated tools/methods consistent with previous publications. i.e. Waterman lab has published two MARK2 constructs- Apple and eGFP tagged versions (doi.org/10.1016/j.cub.2022.04.088), and the localization of MARK2 in U2Os cells (using the same antibody (Anti- MARK2 C-terminal, ABCAM Cat# ab136872). The authors should (1) image the cells live using eGFP-tagged MARK2 during serum starvation to show the dynamics of this localization, (2) image U2Os cells using the abcam ab136872 antibody +/- 2% serum starve. Two MARK2 antibodies are listed in Table 2. Does abcam (ab133724) show a similar localisation?
- The Golgi localization of MARK2 occurs in the absence of the T structural domain, but not when full length MARK2 is expressed. The authors conclude the T- domain is likely inhibitory. When combined with the requirement for serum starvation for this interaction to occur, the authors should clarify the physiological relevance of these observations.
We sincerely thank the reviewer for their valuable suggestions regarding the use of tools and methods and the physiological relevance of MARK2 localization to the Golgi. Regarding the question of how MARK2 itself localizes to the Golgi, we are currently unable to fully elucidate the underlying mechanism. Therefore, we have removed the discussion of MARK2’s Golgi localization from the manuscript to ensure scientific accuracy. However, Below, we provide our detailed response as soon as possible:
First, regarding the suggestion to use tools and methods developed by the Waterman lab to strengthen our findings, we have carefully evaluated their applicability. In our live-cell imaging experiments, we found that full-length MARK2 does not stably localize to the Golgi, even under serum starvation conditions. However, truncated MARK2 mutants lacking the Tail (T) domain exhibit robust Golgi localization. Furthermore, our immunofluorescence staining results indicate that the Spacer domain is the minimal region required for MARK2 localization at the Golgi. Based on these findings, we believe that live-cell imaging of EGFP-tagged full-length MARK2 may not effectively reveal the dynamics of its Golgi localization. However, we plan to focus on the truncated constructs in future studies to better explore the mechanisms underlying MARK2's dynamic behavior.
Regarding the use of the ab136872 antibody to stain U2OS cells with and without serum starvation, we note that the protocol described by the Waterman lab involves pre-fixation and permeabilization steps, which are not compatible with live-cell imaging. Additionally, we observed that MARK2 Golgi localization appears to be condition-dependent and may coincide with specific Golgi dynamics, such as transitions from dispersed stacks to intact ribbon structures. These events are likely brief and challenging to capture consistently. Nevertheless, we recognize the value of this experimental design and plan to adapt the staining conditions in future work to validate our results further. As for the ab133724 antibody listed in Table 2, we clarify that it has only been validated for Western blotting in our study and does not yield reliable results in immunofluorescence experiments. For this reason, all immunofluorescence staining in this study relied exclusively on ab136872. This distinction has been clarified in the revised Table 2 .
Regarding the hypothesis that the Tail domain of MARK2 is inhibitory, our observations showed that truncated MARK2 mutants lacking the T domain stably localized to the Golgi, whereas fulllength MARK2 did not. Literature evidence supports this hypothesis, as studies on the yeast homolog Kin2 indicate that the C-terminal region (including the Tail domain) binds to the Nterminal catalytic domain to inhibit kinase activity (Elbert et al., 2005). We speculate that serum starvation disrupts this intramolecular interaction, relieving the inhibition by the T domain, activating MARK2, and promoting its localization to the Golgi. Moreover, we hypothesize that the transient nature of MARK2 localization to the Golgi may be related to specific Golgi remodeling processes, such as the transition from dispersed stacks to intact ribbon structures during cell migration or polarity establishment.
References:
Elbert, M., Rossi, G., and Brennwald, P. (2005). The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol Biol Cell 16 (2): 532-549.
(3) Phosphorylation of CAMSAP2 by MARK2
- The authors examined the effects of MARK2 phosphorylation of CAMSAP2 on Golgi architecture through expression of WT-CAMSAP2 and two CAMSAP2 S835 mutants in CAMSAP2 KO cells. They find that CAMSAP2 S835A (non-phosphorylatable) was less capable of rescuing Golgi morphology than CAMSAP2 S835D (phosphomimetic). Golgi area has been measured to demonstrate this phenomenon. Representative immunofluorescence images in Fig. 4D appear to indicate that this is the case. However, quantification in Fig. 4E does not show significance between HA-CAMSAP2 and HA-CAMSAP2A that would support the initial claim. The authors could analyze other aspects of Golgi morphology (e.g. number of Golgi fragments, degree of dispersal around the nucleus) to capture the clear structural defects demonstrated in HACAMSAP2A cells.
We sincerely thank the reviewer for their valuable feedback and for pointing out potential areas of improvement in our analysis of Golgi morphology. We apologize for any misunderstanding caused by our description of the results in Figure 4E.
The quantification indeed shows a significant difference between HA-CAMSAP2 and HACAMSAP2A in terms of Golgi area, as indicated in the figure by the statistical annotations (pvalue provided in the legend). To ensure clarity, we have revised the figure legend (page 32, lines 19-23 in the revised manuscript) to explicitly describe the statistical significance, and the method used for quantification.
Because the quantification indeed shows a significant difference between HA-CAMSAP2 and HA-CAMSAP2A in terms of Golgi area, and to maintain consistency throughout the manuscript, we did not further analyze other aspects of Golgi morphology.
We hope this clarification, along with the additional analyses, will address the reviewer’s concerns. Once again, we are deeply grateful for these constructive comments, which have helped us improve the quality and robustness of our study.
- Wound edge assays are used to capture the difference in Golgi reorientation towards the leading edge between CAMSAP2 S835A and CAMSAP2 S835D. However, these studies lack comparison to WT-CAMSAP2 that would support the role of phosphorylated CAMSAP2 in reorienting the Golgi in this context.
We sincerely thank the reviewer for their insightful suggestion. In response, we have added a comparison between CAMSAP2 S835A/D and WT-CAMSAP2, in addition to HT1080 and MARK2 KO cells, to better evaluate the role of phosphorylated CAMSAP2 in Golgi reorientation.
The results, now shown in Figure 5A-C, indicate that in the absence of MARK2, there is no significant difference in Golgi reorientation between WT-CAMSAP2 and CAMSAP2 S835A. This observation supports the conclusion that MARK2-mediated phosphorylation of CAMSAP2 at S835 is essential for effective Golgi reorientation.
To enhance clarity, we have updated the corresponding Results section (page 9, lines 37-40 and page 10, line 1 in the revised manuscript) to describe this additional comparison. We believe this analysis strengthens our findings and provides a clearer understanding of the role of phosphorylated CAMSAP2 in Golgi dynamics.
We hope this additional data addresses the reviewer’s concerns. Once again, we are grateful for the constructive feedback, which has helped improve the clarity and robustness of our study.
(4) Identification of CAMSAP2 interaction partners
- Quantification of interaction ability between CAMSAP2 and CG-NAP, CLASP2, or USO1 in Fig. 5D, 5F and 5J respectively, lack WT-CAMSAP2 comparisons.
We sincerely thank the reviewer for their valuable suggestion. In response, we have included WT-CAMSAP2 data in the quantification of interaction ability between CAMSAP2 and CG-NAP, CLASP2, and USO1. These results, now shown in revised Figures 5 D-G and Figures 6 C-D, provide a direct comparison that further validates the differential interaction abilities of CAMSAP2 mutants.
The inclusion of WT-CAMSAP2 allows us to better contextualize the effects of specific mutations on CAMSAP2 interactions and strengthens our conclusions regarding the role of these interactions in Golgi dynamics.
We hope this addition addresses the reviewer’s concerns and enhances the clarity and robustness of our study. We deeply appreciate the constructive feedback, which has been instrumental in improving our manuscript.
- The CG-NAP immunoblot presented in Fig. 5C shows that the protein is 310 kDa, which is the incorrect molecular weight. CG-NAP (AKAP450) should appear at around 450 kDa. Further, no CG-NAP antibody is included in Table 2 - Information of Antibodies. The authors need to explain this discrepancy.
We sincerely apologize for the lack of clarity in our annotation and description, which may have caused confusion regarding the CG-NAP immunoblot presented in Figure 5C (Figure 5D in the revised manuscript). To clarify, CG-NAP (AKAP450) is indeed a 450 kDa protein, and the marker at 310 kDa represents the molecular weight marker’s upper limit, above which CG-NAP is observed. This has been clarified in the figure legend (page 33, lines 21-23 in the revised manuscript).
Regarding the CG-NAP antibody, it was custom-made and purified in our laboratory. Polyclonal antisera against CG-NAP, designated as αEE, were generated by immunizing rabbits with GSTfused fragments of CG-NAP (aa 423–542). This antibody has been validated extensively in our previous research, demonstrating its specificity and reliability (Wang et al., 2017). The details of the antibody preparation are included in the footnote of Table 2 for reference.
We hope this clarification, along with the additional context regarding the antibody validation, resolves the reviewer’s concerns. We are deeply grateful for the reviewer’s attention to detail, which has helped us improve the clarity and rigor of our manuscript.
References:
Wang, J., Xu, H., Jiang, Y., Takahashi, M., Takeichi, M., and Meng, W. (2017). CAMSAP3dependent microtubule dynamics regulates Golgi assembly in epithelial cells. Journal of genetics and genomics = Yi chuan xue bao 44 (1): 39-49.
Minor Comments
- Authors should change immunofluorescence images to colorblind friendly colors. The current presentation of merged overlays makes it really difficult to interpret- I would strongly encourage inverted or at a minimum greyscale individual images of key proteins of interest.
We sincerely thank the reviewer for their valuable suggestion regarding the presentation of immunofluorescence images. In response, we have converted the images in Figure 1C to greyscale individual images for each key protein of interest. This adjustment ensures that the figures are more accessible and interpretable, including for readers with color vision deficiencies.
We hope this modification addresses the reviewer’s concern and improves the clarity of our data presentation. We are grateful for the constructive feedback, which has helped us enhance the overall quality of our figures.
- On p. 8 text should be amended to 'Previous literature has documented MARK2's localization to the microtubules, microtubule-organizing center (MTOC), focal adhesions..'
We sincerely thank the reviewer for their comment regarding the text on page 8. Considering the reasoning provided in response to question 2, where we clarified that MARK2's Golgi localization is not fully understood, we have decided to remove this section from the manuscript to maintain the accuracy and rigor of our study.
We appreciate the reviewer’s attention to detail and constructive feedback, which has helped us improve the clarity and focus of our manuscript.
- In Fig.1A scale bars are not shown on individual channel images of CAMSAP or GM130
We sincerely thank the reviewer for pointing out the omission of scale bars in the individual channel images of CAMSAP and GM130 in Figure 1A (Figure 1C in the revised manuscript). In response, we have added a scale bar (5 μm) to the CAMSAP2 channel, as shown in the revised Figure 1C. These updates have been described in the figure legend (page 29, line 21).
We hope this modification addresses the reviewer’s concern and improves the accuracy and clarity of our figure presentation. We greatly appreciate the reviewer’s constructive feedback, which has helped enhance the quality of our manuscript.
- In Fig. 1B the title should be amended to 'Colocalization of CAMSAP2/GM130'
We sincerely thank the reviewer for their suggestion to amend the title in Figure 1B (Figure 1D in the revised manuscript). In response, we have updated the title to "Colocalization of CAMSAP2/GM130," as shown in the revised Figure 1D.
We hope this modification addresses the reviewer’s concern and improves the clarity and accuracy of the figure. We greatly appreciate the reviewer’s valuable feedback, which has helped us refine the presentation of our results.
- In Fig. 2F, 5A, and Sup Fig 3C scale bars have been presented vertically
We sincerely thank the reviewer for pointing out the issue with the vertical orientation of scale bars in Figures 2F (Figure 2D in the revised manuscript), 5A, and Supplementary Figure 3C. In response, we have modified the scale bars in revised Figures 2D and 5A to a horizontal orientation for improved consistency and clarity. Additionally, Supplementary Figure 3C has been removed from the revised manuscript.
We hope these adjustments address the reviewer’s concerns and enhance the overall presentation quality of the figures. We greatly appreciate the reviewer’s constructive feedback, which has helped us refine our manuscript.
- Panels are not correctly aligned, and images are not evenly spaced or sized in multiple figures - Fig. 2F, 4D, Sup Fig. 1F, Sup Fig. 2C, Sup Fig. 3E, Sup Fig. 4C
We sincerely thank the reviewer for pointing out the misalignment and uneven spacing or sizing of panels in multiple figures, including Figures 2F, 4D, Supplementary Figures 1F, 2C, 3E, and 4C (Figure 2D, 4D, Supplementary Figures 1F, 2C, and 3H in the revised manuscript.
Supplementary Figure 3E was removed from our manuscript). In response, we have standardized the spacing and sizing of all panels throughout the manuscript to ensure consistency and improve visual clarity.
We hope this modification addresses the reviewer’s concerns and enhances the overall presentation quality of our figures. We greatly appreciate the reviewer’s constructive feedback, which has helped us improve the organization and professionalism of our manuscript.
- An uncolored additional data point is present in Fig. 3F
We sincerely thank the reviewer for pointing out the presence of an uncolored additional data point in Figure 3F. In response, we have removed this data point from the revised figure to ensure accuracy and clarity.
We hope this adjustment resolves the reviewer’s concern and improves the overall quality of the figure. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us refine our manuscript.
- In Fig. 3A 'GAMSAP2/GM130' in the vertical axis label should be amended to 'CAMSAP2/GM130'
We sincerely thank the reviewer for pointing out the error in the vertical axis label of Figure 3A. In response, we have corrected "GAMSAP2/GM130" to "CAMSAP2/GM130," as shown in the revised Figure 3I.
We hope this correction resolves the reviewer’s concern and improves the accuracy of our figure. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us refine our manuscript.
- In Fig 5A the green label should be amended to 'GFP-CAMSAP2' instead of 'GFP'
We sincerely apologize for the confusion caused by our labeling in Figure 5A. To clarify, the green label “GFP” refers to the antibody used, while “GFP-CAMSAP2” is indicated at the top of the figure to specify the construct being analyzed.
We hope this explanation resolves the misunderstanding and provides clarity regarding the labeling in Figure 5A. We greatly appreciate the reviewer’s feedback, which has allowed us to address this issue and improve the precision of our figure annotations.
- The repeated use of contractions throughout the manuscript was distracting, I would strongly encourage removing these.
We sincerely thank the reviewer for pointing out the distracting use of contractions in the manuscript. In response, we have removed and replaced all contractions with their full forms to improve the clarity and formal tone of the text.
We hope this modification addresses the reviewer’s concern and enhances the readability and professionalism of our manuscript. We greatly appreciate the reviewer’s constructive feedback, which has helped us refine the quality of our writing.
Reviewer #2:
Summary
This work by the Meng lab investigates the role of the proteins MARK2 and CAMSAP2 in the Golgi reorientation during cell polarisation and migration. They identified that both proteins interact together and that MARK2 phosphorylates CAMSAP2 on the residue S835. They show that the phosphorylation affects the localisation of CAMSAP2 at the Golgi apparatus and in turn influences the Golgi structure itself. Using the TurboID experimental approach, the author identified the USO1 protein as a protein that binds differentially to CAMSAP2 when it is itself phosphorylated at residue 835. Dissecting the molecular mechanisms controlling Golgi polarisation during cell migration is a highly complex but fundamental issue in cell biology and the author may have identified one important key step in this process. However, although the authors have made a genuine iconographic effort to help the reader understand their point of view, the data presented in this study appear sometimes fragile, lacking rigour in the analysis or over-interpreted. Additional analyses need to be conducted to strengthen this study and elevate it to the level it deserves.
We sincerely thank the reviewer for their thoughtful evaluation and recognition of our study's significance in understanding Golgi reorientation during cell migration. We appreciate the constructive feedback regarding data robustness, clarity, and interpretation. In response, we have conducted additional analyses, revised data presentation, and ensured cautious interpretation throughout the manuscript. These changes aim to address the reviewer’s concerns comprehensively and strengthen the scientific rigor of our study.
Major comments
In order to conclude as they do about the putative role of USO1, the authors need to perform a siRNA/CRISPR of USO1 to validate its role in anchoring CAMSAP2 to the Golgi apparatus in a MARK2 phosphorylation-dependent manner. In other words, does depletion of USO1 affect the recruitment of CAMSAP2 to the Golgi apparatus?
We sincerely thank the reviewer for their insightful suggestion regarding the role of USO1 in anchoring CAMSAP2 to the Golgi apparatus. In response, we performed USO1 knockdown using siRNA and quantified the Pearson correlation coefficient of CAMSAP2 and GM130 colocalization in control and USO1-knockdown cells.
The results show that CAMSAP2 localization to the Golgi is significantly reduced in USO1knockdown cells, confirming that USO1 plays a critical role in recruiting CAMSAP2 to the Golgi apparatus. These results are now presented in Figures 6 E–G, and corresponding updates have been incorporated into the Results section (page 10, lines 36-37 in the revised manuscript).
We hope this additional experiment addresses the reviewer’s concern and strengthens our conclusions regarding the role of USO1. We are grateful for the reviewer’s constructive feedback, which has greatly improved the robustness of our study.
It is not clear from this study exactly when and where MARK2 phosphorylates CAMSAP2. What is the result of overexpression of the two proteins in their respective localisation to the Golgi apparatus? As binding between CAMSAP2 and MARK2 appears robust in the immunoprecipitation assay, this should be readily investigated.
We sincerely thank the reviewer for their insightful comments and questions. To address the role of MARK2 in regulating CAMSAP2 localization to the Golgi apparatus, we overexpressed GFPMARK2 in cells and compared its effects on CAMSAP2 localization to the Golgi with control cells overexpressing GFP alone. Our results show that CAMSAP2 localization to the Golgi is significantly increased in GFP-MARK2-overexpressing cells, as shown in Supplementary Figures 3C and 3E. Corresponding updates have been incorporated into the Results section (page 8, lines 25-27 in the revised manuscript).
Regarding the question of how MARK2 itself localizes to the Golgi, we are currently unable to fully elucidate the underlying mechanism. Therefore, we have removed the discussion of MARK2’s Golgi localization from the manuscript to ensure scientific accuracy. Consequently, we have not conducted experiments to assess the effects of CAMSAP2 overexpression on MARK2’s localization to the Golgi.
We hope this explanation clarifies the reviewer’s concerns. We are grateful for the reviewer’s constructive feedback, which has guided us in improving the clarity and focus of our study.
To strengthen their results, can the author map the interaction domains between CAMSAP2 and MARK2? The authors have at their disposal all the constructs necessary for this dissection.
We sincerely thank the reviewer for their insightful suggestion to map the interaction domains between CAMSAP2 and MARK2. In response, we performed immunoprecipitation experiments using truncated constructs of CAMSAP2. Our results reveal that MARK2 interacts specifically with the C-terminus (1149F) of CAMSAP2, as shown in Supplementary Figures 3A and 3B. Corresponding updates have been incorporated into the Results section (page 7, lines 41-42 and page 8, line 1 in the revised manuscript).
We hope this additional analysis addresses the reviewer’s suggestion and further strengthens our conclusions. We greatly appreciate the reviewer’s constructive feedback, which has helped improve the depth of our study.
Minor comments
Sup-fig1
H: It is not clear if the polarisation experiment has been repeated three times (as it should) and pooled or is just the result of one experiment?
We sincerely apologize for the lack of clarity regarding the experimental details for Supplementary Figure 1H. To clarify, the polarization experiment was repeated three times, and the results were pooled to generate the data presented. We have updated the figure legend for Supplementary Figure 1H to explicitly state this information (page 35, lines 27-29 in the revised manuscript).
We hope this clarification resolves the reviewer’s concern. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us improve the accuracy and transparency of our manuscript.
Sup-fig2
C: "Immunofluorescence staining plots" formula used in the legend is not clear. Which condition is presented in the panel, parental HT1080 or CAMSAP2 KO cells?
We thank the reviewer for pointing out the lack of clarity regarding the conditions presented in Supplementary Figure 2C. To clarify, the immunofluorescence staining plots shown in this panel are from parental HT1080 cells. We have updated the figure legend to include this information (page 36, line 14 in the revised manuscript).
We hope this clarification resolves the reviewer’s concern and improves the transparency of our data presentation. We greatly appreciate the reviewer’s feedback, which has helped us refine the manuscript.
Figure 1
D: In the plot, the colour of the points for the "red cells" are red but the one for the "blue cells" are green, this is confusing.
E: Once again, the colour choice is confusing as blue cells (t=0.5h) are quantified using red dots and red cells (t=2h) quantified using green dots. The t=0h condition should be quantified as well and added to the graph.
F: Representative CAMSAP2 immunofluorescence pictures for the three time points should be provided in addition to the drawings.
We thank the reviewer for their valuable comments regarding Figure 1D (revised Figure 1E), Figure 1E (revised Figure 1B), and Figure 1F (revised Supplementary Figure 2C).
- Figure 1D (revised Figure 1E): we have modified the x-axis labels and adjusted the color scheme of the data points to ensure consistency and avoid confusion.
- Figure 1E (revised Figure 1B): we have updated the x-axis and included the quantification of the t=0h condition, which has been added to the graph.
- Figure 1F (revised Supplementary Figure 2C): we have provided representative immunofluorescence images of CAMSAP2 for the three-time points to complement the schematic drawings.
We hope these revisions address the reviewer’s concerns and improve the clarity and completeness of our data presentation. We greatly appreciate the reviewer’s constructive feedback, which has significantly contributed to enhancing our manuscript.
Figure 2
A: No methodology in the material and methods is provided for this analysis.
B: Can the authors be more precise regarding the source of the CAMSAP2 interactants? Can the author provide the citation of the publication describing the CAMSAP2-MARK2 interaction?
D: Genotyping for the MARK2 KO cell line should be provided the same way it was provided for the CAMSAP2 cell line in Sup-fig1. "MARK2 was enriched around the Golgi apparatus in a significant proportion of HT1080 cells": which proportion of the cells?
F: The time point of fixation is missing
G: It is not clear if the polarisation experiment has been repeated three times (as it should) and pooled or is just the result of one experiment?
We thank the reviewer for their detailed comments and suggestions regarding Figure 2. Below, we provide clarifications and outline the modifications made:
- Figure 2A: The methodology for this analysis has been added to section 5.14 (Data statistics). Specifically, we have stated: “GO analysis of proteins was plotted using https://www.bioinformatics.com.cn, an online platform for data analysis and visualization” (page 26 lines 5-6 in the revised manuscript).
- Figure 2B: The CAMSAP2 interactants were derived from the study by Wu et al., 2016, which provides the source of these interactants. The interaction between CAMSAP2 and MARK2 is referenced from Zhou et al., 2020. These citations have been added to the relevant sections of the manuscript (page 30, lines 10-11 and 13-14).
- Figure 2D (removed in the revised manuscript): Genotyping for the MARK2 KO cell line has been provided in the same format as for the CAMSAP2 KO cell line in Figure 2G. Additionally, as the MARK2 Golgi localization discussion cannot yet be fully elucidated, we have removed this portion from the manuscript.
- Figure 2F (revised Figure 2D): The time point of fixation, which occurred 2 hours after the scratch wound assay, has been added to the figure legend (page 30, lines 15-16).
- Figure 2G (revised Figure 2E-F): The polarization experiment was repeated three times, and the results were pooled. This information has been included in the figure legend (page 30, lines 26 and 29).
We hope these updates address the reviewer’s concerns and improve the clarity and completeness of the manuscript. We are grateful for the reviewer’s constructive feedback, which has greatly enhanced the rigor of our study. References:
Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.
Sup-fig3
E: Although colocalisation between CAMSAP2 and MARK2 is clear in your serum conditions in HT1080 and RPE1 cells, the deletion domain analysis appears weak and insufficient to implicate the role of the spacer domain. This part should be deleted or strengthened, but the data do not satisfactorily support your conclusion as it stands.
We sincerely thank the reviewer for their critical comments regarding the deletion domain analysis of MARK2 and its role in colocalization with CAMSAP2. As the current data do not satisfactorily support our conclusions, we have removed all related content on MARK2 and the deletion domain analysis from the manuscript to maintain scientific rigor.
We appreciate the reviewer’s valuable feedback, which has helped us refine and improve the quality and focus of our study.
Figure 3
A: Can the reduced CAMSAP2 Golgi localisation phenotype be rescued by the overexpression of MARK2 cDNA in the MARK2 KO cells?
F: Presence of a white dot on the HT1080 plot
G: The composition of the homogenization buffer is not indicated in the material and methods
We thank the reviewer for their valuable comments and suggestions regarding Figure 3. Below, we detail the modifications made:
- Figure 3A: To address whether the reduced CAMSAP2 Golgi localization phenotype can be rescued, we overexpressed MARK2 cDNA in MARK2 KO cells. Our results show that overexpression of MARK2 successfully rescues the reduced CAMSAP2 localization to the Golgi, as demonstrated in Supplementary Figures 3C and 3E (page 8, lines 5-7).
- Figure 3F: We have removed the white dot on the HT1080 plot to ensure clarity and accuracy.
- Figure 3G: The composition of the homogenization buffer used in the experiment has been added to the Materials and Methods section for completeness (page 24, lines 34-41 and page 25, lines 1-10).
We hope these revisions address the reviewer’s concerns and enhance the clarity and rigor of our study. We are grateful for the reviewer’s constructive feedback, which has significantly improved the quality of our manuscript.
Figure 4
B: Quantification of the effect of the S835A mutation should be provided
D: Top left panel: Why Ha antibody stains Golgi structure in absence of Ha-CAMSAP2 transfection ? IF the Ha antibody has unspecific affinity towards the Golgi apparatus, may be it is not the good tag to use in this assay?
E: The number of cells studied should be standardized. 119 cells were analyzed in the CAMSAP KO vs only 35 cells in the CAMSAP2 KO (HA-CAMSAP2-S835D) conditions. This could introduce strong bias to the analysis. Furthermore the CAMSAP2 S835A seems to provide a certain level of rescue. It would be interesting to see what is the result of the T test between the HT1080 and HA-CAMSAP S835A conditions.
We thank the reviewer for their thoughtful comments and suggestions regarding Figure 4. Below, we detail the revisions and clarifications made:
- Figure 4B: The S835A mutation renders CAMSAP2 non-phosphorylatable by MARK2. This conclusion is based on our experimental observations and previously reported mechanisms.
- Figure 4D: The HA antibody does not exhibit non-specific affinity toward the Golgi apparatus. The observed labeling in the top left panel was due to an error in our annotation. We have corrected the label, replacing "HA" with "CAMSAP2" to accurately reflect the experimental conditions.
- Figure 4E: To standardize the number of cells analyzed across conditions, we reduced the number of CAMSAP2 KO cells analyzed to 50 and balanced the sample sizes for comparison. Additionally, we performed a t-test between the HT1080 and HACAMSAP2 S835A conditions. The results support that CAMSAP2 S835A provides partial rescue, as reflected in the updated analysis (page 32, lines 19-23).
We hope these revisions address the reviewer’s concerns and improve the accuracy and reliability of our results. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the quality of our study.
Figure 6
6A: The wound position should be indicated on the picture.
6B: Given that microtubule labelling is present on the vast majority of the cell surface, this type of quantification provides very little information using conventional light microscopy and should not be used to conclude any change in the microtubule network using Pearson's coefficient. The text describing the figure 6A and 6B needs re written as I do not understand what the author want to say. "In cells located before the wound edge..." : I do not understand how a cell could be located before the wound edge. Which figure corresponds to the trailing edge of the wounding?
We thank the reviewer for their valuable comments on Figure 6A (revised Supplementary Figure 6E) and Figure 6B (revised Supplementary Figure 6F). Below, we detail the modifications made:
- Figure 6A (revised Supplementary Figure 6E), we have added arrows to indicate the wound position, providing clearer guidance for interpreting the image.
- Figure 6B (revised Supplementary Figure 6F), we revised our quantification method based on the approach used in literature (Wu et al., 2016). Specifically, we analyzed the relationship between microtubules and the Golgi apparatus in cells at the leading edge of the wound. The x-axis represents the distance from the Golgi center, while the y-axis shows the normalized radial fluorescence intensity of microtubules and the Golgi apparatus.
Additionally, we revised the accompanying text for clarity and accuracy. The original description:
“In cells located before the wound edge, the Golgi apparatus maintained a ribbon-like shape, with a higher density of microtubules. In contrast, at the trailing edge of the wounding, the Golgi apparatus appeared more as stacks around the nucleus, with fewer microtubules” was replaced with:
“Finally, to comprehensively understand the dynamics between non-centrosomal microtubules and the Golgi apparatus during Golgi reorientation, we conducted cell wound-healing experiments (Supplementary Figure 6 E-F). Our observations revealed notable changes in the Golgi apparatus and microtubule network distribution in relation to the wounding. These findings corroborate our earlier results and suggest a highly dynamic interaction between the Golgi apparatus and microtubules during Golgi reorientation” (Revised manuscript page 11 lines 3-10).
We hope these changes address the reviewer’s concerns and improve the clarity and robustness of our study. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the presentation and interpretation of our data. References:
Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.
Reviewer #3:
Summary
In this study, Xu et al. analyzed the wound healing process of HT1080 cells to elucidate the molecular mechanisms by which the Golgi apparatus exhibits transient dispersion before reorienting to the wound edge in the compact assembly structure. They focused on the role of the microtubule minus-end binding protein CAMSAP2, which mediates the linkage between microtubules and the Golgi membrane. At first, they noticed that CAMSAP2 transiently lost Golgi colocalization during the initial phase of the wound healing process. They further found that the cell polarity-regulating kinase MARK2 binds and phosphorylates S835 of CAMSAP2, thereby enhancing the interaction between CAMSAP2 and the Golgi protein Uso1. Together with the phenotypes of CAMSAP2, MARK2, and Uso1 KO cells, these authors argue that the MARK2dependent phosphorylation of CAMSAP2 plays an important role in the reassembly and reorientation of the Golgi apparatus after a transient dispersion observed during the wound healing process.
We sincerely thank the reviewer for their thoughtful summary of our study and constructive feedback. Your comments have been invaluable in refining our research and enhancing the clarity and impact of our manuscript.
Major comments
(1) The premise of this study was that during the wound healing process, the Golgi apparatus exhibits transient dispersion before reorientation to the front of the nucleus.
In the first place, this claim has not been well established in previous studies or this paper. Therefore, the authors should present a proof of this claim in a clearer manner.
To introduce this cellular event, the authors cite several papers in the introduction (page 4) and the results (page 6) sections. However, many papers cited are review articles, and some of them do not describe this change in the Golgi assembly structure before reorientation. Only two original articles discussed this phenomenon (Bisel et al. 2008 and Wu et al. 2016), and direct evidence was provided by only one paper (Wu et al. 2016) in which changes in the Golgi apparatus in wound-healing RPE1 cells were recorded by live imaging (Fig.7A in Wu et al. 2016).
Furthermore, it should be noted that this previous paper demonstrated that depletion of CAMSAP2 inhibits Golgi dispersion. Obviously, this conclusion is inconsistent with their statement to introduce this study (page4) that ‟This emphasizes CAMSAP2's role in sustaining Golgi integrity during critical cellular events like migration." In addition, it also contradicts the authors' model of the present paper (Fig. 6E), which argued that disruption of the Golgi association of CAMSAP2 facilitates the Golgi dispersion.
We sincerely thank the reviewer for their detailed comments and for providing us with the opportunity to clarify the premise and conclusions of our study. Below, we address the main concerns raised:
First, to provide direct evidence of Golgi apparatus changes during the wound-healing process, we conducted live-cell imaging experiments. Our observations, presented in revised Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus exhibits a transient dispersion state before reorienting toward the leading edge of the nucleus during migration.
Regarding the interpretation of previous studies, we acknowledge the reviewer’s concerns about the citation of review articles. To address this, we have revisited the literature and clarified that the phenomenon of Golgi dispersion during reorientation has been directly demonstrated in Wu et al (Wu et al., 2016), where live imaging of wound-healing RPE1 cells showed this dynamic behavior. Furthermore, we note that in Wu et al paper explicitly demonstrates that CAMSAP2 depletion promotes Golgi dispersion, contrary to the reviewer’s interpretation that "depletion of CAMSAP2 inhibits Golgi dispersion."
Our model focuses on the role of CAMSAP2 in restoring the Golgi from a transiently dispersed structure back to an intact ribbon-like structure during reorientation. Specifically, we propose that during this process, the disruption of CAMSAP2’s association with the Golgi affects this restoration, rather than directly promoting Golgi dispersion as suggested by the reviewer. We believe this distinction aligns with our data and the existing literature.
To strengthen the background of our study, we have revised the introduction and results sections (page 6, lines 6-13 and page 7, lines 1-17) to minimize reliance on review articles and have provided more explicit citations to original research papers. We hope this addresses the reviewer’s concern about the sufficiency of the cited literature.
We trust these clarifications and revisions resolve the reviewer’s concerns and enhance the robustness of our study. Once again, we are grateful for the reviewer’s constructive feedback, which has greatly helped refine our manuscript. References:
Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.
The authors did not provide experimental data for this temporal change in the Golgi assembly structures during the wound-healing process of HT1080 that they analyzed. They only provide an illustration of wound-healing cells (Fig.1F), in which cells are qualitatively discriminated and colored based on the Golgi states, without indicating the experimental basis of the discrimination.
According to their ambiguous descriptions in the text (page7), the reader can speculate that Fig. 1F is illustrated based on the images in Supplementary Fig. 2C. However, because of the low quality and presentation style of these data, it is impossible to recognize the assembly structures of the Golgi apparatus in wound-edge cells.
If the authors hope to establish this premise claim for the present paper, they should provide their own data corresponding to the present Supplementary Fig. 2C in more clarity and present qualitative data verifying this claim, as Wu et al. did in Fig. 7A in their paper.
We sincerely thank the reviewer for their constructive feedback and the opportunity to address the concern regarding the lack of experimental data supporting the temporal changes in Golgi assembly during the wound-healing process.
To establish this premise, we conducted live-cell imaging experiments to observe the dynamic changes in the Golgi apparatus during directed cell migration. Our data, now presented in Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus undergoes a transient dispersed state before reorganizing into an intact structure. These findings provide direct experimental evidence supporting our claim.
In addition, we have revised the data originally presented in Supplementary Figure 2C and enhanced its quality and presentation style. This supplementary figure now includes clearer images and annotations to better illustrate the Golgi assembly structures in wound-edge cells. The improved data presentation aligns with the standards set by Wu et al reported (Wu et al., 2016) and provides qualitative support for our observations.
We hope these additions and revisions address the reviewer’s concerns and strengthen the scientific rigor and clarity of our manuscript. We are grateful for the reviewer’s valuable suggestions, which have significantly improved the quality of our study. References:
Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.
(2) In Fig.1A-D, the authors claim that CAMSAP2 dissociates from the Golgi apparatus in cells "that have not yet completed Golgi reorientation and exhibit a transitional Golgi structure, characterized by relative dispersion and loss of polarity (page7)." However, I these analyses, they do not analyze the initial stage (0.5h after wound addition) of cells facing the wound edge, as they do in Supplementary Fig. 2C. Instead, they analyze cells separated from the wound edge at 2 h after wound addition when the wound-edge cells complete their polarization. These data are highly misleading because there is no evidence that the cells separated from the wound edge are really in the transitional state before polarization.
In this regard, Fig. 1E shows the analysis of the wound-edge cells at 0.5 and 2 h after the addition of wound, which provides suitable data to verify the authors' claim. However, the corresponding legend indicates that these statistical data are based on the illustration in Fig. 1F, which is probably based on highly ambiguous data in Supplementary Fig. 2C (see above).
Taken together, I strongly recommend the authors to remove Fig.1A-D. Instead, they should include the improved figure corresponding to the present Supplementary Fig.2C and present its statistical analysis similar to the present Fig.1E for this claim.
We sincerely thank the reviewer for their constructive feedback and recommendations. Below, we address the concerns raised regarding Figure 1A-D and Supplementary Figure 2C.
To provide stronger evidence for the transitional state of the Golgi apparatus during reorientation and the dynamic regulation of CAMSAP2 localization, we conducted live-cell imaging experiments. These results, now presented in Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus undergoes a transitional state characterized by dispersion before reorienting toward the leading edge.
Additionally, we analyzed fixed wound-edge cells at different time points during directed migration to observe CAMSAP2’s colocalization with the Golgi apparatus. The results, shown in Figures 1A and 1B, reveal dynamic changes in CAMSAP2 localization, confirm its regulation during Golgi reorientation, and include a corresponding statistical analysis (page 7, lines 1-17).
These updates ensure that our claims are supported by robust and unambiguous data.
We hope these revisions address the reviewer’s concerns and provide clear and reliable evidence for the transitional state of the Golgi apparatus and CAMSAP2’s dynamic regulation. We are grateful for the reviewer’s constructive suggestions, which have greatly improved the quality and focus of our manuscript.
(3) In Supplementary Fig. 5 and Fig. 4, the authors claim that MARK2 phosphorylates S835 of CAMSAP2.
There are many issues to be addressed. Otherwise, the above claim cannot be assumed to be reliable.
First, the descriptions (in the text and method sections) and figures (Supplementary Fig.5) concerning the in vitro kinase assay and subsequent phosphoproteomic analysis are too immature and contain many errors.
Legend to Supplementary Fig. 5 is too immature for comprehension. It should be completely rewritten in a more comprehensive manner. The figure in Supplementary Fig. 5C is also too immature for understanding. They simply paste raw mass spectrometric data without any modification for presentation.
We sincerely apologize for the lack of clarity and inaccuracies in the original descriptions and figure legends for the in vitro kinase assay and phosphoproteomic analysis. We greatly appreciate the reviewer’s detailed comments, which have allowed us to address these issues comprehensively.
To improve clarity and accuracy, we have rewritten the figure legend for the original Supplementary Figure 5 (now Supplementary Figure 4) as follows:
(A): CBB staining of a gel with GFP-CAMSAP2, GST, and GST-MARK2. GFP-CAMSAP2 was expressed in Sf9 cells and purified. GST and GST-MARK2 were expressed in E. coli and purified.
(B): Western blot analysis of an in vitro kinase assay. GST or GST-MARK2 was incubated with GFP-CAMSAP2 in kinase buffer (50 mM Tris-HCl pH 7.5, 12.5 mM MgCl2, 1 mM DTT, 400 μM ATP) at 30°C for 30 minutes. Reactions were stopped by boiling in the loading buffer.
(C): Detection of phosphorylation at S835 in CAMSAP2 by mass spectrometry. The observed mass increases in b4, b5, b6, b7, b8, b10, b11, and b12 fragments indicate phosphorylation at Ser835.
(D): Kinase assay samples analyzed using Phos-tag SDS-PAGE. HEK293 cells were cotransfected with the indicated plasmids. Band shifts of CAMSAP2 mutants were examined via western blot. Phos-tag was used in SDS-PAGE, and arrowheads indicate the shifted bands caused by phosphorylation.
To address the reviewer’s concern about Supplementary Figure 5C, we have reformatted the mass spectrometry data to improve readability and presentation quality. The revised figure includes clearer annotations and graphical representations of the mass spectrometric evidence for phosphorylation at S835.
We believe these updates enhance the comprehensibility and reliability of our data, providing robust support for our claim that MARK2 phosphorylates CAMSAP2 at S835. We hope these
revisions address the reviewer’s concerns and demonstrate our commitment to improving the quality of our manuscript.
The readers cannot understand how the authors purified GFP-CAMSAP2 for the kinase assay.
The method section incorrectly states that the product was purified using Ni-resin.
We thank the reviewer for their comment regarding the purification of GFP-CAMSAP2 for the kinase assay. We would like to clarify that GFP-CAMSAP2 carries a His-tag, which allows for purification using Ni-resin, as described in the Methods section (page 23, Lines 32-40). Therefore, the description in the Methods section is correct.
To avoid any potential misunderstanding, we have revised the Methods section to provide more detailed and precise descriptions of the purification process. Specifically, GFP-CAMSAP2 was cloned into the pOCC6_pOEM1-N-HIS6-EGFP vector, which includes a His-tag, and was expressed in Sf9 cells. The His-GFP-CAMSAP2 protein was purified using Ni-resin chromatography. Relevant details have been added to the Methods section (page 21, Lines 34-36:
“CAMSAP2 was cloned into the pOCC6_pOEM1-N-HIS6-EGFP vector expressed in Sf9, purified as His-GFP-CAMSAP2.”; page 23, Lines 32-33: “His-GFP-CAMSAP2 was cotransfected with bacmids into Sf9 cells to generate the passage 1 (P1) virus.”).
We hope these clarifications and revisions address the reviewer’s concern and improve the comprehensibility of our experimental details. We appreciate the reviewer’s feedback, which has helped us refine the manuscript.
In this relation, GST and GST-MARK2 are described as having been purified from Sf9 insect cells in the text section (page9) and legend to Supplementary Fig. 5, but from E. coli in the method section. Which is correct?
We thank the reviewer for pointing out the inconsistencies in the descriptions regarding the source of GST and GST-MARK2. To clarify, both GST and GST-MARK2 were purified from E. coli, as stated in the Methods section (page 23, Lines 26-31). We have corrected the erroneous descriptions in the main text (page 8, Lines 35-36) and the legend to Supplementary Figure 4 to ensure consistency.
Additionally, we have updated the legend for Supplementary Figure 4A to state the sources of each protein explicitly:
“GFP-CAMSAP2 were expressed in Sf9 cells and purified. GST and GST-MARK2 were expressed in E. coli and purified.” (page 38, Lines 2-3)
These revisions ensure that the experimental details are accurate and consistent across the manuscript, eliminating any potential confusion. We appreciate the reviewer’s careful review and constructive feedback, which have helped us improve the clarity and reliability of our study.
Because the phosphoproteomic data (Supplementary Fig. 5C) are not provided clearly, the experimental data for Fig.4A, in which possible CAMSAP2 phosphorylation sites are illustrated, are completely unknown. For me, it is highly strange that only the serine residues are listed in Fig. 4A.
We sincerely thank the reviewer for raising this important point regarding Figure 4A and the phosphoproteomic data in Supplementary Figure 5C.
- Phosphorylation Sites in Figure 4A
The phosphorylation sites illustrated in Figure 4A are derived from our analysis of the original mass spectrometry data. These sites were included based on their high confidence scores and data reliability. Importantly, only serine residues met the stringent criteria for inclusion, as no threonine or tyrosine residues had sufficient evidence for phosphorylation. To clarify this, we have updated the figure legend for Figure 4A (page 32, Lines3-7).
- Improvements to Supplementary Figure 5C (Supplementary Figure 4D in the revised manuscript)
To enhance transparency and clarity, we have reformatted Supplementary Figure 4D to include clearer annotations. The revised figure highlights the phosphopeptides used to identify the phosphorylation sites and provides a more comprehensive presentation of the mass spectrometry data. To clarify this, we have updated the figure legend for Supplementary Figure 4D (page 38, Lines 11-13).
- Data Availability
We will follow the journal’s guidelines by uploading the raw mass spectrometry data to the required public database upon manuscript acceptance. This ensures that the data are accessible and reproducible in compliance with journal standards.
We hope these clarifications and updates address the reviewer’s concerns and improve the reliability and comprehensibility of our data presentation. We greatly appreciate the reviewer’s constructive feedback, which has helped us enhance the rigor and clarity of our manuscript.
Considering the crude nature of the GST-MARK2 sample used for the in vitro kinase assay (Supplementary Fig. 5A), it is unclear whether MARK2 is responsible for all phosphorylation sites on CAMSAP2 detected in the phosphoproteomic analysis. Furthermore, if GFP-CAMSAP2 was purified from Sf9 insect cells, these sites might have been phosphorylated before incubation for the in vitro kinase assay. The authors should address these issues by including a negative control using the kinase-dead mutant of MARK2 in their in vitro kinase assay.
We sincerely thank the reviewer for raising these important points regarding the potential prephosphorylation of GFP-CAMSAP2 and the role of MARK2 in the phosphorylation sites detected in our analysis.
To address the possibility that GFP-CAMSAP2 may have been pre-phosphorylated during its expression in Sf9 insect cells, we conducted an in vitro comparison. Specifically, we compared the band shifts observed in GST-MARK2 + GFP-CAMSAP2 versus GST + GFP-CAMSAP2 under identical conditions. As shown in Supplementary Figure 4B, the GST-MARK2 + GFP-CAMSAP2 group exhibited a clear upward band shift compared to the GST + GFP-CAMSAP2 group, indicating additional phosphorylation events induced by MARK2.
Regarding the inclusion of a kinase-dead MARK2 mutant as a negative control, we acknowledge this as a valuable suggestion for further confirming the specificity of MARK2 in phosphorylating CAMSAP2. While this experiment is not currently included, we plan to conduct it in our future studies to strengthen our findings.
We hope this clarification and the provided evidence address the reviewer’s concerns. We are grateful for this constructive feedback, which has helped us critically evaluate and refine our experimental approach.
(4) In Supplementary Fig.6A-C and Fig.5A-B, the authors claim that the phosphorylation of CAMSAP2 S835 is required for restoring the reduced reorientation of the Golgi in wound-healing cells and the delay in wound closure observed in MARK2 KO cells.
If the aforementioned claim is adequately supported by experimental data, it indicates that the defects in Golgi repolarization and wound closure in MARK2 KO cells can be mainly attributed to the reduced phosphorylation of S835 of CAMSAP2 in HT1080. Considering the presence of many well-known substrates of MARK2 for regulating cell polarity, this claim is highly striking.
However, to strongly support this conclusion, the authors should first perform a rescue experiment using MARK2 KO cells exogenously expressing MARK2. This step is essential for determining whether the defects observed in MARK2 KO cells are caused by the loss of MARK2 expression, but not by other artificial effects that were accidentally raised during the generation of the present MARK2 KO clone.
We sincerely thank the reviewer for their insightful suggestion regarding the rescue experiment to confirm that the defects observed in MARK2 KO cells are specifically caused by the loss of MARK2 expression.
To address this, we performed a rescue experiment in MARK2 KO HT1080 cells by exogenously expressing GFP-MARK2. Our results, presented in Supplementary Figures 3C-E, demonstrate that GFP-MARK2 expression successfully restores the localization of CAMSAP2 on the Golgi apparatus in MARK2 KO cells.
These findings strongly support the conclusion that the defects in Golgi architecture and CAMSAP2 Golgi localization are directly attributable to the loss of MARK2 expression, rather than any artificial effects potentially introduced during the generation of the MARK2 KO clone.
We hope these additional experimental results address the reviewer’s concerns and provide robust evidence for the role of MARK2 in regulating Golgi reorientation and wound closure. We are grateful for the reviewer’s constructive feedback, which has significantly improved the rigor and clarity of our study.
In addition, to evaluate the impact of the rescue effect of CAMSAP2, the authors should include the data of wild-type HT1080 and MARK2 KO cells in Fig. 5B to reliably demonstrate the aforementioned claim.
We thank the reviewer for their valuable suggestion to include data from wild-type HT1080 and MARK2 KO cells in Figure 5A-C to better evaluate the rescue effects of CAMSAP2.
In response, we have incorporated data from wild-type HT1080 and MARK2 KO cells into Figure 5A-C. These additions provide a comprehensive comparison and further demonstrate the impact of CAMSAP2-S835A and CAMSAP2-S835D on Golgi reorientation relative to the wild-type and MARK2 KO conditions.
These changes are reflected in Figures 5A-C.
We hope these updates address the reviewer’s concerns and strengthen the reliability of our conclusions. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the robustness of our study.
Principally, before checking the rescue effects in MARK2 KO cells, the authors should examine the rescue activity of the CAMSAP2 S835 mutants in restoring the reduced reorientation of the Golgi in wound-healing cells and the delay in wound closure observed in CAMSAP2 KO cells (Supplementary Fig.1F-H and Supplementary Fig.2A, B). These experiments are more essential experiments to substantiate the authors' claim.
We thank the reviewer for their insightful suggestion to examine the rescue activity of CAMSAP2 S835 mutants in CAMSAP2 KO cells to further substantiate our claims.
In Figure 4D-F, we observed significant differences between CAMSAP2 S835 mutants in their ability to restore Golgi structure and localization, indicating functional differences between these mutants. To better reflect the regulatory role of MARK2-mediated phosphorylation of CAMSAP2, we performed scratch wound-healing experiments in MARK2 KO cells by establishing stable cell lines expressing CAMSAP2 S835 mutants. These experiments allowed us to assess Golgi reorientation during wound healing and are presented in Figure 5A-C.
We also attempted to generate stable cell lines expressing GFP-CAMSAP2 and its mutants in CAMSAP2 KO cells. Unfortunately, these cells consistently failed to survive, preventing successful construction of the cell lines.
We hope these experiments and explanations address the reviewer’s concerns. We are grateful for the reviewer’s constructive feedback, which has helped us refine and improve our study.
(5) The data presented in Fig. 6A and B are not sufficient to support the authors' notion that "our observation revealed notable changes in the Golgi apparatus and microtubule network distribution in relation to the wounding. (page 11)"
Fig. 6A, which includes only a single-cell image in each panel, does not demonstrate the general state of microtubules and the Golgi in the wound-edge cells. The reader cannot even know the migration direction of each cell.
Fig.6 B are not suitable to quantitatively support the authors' claim. The authors should find a way to quantitatively estimate the microtubule density around the Golgi and the shape and compactness of the Golgi in each cell facing the wound, not estimating the colocalization of microtubules and the Golgi, as in the present Fig. 6B.
We sincerely apologize for the confusion caused by our unclear descriptions and presentation.
Here, we clarify the purpose and improvements made to address the reviewer’s concerns. In this study, we primarily aimed to observe the relationship between microtubules and the Golgi apparatus in cells at the leading edge of the wound during directed migration. In Figure 6A (now Supplementary Figure 6E), the images represent cells located at the wound edge at different time points. To improve clarity, we have added arrows indicating the migration direction and updated the figure legend to describe these details (page 40 lines 13-14).
To better quantify the relationship between microtubules and the Golgi apparatus, we revised our analysis by referring to the quantitative method used in Figure 3F of the paper Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Specifically, we performed a radial analysis of fluorescence intensity in cells at the wound edge, measuring the distance from the Golgi center (x-axis) and the normalized radial fluorescence intensity of microtubules and the Golgi (y-axis). These results are now presented in Supplementary Figure 6E and 6F.
We hope these improvements address the reviewer’s concerns and provide stronger evidence for the changes in the Golgi apparatus and microtubule network distribution in relation to wound healing. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the clarity and rigor of our study.
The legends to Fig. 6A and B indicate that they compared immunofluorescent staining of cells at the edge of the wound after 0.5h and 2 h of migration. However, the authors state in the text that they compared "the cells located before the wound" and "the cells at the trailing edge of the wounding (page 11)."Although this description is highly ambiguous and misleading, if they compared the wound-edge cells and the cells separated from the wound edge at 2 h after cell migration here, they should improve the experimental design as I pointed out in the 2nd major comment.
We thank the reviewer for their detailed feedback regarding the experimental design and the need to clarify our descriptions. We have addressed these concerns as follows:
- Clarification of descriptions:
We recognize that the previous description in the text regarding "the cells located before the wound" and "the cells at the trailing edge of the wounding" was ambiguous and potentially misleading. We have revised this text to accurately describe the experimental design. Specifically, we compared cells at the leading edge of the wound at different time points (0.5h and 2h post-migration). These corrections are reflected in figure legends (Supplementary Figure 6E and 6F ) and the Results section (page 11,lines 3-8).
- Improved experimental design:
To better support our conclusions, we performed live-cell imaging to observe the dynamic changes in the Golgi apparatus during directed migration. As shown in Supplementary Figure 2A, our results confirm that the Golgi apparatus undergoes a transient dispersed state before reorganizing into an intact structure.
Additionally, we performed fixed-cell staining at different time points to analyze the colocalization of CAMSAP2 with the Golgi apparatus in cells at the leading edge of the wound. The colocalization analysis, presented in Figures 1A-C, further demonstrates the dynamic regulation of CAMSAP2 during Golgi reorientation.
We hope these updates address the reviewer’s concerns and provide a clearer and more robust foundation for our conclusions. We are grateful for the reviewer’s constructive feedback, which has greatly enhanced the clarity and rigor of our study.
Minor comments
(1) In Fig. 2 and Supplementary Fig. 3, the authors claim that MARK2 is enriched around the Golgi. However, this claim was based on immunofluorescent images of single cells and single-line scans.
It is better to present the statistical data for Pearson's coefficient as shown in Figs. 1D and E. To demonstrateMARK2 enrichment around Golgi, but not localization in Golgi, the authors should find a way to quantify the specific enrichment of MARK2 signals in the Golgi region.
We thank the reviewer for raising this important point regarding the enrichment of MARK2 around the Golgi apparatus. Upon further consideration, we acknowledge that our current data do not provide sufficient evidence to fully elucidate the mechanism of MARK2 localization to the Golgi.
To maintain the scientific rigor of our study, we have removed this claim and the corresponding content from the manuscript, including original Figures 2 and Supplementary Figure 3 that specifically discuss MARK2 enrichment. These changes do not affect the primary conclusions of the study, which focus on the role of MARK2-mediated phosphorylation of CAMSAP2.
We hope this clarification addresses the reviewer’s concerns. In the future, we plan to investigate the precise mechanism of MARK2 localization using additional experimental approaches. We are grateful for the reviewer’s constructive feedback, which has helped us refine the scope and focus of our manuscript.
(2) In Fig. 3 and Supplementary Fig. 4, the authors report that CAMSAP2 localization on the Golgi is reduced in cells lacking MARK2.
Essentially, the present results support this claim. However, the authors should analyze the Golgi localization of CAMASP2 with the same quantification parameter because they used Pearson's coefficient in Fig. 1D, E and Supplementary Fig.4D but Mander's coefficient in Fig. 3C and Fig.4F.
We thank the reviewer for their insightful comment regarding the consistency of quantification parameters used in our analysis of CAMSAP2 localization on the Golgi apparatus.
To address this concern, we have revised Figure 3C to use Pearson’s coefficient for consistency with Figure 1D, 1E (Figure 1B and 1E in the revised manuscript), and Supplementary Figure 4D (Supplementary Figure 3I in the revised manuscript). This ensures uniformity in the quantification parameters across these analyses.
For Figure 4F, we have retained Mander’s coefficient, as it accounts for variability in expression levels due to overexpression in individual cells. We believe this approach provides a more accurate reflection of CAMSAP2 localization under the experimental conditions shown in Figure 4F.
We hope these adjustments clarify our analysis and address the reviewer’s concerns. We greatly appreciate the reviewer’s constructive feedback, which has helped improve the consistency and accuracy of our study.
(3) In Fig.4D-F, the authors claim that S835 phosphorylation of CAMSAP2 is essential for its localization to the Golgi apparatus and for restoring the Golgi dispersion induced by CAMASAP2 depletion.
Fig.4E indicates that the S835A mutant of CAMSAP2 significantly restores the compact assembly of the Golgi apparatus, and the differences in the rescue activities of the wild type, S835A, and S835D are rather small. These data contradict the authors' conclusions regarding the pivotal role of MARK2-mediated phosphorylation at the S835 site of CAMSAP2 in maintaining the Golgi architecture (page 9). The authors should remove the phrase "MARK2-mediated" from the sentence unless addressing the aforementioned issues (see 3rd major comment) and describe the role of S835 phosphorylation in more subdued tone.
We thank the reviewer for their constructive feedback regarding the conclusions drawn about the role of MARK2-mediated phosphorylation of CAMSAP2 at S835.
In response, we have revised the relevant sentence to reflect a more nuanced interpretation of the data. Specifically, the original statement:
“These observations indicate that the phosphorylation of serine 835 in CAMSAP2 is essential for its proper localization to the Golgi apparatus.”
has been updated to:
“These observations indicate that MARK2 phosphorylation of serine at position 835 of CAMSAP2 affects the localization of CAMSAP2 on the Golgi and regulates Golgi structure” (page 9, Lines 27-29).
We hope this modification addresses the reviewer’s concerns. We are grateful for the feedback, which has helped us refine our conclusions and enhance the clarity of our manuscript.
(4) In Figs. 5I, J and Supplementary Fig.7A-E, the authors claim that the S835 phosphorylationdependent interaction of CAMSAP2 with Uso1 is essential for its localization to the Golgi apparatus.
This claim was made based on immunofluorescent images of single cells and single-line scans, and was not sufficiently verified (Supplementary Fig.7B, C). Because this is a crucial claim for the present paper, the authors should present statistical data for Pearson's coefficient, as shown in Fig. 1D and E, to quantitatively estimate the Golgi localization of CAMSAP2.
We thank the reviewer for their suggestion to present statistical data using Pearson's coefficient for a more robust quantification of the Golgi localization of CAMSAP2.
In response, we have revised the statistical analysis for Supplementary Figures 7B-C (Revised Figures 6F and 6G) to use Pearson's coefficient. This change ensures consistency with the quantification methods used in Figures 1D and 1E (Revised Figures 1B and 1E), allowing for a more standardized evaluation of CAMSAP2’s localization to the Golgi apparatus.
We hope this modification addresses the reviewer’s concerns and strengthens the quantitative support for our claims. We are grateful for the reviewer’s constructive feedback, which has helped improve the rigor of our study.
(5) The signal intensities of the immunofluorescent data in Fig. 4D, Fig. 5A, Sup-Fig. 3C and E, and Sup-Fig. 7S are very weak for readers to clearly estimate the authors' claims. They should be improved appropriately.
We thank the reviewer for highlighting the need to improve the clarity of the immunofluorescent data presented in several figures.
In response, we have enhanced the signal intensities in Figures 4D, 5A, and Supplementary Figure 7D (Revised Supplementary Figure 6A) to make the signals clearer for readers, while ensuring that the adjustments do not alter the integrity of the original data. Supplementary Figures 3C and 3E was remove from our manuscript.
Additionally, to improve consistency and readability across the manuscript, we have standardized the quantification methods for similar analyses:
For CAMSAP2 localization to the Golgi, Pearson's coefficient has been used throughout the manuscript. Figure 3C has been updated to use Pearson's coefficient for consistency.
For Golgi state analysis in wound-edge cells, we have used the Golgi position relative to the nucleus as a uniform metric. This has been applied to Supplementary Figures 1F and 1G, Figures 2D and 2E, and Figures 5A and 5B.
We hope these adjustments address the reviewer’s concerns and improve the clarity and consistency of our study. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the quality of our manuscript.
(6) As indicated above, the authors frequently change the parameters or methods for quantifying the same phenomena (for example, the localization of CAMSAP on the Golgi and Golgi state in wound edge cells) in each figure. This is highly confusing. They should unify them.
We thank the reviewer for their valuable feedback regarding the inconsistency in quantification methods across the manuscript.
To address this concern, we have carefully reviewed the entire manuscript and standardized the methods used for quantifying similar phenomena:
- CAMSAP2 localization on the Golgi:
Pearson's coefficient is now consistently used throughout the manuscript. For example, Figure 3C has been updated to use Pearson's coefficient to align with other figures, such as Figures 1B and 1E.
- Golgi state in wound-edge cells:
The Golgi state is now uniformly measured based on the position of the Golgi relative to the nucleus. This method has been applied to Supplementary Figures 1F and 1G, Figures 2D and 2E, and Figures 5A and 5B.
We believe these changes significantly improve the clarity and consistency of the manuscript, ensuring that readers can easily interpret the data. We are grateful for the reviewer’s constructive feedback, which has greatly helped us enhance the quality and rigor of our study.
(7) The legends frequently fail to clearly indicate the number of independent experiments on which each statistical analysis was based.
We thank the reviewer for highlighting the need to clearly indicate the number of independent experiments for each statistical analysis.
In response, we have carefully reviewed the entire manuscript and updated the figure legends to include the number of independent experiments for every statistical analysis. This ensures transparency and allows readers to better evaluate the reliability of the data.
We hope these updates address the reviewer’s concerns and improve the clarity and rigor of the manuscript. We appreciate the reviewer’s constructive feedback, which has helped us enhance the quality of our work.
(8) Supplemental Figs. 4E and 4F are not cited in the text.
We thank the reviewer for pointing out that Supplemental Figures 4E and 4F were not cited in the text.
To address this, we have updated the manuscript to cite these figures (Revised Figures 2H and 2I) in the appropriate section (page 8, lines 1-5).
“the absence of MARK2 can also influence the orientation of the Golgi apparatus during cell wound healing and cause a delay in wound closure (Figure 2 D-I and Figure 3 D).”
We hope this revision resolves the reviewer’s concern and improves the clarity and completeness of the manuscript. We appreciate the reviewer’s feedback, which has helped us refine our work.
(9) The data in Fig. 3 analyzed MARK2 knockout cells (not knockdown cells). The caption should be corrected.
We thank the reviewer for pointing out the incorrect use of "knockdown" in the caption of Figure 3.
To address this, we have revised the title of Figure 3 from:
“MARK2 knockdown reduces CAMSAP2 localization on the Golgi apparatus.”
to:
“MARK2 affects CAMSAP2 localization on the Golgi apparatus.”
This updated caption reflects the inclusion of both MARK2 knockout and knockdown cell lines analyzed in Figure 3.
We hope this correction resolves the reviewer’s concern and ensures the accuracy of our manuscript. We greatly appreciate the reviewer’s attention to detail, which has helped us improve the clarity and consistency of our work.
(10) The present caption in Fig. 6 disagrees with the content of the figure.
We thank the reviewer for pointing out the inconsistency between the caption and the content of Figure 6.
To address this issue, we have revised the content of Figure 6 to ensure it aligns accurately with the caption. The updated figure now reflects the description provided in the caption, eliminating any discrepancies and improving clarity for the readers.
We appreciate the reviewer’s constructive feedback, which has helped us enhance the accuracy and presentation of our manuscript.
(11) What do "CS" indicate in Fig. 4B and Supplementary Fig. 5D? The style used to indicate point mutants of CAMSAP2 should be unified. 835A or S835A?
We thank the reviewer for pointing out the inconsistency in the naming of CAMSAP2 mutants.
To address this, we have revised all relevant figures and text to use the consistent format "S835A" and "S589A" for CAMSAP2 mutants. Specifically, in Figure 4B and Supplementary Figure 5D (now Supplementary Figure 4C), we have replaced the abbreviation "CS2" with "CAMSAP2" and updated the mutant names from "835A" and "589A" to "S835A" and "S589A," respectively. We hope these updates resolve the reviewer’s concerns and ensure clarity and consistency throughout the manuscript. We are grateful for the reviewer’s attention to detail, which has helped us improve the quality of our work.
(12) Uso1 is not a Golgi matrix protein.
We thank the reviewer for pointing out the incorrect description of Uso1 as a Golgi matrix protein.
In response, we have revised the manuscript to replace all references to “USO1 as a Golgi matrix protein” with “USO1 as a Golgi-associated protein.” This correction ensures that the terminology used in the manuscript is accurate and consistent with current scientific understanding.
We appreciate the reviewer’s attention to detail, which has helped us improve the accuracy and quality of our manuscript.
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public review):
Summary:
In this manuscript, De La Forest Divonne et al. build a repertory of hemocytes from adult Pacific oysters combining scRNAseq data with cytologic and biochemical analyses. Three categories of hemocytes were described previously in this species (i.e. blast, hyalinocyte, and granulocytes). Based on scRNAseq data, the authors identified 7 hemocyte clusters presenting distinct transcriptional signatures. Using Kegg pathway enrichment and RBGOA, the authors determined the main molecular features of the clusters. In parallel, using cytologic markers, the authors classified 7 populations of hemocytes (i.e. ML, H, BBL, ABL, SGC, BGC, and VC) presenting distinct sizes, nucleus sizes, acidophilic/basophilic, presence of pseudopods, cytoplasm/nucleus ratio and presence of granules. Then, the authors compared the phenotypic features with potential transcriptional signatures seen in the scRNAseq. The hemocytes were separated in a density gradient to enrich for specific subpopulations. The cell composition of each cell fraction was determined using cytologic markers and the cell fractions were analysed by quantitative PCR targeting major cluster markers (two per cluster). With this approach, the authors could assign cluster 7 to VC, cluster 2 to H, and cluster 3 to SGC. The other clusters did not show a clear association with this experimental approach. Using phagocytic assays, ROS, and copper monitoring, the authors showed that ML and SGC are phagocytic, ML produces ROS, and SGC and BGC accumulate copper. Then with the density gradient/qPCR approach, the authors identified the populations expressing anti-microbial peptides (ABL, BBL, and H). At last, the authors used Monocle to predict differentiation trajectories for each subgroup of hemocytes using cluster 4 as the progenitor subpopulation.
The manuscript provides a comprehensive characterisation of the diversity of circulating immune cells found in Pacific oysters.
Strengths:
The combination of the two approaches offers a more integrative view.
Hemocytes represent a very plastic cell population that has key roles in homeostatic and challenged conditions. Grasping the molecular features of these cells at the single-cell level will help understand their biology.
This type of study may help elucidate the diversification of immune cells in comparative studies and evolutionary immunology.
Weaknesses:
The study should be more cautious about the conclusions, include further analyses, and inscribe the work in a more general framework.
Reviewer #1 (Recommendations for the authors):
The manuscript provides a comprehensive characterisation of the diversity of circulating immune cells found in Pacific oysters.
Major comments:
(1) The introduction would benefit from a clear description of what is known about immune cell development and diversity in this model. The bibliography on the three subtypes origins and properties (i.e. blast, hyalinocyte, and granulocytes) should be described in the introduction.
We thank Reviewer #1 for their valuable comments, which have allowed us to further improve our manuscript. We have enriched the introduction with the following addition (line 79 to 82):
“Blast-like cells are considered as undifferentiated hemocyte types (20), hyalinocytes (21) seem to be more involved in wound repair, and granulocytes, more implicated in immune surveillance. The latter are considered as the main immunocompetent hemocyte types (22).”
(2) The authors mentioned a previous scRNAseq dataset produced in another oyster species. They should compare the two datasets to show the robustness of the molecular signatures determined in the present study. In addition, the authors do not mention markers identified in the literature that could be relevant to characterize the clusters (e.g. inflammatory pathway PMID: 29751033, proliferative markers PMID: 36591234/ PMID: 29317231, granulocyte markers PMID: 30633961 ... list not exhaustive). Overall, the comparison of this manuscript dataset and the available literature is too partial
We appreciate the reviewer’s suggestion to compare our dataset with previously published scRNAseq data and to integrate markers from the literature. Below, we address these points in detail.
The transcription factors involved in hematopoiesis, such as Tal1, Sox, Runx, and GATA, are highly conserved across metazoans. These markers were identified in our dataset, consistent with findings in other species (1–3), including the previously mentioned scRNA-seq dataset in C. hongkongensis (4). However, defining robust and specific markers for distinct hemocyte types remains an ambitious goal that requires validation across diverse biological contexts - work that is beyond the scope of the present study. Additionally, meaningful comparisons between datasets are constrained by differences in annotation frameworks and the absence of a standardized system for defining hemocyte subtypes. These limitations underscore the need for harmonization efforts to facilitate robust cross-study comparisons. Nonetheless, our dataset provides a strong foundation for future comparative analyses once such standardization is achieved.
In response to the reviewer’s comment, we have added a paragraph to the discussion (lines 747 - 760) detailing that we identified conserved transcription factor markers in C. gigas and C. hongkongensis.
(3) The authors sequenced 3000 cells without providing more comprehensive information/rationale on the analysed population. What is the number of hemocytes found in an adult? What proportion of the whole hemocyte population does this analysis represent? Does it include the tissue-interacting hemocytes? Also, what is the rationale for choosing that specific stage?
We thank the reviewer for their insightful questions regarding the analyzed hemocyte population.
Adult 18-month-old Crassostrea gigas contain approximately 1 million circulating hemocytes per mL of hemolymph, with an average of 1 mL of hemolymph per individual. Thus, this represents approximately 1 million circulating hemocytes per oyster. For our scRNA-seq analysis, we sampled 3,000 hemocytes, which corresponds to 0.3% of the total circulating hemocyte population.
The number of cells processed was optimized to minimize the occurrence of doublets during scRNAseq. Following 10x Genomics Chromium guidelines, we loaded 4,950 cells to successfully recover a target of 3,000 cells, with a doublet rate of 2.4%, well below the target threshold of 2.5%. This information has been added on line 125 of the document. The target was 3,000 cells, and as reported in Supplementary Table S1, the estimated number of cells after STAR-solo alignment was 2,937. This ensures the reliability and accuracy of single-cell transcriptomic data.
We selected 18-month-old oysters for two key reasons: (i) to facilitate hemolymph collection, as hemocyte counts are more stable and sufficient at this stage, enabling us to collect enough cells for all planned experiments, including functional and cytological analyses; and (ii) to use oysters that are not susceptible to OsHV-1 μVar herpesvirus, which predominantly affects younger animals. This ensured that the hemocyte populations analyzed were not influenced by viral infections or related immune responses.
Our study focused on circulating hemocytes collected from hemolymph, which does not include tissue-interacting hemocytes. While these cells may represent an additional population of interest, they fall outside the scope of our current investigation.
By carefully selecting the animal stage and optimizing cell sampling, we ensured that the scRNA-seq dataset provides a robust representation of circulating hemocyte diversity while maintaining high data quality.
(4) For the GO term enrichment analysis, the authors included all genes presenting a cluster enrichment above L2FC>0.25. This seems extremely low to find distinct functions for each cluster. The risk is to call "cluster specific GO term" GO terms for which the genes are poorly enriched in the cluster. For the most important GO term mentioned in the text, the authors should show the expression levels of the genes (with DotPlot similar to Fig1D) to illustrate the specificity of the GO term. At last, the GO enrichment scores were apparently calculated using the whole genome as background. The analysis, aiming at finding differences between hemocyte subgroups, should use the genes detected in the dataset as background.
We appreciate the reviewer's concerns regarding the threshold used for GO term enrichment analysis and the choice of background genes. Below, we provide clarification on these points.
For nuanced comparisons, such as those between activation states of the same cell type, lower thresholds for log2FC (e.g., ≥0.25) are commonly used to detect subtle regulatory shifts. In single-cell RNA sequencing (scRNA-seq) analyses, it is typical to use a log2FC threshold between 0.25 and 0.5 to ensure that biologically relevant, yet subtle, changes are captured. For our analysis, this threshold was chosen to maintain sensitivity to such shifts, particularly given the diversity and functional specialization of hemocyte clusters.
To address the reviewer's suggestion, we will include DotPlot representations (similar to Fig. 1D) for the most significant GO terms highlighted in the text. This will illustrate the expression levels of the associated genes across clusters and demonstrate their specificity to the identified GO terms.
Regarding the background used in the GO enrichment analysis, we employed the Rank Based Gene Ontology Analysis (RBGOA) approach, which explicitly states in its documentation: "It is important to have the latter two tables representing the whole genome (or transcriptome) — at least the portion that was measured — rather than some select group of genes since the test relies on comparing the behavior of individual GO categories to the whole." Our analysis was conducted in agreement with these initial recommendations, ensuring that the results are consistent with the methodology outlined for RBGOA.
(5) The authors reannotated the genes of C. gigas to reach 73.1% annotation. What are the levels of annotations found prior to the reannotation? What do the scores/scale bars from the RBGOA analysis mean in Figures 2B-D?
Thank you for your comment. The original annotation for C. gigas was based on the work of Penaloza et al. (5), which provided GO annotations for 18,750 out of 30,724 genes, corresponding to 61% annotation. Following our reannotation efforts, we were able to increase the annotation coverage to 73.1%, enhancing the resolution of downstream analyses. In response to the reviewer’s comment, we have updated the results section (line 211 and 216) to explicitly include the original annotation coverage of 61% from the work of Penaloza et al., followed by details on our newly achieved annotation percentage of 73.1%.
Thank you for pointing this out. We apologize for the oversight regarding the scale bar in Figures 2BD. The colors in the original figure correspond to a z-score calculated from the gene ratio, which was not clearly explained and may have caused confusion. In the revised version of the manuscript, we propose a new representation to facilitate understanding and improve the clarity of the data presentation (Figure 2B).
(6) The authors describe first the result of the Kegg enrichment analysis and then of the RBGOA. To gain fluidity, I would suggest merging the results of both Kegg and RBGOA for each cluster.
Thank you for the suggestion. To enhance the fluidity of the results section, we have redesigned the KEGG/RBGOA figure (see figure 2A and 2B) to present the results for each cluster in an integrated manner. This revised approach aims to provide a clearer and more cohesive representation of the findings.
(7) The authors make correlations between gradient fraction containing multiple hemocyte populations and qPCR expression levels of cluster-specific markers to associated cytologic features with specific clusters. If feasible, I would recommend validating the association of several markers with hemocyte subgroups using in situ hybridisation or immunolabelling.
Cytological identification of hemocytes in our study relies on MCDH staining, which provides detailed morphological and cytological information. Unfortunately, the fixation methods required for in situ hybridization (ISH) or immunolabeling are not compatible with those used for MCDH staining. We attempted to combine these approaches but found that the fixation protocols necessary for ISH or immunolabeling compromised the quality of the cytological features observed with MCDH staining. Consequently, such validation was not feasible within the constraints of our experimental setup.
(8) Anti-microbial peptides are mentioned as enriched in agranular cells based on the gradient/qPCR analysis (Figure 6). Are these AMPs regulated by inflammatory pathways? Are any inflammatory pathways enriched in any scRNAseq cluster? In addition, without validating the data by directly labelling AMP in the different populations, it seems hard to conclude that AMP are expressed only by agranular cells.
In oysters, two families of antimicrobial peptides/proteins appear to be transcriptionally regulated in hemocytes in response to an infection. The first is that of Cg-BigDefs (6). A 2020 article indicates that the expression of CgBigDef1 is regulated by CgRel, an ortholog of the NFkB transcription factor, which also control the expression of the proinflammatory cytokine CgIL17 (7). Cg-BPI is induced in response to infection but its regulatory pathways remain unknown (8). The last well characterized family of antimicrobial peptides is Cg-Defs. It exhibits constitutive expression in hemocytes.
In our scRNA-seq analysis, CgRel (G12420) shows an increased expression in cluster 5, with a log2FC of 0.4 (equivalent to a 1.32-fold change or 32% higher expression compared to other clusters). Cluster 5 corresponds to blast-like cells, which are transcriptionally distinct and predominantly found in fractions 1, 2, and 3. These same fractions exhibit the highest CgBigDef expression, as demonstrated by qPCR.
From our qPCR results, we see no expression of the three AMP families in cell-sorted granular cells while the cell-sorted agranular cells are positive for the three AMP families, even for inducible ones. Still, we agree that labelling of cell sorted hemocyte populations would reinforce our data. We now specify in the text that further staining would be necessary to confirm these transcriptomic results (Discussion, lines 695 to 296).
(9) The authors should play down some statements concerning cluster identity. In the absence of a true lineage tracing approach, it is possible that those clusters represent states rather than true cell subtypes. Immune cells are very plastic in nature and able to adapt to the environment, even in conditions that are considered homeostatic.
We appreciate the reviewer’s insightful comment regarding the plasticity of immune cells and the potential for clusters to represent states rather than distinct cell subtypes. We agree that, in the absence of a lineage tracing approach, definitive classification of clusters as fixed subtypes is challenging. Immune cells, including those in invertebrates, are known for their high degree of plasticity and adaptability to environmental cues.
In response to the reviewer’s comment, we have revised the Discussion section to include a statement clarifying that these clusters may represent dynamic states rather than fixed subtypes, thereby acknowledging the plasticity of immune cells (lines 766 to 770).
(10) Related to the above issue, there is no indication of stem cells being present in the cell population. Is there any possibility to look for proliferative or progenitor markers? In homeostatic and in challenged conditions (for example Zymosan treatment)? This would provide some hints into the cellular pathways involved in the response. Perhaps determining the number/fraction of phagocytic cells in challenged conditions would help as well, in the absence of time-lapse assays.
Thank you for highlighting the possibility of stem cells or progenitor markers in our hemocyte populations. In our current analysis, we did not detect any known stem cell or proliferative markers, nor evidence of a clearly defined hematopoiesis site in the hemolymph. Indeed, previous work suggests that oyster hematopoiesis may occur in tissues such as the gills, implying that stem or progenitor cells might not circulate in the hemolymph under homeostatic conditions. Consequently, it is plausible that our observation of no proliferative cell populations partly reflects their absence in hemolymph, especially in naïve (unstimulated) oysters. To conclusively identify potential progenitor cells and their proliferative activity, further approaches involving deliberate perturbation of hemocyte homeostasis - such as immunological challenge (e.g., Zymosan treatment) combined with lineagetracing or proliferation assays - would be necessary. These future investigations would not only clarify whether proliferative cells emerge in the hemolymph in response to environmental or pathological stimuli but also help elucidate the broader cellular pathways underlying oyster immune responses.
In response to the reviewer’s comment, we have revised the Discussion (lines 742 to 745) and added : “Nevertheless, we did not detect any canonical stem or progenitor cell populations in our dataset, underscoring the need for future investigations - potentially involving immunological challenges and lineage-tracing assays - to clarify whether proliferative cells circulate in the hemolymph or instead reside primarily in tissue compartments.”
(11) Could the authors discuss the phagocytic hemocytes in light of scavenger receptor expression?
We thank the reviewer for this insightful question. Our study identifies macrophage-like cells and small granule cells as the principal phagocytes in Crassostrea gigas, capable of robust pathogen engulfment. Transcriptomic data reveal that these cell types express markers associated with endocytosis and immune defense pathways, such as CLEC and LACC24, which are integral to their phagocytic functionality.
Interestingly, our single-cell RNA sequencing analysis indicates that cluster 3, corresponding to small granule cells, expresses the scavenger receptor cysteine-rich (SRCR) gene G3876, annotated as an Low-density lipoprotein receptor-related protein with a Log2 fold change (Log2FC) of 0.77. This finding directly links small granule cells to scavenger receptor-mediated functions, supporting their role as professional phagocytes. Scavenger receptors, including SRCR proteins, are known for their ability to bind and internalize diverse ligands, including pathogens, and their presence in small granule cells highlights a potential mechanism for pathogen recognition and clearance.
Additionally, scavenger receptors are significantly expanded in oysters, as shown in Wang et al. (9). These receptors exhibit dynamic upregulation in hemocytes upon pathogen exposure, particularly following stimulation with pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). This evidence suggests that SRCR proteins, including the one identified in our study, play a pivotal role in the phagocytic activities of hemocytes by facilitating pathogen recognition and internalization.
We propose to add this paragraph (lines 610 to 618) in the Discussion : “Interestingly, our scRNA-seq analysis indicates that SGC (cluster 3) expresses the scavenger receptor cysteine-rich (SRCR) gene G3876, annotated as an Low-density lipoprotein receptor-related protein with a Log2 fold change (Log2FC) of 0.77 linking them to scavenger receptor-mediated pathogen recognition and clearance. This aligns with findings by Wang et al. (9), who demonstrated significant expansion and dynamic regulation of SRCR genes in response to pathogen-associated molecular patterns. “
(12) I am not convinced by the added value of the lineage analysis and the manuscript could stand without it. There is no experimental validation to substantiate the filiation between the clusters. In addition, rooting the lineage to cluster 4 is poorly justified (enrichment in the ribosomal transcript). Cluster 6 is also enriched in ribosomal transcripts and this enrichment can be caused by the low threshold used for the selection of cluster-specific genes (L2FC >0.25). At last, cluster 4 > VC and cluster 4 >SGC belong to the same lineage according to Figure 7 FH.
We thank the reviewer for their detailed comments regarding the lineage analysis. We acknowledge the limitations in experimentally validating the proposed filiation between clusters, as hemocytes in Crassostrea gigas cannot currently be cultivated ex-vivo, and we lack the ability to isolate cells specifically from cluster 4 for further functional assays. Consequently, our lineage analysis is based solely on transcriptomic data and pseudo-time trajectory analysis.
Hematopoietic stem cells (HSCs) are a population of stem cells that are largely cell-cycle-quiescent (G0 phase) with low biosynthetic activity. Upon stimulation and stress HScs undergo proliferation and differentiation and produce all lineages of hemocytes.
Ribosomal proteins play a multifaceted role in preserving the balance between stem cell quiescence and activation. By ensuring precise regulation of protein synthesis, they allow stem cells to maintain their undifferentiated state while remaining poised for activation when needed. Furthermore, ribosomal proteins contribute to the cellular stress response, safeguarding stem cells from oxidative damage and other stressors that could compromise their functionality. Importantly, ribosomal biogenesis and the dynamic assembly of ribosomes provide a regulatory mechanism that fine-tunes the transition from self-renewal to differentiation, a critical feature of hematopoietic stem cells (HSCs) and other stem cell types. These mechanisms collectively highlight the indispensable role of ribosomal proteins in stem cell biology, underscoring their relevance to our study's findings.
In vertebrate, the maintenance of hematopoietic stem cells (HSCs) and hematopoietic homeostasis is widely acknowledged to rely on the proper regulation of ribosome function and protein synthesis (10). This process necessitates the coordinated expression of numerous genes, including genes that encode ribosomal proteins (RP genes) and those involved in regulating ribosome biogenesis and protein translation. Disruptions or mutations in these critical genes are associated with the development of congenital disorders (11). Among these, Rpl22 (found in cluster 4 with a Log2FC of 1.59) has been shown to play a pivotal role in HSC maintenance by balancing ribosomal protein paralog activity, which is critical for the emergence and function of HSCs (12).
Regarding the justification for rooting the lineage to cluster 4, our decision was informed by the enrichment of ribosomal transcripts and functional annotations suggesting a role in translation and cell proliferation, consistent with a precursor-like state. The use of a log2 fold-change (L2FC) threshold of >0.25, while conservative, allowed us to include subtle but meaningful transcriptional shifts essential for resolving lineage transitions.
Finally, the lineage progression from cluster 4 to vesicular cells (VC), macrophage-like cells (ML), and ultimately small granule cells (SGC) is supported by trajectory analysis (Figure 7FH), which consistently places VC and ML as intermediates in the differentiation process toward SGC. Although experimental validation is currently not feasible, these findings provide a conceptual framework for future investigations when cell isolation and functional validation tools become available.
(13) The figures containing heatmaps (Figure 7, Figure 2, Figure S10) or too many subpanels (Figure S5) and Table S5 are hardly readable.
Thank you for highlighting the issues related to the clarity of the heatmaps (Figures 2, 7, and S10), the multi-panel figure (Figure S5), and Table S5. In response to your feedback, we have revised all of these elements to enhance readability and comprehension. Specifically, we increased font sizes, optimized color scales, and reorganized the layout of the subpanels to emphasize the key findings. We also updated Table S5 to ensure that the data are presented in a clear and easily interpretable format.
We trust that these modifications address the concerns raised and improve the overall clarity of the figures and table.
(14) A number of single-cell analyses are now available in different species and the authors allude to similar pathways/transcription factors being involved. Perhaps the authors could expand on this in the discussion section.
Transcription factors involved in hematopoiesis, such as Tal1, Runx and GATA, are highly conserved across metazoans. Consistent with findings in other species, our dataset identifies these markers, reinforcing the evolutionary conservation of these pathways. Furthermore, these markers are also reported in the previous scRNA-seq dataset for C. hongkongensis (4), supporting the robustness of our molecular signatures. However, defining specific and robust markers for distinct hemocyte types remains an ambitious task, requiring additional validation in diverse biological and experimental contexts. This validation is beyond the scope of the present study.
In addition, meaningful comparisons between scRNA-seq datasets are constrained by differences in annotation frameworks and the absence of standardized definitions for hemocyte subtypes. Harmonizing these datasets to enable robust cross-species comparisons is a critical challenge for future studies. Nonetheless, the insights provided by our dataset establish a strong foundation for such comparative analyses when these standardization efforts are realized.
In crayfish (1), 16 transcriptomic clusters were identified corresponding to three hemocyte types, with markers such as integrin prominently expressed in hyalinocytes, consistent with our identification of integrin-related genes in hemocytes. In shrimp (1), 11 transcriptomic clusters were described, with markers of hemocytes in immune-activated states, that we observed also in our dataset. For Anopheles gambiae (2), 8 transcriptomic clusters were identified, including clusters with high ribosomal activity, analogous to those we described in our study. Finally, in Bombyx mori (3), 20 transcriptomic clusters were reported, corresponding to five cytological hemocyte types. Transcription factors such as bHLH, myc, and runt were identified in granulocytes and oenocytoid, showing parallels with markers identified in our dataset.
Despite these similarities, cross-species comparisons are hindered by variability in genome availability and annotation quality, which complicates the precise identification and functional characterization of genes across datasets. Notably, we did not detect pro-phenoloxidase genes in our dataset, unlike shrimp and crayfish, suggesting potential species-specific differences in immune mechanisms.
Regarding the previously published C. hongkongensis scRNA-seq dataset (4), we observe overlap in markers such as runx and GATA. However, direct comparisons remain limited due to differences in dataset annotations and definitions of hemocyte subtypes. This underscores the need for standardized frameworks to facilitate cross-study comparisons. While we emphasize that robust cross-species validation was beyond the scope of this study, our findings contribute valuable insights into the molecular signatures of oyster hemocytes and provide a framework for future comparative research.
We have expanded our discussion to include comparisons with available scRNAseq data from other invertebrate specie (lines 747 to 760)
Minor comments:
(1) Figure 2A-D: to increase the readability of the figure, the authors should display only the GO terms mentioned in the text and keep the full list in supplementary data.
To enhance the fluidity of the results section, we have redesigned the KEGG/RBGOA figure to present the results for each cluster in an integrated manner (See figure 2A and 2B).
(2) Line 223: the authors mention that cluster 1 is characterized by its morphology without providing an explanation or evidence.
We have revised the description of Cluster 1 to remove references to morphology, ensuring consistency with the data presented at this stage of the manuscript (lines 227 to 229) : ”Cluster 1, comprising 27.6 % of cells, is characterized by GO-terms related to myosin complex, lamellipodium, membrane and actin cytoskeleton remodelling, as well as phosphotransferase activity.”
(3) Line 306: the authors mentioned expression levels and associated them with Log2FC, which represents an enrichment, not the level of expression.
Thank you for pointing this out. We agree that log2FC represents enrichment rather than absolute expression levels. We have revised the text in the manuscript to clarify this distinction (line 309). The corrected text now states that log2FC reflects the degree of enrichment or depletion of a gene in a specific cluster relative to others, rather than its absolute expression level.
(4) Figure 4B: the figure shows the distribution of all hemocytes subgroups for each fraction. To better appreciate the distribution of the subgroups in the different fractions, it would be good to have the number of cells of each subtype in the fractions.
We thank the reviewer for their suggestion to include the number of cells of each subtype in the fractions. While we do not have the exact total number of cells per fraction, we systematically performed hemocyte counts for each fraction as part of our methodology. These counts provide a robust estimation of hemocyte distributions across fractions.
Including these counts in the figure could be an alternative approach; however, we believe it would not significantly enhance the interpretability of the data, as the focus of this analysis is on the relative proportions of hemocyte subtypes rather than absolute numbers. The current representation provides a clear and concise overview of subtype distribution patterns, which aligns with the goals of the study.
Nevertheless, if the reviewer considers it essential, we are open to integrating the hemocyte counts into the figure or supplementing the information in the text or supplementary materials to provide additional context.
(5) Line 487-488: the authors mentioned that monocle 3 can deduce the differentiation pathway from the mRNA splice variant. I did not find this information in the publication associated with the statement.
Thank you for pointing this out. We acknowledge the inaccuracy in our statement regarding Monocle3's capabilities. Monocle3 does not deduce differentiation pathways based on mRNA splice variants, as was erroneously suggested in the manuscript. Instead, Monocle3 performs trajectory inference using gene expression profiles. It calculates distances between cells based on their transcriptomic profiles, where cells with similar profiles are positioned closer together, and those with distinct profiles are farther apart. This method enables the construction of potential differentiation trajectories by identifying paths between transcriptionally related cells.
We revise the text in the manuscript to accurately describe this process and remove the incorrect reference to mRNA splice variants (lines 495 to 497).
(6) Figures 6C-H display heatmaps with two columns representing the beginning and the end of the lineage predicted. It would be more talkative to show the whole path presented in Figure S10.
Thank you for pointing out that Figures 7C–H currently only show the beginning and end of the predicted lineage, limiting the clarity of the intermediate stages. In response to your suggestion, we have revised these figures to include the full trajectory as presented in Figure S10, ensuring that the intermediate transitions are more clearly visualized. We believe these modifications offer a more comprehensive overview of the entire lineage and enhance the interpretability of our results.
Bibliography:
(1) F. Xin, X. Zhang, Hallmarks of crustacean immune hemocytes at single-cell resolution. Front. Immunol. 14 (2023).
(2) H. Kwon, M. Mohammed, O. Franzén, J. Ankarklev, R. C. Smith, Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife 10, e66192 (2021).
(3) M. Feng, L. Swevers, J. Sun, Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front. Immunol. 13 (2022).
(4) J. Meng, G. Zhang, W.-X. Wang, Functional heterogeneity of immune defenses in molluscan oysters Crassostrea hongkongensis revealed by high-throughput single-cell transcriptome. Fish & Shellfish Immunology 120, 202–213 (2022).
(5) C. Peñaloza, A. P. Gutierrez, L. Eöry, S. Wang, X. Guo, A. L. Archibald, T. P. Bean, R. D. Houston, A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience 10, giab020 (2021).
(6) R. D. Rosa, A. Santini, J. Fievet, P. Bulet, D. Destoumieux-Garzón, E. Bachère, Big Defensins, a Diverse Family of Antimicrobial Peptides That Follows Different Patterns of Expression in Hemocytes of the Oyster Crassostrea gigas. PLOS ONE 6, e25594 (2011).
(7) Y. Li, J. Sun, Y. Zhang, M. Wang, L. Wang, L. Song, CgRel involved in antibacterial immunity by regulating the production of CgIL17s and CgBigDef1 in the Pacific oyster Crassostrea gigas. Fish & Shellfish Immunology 97, 474–482 (2020).
(8) Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI | PNAS. https://www.pnas.org/doi/abs/10.1073/pnas.0702281104.
(9) L. Wang, H. Zhang, M. Wang, Z. Zhou, W. Wang, R. Liu, M. Huang, C. Yang, L. Qiu, L. Song, The transcriptomic expression of pattern recognition receptors: Insight into molecular recognition of various invading pathogens in Oyster Crassostrea gigas. Developmental & Comparative Immunology 91, 1–7 (2019).
(10) R. A. J. Signer, J. A. Magee, A. Salic, S. J. Morrison, Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).
(11) A. Narla, B. L. Ebert, Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).
(12) Y. Zhang, A.-C. E. Duc, S. Rao, X.-L. Sun, A. N. Bilbee, M. Rhodes, Q. Li, D. J. Kappes, J. Rhodes, D. L. Wiest, Control of Hematopoietic Stem Cell Emergence by Antagonistic Functions of Ribosomal Protein Paralogs. Developmental Cell 24, 411–425 (2013).
Reviewer #2 (Public review):
Summary:
This work provides a comprehensive understanding of cellular immunity in bivalves. To precisely describe the hemocytes of the oyster C. gigas, the authors morphologically characterized seven distinct cell groups, which they then correlated with single-cell RNA sequencing analysis, also resulting in seven transcriptional profiles. They employed multiple strategies to establish relationships between each morphotype and the scRNAseq profile. The authors correlated the presence of marker genes from each cluster identified in scRNAseq with hemolymph fractions enriched for different hemocyte morphotypes. This approach allowed them to correlate three of the seven cell types, namely hyalinocytes (H), small granule cells (SGC), and vesicular cells (VC). A macrophage-like (ML) cell type was correlated through the expression of macrophage-specific genes and its capacity to produce reactive oxygen species. Three other cell types correspond to blast-like cells, including an immature blast cell type from which distinct hematopoietic lineages originate to give rise to H, SGC, VC, and ML cells. Additionally, ML cells and SGCs demonstrated phagocytic properties, with SGCs also involved in metal homeostasis. On the other hand, H cells, nongranular cells, and blast cells expressed antimicrobial peptides. This study thus provides a complete landscape of oyster hemocytes with functional validation linked to immune activities. This resource will be valuable for studying the impact of bacterial or viral infections in oysters.
Strengths:
The main strength of this study lies in its comprehensive and integrative approach, combining single-cell RNA sequencing, cytological analysis, cell fractionation, and functional assays to provide a robust characterization of hemocyte populations in Crassostrea gigas.
(1) The innovative use of marker genes, quantifying their expression within specific cell fractions, allows for precise annotation of different cellular clusters, bridging the gap between morphological observations and transcriptional profiles.
(2) The study provides detailed insights into the immune functions of different hemocyte types, including the identification of professional phagocytes, ROS-producing cells, and cells expressing antimicrobial peptides.
(3) The identification and analysis of transcription factors specific to different hemocyte types and lineages offer crucial insights into cell fate determination and differentiation processes in oyster immune cells.
(4) The authors significantly advance the understanding of oyster immune cell diversity by identifying and characterizing seven distinct hemocyte transcriptomic clusters and morphotypes.
These strengths collectively make this study a significant contribution to the field of invertebrate immunology, providing a comprehensive framework for understanding oyster hemocyte diversity and function.
Weaknesses:
(1) The authors performed scRNAseq/lineage analysis and cytological analysis on oysters from two different sources. The methodology of the study raises concerns about the consistency of the sample and the variability of the results. The specific post-processing of hemocytes for scRNAseq, such as cell filtering, might also affect cell populations or gene expression profiles. It's unclear if the seven hemocyte types and their proportions were consistent across both samples. This inconsistency may affect the correlation between morphological and transcriptomic data.
We thank the reviewer for highlighting the importance of sample consistency and potential variability, and we acknowledge the need for clarification regarding the use of oysters from two different sources.
Oysters from La Tremblade (known pathogen-free in standardized conditions) were used to establish the hemocyte transcriptomic atlas through scRNA-seq and for cytological analyses. Oysters from the Thau Lagoon (Bouzigues) were used for cytological, functional, and fractionation experiments. These oysters were sampled during non-epidemic periods and monitored under Ifremer’s microbiological surveillance to ensure pathogen free status.
The cytological results (hemocytograms) presented in Figure 3 and Supplementary Figure S3 were derived from Thau Lagoon oysters. To clarify, we updated The Table 3 in Figure 3 and Supplementary Figure S3 to explicitly display hemocyte counts for oysters from both La Tremblade and Thau Lagoon. These data confirm consistent proportions of hemocyte types across both sources, with no significant differences (p > 0.05).
Hemocyte isolation and filtering protocols were rigorously optimized to preserve cell viability and morphology during scRNA-seq library preparation. Viability assays and cytological evaluations confirmed that these procedures did not significantly alter hemocyte populations or their proportions. Sample processing times were minimized to ensure that the scRNA-seq results accurately reflect the native state of the hemolymph.
Taken together, our results confirm that variability between oyster sources or methodological processes did not compromise our findings. This ensures that the correlations between morphological and transcriptomic data are reliable and robust.
(2) The authors claim to use pathogen-free adult oysters (lines 95 and 119), but no supporting data is provided. It's unclear if the oysters were tested for bacterial and viral contaminations, particularly Vibrio and OsHV-1 μVar herpesvirus.
The oysters used in this study were sourced from two distinct origins. First, the animals (18 months old) utilized for scRNA-seq and cytological analyses were obtained from the Ifremer controlled farm located in La Tremblade, France (GPS coordinates: 45.7981624714465, -1.150171788447683). This facility exclusively produces standardized oysters bred in controlled conditions with filtered seawater, entirely isolated from environmental known pathogens. The oysters from this source are certified “pathogen-free” upon arrival at the laboratory, following Ifremer's stringent quality control protocols. We have replaced the term 'pathogen-free' with 'known pathogen-free’ (line 123) to accurately reflect the animals' true status.
Second, for the fractionation experiments and functional tests, oysters were either sourced from the aforementioned Ifremer farm or from a producer located in the Thau Lagoon, France (GPS coordinates: 43.44265228308842, 3.6359883059292057). The Thau Lagoon is subject to comprehensive environmental and microbiological surveillance by the Ifremer monitoring network and the regional veterinary laboratory. For these experiments, we specifically selected oysters aged 18 months - an age associated with reduced susceptibility to OsHV-1 μVar herpesvirus - and ensured that sampling occurred outside of any detected epidemic periods. Furthermore, prior to experimentation, hemocyte samples from all oysters were examined. Oysters showing signs of contamination or exhibiting abnormal hemocyte profiles were excluded from the study.
These measures ensured that the oysters used in this work were of high health status and minimized the likelihood of bacterial or viral contamination, including Vibrio and OsHV-1 μVar.
(3) The KEGG and Gene Ontology analyses, while informative, are very descriptive and lack interpretation. The use of heatmaps with dendrograms for grouping cell clusters and GO terms is not discussed in the results, missing an opportunity to explore cell-type relationships. The changing order of cell clusters across panels B, C, and D in Figure 2 makes it challenging to correlate with panel A and to compare across different GO term categories. The dendrograms suggest proximity between certain clusters (e.g., 4 and 1) across different GO term types, implying similarity in cell processes, but this is not discussed. Grouping GO terms as in Figure 2A, rather than by dendrogram, might provide a clearer visualization of main pathways. Lastly, a more integrated discussion linking GO term and KEGG pathway analyses could offer a more comprehensive view of cell type characteristics. The presentation of scRNAseq results lacks depth in interpretation, particularly regarding the potential roles of different cell types based on their transcriptional profiles and marker genes. Additionally, some figures (2B, C, D, and 7C to H) suffer from information overload and small size, further hampering readability and interpretation.
Thank you for your valuable suggestions regarding the presentation and interpretation of our KEGG and Gene Ontology (GO) analyses. In response, we revised Figure 2 to enhance clarity and provide deeper insights into cell-type relationships and biological processes.
The revised figure 2 reorganizes GO term analysis into a more intuitive layout, grouping related biological processes and pathways in a structured manner. This approach replaces the dendrogram organization and provides a clearer visualization of key pathways for each cell cluster.
(4) The pseudotime analysis presented in the study provides modest additional information to what is already manifest from the clustering and UMAP visualization. The central and intermediate transcriptomic profile of cluster 4 relative to other clusters is apparent from the UMAP and the expression of shared marker genes across clusters (as shown in Figure 1D). The statement by the authors that 'the two types of professional phagocytes belong to the same granular cell lineage' (lines 594-596) should be formulated with more caution. While the pseudotime trajectory links macrophage-like (ML) and small granule-like (SGC) cells, this doesn't definitively establish a direct lineage relationship. Such trajectories can result from similarities in gene expression induced by factors other than lineage relationships, such as responses to environmental stimuli or cell cycle states. To conclusively establish this lineage relationship, additional experiments like cell lineage tracing would be necessary, if such tools are available for C. gigas.
We appreciate the reviewer’s detailed feedback on the pseudotime analysis and its interpretation. While we acknowledge that the clustering and UMAP visualization provide valuable insights, the pseudotime analysis offers a complementary approach by highlighting significantly expressed genes, including key transcription factors, that might otherwise be overlooked in differential expression analysis based solely on Log2FC between clusters. In our study, the pseudotime analysis revealed transcription factors known to play crucial roles in hemocyte differentiation, providing additional depth to our understanding of hemocyte lineage relationships and functional specialization.
Regarding the statement on lines 594 - 596, we agree that the evidence provided by pseudotime trajectories does not definitively establish a direct lineage relationship between macrophage-like (ML) and small granule-like (SGC) cells. Instead, these trajectories suggest potential developmental connections that warrant further investigation. We propose the following revised sentence (lines 616 to 618) :
"The pseudotime trajectory linking macrophage-like (ML) and small granule-like (SGC) cells suggests a potential developmental relationship within the granular cell lineage; however, this hypothesis requires further validation."
We also concur with the reviewer that additional experiments, such as cell lineage tracing, would be necessary to definitively establish this relationship. Unfortunately, the long-term cultivation of hemocytes in C. gigas is currently not feasible. However, we are planning to develop FACS-based approaches to separate the seven hemocyte subtypes, which will allow us to refine their ontology and explore their potential lineage relationships more precisely.
(6) Given the mention of herpesvirus as a major oyster pathogen, the lack of discussion on genes associated with antiviral immunity is a notable omission. While KEGG pathway analysis associated herpesvirus with cluster 1, the specific genes involved are not elaborated upon.
Thank you for your valuable observation regarding the lack of discussion on genes associated with antiviral immunity, particularly in the context of herpes virus infection. The KEGG pathway analysis indeed identified a weak signature associated with herpesvirus in Cluster 1, primarily involving genes encoding beta integrins. In humans, beta integrins have been described as receptors facilitating herpesvirus entry (1). However, in the case of naive oysters used in this study, the KEGG signature was subtle, likely reflecting the absence of active viral infection. Additionally, beta integrins are multifunctional molecules that also play critical roles in processes such as cell adhesion, a function attributed to hyalinocytes, as highlighted in our results.
Given the naive status of the oysters and the weak antiviral signature observed, we chose not to discuss these findings in detail in this study. However, ongoing work in our laboratory aims to further investigate the specific hemocyte populations targeted by OsHV-1, which may shed light on the role of integrins in antiviral immunity in oysters.
We hope this clarifies our approach and the context of the KEGG findings. Thank you for bringing this important perspective to our attention.
(7) The discussion misses an opportunity for comparative analysis with related species. Specifically, a comparison of gene markers and cell populations with Crassostrea hongkongensis, could highlight similarities and differences across systems.
In response to the reviewer’s comment, we have added a comparative analysis between C. hongkongensis and C. gigas hemocyte populations, situating our findings within the broader context of invertebrate immune cell diversity and specialization (lines 747 to 760)
Reviewer #2 (Recommendations for the authors):
(1) Lines 92-93: The authors should add references associated with transcriptomic studies of C. gigas hemocytes.
Thank you for pointing this out. In the revised manuscript, we have added references to previous transcriptomic studies of C. gigas hemocytes (line 83).
(2) Line 121 and 127: The authors should clarify whether 3,000 represents the number of cells loaded or their target for analysis.
The number of cells processed was optimized to minimize the occurrence of doublets during scRNAseq. Following 10x Genomics Chromium guidelines, we loaded 4,950 cells to successfully recover a target of 3,000 cells, with a doublet rate of 2.4%, well below the target threshold of 2.5%. This information has been added on line 125 of the document. The target was 3,000 cells, and as reported in Supplementary Table S1, the estimated number of cells after STAR-solo alignment was 2,937. This ensures the reliability and accuracy of single-cell transcriptomic data.
(3) Line 129: "Supp. Table 1" in the text and "Supp. Table S1" in the figure title should be edited.
The inconsistency between "Supp. Table 1" in the text and "Supp. Table S1" in the figure title has been corrected for uniformity throughout the manuscript (line 134).
(4) Line 138-139: The authors should clarify that the heatmap displays the top 10 positively enriched marker genes for each cluster, as identified by Seurat's differential expression analysis. It is important to note that the analysis does not explicitly show under-represented transcripts, but rather highlights the contrast between cluster-specific overexpressed genes and their lower expression in other clusters.
We have clarified that the heatmap displays the top 10 positively enriched marker genes for each cluster, as identified by Seurat's differential expression analysis, and that the analysis highlights cluster-specific overexpressed genes rather than explicitly showing under-represented transcripts (lines 143 - 145).
(5) Figure 1: The authors should consider improving or potentially removing Figure 1C. The gene IDs are not readable due to their small size, which significantly reduces the informative value of the figure. In addition, the data presented in this heatmap is largely redundant with the more informative and readable dot plot in Figure 1D, which shows both expression levels and the percentage of cells expressing each gene.
Thank you for your suggestion regarding Figure 1C. In the revised manuscript, we have removed the original panel C from the main figure and transferred it to Supplementary Figure S1K, which improves readability while retaining the relevant data. We have also renumbered the remaining panels for clarity, with the former panel D now designated as panel C. We believe these adjustments address the reviewer’s concerns and streamline the presentation of the data.
(6) Table 1: The authors should clarify in the legend the statistical significance criteria (adjusted p-value) for the genes listed.
As requested, we have added the adjusted p-value threshold (adj. p-value < 0.05) to the legend of Table 1.
(7) Line 188: The authors should align the text description of the KEGG pathways in cluster 7 with Figure 2A, describing Wnt signaling pathway and clarifying the terminology "endosome pathway" to ensure consistency.
In the revised text, we have aligned our description with Figure 2A by explicitly mentioning the Wnt signaling pathway in cluster 7 (lines 193 to 194).
The endo-lysosomal pathway encompasses a series of membrane-bound compartments and trafficking events responsible for the uptake of macromolecules from the extracellular environment, their subsequent sorting in endosomes, and eventual degradation in lysosomes. This pathway is tightly regulated, ensuring not only the breakdown of macromolecules but also the recycling of membrane components and signaling receptors essential for maintaining cellular homeostasis (2). In our study, the KEGG signatures of cluster 7 highlight the involvement of the endo-lysosomal pathway.
(8) Line 223: The authors should revise the description of cluster 1, avoiding references to morphology at this point in the manuscript, as no morphological data has been presented yet.
We have revised the description of Cluster 1 to remove references to morphology, ensuring consistency with the data presented at this stage of the manuscript (lines 227 to 229) : ”Cluster 1, comprising 27.6 % of cells, is characterized by GO-terms related to myosin complex, lamellipodium, membrane and actin cytoskeleton remodelling, as well as phosphotransferase activity.”
(9) Figure 2: The authors should revise Figure 2 to improve the clarity. For Figure 2A, they should address the redundancy in the "Global and overview maps" category by removing overlapping pathways such as carbon metabolism and biosynthesis of amino acids, which are likely represented in more specific metabolic categories (glycolysis, pentose). They could consider grouping similar pathways together, such as combining "Amino acid metabolism" with "Metabolism of other amino acids," and separating metabolic pathways from cellular processes for easier interpretation. They should also address the surprising absence of certain expected pathways like lipid metabolism, nucleotide metabolism, and cofactor/vitamin metabolism, as well as cellular processes such as cell growth and chromatin modeling. Even if these pathways are not enriched in specific clusters, mentioning their absence could provide valuable context for the reader.
In the revised version of the manuscript, we propose a new representation to facilitate understanding and improve the clarity of the data presentation.
(10) For Figures 2B, C, and D, the authors should significantly increase the font size of text and numbers, ensuring readability at 100% scale in PDF format. They could also add labels directly on each graph to clearly indicate the type of GO terms represented, (Biological Process, Cellular Component, or Molecular Function).
In the revised version of the manuscript, we propose a new representation to facilitate understanding and improve the clarity of the data presentation.
(11) Line 247-250: The authors should revise their description of cell types to follow the same order as presented in Figure 3A.
We have revised the description of cell types in the manuscript to follow the same order as presented in Figure 3A, as requested.
(12) Line 265-266: The authors should develop the significance of the nucleo-cytoplasmic ratio in hemocyte morphology and identification.
We thank the editor for bringing this to our attention and apologize for the discrepancy between the terminology used in the text and the results presented in Figure 3. The text refers to the nuclear-tocytoplasmic ratio (N/C), while the figure mistakenly displays the inverse ratio, cytoplasmic-to-nuclear ratio (C/N). We recognize that this inversion may cause confusion and will ensure consistency between the text and the figure.
To address this, we propose correcting the figure legend and labels in Figure 3 to align with the terminology used in the text (N/C ratio). This will prevent confusion and maintain clarity throughout the manuscript.
The nuclear-to-cytoplasmic (N:C) ratio, also known as the nucleus:cytoplasm ratio or N/C ratio, is a well-established measurement in cell biology that reflects the relative size of the nucleus to the cytoplasm. This ratio is frequently used as a morphologic feature in the diagnosis of atypia and malignancy in human cells, underscoring its diagnostic value. In the context of our study, we use the N:C ratio to provide a more precise and quantitative description of hemocyte types in Crassostrea gigas. Specifically, the N:C ratio allows us to distinguish between different hemocyte morphotypes, such as blasts and granular cells, and to enrich the characterization of their functional specialization. This quantitative measure supports the morphological classification and enhances the reproducibility and clarity of hemocyte identification.
(13) Line 286-294: The authors should review and correct the legend for Figure 3. It seems that the description of results related to Figure 3C has been mistakenly inserted into the legend.
We thank the reviewer for pointing out this issue with the legend of Figure 3. The description of results related to Figure 3C has now been removed from the legend. The revised legend focuses solely on the figure elements, improving clarity and consistency. We believe this adjustment addresses the reviewer's comment effectively.
(14) Figure 3: The authors should revise the legend for Figure 3A to provide more detailed and explicit descriptions of the "Size, shape and particularities" of the ML, SGC, BGC, and VC hemocyte types.
We thank the reviewer for their insightful suggestion to provide more explicit descriptions in the legend for Figure 3A. We have revised the legend to include detailed explanations of the "Size, shape, and particularities" for the ML, SGC, BGC, and VC hemocyte types. Specifically, we have clarified that size refers to the average granule diameter, shape describes the morphology of the granules (e.g., spherical or elongated), and particularities highlight distinguishing features such as granule color or fluorescence properties observed under specific staining or imaging conditions. We believe this updated legend provides the level of detail requested and enhances the clarity of the figure (lines 294 - 297).
(15) Figure 4: The authors should clarify the method used for calculating relative gene expression in Figure 4A and Figure 6. They should explicitly state in the figure legend that the expression was normalized to the Cg-rps6 reference gene, as mentioned in line 835. The authors should also provide details on the calculation method used (e.g., 2-ΔCt method) and confirm whether the reference gene was expressed at similar levels across all clusters.
We thank the reviewer for pointing out the need for additional clarity regarding the calculation of relative gene expression in Figures 4A and 6. To address this, we have revised the legends for both figures to explicitly state that gene expression levels were normalized to the reference gene Cg-rps6 and calculated using the 2^-ΔCt method. We have also confirmed that Cg-rps6 was stably expressed across all hemocyte clusters and explicitly mentioned this in the revised legends. These changes ensure greater transparency and address the reviewer’s concerns (lines 342 to 346).
(16) The authors could consider removing or modifying Figure 4B, as it appears to be redundant with Figure 3C. Both figures show the average percentage of each hemocyte type in the seven Percoll gradient fractions.
We thank the reviewer for highlighting potential redundancy between Figures 3C and 4B. While both figures present the distribution of hemocyte types across Percoll gradient fractions, Figure 4B serves a distinct and critical purpose in the manuscript. Specifically, it provides the numerical data necessary to understand the correlations shown in Figure 4A, where we analyze the relationship between gene expression levels and the distribution of hemocyte types. These detailed percentages are essential for interpreting the statistical robustness and biological relevance of the correlation matrix, which could not be derived solely from the qualitative visualization in Figure 3C.
(17) Figure 5: The authors should address the redundancy between Figure S7B and Figure 5B, as they appear to present the same data. In Figure S7B, "SGC" is incorrectly abbreviated as "G".
In the revised version of the manuscript, we addressed the redundancy between the two figures and we corrected the incorrectly abbreviated SGC.
(18) Line 412: The authors should correct the typographical error, changing "Pecoll" to "Percoll".
In the revised version of the manuscript, we correct this typographical error (line 417).
(19) Line 417: The statement about the inhibitor apocynin likely refers to Figure 5D, not Figure 5C.
In the revised version of the manuscript, we have corrected this reference error to accurately refer to Figure 5D (line 422).
(20) Line 441-444: The authors should provide references to support their annotation of cluster 1 as macrophage-like cells based on macrophage-specific genes. These references should cite established literature on known macrophage gene markers, particularly in bivalves or related species if available. They need to clarify whether specific gene markers exist for each of the hemocyte morphotypes they have identified. If such markers are known from previous studies, they should be mentioned and referenced.
We propose to modify lines 446 to 449 to address the reviewer's concerns. Cluster 1, which we have termed "macrophage-like" due to its pronounced phagocytic activity and reactive oxygen species (ROS) production, is enriched in Angiopoietin-1 receptor expression (Table 1). Angiopoietin receptors belong to the Tie receptor family, which is expressed in a subset of macrophages known as Tie2-expressing monocytes (TEMs) in humans (3–5). While our analysis reveals a strong overexpression of the Angiopoietin-1 receptor, we acknowledge that this receptor is not an exclusive marker for macrophages.
In bivalves, including oysters, no definitive molecular markers have been established for macrophagelike cells as they are defined functionally in this study. Consequently, the identification of such cells relies on their functional characteristics rather than strict marker expression. To clarify, we propose the following revision to the sentence:
Furthermore, this cluster expresses macrophage-related genes, including the macrophage-expressed gene 1 protein (G30226) (Supp. Data S1), along with maturation factors for dual oxidase, an enzyme involved in peroxide formation (Supp. Fig. S8), supporting its designation as macrophage-like based on functional characteristics.
(21) Figure 7: For Figures 7C to 7H, the authors should increase the font size of gene names and descriptions to ensure legibility in both printed versions and digital formats. To simplify these figures, the authors could consider displaying less differentially expressed genes for each lineage, along with the top genes for each differentiation pathway. If detailed gene information is crucial, they could move the full list to a supplementary table and reference it in the figure legend. Regarding Figure 7I, the authors should reorder the transcription factor genes by cluster and specificity to improve visualization and interpretation, like in Figure 1D.
Thank you for these valuable suggestions regarding Figure 7. We have revised Figures 7C–H to ensure improved readability. Furthermore, we have simplified these panels by highlighting fewer differentially expressed genes for each lineage. In Figure 7I, we have reordered the transcription factor genes by cluster and specificity, following a layout similar to Figure 1D, to facilitate clearer visualization and interpretation of the data.
(22) Line 490: The authors should provide more precise references to the specific GO terms and figure panels they are discussing.
To address this comment, we have revised the sentence and provided additional information in the text to clearly indicate where the corresponding figure panels can be found in the manuscript (line 499)
(23) Line 510: The authors state that "5 cell lineages could be defined," but the subsequent text and Figure 7C to H actually present 6 distinct lineages.
We have corrected in the manuscript. 6 lineages could be defined (line 521).
(24) Line 534: The authors should consider further investigating the pluripotent potential of cluster 4 cells by exploring known or potential stem cell markers in their scRNAseq data.
Thank you for highlighting the possibility of pluripotent potential of cluster 4. In our current analysis, we did not detect any known stem cell or proliferative markers, nor evidence of a clearly defined hematopoiesis site in the hemolymph. Indeed, previous work suggests that oyster hematopoiesis may occur in tissues such as the gills, implying that stem or progenitor cells might not circulate in the hemolymph under homeostatic conditions. Consequently, it is plausible that our observation of no proliferative cell populations partly reflects their absence in hemolymph, especially in naïve (unstimulated) oysters. To conclusively identify potential progenitor cells and their proliferative activity, further approaches involving deliberate perturbation of hemocyte homeostasis - such as immunological challenge (e.g., Zymosan treatment) combined with lineage-tracing or proliferation assays - would be necessary. These future investigations would not only clarify whether proliferative cells emerge in the hemolymph in response to environmental or pathological stimuli but also help elucidate the broader cellular pathways underlying oyster immune responses.
In response to the reviewer’s comment, we have revised the Discussion (lines 695 to 696) and added : “Nevertheless, we did not detect any canonical stem or progenitor cell populations in our dataset, underscoring the need for future investigations - potentially involving immunological challenges and lineage-tracing assays - to clarify whether proliferative cells circulate in the hemolymph or instead reside primarily in tissue compartments.”
(25) Figure S10: The authors should significantly improve the readability of Figure S10 by increasing the font size. Currently, the small font size makes it impossible for readers to discern the information presented.
Thank you for highlighting the readability concerns regarding Figure S10. In response to your comment, we have increased the overall size and font of the figure, ensuring that all labels and legends are clearly legible in both printed and digital formats. We believe these adjustments will allow readers to more easily interpret the information presented.
(26) Line 896: The authors should correct the typographical error on line 896 by deleting the additional bracket.
In the revised version of the manuscript, we correct this typographical error.
(27) Figure S12: The authors should address the absence of any reference to Figure S12 in the main text of the manuscript.
The reference to Supp. Figure S12 has been corrected. It was a referencing error between Supp. Figure S11(in the discussion, line 670) and Supp. Figure S12.
Bibliography:
(1) G. Campadelli-Fiume, D. Collins-McMillen, T. Gianni, A. D. Yurochko, Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annual Review of Virology 3, 215–236 (2016).
(2) J. P. Luzio, P. R. Pryor, N. A. Bright, Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8, 622–632 (2007).
(3) A. S. Harney, E. N. Arwert, D. Entenberg, Y. Wang, P. Guo, B.-Z. Qian, M. H. Oktay, J. W. Pollard, J. G. Jones, J. S. Condeelis, Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov 5, 932–943 (2015).
(4) M. De Palma, R. Mazzieri, L. S. Politi, F. Pucci, E. Zonari, G. Sitia, S. Mazzoleni, D. Moi, M. A. Venneri, S. Indraccolo, A. Falini, L. G. Guidotti, R. Galli, L. Naldini, Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).
(5) M. De Palma, M. A. Venneri, R. Galli, L. Sergi Sergi, L. S. Politi, M. Sampaolesi, L. Naldini, Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).
Reviewer #3 (Public review):
The paper addresses pivotal questions concerning the multifaceted functions of oyster hemocytes by integrating single-cell RNA sequencing (scRNA-seq) data with analyses of cell morphology, transcriptional profiles, and immune functions. In addition to investigating granulocyte cells, the study delves into the potential roles of blast and hyalinocyte cells. A key discovery highlighted in this research is the identification of cell types engaged in antimicrobial activities, encompassing processes such as phagocytosis, intracellular copper accumulation, oxidative bursts, and antimicrobial peptide synthesis.
A particularly intriguing aspect of the study lies in the exploration of hemocyte lineages, warranting further investigation, such as employing scRNA-seq on embryos at various developmental stages.
In the opinion of this reviewer, the discussion should compare and contrast the transcriptome characteristics of hemocytes, particularly granule cells, across the three species of bivalves, aligning with the published scRNA-seq studies in this field to elucidate the uniformities and variances in bivalve hemocytes.
Reviewer #3 (Recommendations for the authors):
Minor Concerns:
(1) In the context of C. gigas, the notable expansion of stress and immune-related genes in its genome stands out. It is anticipated that the article will discuss the expression patterns of classical immune-related genes like TLR and RLR across different cell clusters.
We appreciate the reviewer's interest in the expression patterns of classical immune-related genes, such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), across different cell clusters in Crassostrea gigas. In our single-cell RNA sequencing (scRNA-seq) analysis, we did not detect significant expression of TLR or RLR genes. This absence can be attributed to several factors. First, technical limitations of scRNA-seq: The droplet-based scRNA-seq technology employed in our study captures only a fraction of the transcripts present in each cell approximately 10–20% (https://kb.10xgenomics.com/hc/en-us/articles/360001539051-What-fraction-of-mRNA-transcriptsare-captured-per-cell). This inherent limitation often results in the underrepresentation of genes with low expression levels. Consequently, TLRs and RLRs, which may be expressed at low levels in certain hemocytes, could be undetected due to this capture inefficiency. TLRs are typically expressed at low basal levels under resting conditions and are upregulated in response to specific stimuli or pathogenic challenges (1, 2). Given that our study analyzed hemocytes in their basal state, the expression levels of these receptors may have been below the detection threshold of the scRNA-seq platform. Furthermore, as highlighted by De Lorgeril et al. (3) the expression of these immune receptors varies depending on the resistance of the oyster. This variability further underscores the dynamic and context-dependent nature of TLR and RLR expression
To comprehensively assess the expression patterns of TLRs and RLRs across different hemocyte clusters, future studies could incorporate targeted enrichment strategies, such as bulk RNA-seq or single-cell technologies with higher capture efficiencies. Additionally, analyzing hemocytes under stimulated conditions or comparing oysters with varying levels of resistance could provide insights into the inducible and context-specific expression of these immune receptors.
(2) Clarification is needed in lines 265-266 regarding the nucleo-cytoplasmic ratio (N/C) terminology to prevent confusion, considering the discrepancy with the results presented in Figure 3.
We thank the editor for bringing this to our attention and apologize for the discrepancy between the terminology used in the text and the results presented in Figure 3. The text refers to the nuclear-tocytoplasmic ratio (N/C), while the figure mistakenly displays the inverse ratio, cytoplasmic-to-nuclear ratio (C/N). We recognize that this inversion may cause confusion and will ensure consistency between the text and the figure.
To address this, we propose correcting the figure legend and labels in Figure 3 to align with the terminology used in the text (N/C ratio). This will prevent confusion and maintain clarity throughout the manuscript.
(3) The selection of cluster 4 as the root for pseudotime analysis based on high ribosomal protein expression raises questions. It would be beneficial to elaborate on the inclusion of other genes, such as cell cycle or mitotic-related genes, to validate the pseudotime analysis outcomes.
We appreciate the reviewer’s insightful comment on the significance of ribosomal proteins in stem cell maintenance.
Hematopoietic stem cells (HSCs) are a population of stem cells that are largely cell-cycle-quiescent (G0 phase) with low biosynthetic activity. Upon stimulation and stress HScs undergo proliferation and differentiation and produce all lineages of hemocytes.
Ribosomal proteins play a multifaceted role in preserving the balance between stem cell quiescence and activation. By ensuring precise regulation of protein synthesis, they allow stem cells to maintain their undifferentiated state while remaining poised for activation when needed. Furthermore, ribosomal proteins contribute to the cellular stress response, safeguarding stem cells from oxidative damage and other stressors that could compromise their functionality. Importantly, ribosomal biogenesis and the dynamic assembly of ribosomes provide a regulatory mechanism that fine-tunes the transition from self-renewal to differentiation, a critical feature of hematopoietic stem cells (HSCs) and other stem cell types. These mechanisms collectively highlight the indispensable role of ribosomal proteins in stem cell biology, underscoring their relevance to our study's findings.
In vertebrate, the maintenance of hematopoietic stem cells (HSCs) and hematopoietic homeostasis is widely acknowledged to rely on the proper regulation of ribosome function and protein synthesis (4). This process necessitates the coordinated expression of numerous genes, including genes that encode ribosomal proteins (RP genes) and those involved in regulating ribosome biogenesis and protein translation. Disruptions or mutations in these critical genes are associated with the development of congenital disorders (5). Among these, Rpl22 (found in cluster 4 with a Log2FC of 1.59) has been shown to play a pivotal role in HSC maintenance by balancing ribosomal protein paralog activity, which is critical for the emergence and function of HSCs (6).
(4) What is the resolution of the cell clustering employed in the study? Given that cluster 1 potentially encompasses two distinct cell types, Macrophage-Like and Big Granule cells, further sub-clustering efforts and correlation analyses between cluster markers and cell morphologies could aid in their differentiation.
Thank you for your inquiry regarding the resolution of our cell clustering. As described in the Materials and Methods section, we used the Seurat FindClusters function with a resolution parameter of r = 0.1 for the scRNA-seq dataset. We performed sub-clustering within Cluster 1, resulting in four distinct subclusters. However, despite analyzing various specific markers, we did not identify any marker uniquely associated with the Big Granule Cell (BGC) morphology. Notably, LACC24 specifically marks a subset of cells within Cluster 1, as shown in Supplementary Figure S8, although this gene alone was insufficient to definitively distinguish a distinct BGC population.
(5) Line 78's statement regarding the primary identification of three hemocyte cell types in C. gigas-blast, hyalinocyte, and granulocyte cells would benefit from including references to substantiate this claim.
We thank Reviewer #1 for their valuable comments, which have allowed us to further improve our manuscript. We have enriched the introduction with the following addition (lines 79 to 82):
“Blast-like cells are considered undifferentiated hemocyte types (Donaghy et al., 2010), hyalinocytes appear to play a key role in wound repair (de la Ballina et al., 2020), and granulocytes are primarily involved in immune surveillance. Among these, granulocytes are regarded as the main immunocompetent hemocyte type (Wang et al., 2017).”
Conclusion:
The authors largely achieved their primary objective of providing a comprehensive characterization of oyster immune cells. They successfully integrated multiple approaches to identify and describe distinct hemocyte types. The correlation of these cell types with specific immune functions represents a significant advancement in understanding oyster immunity. However, certain aspects of their objectives have not been fully achieved. The lineage relationships proposed on the basis of pseudotime analysis, while interesting, require further experimental validation. The potential of antiviral defense mechanisms, an important aspect of oyster immunity, has not been discussed in depth.
This study is likely to have a significant impact on the field of invertebrate immunology, particularly in bivalve research. It provides a new standard for comprehensive immune cell characterization in invertebrates. The identification of specific markers for different hemocyte types will facilitate future research on oyster immunity. The proposed model of hemocyte lineages, while requiring further validation, offers a framework for studying hematopoiesis in bivalves.
Bibliography:
(1) J. Chen, J. Lin, F. Yu, Z. Zhong, Q. Liang, H. Pang, S. Wu, Transcriptome analysis reveals the function of TLR4-MyD88 pathway in immune response of Crassostrea hongkongensis against Vibrio Parahemolyticus. Aquaculture Reports 25, 101253 (2022).
(2) Y. Zhang, X. He, F. Yu, Z. Xiang, J. Li, K. L. Thorpe, Z. Yu, Characteristic and Functional Analysis of Toll-like Receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, Reveals Ancient Origin of TLR-Mediated Innate Immunity. PLOS ONE 8, e76464 (2013).
(3) J. de Lorgeril, B. Petton, A. Lucasson, V. Perez, P.-L. Stenger, L. Dégremont, C. Montagnani, J.M. Escoubas, P. Haffner, J.-F. Allienne, M. Leroy, F. Lagarde, J. Vidal-Dupiol, Y. Gueguen, G.
Mitta, Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome. BMC Genomics 21, 63 (2020).
(4) R. A. J. Signer, J. A. Magee, A. Salic, S. J. Morrison, Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).
(5) A. Narla, B. L. Ebert, Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).
(6) Y. Zhang, A.-C. E. Duc, S. Rao, X.-L. Sun, A. N. Bilbee, M. Rhodes, Q. Li, D. J. Kappes, J. Rhodes, D. L. Wiest, Control of Hematopoietic Stem Cell Emergence by Antagonistic Functions of Ribosomal Protein Paralogs. Developmental Cell 24, 411–425 (2013).
La concentración de glucosa en plasma es una variable sometida a un control estricto. Por la absoluta dependencia del sistema nervioso central de la glucosa, se dispone de sistemas neuroendocrinos que protegen contra la glucosa en sangre baja (es decir, la hipoglucemia).
El cuerpo tiene sistemas especiales (como las hormonas) que detectan cuando la glucosa está baja (hipoglucemia) y actúan para subirla y mantenerla en el nivel adecuado, porque el cerebro necesita glucosa para funcionar correctamente.
el ejercicio suele aumentar la tasa metabólica entre 40 y 50% respecto a la tasa metabólica basal o en reposo
Significa que, durante el ejercicio, tu cuerpo está quemando entre un 40% y un 50% más de energía que la que usaría si estuvieras en reposo (sin hacer nada).
La mezcla de carbohidratos, lípidos y proteínas que se oxidan varía
Si varia la oxidación, pierde electrones, libera energía para que el cuerpo pueda funcionar.
anfibólicas
CONSTRUIR y DESTRUIR, dependiendo de lo que tu cuerpo necesite.
El cambio climático, cada vez más presente en la inflación
Preguntas de discusión: 1. ¿Qué medidas podrían tomar el gobierno Mexicano y los productores agrícolas para mitigar el impacto del cambio climático en la producción y los precios de los productos? 2. ¿Qué acciones internacionales/globales podrían ayudar a reducir los efectos en la inflación y la economía de México? 3. ¿De qué manera el aumento en los precios de los productos agrícolas afecta a diferentes sectores de la población y que se puede implementar para proteger estos sectores?
y 1933 the crisis was approaching. The Associated Press meeting that year ended with AP forbidding its managers from supplying news to the national networks.'5 AP, however, did nothing to prevent its individual members from giving news to local stations. The AP action was close to meaningless.
This measure seemed almost pointless. There seemed to be limited effect with there being more individual members than managers in the Associated Press. This is why there limited results because individuals continued to sell news to local stations resulting in them having to have further prohibition in there next meeting. This made me wonder if there would have been more effectiveness if the AP association carried out the further prohibition rules to begin with?
y
It's every interesting how something so simple can turn very complex by just adding or taking things away such as the two pictures we were shown.
P O S I T I O N S T A T E M E N TA D O P T E D J A N U A R Y 2 0 1 2
2012 was a while ago, especially in technology terms, but the majority of the content in this position statement is still relevant and applicable to current day. Some technologies are named or referred to as "cutting edge" that are now just standard technology. That's the biggest marker of age. Otherwise, it's still good information.
Inhibidores
La columna de la izquierda son inhibidores y la de la derecha, inductores
: «Estén ceñidos vuestros lomos y las lámparas encendidas, y sed como hombres que esperan a que su señor vuelva de la boda, para que, en cuanto llegue y llame, al instante abran. Dichosos los siervos, que el señor al venir encuentre despiertos»
referencia evangelio
12259
DOI: 10.1038/s44321-025-00200-y
Resource: RRID:Addgene_12259
Curator: @olekpark
SciCrunch record: RRID:Addgene_12259
12260
DOI: 10.1038/s44321-025-00200-y
Resource: RRID:Addgene_12260
Curator: @olekpark
SciCrunch record: RRID:Addgene_12260
56261
DOI: 10.1038/s44318-024-00330-y
Resource: None
Curator: @olekpark
SciCrunch record: RRID:Addgene_56261
55124
DOI: 10.1038/s44318-024-00330-y
Resource: RRID:Addgene_55124
Curator: @olekpark
SciCrunch record: RRID:Addgene_55124
55911
DOI: 10.1038/s44318-024-00330-y
Resource: RRID:Addgene_55911
Curator: @olekpark
SciCrunch record: RRID:Addgene_55911
128744
DOI: 10.1038/s44318-024-00330-y
Resource: RRID:Addgene_128744
Curator: @olekpark
SciCrunch record: RRID:Addgene_128744
235661
DOI: 10.1038/s42003-025-07918-y
Resource: Addgene (RRID:SCR_002037)
Curator: @olekpark
SciCrunch record: RRID:SCR_002037
22575
DOI: 10.1038/s42003-025-07899-y
Resource: None
Curator: @olekpark
SciCrunch record: RRID:Addgene_22575
27080
DOI: 10.1038/s42003-025-07899-y
Resource: RRID:Addgene_27080
Curator: @olekpark
SciCrunch record: RRID:Addgene_27080
21162
DOI: 10.1038/s42003-025-07899-y
Resource: RRID:Addgene_21162
Curator: @olekpark
SciCrunch record: RRID:Addgene_21162
CVCL_9771
DOI: 10.1038/s42003-025-07899-y
Resource: (RRID:CVCL_9771)
Curator: @scibot
SciCrunch record: RRID:CVCL_9771
plasmid_27077
DOI: 10.1038/s42003-025-07899-y
Resource: RRID:Addgene_27077
Curator: @scibot
SciCrunch record: RRID:Addgene_27077
plasmid_21164
DOI: 10.1038/s42003-025-07899-y
Resource: RRID:Addgene_21164
Curator: @scibot
SciCrunch record: RRID:Addgene_21164
plasmid_27078
DOI: 10.1038/s42003-025-07899-y
Resource: RRID:Addgene_27078
Curator: @scibot
SciCrunch record: RRID:Addgene_27078
pXP420
DOI: 10.1038/s41598-025-93222-y
Resource: None
Curator: @olekpark
SciCrunch record: RRID:Addgene_26844
plasmid_1736
DOI: 10.1038/s41598-025-93222-y
Resource: RRID:Addgene_1736
Curator: @scibot
SciCrunch record: RRID:Addgene_1736
28289
DOI: 10.1038/s41467-025-57614-y
Resource: RRID:Addgene_28289
Curator: @olekpark
SciCrunch record: RRID:Addgene_28289
12259
DOI: 10.1038/s41467-025-57614-y
Resource: RRID:Addgene_12259
Curator: @olekpark
SciCrunch record: RRID:Addgene_12259
Si el diagnóstico a nuestros males contemporáneos es la decadencia absoluta e inhumanidad del sistema capitalista, ¿cómo entonces debemos habitar la contradicción de utilizar herramientas de creación digital?
Normalmente la transición del feudalismo al capitalismo se piensa a partir de la imprenta y la colonización de América. Me pregunto si a partir de lo digital y la colonización de Marte no estaremos entrando en algo distinto al tecnofascismo. Lo de tecnofeudalismo no lo comento porque no tiene sentido - el feudalismo era descentralizado; el gobierno actual es extremadamente centralizado, gracias a lo digital.
nefasta trinidad
Padre, hijo y espíritu santo.
Briefing Document : "Balado « Prendre soin de soi »" Source : Excerpts from the podcast "Prendre soin de soi"
Date : Information not explicitly provided in the text.
Participants :
Public Cible : Jeunes du troisième cycle du primaire et du secondaire.
Objectif du Balado : Sensibiliser à l'importance de prendre soin de soi et d'expliquer ce qu'est la santé mentale positive.
Principaux Thèmes et Idées Clés :
Facteurs Influant sur la Santé Mentale :
Connaissance de ses Forces et Qualités et celles des Autres : S'appuyer sur le soutien de son entourage.
Bénéfices de Prendre Soin de Soi :
Contribuer au bien-être collectif : "si on se sent bien ben on va être capable de de refléter un état d'esprit des attitudes qui vont favoriser le bien-être de la collectivité des amis de notre famille".
Le Bien-être est Collectif :
Conseils Pratiques et Ressources :
Citations Clés :
Conclusion :
Le balado "Prendre soin de soi" aborde de manière accessible et informative l'importance de la santé mentale positive chez les jeunes. Il démystifie le concept, souligne la normalité des émotions et propose des stratégies concrètes pour cultiver le bien-être individuel et collectif.
L'accent est mis sur la connaissance de soi, la gestion des émotions, la qualité des relations et l'adoption d'un discours intérieur bienveillant.
Les interventions des expertes apportent une perspective scientifique et pratique, encourageant les jeunes à prendre activement soin de leur santé mentale et de celle de leur entourage.
This course is made up entirely of open educational resources (OER). In other words,you don’t have to pay a cent for textbooks.
E- It took me some time to learn how to use this. I'm very glad that this course is using online material. Helps my wallet.
1 to: 1 do: [:i | Transcript show: i*2 "asString"; cr ].
por que el resultado es 1?.... pensaba que debia ser 2
poblar variables de los valores asociados a ellas
¿Qué implica poblar variables de los valores, más allá de colocar cosas dentro de la caja?
Date today + 3 weeks.
se me dificulta un poco entender en esta parte cual es el mensaje y los objectos
#('hello' 'World') at: 2 put: 'Pharo'; yourself.
Me sale el error "read-only"
calcula el resultado lo muestra
Mientras que inspeccionar es la operación por omisión en la que estamos interesados para explorar los datos, la otra, hacer, es comúnmente utilizada también.
Es decir, que son dos operaciones similares?
Con la transformación de la lógica de sólo silogística a serconsiderada de un modo más matemático, con Boole y la escuela algebraica por un lado y con Frege con elotro aun la noción de normatividad no había cambiado mucho
Creo que hoy no diría esto, pero bueno, son cosas que pensaba en ese tiempo y momento.
Désormais, tout le monde peut parler de n’importe quoi à n’importe qui, et cela au sein même de l’espace public. De cette manière, les conversations ordinaires des internautes sont venues se greffer aux informations médiatiques diffusées sur le web – lesquelles sont alors devenues des objets de discussions à demi joueuses et moqueuses.
Précédemment, l'autrice a démontré que le contexte de discussion avait des conséquences dans la diffusion de fausses informations. A partir de là, (avec l’adverbe désormais) elle acte que chacun peut s'exprimer, échanger librement sur n'importe quel sujet que ce soit ; ce constat permet de démocratiser la parole jusqu'à mélanger les informations formelles avec les échanges informels. L'autrice qualifie les discussions de joueuses et moqueuses Elle semble généraliser son constat. Elle devrait nuancer ses propos car cela semble réducteur. En effet, cela n'est représentatif que d'une partie des échanges en réseau. Il y a certains internautes qui adoptent ce style de ton, et d'autres qui dispensent des échanges/informations sérieuses.
« C’est très drôle. À mon avis c’est une fake news mais c’est drôle, ça me fait rire. Que ça soit vrai ou faux je m’en fous, j’en parle. » (Homme, 67 ans, retraité) « C’est le genre de truc on va sur Fb, Insta, Twitter et compagnie et on se dit : “t’as vu !”. On va en parler 5mn mais sur un ton très léger. C’est pas un discours où on va se poser, où on va faire le pour, le contre. » (Femme, 26 ans, étudiante) « Ça l’info elle n’est pas crédible non plus. Mais c’est l’espèce de lien que tu t’envoies parfois pour faire marrer. Elle serait réceptive à ce type d’humour. […] Mais en soit ça serait une espèce de fake news que mon père serait susceptible de lire et qui l’alerterait. Il réagirait au quart de tour, de manière impulsive. On est tellement bombardés de Unes. Je l’enverrai pour l’emmerder. Je lui dirai “regarde il y a encore plus de clandestins qui vont arriver”. Je vérifierai qu’il regarde bien ses sources. […] Parce que c’est du raz-les-paquerettes. Parce que c’est devenu tellement un “meme” ou un sujet de défouloir que tu te dis “allez, et une de plus” Et pourquoi anonyme ? Ben parce que tu pourrais être méchant. » (Homme, 29 ans, serveur)
L'autrice diffuse des témoignages pour confirmer que le ton est relâché lorsque qu'on partage des fake news. Cela étant est-ce que cela justifie t-il les motivations des personnes optant pour ce comportement, pas sûr. Par ailleurs, en lisant les témoignages, nous pouvons nous demander si le partage de fausses informations ne seraient pas renforçateurs de liens sociaux contrairement à l'échange d'informations exactes?
Ensuite parce que ces traces numériques sont bien laconiques par rapport aux commérages, parlementages ou ergotages que la réception de « fake news » est susceptible d’engendrer dans la vie réelle. Car après tout, est-ce parce qu’une « fake news » a été partagée par des milliers d’internautes que chacun d’entre eux y a cru ?La voix de la recherche, tous les jours dans vos mails, gratuitement. S'abonner Que ce soit sur Facebook ou dans un groupe WhatsApp, au téléphone ou au comptoir d’un café, les réactions des individus face aux informations qu’ils reçoivent peuvent être multiples et variées. byronv2/Flickr, CC BY-SA Ne se peut-il pas au contraire que certains l’aient diffusée pour signaler sa fausseté comme ce fut par exemple le cas pour l’infox ayant désigné Emmanuel Macron comme étant gay ? Ou encore, pour la détourner et s’en moquer auprès de leurs amis ? Difficiles à appréhender, ces questions nécessitent d’aller à la recherche des significations cachées derrière certaines données numériques
On retrouve un deuxième argument . Sa critique nous amène à privilégier les éventuelles conséquences dans la vie réelle plutôt qu'aux traces laissées par le numérique. Sa question est intéressante parce qu'elle nous invite à nous demander si nos croyances pour les fake news dépendent de la quantité de diffusion ou de nos facteurs individuels? En suivant elle soulève l'utilité potentielle de certains fake news pour se moquer ou révéler une tromperie. Cela a pour effet de proposer de fait, une réflexion nuancée sur la réception, interprétation, manipulations des informations transmises. Toutefois, l'autrice pourrait contextualiser les raisons qui poussent à se moquer ou fausser l'information, préciser si ce procédé est courant ou isolé, analyser les motivations pour y recourir. https://www.lemonde.fr/les-decodeurs/article/2017/12/20/derriere-les-fausses-informations-il-y-a-souvent-des-motivations-financieres_5232487_4355770.html
Author response:
The following is the authors’ response to the original reviews.
Overview:
We appreciate all the constructive comments from the reviewer and the reviewing editor, as their suggestions have significantly improved our manuscript. In response to their comments, we have made several key revisions: First, we have performed new colocalization analyses between the active zone marker UNC-10::GFP and all UNC-13L variants (UNC13L, UNC-13L<sup>HK</sup>, UNC-13L<sup>D1-5N</sup>, and UNC-13L<sup>HK+D1-5N</sup>, all tagged with mApple). These results confirm that the mutations do not affect synaptic localization. Second, we have provided a clearer explanation of the “gain-of-function” term used in this study, emphasizing that it reflects an increased SV release due to C1-C2B module dysfunction rather than a single mechanistic state. Third, we have expanded the discussion on the physiological implications of the C1-C2B model, particularly its role in regulating synaptic transmission under varying neuronal activity conditions. Finally, to improve clarity and focus, we have removed unnecessary speculative discussions, ensuring that the revised manuscript centers on the most relevant findings.
We have reorganized the manuscript to incorporate these new results into the figures and text. Full responses to all reviewer comments are provided below. We hope that the reviewer and the editor find these revisions satisfactory and that our manuscript is now suitable for publication in eLife.
Joint Public Review:
Summary:
In this manuscript, the authors investigate how different domains of the presynaptic protein UNC-13 regulate synaptic vesicle release in the nematode C. elegans. By generating numerous point mutations and domain deletions, they propose that two membrane-binding domains (C1 and C2B) can exhibit "mutual inhibition," enabling either domain to enhance or restrain transmission depending on its conformation. The authors also explore additional Nterminal regions, suggesting that these domains may modulate both miniature and evoked synaptic responses. From their electrophysiological data, they present a "functional switch" model in which UNC-13 potentially toggles between a basal state and a gain-of-function state, though the physiological basis for this switch remains partly speculative.
Strengths:
(1) The authors conduct a thorough exploration of how mutations in the C1, C2B, and other regulatory domains affect synaptic transmission. This includes single, double, and triple mutations, as well as domain truncations, yielding a large, informative dataset.
(2) The study includes systematically measuring both spontaneous and evoked synaptic currents at neuromuscular junctions, under various experimental conditions (e.g., different Ca²⁺ levels), which strengthens the reliability of their functional conclusions.
(3) Findings that different domain disruptions produce distinct effects on mEPSCs, mIPSCs, and evoked EPSCs suggest UNC-13 may adopt an elevated functional state to regulate synaptic transmission.
Weaknesses:
It remains unclear whether the various domain alterations truly converge on a single "gain-offunction" state or instead represent multiple pathways for enhancing UNC-13 activity. Different mutations selectively affect spontaneous or evoked release, suggesting that each variant may not share the same underlying mechanism. Moreover, many conclusions rely on combining domain deletions or point mutations, yet the electrophysiological data show distinct outcomes across EPSCs, IPSCs, mini, and evoked responses. This raises questions about whether these manipulations all act on the same pathway and whether their observed additivity or suppression genuinely reflects a single mechanistic process. A unifying model-or at least a clearer explanation of why the authors infer one mechanistic state across different domain manipulations would strengthen the paper's conclusions.
We appreciate the comment and understand the potential confusion regarding the use of the term "gain-of-function" in the manuscript. To clarify, the gain-of-function state described in this study does not refer to a single specific mechanistic change in UNC-13 but rather to a high synaptic vesicle (SV) release state achieved by disrupting the C1-C2B module - either through dysfunction of the C1 domain or the C2B domain (as seen with the HK and DN mutations).
Our findings support a "seesaw" model in which the C1 and C2B domains maintain a dynamic balance in their interaction with the plasma membrane, binding to DAG and PIP2. This balance may increase the energy barrier for SV release, preventing excessive neurotransmitter release under basal conditions. However, the C1-C2B toggle may be disrupted by high neuronal activity and act in an unbalanced state, thereby enhancing synaptic transmission (i.e., the gain-of-function state). To address these concerns, we have provided a clearer explanation of this functional switch in the revised version of the manuscript (page 27).
Regarding the differences between spontaneous and evoked neurotransmitter release, our previous studies have revealed that these two forms of release do not always respond similarly to various unc-13 mutations. This is a common phenomenon observed in other synaptic protein mutants, including synaptotagmin, tomosyn, and complexin, which indicates distinct yet partially overlapping regulatory mechanisms. Our model is well supported by most of the electrophysiological results from HK, DN, and HK+DN mutations across different unc-13 isoforms (UNC-13L, UNC-13S, UNC-13R, UNC-13ΔC2A, UNC-13ΔX). The main exception is that in UNC-13ΔX<sup>HK+DN</sup> mutants, the changes in mEPSCs and mIPSCs differ from those observed in evoked EPSCs. This suggests that the mechanisms regulating the functional switch of unc-13 may differ slightly between spontaneous and evoked release. Since the X region of unc-13 and Munc13 remains largely uncharacterized, our findings provide intriguing insights into its potential functional role.
The manuscript proposes that UNC-13 toggles from a basal to a "gain-of-function" state under normal synaptic activity. However, it does not address when or how this switch might occur in vivo, since it is demonstrated principally via artificial mutations. Providing direct evidence or additional discussion of such switching under physiological conditions would be particularly informative.
What is the physiological significance of the proposed gain-of-function state? The data suggest that certain mutants (e.g., HK+D1-5N) lacking the gain-of-function state can still support synaptic transmission at wild-type levels. How do the authors reconcile this with the idea that the gain-of-function state plays a critical role at the synapse?
We appreciate these comments. While our model is mainly based on the dysfunction of the C1-C2B module (through HK and DN mutations), it provides a potential physiological framework for understanding how the structural balance of C1-C2B relates to the variability of synaptic transmission in the nervous system. In the CNS, synaptic transmission is highly variable, and the temporal pattern of the presynaptic activity may require dynamic switching of the fusion machinery, including UNC-13, between different functional modes, thereby triggering synaptic transmission at various levels. Our model suggests that under conditions of high neuronal activity, the C1-C2B module may transition from a balanced to an unbalanced state (gain-of-function state), thereby enhancing synaptic transmission.
Regarding the physiological significance of the gain-of-function state, we acknowledge that certain mutants (e.g., HK+D1-5N) lacking this state can still support wild-type levels of synaptic transmission. This observation suggests that the gain-of-function state may not be strictly required for baseline synaptic function but rather plays a modulatory role under specific conditions, such as heightened neuronal activity or synaptic plasticity. Further investigations will be needed to determine the precise in vivo triggers and functional consequences of this switch under physiological conditions. Moreover, we will focus on several linker regions (between C1 and C2B, C2B and MUN) to investigate their potential roles in regulating synaptic transmission and their broader functional significance in UNC-13 dynamics.
The authors determined the fluorescence intensity of mApple-tagged UNC-13 variants (Figure 1J-K and Figure 7J-K), finding no significant changes compared to the wild-type. However, a more detailed analysis of the density or distribution of fluorescent puncta in axons could clarify whether certain mutations alter the localization of UNC-13 at synapses. Demonstrating colocalization with wild-type UNC-13 (or another presynaptic marker) would help rule out mislocalization effects.
We appreciate the comment. In response, we have included a more detailed analysis of the synaptic localization of both wild-type and mutated UNC-13L in the revised manuscript. Our data show that in all scenarios, UNC-13 proteins exhibit strong colocalization with the active zone marker UNC-10::GFP (Figure 1L). Along with the fluorescence intensity data in Figure 1J, our findings indicate that the C1 and C2B mutations do not affect the expression level or the localization of UNC-13 at synapses. These results have been incorporated into the revised manuscript (page 8) and in Figure 1L.
The study mainly relies on extrachromosomal transgenes, which can show variable copy numbers and expression levels among individual worm strains. This variability might complicate interpretation, as differences in expression could mask or exaggerate certain phenotypes.
We agree that the expression levels of synaptic proteins can influence synaptic transmission levels. However, given the large number of mutations and truncations employed in this study, generating single-copy rescue lines for all transgenic strains would be a significant undertaking. On average, we need to microinject 50-100 worms to obtain one single-copy line, whereas injecting only 5-10 worms allows us to generate at least three independent extrachromosomal arrays. Based on our previous work, we found that the synaptic transmission levels are comparable between various extrachromosomal rescue arrays of unc13 and their single-copy rescue lines (e.g., UNC-13L, UNC-13S, UNC-13R, UNC-13ΔC2A, UNC-13ΔC2B, etc.). In future studies, we aim to use single-copy expression or CRISPRbased methods to induce deletions or mutations in various synaptic proteins.
Finally, the discussion is somewhat diffused. Streamlining the text to focus on the most direct connections would help readers pinpoint the key conclusions and open questions.
We appreciate the comment. As suggested, we have refined the discussion section. Specifically, we have removed the last part of the discussion (Functional roles of the linkers in UNC-13).
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
(1) Clarify the "Gain-of-Function" State. Provide stronger justification or explicit discussion of whether all manipulations that enhance SV release truly correspond to the same mechanistic state or if multiple conformational states might be at play.
The “gain-of-function” state in this manuscript refers to a specific conformational status of UNC-13 that enhances synaptic vesicle (SV) release probability (both spontaneous and evoked) as a result of mutations (HK and DN) in the C1 and C2B domains. This effect is observed across multiple UNC-13 isoforms, including UNC-13L, UNC-13S, and UNC-13R. Prior studies from our group and others have demonstrated that C1 and C2B exhibit conserved functions in regulating synaptic transmission (Li et al., 2019, Cell Reports; Liu et al., 2021, Cell Reports; Michelassi et al., 2017, Neuron), supporting the idea that these domains share a common mechanism for modulating SV release. Given that C1 and C2B act as a functional unit (Michelassi et al., 2017, Neuron; and this study), we define all synaptic states induced by the dysfunction of these two domains as the "gain-of-function" mode.
However, it is important to note that this classification does not apply to high-release probability states induced by mutations in other domains.
The concept of a gain-of-function state due to C1 and C2B dysfunction has been previously proposed in studies of Munc13. Basu et al. (2007, Journal of Neuroscience) demonstrated that the H567K mutation in Munc13-1 C1 increases both spontaneous and evoked release probability, leading to a gain-of-function mode. Similarly, work from the Südhof group showed that KW and DN mutations in Munc13-1 C2B also enhance release probability, thereby inducing a gain-of-function state (Shin et al., 2010, Nature Structural & Molecular Biology). Our recent findings further support this idea, showing that UNC-13 C2B D3,4N (Li et al., 2019, Cell Reports; Liu et al., 2021, Cell Reports; Michelassi et al., 2017, Neuron) and the newly identified D1-5N mutation (this study) significantly elevate SV release, consistent with the D1,2N mutations reported by Shin et al.
Overall, our study integrates and extends previous findings, providing strong evidence that the C1 and C2B domains function as a regulatory switch between a basal physiological mode, a gain-of-function mode (enhanced release), and a loss-of-function mode (impaired release). This framework advances our understanding of how C1 and C2B dysfunction affects synaptic transmission and plasticity.
(2) Add comparisons to wild-type UNC-13L: When presenting data for deletions/mutants as "controls," include a visual reference (e.g., dashed line in figures) showing wild-type UNC13L levels. This will help readers see whether each construct is above or below the normal activity baseline.
As suggested, a dashed line showing the level of UNC-13L has been added to the bar graphs of all evoked EPSCs. The functional switch model is well supported by the results of the evoked EPSCs.
(3) Mutant and wild-type UNC-13 colocalization analysis: Demonstrating whether each mutant localizes robustly to synapses, in comparison to wild-type UNC-13, would bolster the interpretation of electrophysiological changes. If the authors have these data, adding them would address the possibility of mislocalization.
We agree with the reviewer that there would be value to address the possibility of mislocalization. However, in our experience working with UNC-13 mutant colocalization, we have found that neither deleting the X, C1 and C2B domains in UNC-13L nor deleting C1 and C2B domain in UNC-13MR or UNC-13R altered the synaptic colocalization with the active zone protein UNC-10/RIM (Li 2019, Liu 2021), suggesting that C1 and C2B domains in UNC-13 are not involved in the regulation of protein localization. Thus, the mutations in the C1 and C2B domains are unlikely leading to protein mislocalization in the synaptic region.
(4) If possible, adding analysis using single-copy transgenes to confirm that extrachromosomal array expression variability does not qualitatively change the conclusions.
We strongly agree with the reviewer that single-copy transgenes would provide more stable protein expression levels and further consolidate our conclusions. However, several factors give us confidence that the extrachromosomal array rescue approach does not introduce significant variability in our results: First, our prior research has shown that SV release levels are generally comparable between extrachromosomal arrays carrying various unc13 transgenes and their corresponding single-copy rescue lines (e.g., UNC-13L, UNC-13S, UNC-13R, UNC-13ΔC2A, and UNC-13ΔC2B). Second, the major conclusions in this study are drawn from highly consistent and robust changes in SV release between different rescue lines (e.g., UNC-13L<sup>HK+DN</sup> vs UNC-13L<sup>DN</sup>; UNC-13S<sup>HK+DN</sup> vs UNC-13S<sup>HK</sup> or UNC-13S<sup>DN</sup> ). Third, our imaging data indicate that the protein levels are indistinguishable between different unc-13 rescue arrays carrying C1 and C2B mutations, further supporting the validity of our findings.
Additionally, due to our recent relocation to a new institute, we are still in the process of setting up our microinjection system. Generating single-copy transgenes for all the extrachromosomal arrays used in this study would require significant time. We appreciate the reviewer’s understanding of our current situation. For our future studies regarding unc-13 and other synaptic proteins, we will prefer to use single-copy expression rather than extrachromosomal arrays.
(5) Reduce the length and speculation in the Discussion. A concise discussion that focuses on the most direct implications of the present findings will help improve the readability of this paper.
We appreciate the comment. As suggested, we have refined the discussion section.
Specifically, the last part of the discussion (Functional roles of the linkers in UNC-13) was removed.
(6) Minor formatting detail: In Figure 5C (left panel), adjust the y-axis label to ensure it aligns properly and improves clarity.
We appreciate the reviewer’s suggestion and have adjusted the y-axis label accordingly in the revised version (see revised Figure 5).
Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Dear Review Commons editorial team,
Thank you for coordinating the thorough and careful review of our manuscript. We are especially grateful to the four anonymous reviewers for recognizing the value of our work and for their constructive suggestions on how to improve it.
We are encouraged by the positive reception of our main conclusions on the robustness of adaptation to DNA replication stress and its relevance to multiple fields. All reviewers provided insightful comments, with reviewers #2 and #4 emphasizing that further experimental validation of the hypothesized role of reduced dNTPs in alleviating fitness during constitutive DNA replication stress would strengthen the paper. While the precise molecular mechanisms underlying this suppression are not the primary focus of this manuscript, we are eager to perform additional experiments based on the reviewers’ suggestions.
Below, we present a detailed revision plan in the form of a point-by-point response to their comments.
Reviewer #1 (Evidence, reproducibility and clarity):
This study investigates the compensatory evolutionary response of Saccharomyces cerevisiae to DNA replication stress, focusing on the influence of genotype-environment interactions (GXE). The authors used a range of experimental conditions with varying nutrient levels to assess evolutionary outcomes under replication stress. Their genomic analysis reveals that while glucose levels affect initial adaptation rates, the genetics of adaptation remain robust across all nutritional environments. The research offers new insights into the adaptability of S. cerevisiae, emphasizing the role of the nutritional environment in evolutionary processes related to DNA replication stress. It identifies recurrent advantageous mutations under different macronutrient availabilities and uncovers a novel role for the RNA polymerase II mediator complex in adaptation to replication stress. Overall, this well-designed study adds to the growing recognition of the complexity and robustness of evolutionary responses to environmental stressors. It provides strong evidence that compensatory evolution to replication stress is robust across varying nutritional conditions. It both challenges and reinforces previous findings regarding the resilience of the yeast genetic interaction network to environmental perturbations. The detailed analysis of specific compensatory mutations and their fitness impacts across different conditions offers valuable insights into adaptive dynamics over 1000 generations, contributing a clear empirical framework for understanding how replication-associated stress shapes evolutionary outcomes in diverse environments.
Based on the analysis:
1) The conclusions are generally well-supported by the presented data. The evolution experiments and genomic analyses are robust and provide convincing evidence for the study's main claims. The authors took steps to eliminate bias, such as maintaining an adequate Ne, which, if not done, could have compromised their conclusions by affecting genetic drift and limiting the population's access to beneficial mutations.
2) The figures are well-designed and easy to understand.
3) The methodology is well-described and appears reproducible. The authors provide sufficient details on experimental procedures. Experimental replication is adequate, with multiple evolutionary lines.
4) They also made efforts to validate their observations, such as the validation of mutations, the prediction of interactions in the Med14 structure, and its potential implication in gene regulation, as well as the analysis of the cumulative fitness benefit and the reconstruction of the quadruple mutant.
There are, however, a few results that would benefit from further clarification:
1) The experimental design is strong, offering a diverse range of conditions. However, the high glucose condition (8%) stands out as significantly different from the neutral 2% condition, both in range and margin, compared to the low glucose conditions (0.25-0.5%). While this mainly affects growth profiles and evolvability in the early generations, a brief explanation in the discussion would strengthen the conclusions. Specifically, addressing:
a) The rationale behind selecting these particular glucose concentrations.
b) How other glucose concentrations might influence the outcomes. Providing this additional context would enhance the reader's understanding of the experimental setup and its potential implications, while also offering insights into the broader applicability of the findings and possible directions for future research.
We thank the reviewer for pointing out the need to clarify the rationale behind the glucose concentrations used in our study, an aspect we agree should have been better explained. In response, we have added the following text detailing the chosen conditions and their established effects on cellular metabolism.
Line 67: “Glucose is the most abundant monosaccharide in nature, and represents the preferred source of energy for most cells.”
Line 110: “...we grew WT and ctf4Δ cells in varying glucose concentrations to induce distinct physiological states. Low glucose levels (0.25% and 0.5%) induce caloric restriction and ultimately glucose starvation (Lin et al 2000, Smith et al. 2009). These conditions elicit increased respiration (Lin et al., 2002), sirtuins expression (Guarente, 2013), autophagy (Bagherniya et al. 2018), DNA repair (Heydari et al., 2007), and reduced recombination at the ribosomal DNA locus (Riesen and Morgan, 2009) ultimately extending lifespan in several organisms (Kapahi et al., 2016). In contrast, standard laboratory conditions typically use 2% glucose, promoting a rapid proliferation environment to which strains have been adapted since laboratory domestication (Lindergren, 1949). Finally, elevated glucose concentrations (such as 8%) result in higher ethanol production (Lin et al., 2012) and reactive oxygen species (ROS) levels (Maslanka et al., 2017).
2) In the discussion section, a more explicit comparison with similar studies in other model organisms would help contextualize the findings within the broader field of evolutionary biology. While the results appear robust, it would be beneficial to explore how they align with or contrast to previous studies on DNA damage, particularly in bacteria or highly complex eukaryotes.
We appreciate this suggestion to better contextualize our findings within the broader literature, as it provides an opportunity to highlight the unique aspects of our work. While many studies have explored how environmental factors shape fitness landscapes and influence evolutionary strategies, to our knowledge, only a few have addressed this in the context of compensatory evolution, where cells must recover fitness lost due to intracellular perturbations. To address this point, we have added a discussion of additional examples involving other model organisms, highlighting their difference with the question asked in this work.
Line 34: “Genotype-by-environment (GxE) interactions are well-documented. For example, several studies on E. coli have demonstrated how different environments influence fitness and epistatic interactions among adaptive mutations in the Lenski Long-Term Evolution Experiment (Ostrowski et al., 2005, 2008; Flynn et al., 2012; Hall et al., 2019). Adaptive mutations in viral genomes similarly exhibit variable fitness effects across different hosts (Lalic and Elena, 2012; Cervera, 2016). Furthermore, interactions between mutations in the Plasmodium falciparum dihydrofolate reductase gene have been shown to predict distinct patterns of resistance to antimalarial drugs (Ogbunugafor et al., 2016). However, the role of environmental factors in shaping evolution within the context of compensatory adaptation, when fitness defects primarily arise from intracellular perturbations, remains much less explored.”
However, if the reviewer have particular additional studies in mind, we welcome further suggestions to include in the final manuscript.
Minor comments:
1) The presentation of data in the figures is clear and informative. However, some figure legends could benefit from more detailed explanations. For example, although the statistical tests used are mentioned in the methods section, it would be helpful to also include them in the figure legends, such as in legend 1acde, as well as in all other figures.
We are now reporting the statistical test used for each comparison also in figure legends.
2) In terms of broader conclusions, here are a few suggestions, though they are, of course, optional:
a) The study could benefit from exploring the potential trade-offs of adaptive mutations in the hypothetical return to environments without replication stress, at least theoretically. This would provide a more comprehensive understanding of the evolutionary constraints.
We thank the reviewer for the suggestion, we had performed the measurements but did not comment on them explicitly. We are now commenting on them as follows:
Line 310: “In the WT background, all mutations were nearly neutral, with only minimal deleterious or advantageous effects on fitness depending on glucose concentrations (Fig S4A).”
Line 468: “The nearly neutral effects on fitness of the core adaptive mutations in WT suggest that they are likely to persist even after the initial replication stress is resolved.”
b) A brief discussion of the potential limitations of using lab strains versus wild isolates of S. cerevisiae would offer valuable context for the generalizability of the findings.
This is an excellent point. While addressing it fully would warrant a separate manuscript, we provide our comments here, along with similar observations raised by this and other reviewers, as follows:
Line 450: “How generalizable are our conclusions about the reproducibility of evolutionary repair to DNA replication stress across other organisms, species, or replication challenges? While dedicated future studies are needed to fully address these important questions, several lines of evidence are encouraging. A recent report demonstrated that the identity of suppressor mutations of lethal alleles was conserved when introduced into highly divergent wild yeast isolates (Paltenghi and van Leeuwen, 2024). Similarly, earlier work showed that even ploidy, which significantly alters the target size for loss- and gain-of-function mutations, affected only the identity of the genes targeted by selection, while the broader cellular modules involved remained consistent (Fumasoni and Murray, 2021). Moreover, divergent organisms experiencing different types of DNA replication stress exhibit some of the adaptive responses described here. For example, the yeast genus Hanseniaspora, which lacks the Pol32 subunit of the replisome, has also been reported to have lost the DNA damage checkpoint (Steenwyk et al., 2019). Human Ewing sarcoma cells carrying the fusion oncogene EWS-FLI1 frequently exhibit adaptive amplification of the cohesin subunit RAD21 (Su et al., 2021). Together, these findings suggest that while the specific details of DNA replication perturbations and the genomic features of organisms may shape the precise targets of compensatory evolution, the overarching principles and cellular modules affected are broadly conserved.”
Furthermore, we plan to search a recently published database of variants found in natural isolates of S. cerevisiae to assess whether similar evolutionary processes to those described in this study may have occurred in wild strains.
c) It would be valuable to present the differences in ploidy in the context of other studies, such as the nutrient-limitation hypothesis (e.g., 'The Evolutionary Advantage of Haploid Versus Diploid Microbes in Nutrient-Poor Environments' by Bessho, 2015), since, as previously demonstrated by the authors of this article that is being reviewed, ploidy may influence the evolutionary trajectories of DNA repair.
d) Interrelating these three terms: nutrient-limitation, ploidy, and DNA repair could be an interesting avenue to explore in the discussion.
In response to comments c and d, we have now commented on the intersection between ploidy and other types of DNA perturbation in the paragraph starting in line 491 (see response above)
3) Specific details:
a) Line 116: To improve clarity, it would be beneficial to refer to the figure right after the statement: 'However, their relative fitness improved compared to the WT reference as the initial glucose levels (Figure X).'
b) Line 404: The statement about antibiotics and cancer progression is somewhat brief here; it might be helpful to provide more context on why this mechanism influences these processes (here or before).
c) Line 418: "were re-suspended in water containing zymolyase (Zymo Research, Irvine, CA, US, 0.025 μ/μL), incubated at". Something is missing in the units.
d) Line 459: "and G2 phases for each genotype was estimated by deriving the the relative cell distribution". The article "the" is repeated.
e) 1a: The x-axis ticks appear misaligned, which makes it difficult to interpret the boxplots. For example, at 0.25, the tick is closer to the orange boxplot than to the black one. In contrast, at 2%, the tick seems well-centered."
f) Figure 3 could benefit from a general legend at the top regarding the colors, as finding it in 2c was not intuitively easy.
The typos and suggestions raised in points 3a-f have now been corrected in the manuscript.
g) I didn't review the code on GitHub.
Reviewer #1 (Significance):
The main strength of the study is that it shows robustness of compensatory evolution across varying nutrient conditions. The study adds to the growing body of literature on DNA replication stress and evolutionary adaptation by showing that compensatory evolution can occur regardless of nutrient availability. This fundamental finding challenges prior assumptions that nutrient conditions significantly alter evolutionary outcomes, contributing to a more nuanced understanding of how cells respond to stress. Furthermore, the discovery of the RNA polymerase II mediator complex's role in this process is particularly novel and opens new lines of investigation.
Advance in the field: The results advance our understanding of evolutionary biology, particularly in the context of DNA replication stress and compensatory evolution. The study demonstrates that evolutionary repair mechanisms are predictable, even under variable environmental conditions, which has key implications for evolutionary biology and therapeutic applications.
Audience:
This paper will be of interest to a specialized audience in evolutionary biology, genomics, and cell biology, particularly those interested in DNA replication stress and adaptive evolution. Researchers studying stress responses in model organisms, such as S. cerevisiae, will find the findings valuable, as will those working in applied fields where stress adaptation is a critical factor (e.g., industrial yeast fermentation, drug development, disease resistance, cancer research, or aging studies).
Expertise:
Evolutionary biology, genomic analysis, and cellular stress responses, with a particular focus on experimental evolution under DNA damage stress in Saccharomyces cerevisiae. Recently graduated and beginner reviewer.
Reviewer #2 (Evidence, reproducibility and clarity):
The paper addresses the effect of sugar availability in shaping compensatory evolution. The first observation of the paper is that cell physiology changes by modulating glucose availability also in strains that come with defective DNA replication (ctf4-null previously studied by the authors). An intriguing result is that ctf4-null grows comparatively better in low concentrations of glucose. This is hypothesized to be a consequence of both the decrease in dNTPs in low glucose, which causes slow down of fork progression, and/or reduced fork collapse at rDNA locus. Hence, wild types and ctf4-null show an opposite trend: in the mutant, the lowest concentration of glucose is the least affected by the mutation; in wild type, the highest concentration is the least affected. Adaptation rate is inversely related with the initial fitness. The effect on physiology and adaptation rate is a starting point for asking the key question: are evolutionary trajectories influnced by the growth conditions? The answer is negative: evolution experiments show the very same core of genetic changes at all sugar concentrations. The result is apparently at odds with previous publications, and the authors conclude that, in this particular setting, availability of carbon sources plays a minor role compared to impaired DNA replication. The different rates of adaptation in WT and mutant is rather explained by the initial fitness at the different glucose concentrations, which, as mentioned, is opposite in WT and ctf4-null mutants. The paper also reports a new mutation in MED14, component of the transcription mediator complex, which rescues the lack of Ctf4 activity. The study is interesting and asks a relevant question. The experiments are well executed and convincing, but the paper can be strengthened by testing some of the hypotheses which are put forward.
Main points
1- The raw data for evolutionary dynamics (Figure S2C) are fitted with the power law suggested by Wiser and Lenski, and return different values of the parameter 'b'. The authors say that the result depends greatly on the initial conditions ("due to the varying initial fitness of ctf4Δ cells across different glucose environments, they display an opposite trend to WT"). Around the initial values, however, the curves are non-monotonic, especially for low glucose availability. Both for WT and ctf4-null there is an initial drop in fitness, after which fitness increases. If one would neglect this initial dynamics, the value of the parameter 'b' would likely be different.
The non-monotonic trend in fitness highlighted by the reviewer is likely due to technical factors: Fitness at Generation 0 was measured with high precision in a low-throughput manner early in the project. In contrast, fitness from Generation 100 to 1000 was measured later in the study in a high-throughput fashion, necessitated by the large number of competitions conducted (96 wells × 4 time points × 6 replicates = 2304 assays). This difference in methodologies may have introduced a slight offset when the datasets were combined at Generation 100. Following the reviewer’s suggestion, we have excluded the data point at Generation 100 responsible for this non-monotonic behavior and re-fitted the curves. While this adjustment has caused minor changes in the parameter ‘b’, the qualitative trends, particularly the opposing trends between WT and ctf4Δ as glucose increases, remain consistent (Figure_rev_only 1). To ensure transparency, we have retained all recorded fitness values in the original figure for reference.
In general, one can question whether curves with this shape are best fitted by the power law proposed by Wiser and Lenski. For example, for the WT 0.25% glucose the linear fit gives a better R2 (why do the authors show the linear fit anyway?). This impression is further reinforced by the observation that Wiser and Lenski fit dynamics that last 50.000 generation, here the curves last 1/50th of it. In conclusion, I would question whether the parameter 'b' is a solid measurement of 'rate of adaptation'. Also, normalizations makes it difficult to appreciate the result shown in Figure 2B. I think the authors should look for a different way to show the different trend in adaptation dynamics for different glucose concentrations between wild types and mutants. For example, they could move Figure S2C in the main text to stress the result shown in Figure 2C, which already shows the difference between WT and mutant. This is especially true if what Figure 2C shows is (evo-anc)/evo. This is not fully clear to me: in the legend it refers to the delta, in the label of the y-axis I read that this is a percentage.
We thank the reviewer for prompting us to clarify our methods for reporting fitness changes over time. The fitness values are reported, throughout the paper, as a percentage change relative to the reference WT strain. The gain in fitness during evolution (reported as Δ) represents the difference between the evolved strain (evo%) and the ancestral strain (anc%), calculated as Δ = evo% - anc%. This represents the absolute gain, rather than the relative gain. This value is still reported as a percentage as it’s the same scale and unit as the two values being subtracted. We have included additional details to clarify this aspect in the figure legend.
“(C) Absolute fitness gains (Δ) at generation 1000 for evolved WT (upper panel, black) and ctf4Δ (lower panel, orange) populations. Box plots show median, IQR, and whiskers extending to 1.5×IQR, with individual data points beyond whiskers considered outliers. Absolute fitness gains were calculated by subtracting the ancestral relative fitness from the relative fitness of the evolved (Δ = evo% - anc%), both calculated as percentages relative to the same reference strain in the same glucose concentration.”
To conclude: the data show a different trend between wild types and mutants, which is interesting. Fitting it with the power law seems to be neither required nor appropriate. I suggest the authors to show the WT vs mutant pattern differently.
We followed the reviewer’s suggestion and moved Figure S2C, which depicts the detailed fitness trajectories over time, into the main manuscript as Figure 2D. We agree that presenting these trajectories alongside the absolute fitness gains (now in Figure S2C) provides a more intuitive and effective depiction of the evolutionary dynamics of WT and ctf4Δ strains without relying solely on the power-law fit. Additionally, we quantified the mean adaptation rate, calculated as the absolute fitness gain (Δ) divided by the total number of generations (now Figure 2B). While no individual method definitively captures the adaptation rates across the experiment, these complementary analyses consistently highlight the same trends noted by the reviewer. We have re-written the main text as follows:
Line 171: “By generation 1000, both WT and ctf4Δ evolved lines achieved, on average, slightly higher fitness in low glucose compared to high glucose conditions (Fig S2B). However, due to the varying initial fitness of ctf4Δ cells across different glucose environments, they recovered the same extent of the original defect (Fig S2C). ctf4Δ lines displayed an opposite trend to WT, with increasing absolute fitness throughout the experiment as glucose concentration rose (Fig S2B vs S2D). The differint absolute fitness gains over the same number of generations highlight distinct mean adaptation rates (Fig 2B). These differences are evident when examining the evolutionary dynamics of the evolved lines over time (Fig 2C). Additionally, we approximated the fitness trajectories using the power law function (Fig 2C, dashed purple lines), previously proposed to describe long-term evolutionary dynamics in constant environments (Wiser et al., 2013). The parameter b in this formula determines the curve's steepness, and can be used to quantify the global adaptation rate over generations (Fig S2E). Collectively, these analyses demonstrate that, unlike WT cells, ctf4Δ lines adapt faster in the presence of high glucose. This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”
Overall, these results demonstrate that cells can recover from fitness defects caused by constitutive DNA replication stress regardless of the glucose environment. However, adaptation rates under DNA replication stress exhibit opposing trends compared to WT cells, with faster adaptation yielding greater fitness gains in higher glucose conditions.”
2- In Figure S2C, the individual trajectories for WT at 2% glucose are strangely variable. In this case, plotting the average does not make too much sense. This result is strange, since this is the default condition, where cells are grown without any change of sugar concentration. Can the authors give any rationale? Are there other available results to replace those published in Figure S2C?
We agree with the reviewer that the individual trajectories for WT at 2% glucose are intriguing. However, we do not find these results necessarily “strange” as they could be explained by the following rationale: WT cells have been cultivated in 2% glucose since the 1950s, likely fixing most beneficial mutations for this condition. When many isogenic strains are evolved in parallel, (a) some lines show no improvement due to the scarcity of available beneficial mutations, (b) others exhibit slight decreases in fitness due to genetic drift fixing deleterious mutations, and (c) a few lines discover rare beneficial mutations, leading to fitness increases. In contrast, other conditions represent “newer” environments with larger mutational target sizes, resulting in more consistent outcomes.
Prompted by the reviewer’s comment, we look for other studies reporting detailed fitness measurements of evolved WT strains in standard laboratory media. We downloaded and plotted the fitness data from Johnson et al. 2021, where authors studied the evolution of WT strains over 10.000 generations. Interestingly, we see that in the early phase of the evolution (generations 500-1400) evolved lines show similar levels of variability in fitness as the one reported in our study (Figure_rev_only 2). Of note is that in Johnson et al. 2021 most of the adaptive mutations alleviate the toxicity of the ade2-1 allele. In our WT strain the gene was preemptively restored, furter reducing the target size for adaptation in YPD.
We believe it is important to report these measurements and decided to leave the original data, with the appropriate quantifications of variability, in Figure 2.
3- The molecular explanation given for the rescue of ctf4-null proposes a very relevant role for dNTPs downregulation. Particularly, both for Irx1 and med14-H919P, the authors propose that this happens via Rnr1 downregulation. At this stage, this is only a hypothesis. The molecular verification of the central role of Rnr1 downregulation would make the conclusion much stronger. For example, a preliminary test would imply that duplicating RNR1 in ctf4-null irx1-null and/or ctf4-null med14-H919P would revert the rescue. Any other experiment addressing this point would be useful to improve the paper.
We agree that the experiment suggested by the reviewer, or similar tests, would substantiate our hypotheses and strengthen the paper. Specifically, we plan to perturb dNTP production in both ctf4Δ ixr1Δ and ctf4Δ med14-H919P mutants through genetic manipulation of known factors involved in dNTP synthesis. We will then compare the resulting fitness to the expectations based on our hypotheses: reduced fitness benefits of the double mutants upon increasing dNTP levels and/or increased fitness in ctf4Δ mutants by decreasing dNTP levels through alternative mechanisms.
4- The authors propose from Figure S4B that the rescue of ixr1-null is less evident at low sugar concentration since both conditions trigger a reduction of dNTPs. I think this is interesting, since it would provide a link between glucose concentration and evolutionary trajectories to adaptation, which is what the authors wanted to study. In particular, one would predict that 0.25% glucose would see less ixr1-null than the other glucose conditions. I could not (was not able to) confute this hypothesis from the data shown in the paper. Likewise, for med14-H919P. If the authors have not tested it, it would be worth trying.
We had reported the appearance and frequency of all ‘core adaptive mutations’ (Figure S6C) but did not explicitly test the likelihood of their appearance under different glucose conditions. Following the reviewer’s suggestion, we have now performed χ2 tests (on the presence or absence of mutations) and ANOVA tests (on their mean frequency) to determine whether any mutation is particularly enriched or depleted in a given glucose environment. At first glance, the results do not support the hypothesis proposed by the reviewer. However, we note that although ixr1 mutants are less beneficial in low glucose than in high glucose, they still confer an 8% fitness advantage, which is likely sufficient to drive clones to fixation. We believe the reviewer’s reasoning is correct but is potentially masked by the still elevated fitness advantage of ixr1 in low glucose.
To better convey the results of this analysis, we have included a visual representation of the presence and frequency of the mutations in Figure 6A, and the results of the χ2 and ANOVA tests in Supplementary File 5. We also comment on the analysis as follows:
Line 314: “Similarly, we did not detect differences in the frequency of occurrence (χ2 tests) or average fractions (ANOVA test) achieved by the mutations in the populations evolved under different glucose environments (Fig 6A, Fig S4C and Supplementary File 5. The presence of all mutations in the final evolved lines correlated with their fitness benefits, suggesting how their selection in all glucose conditions was mostly dictated by their relative fitness benefits, rather than the environment (Fig 6A).”
5- The combination of the four genetic adaptation (Fig 6B) would benefit from an experimental verification to show that the different solutions are not mutually exclusive. This is not obvious: if more than one solution acts by reducing dNTPs, maybe their combined effect is less strong than what measured theoretically. The authors could derive some clones at the end of the experiment and Sanger sequencing some of the four genes, to confirm the co-presence of some of them in the same cell.
The co-occurrence of nearly every combination of the four core adaptive mutations we identified can be inferred from their relative frequencies, as revealed by deep whole-genome sequencing of the evolved populations (Fig. S4C). In these data, we observe populations carrying each pairwise combination of mutations at frequencies exceeding 50%, implying their coexistence. Moreover, many combinations of mutations approach or reach fixation. A particularly striking example is ctf4Δ Population 11, evolved in 8% glucose, where all core adaptive mutations are present at 100% frequency. These findings provide robust evidence that the different adaptive solutions are not mutually exclusive and can coexist within the same genetic background.
Nevertheless, we agree that experimentally verifying the compatibility and fitness of the four genetic adaptations described in Figure 6B (now Fig 6C) would further strengthen our conclusions. To this end, we plan to reconstruct all combinations of mutations observed at high frequency in the final evolved populations. We will then measure their fitness and compare it to that of the evolved populations, as well as to the theoretical expectations based on additivity currently presented in Figure 6C.
Minor points
Figures
- S4B: in the legend it should be explained that it is compared to ctf4D
We now report how the values were obtained in the figure legend:
(D = |anc%|-|reconstraucted%|)
-2A: the color code is not fully clear to me: what does green and blue indicate? higher and lower than 2%?
We apogise for not having included an explicit description of the color code in Figure 2A. Throughout the paper blue refers to glucose starvation (light blue for 0,25%, dark blue for 0,5%), while green refers to glucose abundance (light blue for 2%, dark blue for 8%). We now include a detailed description of the color code when it first appears (Fig 1B) and make sure is properly reported in all figure legends.
- S3A: the authors should show the statistical difference between WT and ctf4-null, which is mentioned as non-existent in p.6
The p value is now represented in Fig S3A
Text
- RNR1 is not really the gene with the highest score in Figure 5D, not even close: can you give a rationale for pin-pointing it (see also main point 3)?
The reviewer is correct. Perturbations of the mediator complex, which regulate the expression of most of RNA PolII transcripts, is expected to result in changes in the expression of a large set of genes. However, our focus on dNTPs and RNR1 is based on the following rationale:
Gene Ontology Enrichment Analysis: The downregulated genes in our dataset are enriched for the 'nucleotide metabolism' term, which includes pathways critical for dNTP production and directly linked to DNA replication and repair.
Role of RNR1: Among the downregulated genes, RNR1 stands out as it encodes the major subunit of ribonucleotide reductase, the rate-limiting enzyme in dNTP synthesis. This enzyme is essential for DNA replication, and cells experiencing constitutive DNA replication stress, as in our system, are particularly sensitive to changes in dNTP levels.
To make this rationale more explicit to the reader, we are adding the following sentence in the discussion:
Line 404: “Nucleotide metabolism, particularly ribonucleotide reductase, is essential for dNTP production. Given the role of dNTPs in regulating DNA replication and repair, the advantage of med14-H919P mutants in the ctf4Δ background may stem from reduced dNTP levels caused by the perturbed TID domain."
In addition, following the reviewers’ suggestions, we are conducting additional experiments to investigate the role of med14-H919P mutants in enhancing fitness under conditions of constitutive DNA replication stress (See response to reviewer #4). We anticipate that the final revised manuscript will offer further insights into the role of dNTPs or present alternative explanations for the observed phenomena.
- The med14-H919P mutation is observed in 22/48 wells. I guess the authors checked already: are some of these wells close to each other in the plate?
Correct. We took significant precautions in our experimental design to prevent cross-contamination, as outlined in the Materials and Methods section. Specifically, rows of ctf4Δ samples were alternated with rows of WT samples. Daily dilutions were then performed row by row using a 12 channels pipette. This approach ensured that any potential carry-over of cells would result in them being placed in wells containing a different genotype, where they would be eliminated by the consistent use of genotype-specific drugs.
As a result of these measures, we do not observe any distinct pattern of core genetic adaptation corresponding to the plate layout (Figure_rev_only 3). The only exception are mutations in IXR1, which appear in all ctf4Δ strains (albeit with different alleles, see supplementary File 3). Moreover, we reasoned that if a highly fit strain had invaded other wells, all the pre-existing mutations from its lineage would have been detected in those wells. However, apart from the recurrent ixr1 and rad9 mutations, which are also strongly adaptive, we find no evidence of shared mutations in wells carrying the med14-H919P allele (Figure_rev_only 4).
- Compensatory evolution of ctf4-null in 2% glucose is the experiment published by Fumasoni and Murray in eLife. In that paper, there is no trace of mutations in MED14. I think the authors should comment on this (different method for detecting putative compensatory mutations?).
We also noticed the absence of MED14 mutations in the eLife study by Fumasoni and Murray and find this discrepancy intriguing. One possible explanation lies in methodological differences. Our current study employed an improved version of the mutational analysis pipeline. However, we have not yet reanalyzed the original data from the previous study to determine whether MED14 mutations were present but undetected.
Interestingly, in the current study, we observed that in 2% glucose, MED14 mutations arose in only 3 out of 12 populations, a frequency lower than in other glucose conditions (Figure S6C). Assuming a similar frequency occurred in the 8 populations evolved in 2% glucose by Fumasoni and Murray (2020), one would expect only 2 populations to carry the mutation. This number falls below the threshold required for our algorithm to detect statistically significant parallelism.
Additionally, two significant experimental differences may also contribute to the observed discrepancy. First, the culture volumes and vessels differed: 10 mL cultures in tubes were used previously, whereas 1.5 mL cultures in 96-well plates were used in the current study.
- I may be mistaken, but Szamecz et al do not actually investigate whether different conditions result in different evolutionary trajectories (i.e., different genetics), and so their results may not be at odds with those presented here.
The reviewer is correct that Szamecz et al. do not explicitly test whether different conditions result in different evolutionary trajectories. However, in the section titled “Compensatory Evolution Generates Diverse Growth Phenotypes across Environments,” they examine how lines evolved in 2% YPD perform across various environments. They report how in roughly 50% of the cases tested, evolved lines showed either no improvement or even some lower fitness than the ancestor (Figure 5A).
While this could be explained by the accumulation of detrimental non-adaptive mutations in specific contexts, it likely implies that the adaptive strategies compensating for the original mutation in one environment do not confer similar benefits in other environments. This observation contrasts with our findings in Figure 6D, where we demonstrate that the main adaptive strategies provide a consistent benefit across diverse environments, including those with glucose, nitrogen, or phosphate abundance or starvation.
We have now modified the introduction, results and discussion to avoid misleading interpretations:
Line 42: “Szamecz and colleagues examined the evolutionary trajectories of 180 haploid yeast gene deletions over 400 generations (Szamecz et al., 2014). They found that, while fitness recovery occurred in the environment where evolution took place, the evolved lines often showed no improvement over their ancestors in other environments. This suggests that compensatory mutations beneficial in one environment often fail to restore fitness in others.”
Line 327: “A previous study in yeast showed how evolved lines which compensate for detrimental defects of gene deletions in standard laboratory conditions often failed to show fitness benefits compared to their ancestor when tested in other environments (Szamecz et al., 2014). We thus investigated the extent to which the core genetic adaptation to DNA replication stress was beneficial under alternative nutrient conditions.”
Line 422: “What could explain the discrepancies between our results, and previous studies on evolutionary repair highlighting the role of the environment in shaping evolutionary trajectories (Filteau et al., 2015), and the heterogeneous behavior of evolved lines in various environments (Szamecz et al., 2014)?”
typos
p.18, line 564 preformed -> performed
- 6 line 189 with a strongly skew -> with a strong skew ?
Typos are now corrected in the main text
Reviewer #2 (Significance):
This is a well-done paper that could be of interest for the community of evolutionary biologists, scientists working on metabolism and cell division. It addresses an interesting problem, how metabolism affects compensatory evolution. Among the strengths: experiments are well done, the results are novel, the cross-talk between metabolism and evolutionary repair is intriguing. Among the weaknesses, the fact that the molecular explanations for the observations are only hypothesized and not tested experimentally. This is where the authors could improve the manuscript.
Reviewer #3 (Evidence, reproducibility and clarity):
This paper combines phenotypic and genomic data from an experimental evolution study in yeast to assess how repeatable evolution is in response to DNA replication stress. Importantly, the authors ask whether genotype by environment interactions influence repeatability of their evolved lines. To this end, the authors have constructed an elegant highly-replicated experiment in which two yeast genotypes (WT and CTF4 KO) were evolved under a variety of glucose levels for 1,000 generations. Recurrent mutations are found across many replicates, suggesting that repeatability is robust to GxE interactions. Of course, the authors correctly identify that these results are dependent on many particulars, as is always the case in biology, but provide a comprehensive discussion to accompany their results. I do not have any major comments to give, but simply some suggestions and points of clarification.
Major comments: N/A
Minor comments:
L19: I found the definition for compensatory evolution/mutations to be somewhat vague in the introduction (and subsequently throughout the text). It's clear that this was written for a more medical/physiological audience, but without a more explicit explanation of compensatory evolution/mutations, it became difficult to properly weigh some claims/discussions made by the authors later on. Do you define compensatory mutations as those which completely recover WT function/fitness, or are simply of opposite effect to the altered genotype? Others define "compensatory evolution" as simply any epistastically interacting amino acid substitutions (Ivankov et al, 2014). It would be nice to see more explicitly defined.
We thank the reviewer for highlighting the need for a precise definition of compensatory evolution and compensatory mutations. We recognize that the literature encompasses multiple definitions, including the one cited by the reviewer, which emphasizes compensatory mutations within the context of structural biology. This particular definition, prevalent in molecular evolution, was introduced by Kimura (Kimura, 1985) and is frequently used to explain the co-occurrence of amino acid mutations within a protein. These mutations offset each other’s defects, restoring or maintaining protein function. Here, however, we are using an older and broader definition of compensatory mutation, first introduced by Wright (Wright, 1964, 1977, 1982) and frequently used in evolutionary genomics (e.g., Moore et al., 2000; Szamecz et al., 2014; Rajon and Mazel, 2013; Eckartt et al., 2024). This definition includes any mutation in the rest of the genome that compensates (fully or partially) for another mutation's detrimental effects on fitness.
We have now included this definition in the introduction:
Line 19: “Compensatory evolution is a process by which cells mitigate the negative fitness effects of persistent perturbations in cellular processes across generations. This adaptation occurs through spontaneously arising compensatory mutations anywhere in the genome (Wright, 1964, 1977, 1982) that partially or fully alleviate the negative fitness effects of perturbations (Moore et al., 2000). The successive accumulation of compensatory mutations over evolutionary timescales progressively repair the cellular defects, ultimately restoring fitness.”
Line 361: “Our findings demonstrate that while glucose availability significantly affects the physiology and adaptation speed of cells under replication stress, it does not alter the fundamental genome-wide compensatory mutations that drive fitness recovery and evolutionary repair.”
Along these lines, I would have liked to see a more direct comparison/discussion of the degree to which deletion lines recovered. I can see from Fig 2E and Fig S2B that fitness increased quite a bit; would it not be possible to include a figure on the degree of compensation (basically relative fitness of evolved deletion lines - relative fitness of ancestral deletion lines)?
If the reviewer is suggesting calculating the difference between the evolved and ancestor fitness, the data is already in Figure S2B and S2D, defined as ‘Absolute fitness gains Δ’ and calculated as Δ = evo% - anc%.
If instead is suggesting to plot the fitness of evolved deletion lines (Y axis) against the relative fitness of ancestral deletion lines (X axis), we have now produced the plot is Figure S2F.
To better understand the extent of the fitness recovery in Ctf4 strains, we have also calculated and plotted the ‘relative fitness gain’ calculated as |evo%| / |anc%| *100 (Figure S2C)
We are now commenting on these comparisons in the following paragraph:
Line 171: “By generation 1000, both WT and ctf4Δ evolved lines achieved, on average, slightly higher fitness in low glucose compared to high glucose conditions (Fig S2B). However, due to the varying initial fitness of ctf4Δ cells across different glucose environments, they recovered the same extenct of the original defect (Fig S2C), displaying an opposite trend to WT, with increasing absolute fitness throughout the experiment as glucose concentration rose (Fig S2B vs S2D). The differint absolute fitness gains over the same number of generations highlight distinct mean adaptation rates (Fig 2B). These differences are evident when examining the evolutionary dynamics of the evolved lines over time (Fig 2C). Additionally, we approximated the fitness trajectories using the power law function (Fig 2C, dashed purple lines), previously proposed to describe long-term evolutionary dynamics in constant environments (Wiser et al., 2013). The parameter b in this formula determines the curve's steepness, and can be used to quantify the global fitness change over generations (Fig S2E). Collectively, these analyses demonstrate that, unlike WT cells, ctf4Δ lines adapt faster in the presence of high glucose. This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”
L57: Another minor nitpick that just comes down to semantics. When discussing "96 parallel populations", it invokes a higher sense of replication than is actually present in the study. I would rephrase this to something along the lines of "12 replicate populations across 8 treatments under conditions of [...]".
We changed the sentence as follows:
Line 66: “We evolved 96 parallel populations of budding yeast, organized into 12 replicate lines, across four conditions of glucose availability (from starvation to abundance) with or without replication stress.”
L185-187: The wording here needs to be clarified. Be explicit in that are examine the ratio (or count) of synonymous to non-synonymous mutations here, otherwise the interpretations appears to be direct contradiction to the (as written) results. Only after viewing the supplemental figure was I able to figure out what exactly was meant here.
We changed the sentence as follows:
Line 212: “We found no significant differences in the numbers of synonymous mutations detected in evolved populations in WT and ctf4∆ populations (Fig. S3A). These results support the hypothesis that replication stress in ctf4∆ lines favors the retention of beneficial mutations, rather than simply increasing the overall mutation rate.”
L349-350: The authors observe higher rates of adaptation in deletion lines than WT lines, and discuss this in adequate detail. Although not explicitly mentioned, this is consistent with a diminishing returns epistasis model (that could be beneficial to discuss, but is not necessary), which has been implicated in modulating the degree of repeatability observed along evolutionary trajectories (Wünsche et al. 2017). Although definitely not required for this already very nice manuscript, I think it would be very rewarding if the authors were to eventually analyze fine-scale dynamics of phenotypic and genomic adaptation to mine for these putative interactions and their influence on repeatability.
We agree with the reviewer on how our results align with a model of diminishing returns epistasis. This pattern is apparent not only between ctf4Δ and WT lines but also among ctf4Δ lines evolved in different glucose conditions. This phenomenon likely arises from the interaction of various adaptive mutations, which we aim to explore further in a dedicated manuscript. However, until we do so, we prefer to refer generally to a pattern of declining adaptability. To explicit this trend we have now included Fig S2F and commented on it in the manuscript:
Line 181: “This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”
Line 388: "Our results are consistent with declining adaptability, as evidenced by the reduced rates of adaptation observed both between ctf4Δ and WT lines and among ctf4Δ lines evolved in different glucose conditions (Fig S2F)"
Reviewer #3 (Significance):
It is clear to me that a great deal of time and care has been put into this study and the preparation of this manuscript. The science and analyses are appropriate to answer the questions at hand, and it bodes well that whenever I had a question pop up while reading, they were typically answered immediately after. I think that this manuscript will be broadly relevant to both biologists both evolutionary and clinical, and was written in a way to be accessible to both.
As someone with an expertise in repeatable evolution, I felt most excited by the observation of so many parallel substitutions at a single amino acid across deletion lines. As the authors rightfully point out in the results and discussion, it's likely that this degree of robustness is highly dependent on the particular mechanism of disruption that cells experience. The authors then go above and beyond to functionally validate the putative molecular mechanisms of (repeatable) adaptation in this system. While it may not always be possible to accomplish in non-model organisms, such multi-modal approaches will be crucial to advance the field of repeatable evolution.
Reviewer #4 (Evidence, reproducibility and clarity):
The authors investigated the effects of DNA replication stress on adaptation in different nutrient availabilities by passaging wild-type and ctf4Δ Saccharomyces cerevisiae in media with varying levels of glucose over ~1000 generations. The ctf4Δ strain experiences increased DNA replication stress due to the deletion of a non-essential replication fork protein. The authors found differences in evolution between wild-type and ctf4Δ yeast, which held across different growth media. This study identified a compensatory single amino acid variant in Med14, a protein in the mediator complex of RNA polymerase II, that was specifically selected in ctf4Δ strains. The authors conclude that while environmental nutrient availability has implications for cell fitness and physiology, adaptation is largely independent and instead dependent on genetic background. The data provide excellent support for the key aspects of the models, although some details are (to me) overstated.
Major comments:
- A ctf4Δ mutant strain was used to investigate the effects of replication stress. Why was this mutant chosen instead of other deletions that cause different types of replication stress?
We appreciate the opportunity to clarify our rationale for choosing the ctf4Δ mutant. The following are the main reasons why we believe ctf4Δ strains represent an ideal tool to study a global perturbation of the DNA replication program over evolutionary timescales:
We have now modified the main text to convey these advantages in a concise form:
Line 91: “In the absence of Ctf4, cells exhibit multiple defects commonly associated with DNA replication stress, such as single-stranded DNA gaps and altered replication forks (Fumasoni et al., 2015), leading to basal cell cycle checkpoint activation (Poli et al., 2012). These defects result in severe and persistent growth impairments, cell cycle delays, elevated nucleotides pools and chromosome instability (Miles and Formosa, 1992; Kouprina et al., 1992; Poli at al., 2012), making ctf4Δ mutants an ideal model for studying the cellular consequences of general and constitutive replication stress over evolutionary time.”
It's not clear from the study that the effects are generalizable to other forms of replication stress.
As with any method to induce DNA replication stress (including commonly used drugs like HU) each approach inevitably affects replication in a specific manner. Testing the broader applicability of our conclusions would require evolving additional strains with different replisome perturbations. For instance, mutations in ELG1 and CTF18 (affecting the alternative Replication Factor C), POL30 (affecting the sliding clamp PCNA), POL32 (affecting Polε), RRM3 (protective helicase) and (MRC1 (coordinating leading strand activities and signalling to the checkpoint) would have to be taken into account. Furthermore, specific mutant alleles of Ctf4 that disrupt interactions with particular binding partners (Such as ctf4–4E and ctf4–3E, perturbing the interaction with the CMG helicase and accessory factors respectively) will be highly informative on which specific aspects of the replication stress generated by the lack of Ctf4 each adaptive mutation alleviate.
However, accommodating such extensive variability would inflate the sample size to an extent that will become unfeasible within the experimental design focused on capturing parallel evolution over a nutrient gradient (the primary focus of this study). We agree that this is an important question and intend to address it comprehensively in a dedicated future study.
- The authors could be clearer that a (the?) cause of the ctf4∆ fitness defect is spurious upregulation of RNR1. I don't think it is mentioned until the Discussion, but it is highly relevant to Fig 4, and to the adaptations one would expect from ctf4∆.
We thank the reviewer for the opportunity to clarify this aspect. We do not think that the fitness defects of ctf4∆ cells stem solely from the spurious upregulation of RNR1. However, we believe that a major aspect of the evolutionary adaptation is aimed at decreasing dNTP levels, potentially through different mechanisms. We are now mentionig increased dNTPs as major phenotype of ctf4∆ and commenting on the hypothesis more clearly in the discussion.
Line 93: “These defects result in severe and persistent growth impairments, cell cycle delays, elevated nucleotides pools and chromosome instability (Miles and Formosa, 1992; Kouprina et al., 1992; Poli at al., 2012)”
Line 409: “This condition will, in turn, be detrimental when proliferation rates are high (as in WT in high glucose) but beneficial under constitutive DNA replication stress (ctf4Δ), where cells experience spurious upregulation of dNTP production (Poli et al., 2012; Davidson et al., 2012).
- In Figure 1E, there is a very large spread in the relative fitness at 2% and 8% glucose, but this was not commented on. Is this heteroscedasticity expected?
The observed heteroscedasticity is expected. Our competition assays tend to exhibit increased variability when a strain approaches very low fitness levels. Specifically, as one strain nears extinction by the third day of competition, its abundance is estimated based on a much smaller number of events in the flow cytometer. Furthermore, we noticed a small number of reference cells carrying pACT1-yCerulean not showing strong fluorescence in 8% glucose. The nature of this effect is uncertain, and possibly linked to metabolism-linked changes in the cytoplasm. The combination of these two phenomena amplifies the impact of noise inherent to the methodology, leading to increased variability across replicates.
Nontheless, the overall decreasing fitness trend across glucose conditions, combined with the statistical significance observed between high and low glucose levels, collectively convey a roboust phenotype
- The med14-H919P mutant was highly selected in ctf4Δ strains, independent of glucose availability. Is this variant found in any natural yeast strains (i.e., are there environments that select for this variant)? Also, if this variant is found in natural strains, does it co-occur with other mutations that could affect DNA replication?
We agree that this is an intriguing question. To address it, we plan to explore existing databases of variants identified in S. cerevisiae natural isolates. Specifically, we will investigate whether the med14-H919P mutation is present in these strains, identify any potential environmental factors that may select for it, and assess whether it co-occurs with other mutations that could influence DNA replication processes.
- The statement on lines 271-273 is not particularly well-supported. The analysis of the Warfield data suggest that reduced expression of RNR1 could be causal, but the data don't go as far as showing how the med14 mutation is advantageous in ctf4∆. Further experimentation would be necessary to support the possibilities that the authors discuss.
The sentence the reviewer refers to is: “Overall, these results show how an amino acid substitution in the Med14 subunit of the mediator complex, putatively affecting transcription, is strongly selected, and advantageous, in the presence of constitutive DNA replication stress.” We are unsure which aspect of the statement is seen as unsupported. The mutation's strong selection in ctf4∆ is demonstrated in Figures 5A, 6A, and S4C, while its advantageous nature is supported by Figures 5B and S4B. Regarding the mechanism, we have been cautious with our phrasing, describing its effect on transcription as "putative" (Line 272) and suggesting that our observations “are compatible with” reduced dNTP availability in med14-H919P cells due to RNR1 downregulation (Line 361).
The main focus of this study is to explore how nutrient availability influences evolutionary dynamics and compensatory adaptation in cells lacking Ctf4. We believe the identification of a novel selected allele (Fig. 5A) and confirmation of its benefit across glucose conditions (Fig. 5B) serves as an excellent complement to the primary conclusions (present in the title). We invite the reviewer to consider that the molecular basis of such a phenotype is not mentioned in our abstract, as we believe that its precise characterization would require a dedicated study on Med14.
Nonetheless, we are encouraged by the reviewer’s interest in this newly identified compensatory mutant (also noted by Reviewer #2), and we are eager to perform further experiments to better understand the biological processes affected by this mutation. We plan to extend our work as follows:
Based on known phenotypes associated with perturbations of Med14, we propose the following novel hypotheses regarding the mechanism by which med14-H919P alleviates ctf4Δ defects:
We plan to distinguish between these hypotheses using the following approaches. First, the proposed mechanisms underlying Hypotheses 1 and 3 suggest that med14-H919P is a loss-of-function mutation, while Hypothesis 2 implies a gain-of-function effect. Testing the impact of a heterozygous med14-H919P allele in a homozygous ctf4Δ strain will allow us to differentiate between these two categories of mechanisms. Additionally, we aim to investigate the molecular process affected by the med14-H919P allele by analyzing its genetic interactions with genes involved in replication-transcription conflicts, cohesin loading, and dNTP production (See also response to reviewer #2).
We believe that the results of these experiments will provide further insights on the mechanism of suppression exerted by med14-H919P in the presence of constitutive DNA replication stress, without diverting the reader from the main message of the paper.
- The authors comment that the med14-H919P mutant could have implications for the stability of Med14, based on computational modelling. Verifying the stability of the med14-H919P in vivo would strengthen this discussion.
We believe that in vivo and in vitro structural studies investigating the effect of this mutation on the stability and function of the Mediator complex are beyond the scope of this manuscript. These investigations would be more appropriately addressed in future, dedicated studies focused on these specific aspects.
- In the discussion, the authors propose that the context of the perturbation may influence the robustness of adaptation. A more detailed explanation of this point (including a discussion of the findings of other similar studies investigating different conditions) would be helpful to further bolster this section.
We are now supporting this concept more explicitly by commenting on other studies as follows:
Line 429: “Third, the environment’s influence on compensatory evolution may depend on the specific cellular module perturbed and its genetic interactions with other modules that are significantly influenced by environmental conditions. For example, the actin cytoskeleton, which must rapidly respond to extracellular stimuli, is likely to be more directly influenced by environmental factors (Filateau et al., 2015) compared to the DNA replication machinery, which operates within the nucleus and is relatively insulated from such changes. Supporting this idea, a study examining mutants’ fitness across diverse environments found that conditions such as different carbon sources or TOR inhibition, similar to those used in this study, primarily affected genes involved in vesicle trafficking, transcription, protein metabolism, and cell polarity. In contrast, genes associated with genome maintenance, as well as their epistatic interactions, were largely unaffected (Costanzo et al., 2021)”.
In addition, to further substantiate this hypothesis, we plan to re-analyze published datasets on fitness and epistatic interactions among genes in various environments, testing whether specific cellular modules are more prone to changes following shifts in nutrient conditions.
Minor comments: - Competitions were performed between ctf4Δ strains and a constructed strain with yCerulean integrated at ACT1. Is the fitness of the fluorescent strain comparable to the ancestral wild-type strain (i.e., in a competition between the ancestral WT and the fluorescent strain, does either have an advantage)?
We noticed a slight disadvantage of the reference strain compare to WT, likely due to the costs of the extra fluorescence reporter. However, the disadvantage is minimal, ranging from -0.5 to -2.5 depending on the glucose environment (raw measurments are reported supplementary file 1, sheet 5). To take this into account, all fitness reported in figures are normalized for the WT value measured in the same environment line 613: “Relative fitness of the ancestral WT strain was used to normalize fitness across conditions.”
- In Figure 3, the legends for panels B and C appear to be swapped. Discussion of Figure 3 on pages 6 and 7 appear to reference the wrong panels.
We are unsure about this typo. Main text and figure legend seem to refer to the appropriate panels, 3B for mutation fractions and 3C for mutation counts. Perhaps the organization of the panels with B being under A instead of on its right confounds the reader?
- In Figure 4A and B, having the same colour scale between both heatmaps is misleading, as the scales are different. Consider having the same scale across both heatmaps so that enrichments are visually comparable.
Following the reviewer’s suggestion we have have chosen a uniform heatmap to visually represent GO terms enrichment in WT and ctf4∆ genetic backgrounds.
- In Figure 4C, having a legend in the figure for node size would be helpful to understand the actual number of populations with mutations in each gene.
A legend for node size has now being added next to Figure 4C.
Reviewer #4 (Significance):
In this study, a high-throughput evolution experiment uncovered the effects of genetic background on the development of adaptive mutations. The authors were able to identify a single amino acid variant of Med14 (med14-H919P) that was positively selected in ctf4Δ. Furthermore, they demonstrated the causality of med14-H919P in conferring a fitness advantage in ctf4Δ. The novelty of this mechanistic finding opens future avenues of investigation regarding the interaction network of the mediator complex in conditions of DNA replication stress. A limitation of the study is that only one mechanism of replication stress was assessed (ctf4Δ). Other gene mutations that cause replication stress would be interesting to assess and would provide a more thorough investigation of the effects of DNA replication factors on evolvability. This work will be of interest to researchers in the population genetics and genotype-by-environment fields, as it suggests the robustness of evolvability to environmental factors in the specific condition of DNA replication stress. As discussed by the authors, this finding differs from other works that have linked environmental conditions to adaptive evolution to different conditions, and is concordant with work that indicates the robustness of genetic interactions to environmental stresses. Furthermore, the identification of the highly-selected med14-H919P variant will be of interest to the DNA replication field. There is the potential for future work investigating the role of Med14 in mediating the response to DNA replication stress in both yeast and mammalian cell contexts, since the authors note that there are links between altered mediator complex regulation and cancers. Although I suspect that the very different regulation of RNR in mammalian cells makes it unlikely that the kind of upregulation of dNTP pools seen in ctf4∆ would be induced by replication stress in mammalian cells.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Review of "Compensatory evolution to DNA replication stress is robust to nutrient availability" from Natalino and Fumasoni.
The paper addresses the effect of sugar availability in shaping compensatory evolution. The first observation of the paper is that cell physiology changes by modulating glucose availability also in strains that come with defective DNA replication (ctf4-null previously studied by the authors). An intriguing result is that ctf4-null grows comparatively better in low concentrations of glucose. This is hypothesized to be a consequence of both the decrease in dNTPs in low glucose, which causes slow down of fork progression, and/or reduced fork collapse at rDNA locus. Hence, wild types and ctf4-null show an opposite trend: in the mutant, the lowest concentration of glucose is the least affected by the mutation; in wild type, the highest concentration is the least affected. Adaptation rate is inversely related with the initial fitness.
The effect on physiology and adaptation rate is a starting point for asking the key question: are evolutionary trajectories influnced by the growth conditions? The answer is negative: evolution experiments show the very same core of genetic changes at all sugar concentrations. The result is apparently at odds with previous publications, and the authors conclude that, in this particular setting, availability of carbon sources plays a minor role compared to impaired DNA replication. The different rates of adaptation in WT and mutant is rather explained by the initial fitness at the different glucose concentrations, which, as mentioned, is opposite in WT and ctf4-null mutants.
The paper also reports a new mutation in MED14, component of the transcription mediator complex, which rescues the lack of Ctf4 activity. The study is interesting and asks a relevant question. The experiments are well executed and convincing, but the paper can be strengthened by testing some of the hypotheses which are put forward.
Main points
I think the authors should look for a different way to show the different trend in adaptation dynamics for different glucose concentrations between wild types and mutants. For example, they could move Figure S2C in the main text to stress the result shown in Figure 2C, which already shows the difference between WT and mutant. This is especially true if what Figure 2C shows is (evo-anc)/evo. This is not fully clear to me: in the legend it refers to the delta, in the label of the y-axis I read that this is a percentage.
To conclude: the data show a different trend between wild types and mutants, which is interesting. Fitting it with the power law seems to be neither required nor appropriate. I suggest the authors to show the WT vs mutant pattern differently.<br /> 2. In Figure S2C, the individual trajectories for WT at 2% glucose are strangely variable. In this case, plotting the average does not make too much sense. This result is strange, since this is the default condition, where cells are grown without any change of sugar concentration. Can the authors give any rationale? Are there other available results to replace those published in Figure S2C?<br /> 3. The molecular explanation given for the rescue of ctf4-null proposes a very relevant role for dNTPs downregulation. Particularly, both for Irx1 and med14-H919P, the authors propose that this happens via Rnr1 downregulation.
At this stage, this is only a hypothesis. The molecular verification of the central role of Rnr1 downregulation would make the conclusion much stronger. For example, a preliminary test would imply that duplicating RNR1 in ctf4-null irx1-null and/or ctf4-null med14-H919P would revert the rescue. Any other experiment addressing this point would be useful to improve the paper.<br /> 4. The authors propose from Figure S4B that the rescue of ixr1-null is less evident at low sugar concentration since both conditions trigger a reduction of dNTPs. I think this is interesting, since it would provide a link between glucose concentration and evolutionary trajectories to adaptation, which is what the authors wanted to study.
In particular, one would predict that 0.25% glucose would see less ixr1-null than the other glucose conditions. I could not (was not able to) confute this hypothesis from the data shown in the paper. Likewise, for med14-H919P. If the authors have not tested it, it would be worth trying.<br /> 5. The combination of the four genetic adaptation (Fig 6B) would benefit from an experimental verification to show that the different solutions are not mutually exclusive. This is not obvious: if more than one solution acts by reducing dNTPs, maybe their combined effect is less strong than what measured theoretically. The authors could derive some clones at the end of the experiment and Sanger sequencing some of the four genes, to confirm the co-presence of some of them in the same cell.
Minor points
Figures
Text
typos
p.18, line 564 preformed -> performed
p. 6 line 189 with a strongly skew -> with a strong skew ?
This is a well-done paper that could be of interest for the community of evolutionary biologists, scientists working on metabolism and cell division. It addresses an interesting problem, how metabolism affects compensatory evolution. Among the strengths: experiments are well done, the results are novel, the cross-talk between metabolism and evolutionary repair is intriguing. Among the weaknesses, the fact that the molecular explanations for the observations are only hypothesized and not tested experimentally. This is where the authors could improve the manuscript.
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Summary:
The authors investigated causal inference in the visual domain through a set of carefully designed experiments, and sound statistical analysis. They suggest the early visual system has a crucial contribution to computations supporting causal inference.
Strengths:
I believe the authors target an important problem (causal inference) with carefully chosen tools and methods. Their analysis rightly implies the specialization of visual routines for causal inference and the crucial contribution of early visual systems to perform this computation. I believe this is a novel contribution and their data and analysis are in the right direction.
Weaknesses:
In my humble opinion, a few aspects deserve more attention:
(1) Causal inference (or causal detection) in the brain should be quite fundamental and quite important for human cognition/perception. Thus, the underlying computation and neural substrate might not be limited to the visual system (I don't mean the authors did claim that). In fact, to the best of my knowledge, multisensory integration is one of the best-studied perceptual phenomena that has been conceptualized as a causal inference problem.
Assuming the causal inference in those studies (Shams 2012; Shams and Beierholm 2022;
Kording et al. 2007; Aller and Noppeney 2018; Cao et al. 2019) (and many more e.g., by Shams and colleagues), and the current study might share some attributes, one expects some findings in those domains are transferable (at least to some degree) here as well. Most importantly, underlying neural correlates that have been suggested based on animal studies and invasive recording that has been already studied, might be relevant here as well.
Perhaps the most relevant one is the recent work from the Harris group on mice (Coen et al. 2021). I should emphasize, that I don't claim they are necessarily relevant, but they can be relevant given their common roots in the problem of causal inference in the brain. This is a critical topic that the authors may want to discuss in their manuscript.
We thank the reviewer. We addressed this point of the public review in our reply to the reviewer’s suggestions (and add it here again for convenience). The literature on the role of occipital, parietal and frontal brain areas in causal inference is also addressed in the response to point 3 of the public review.
“We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the movement occurred autonomously). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”
(2) If I understood correctly, the authors are arguing pro a mere bottom-up contribution of early sensory areas for causal inference (for instance, when they wrote "the specialization of visual routines for the perception of causality at the level of individual motion directions raises the possibility that this function is located surprisingly early in the visual system *as opposed to a higher-level visual computation*."). Certainly, as the authors suggested, early sensory areas have a crucial contribution, however, it may not be limited to that. Recent studies progressively suggest perception as an active process that also weighs in strongly, the topdown cognitive contributions. For instance, the most simple cases of perception have been conceptualized along this line (Martin, Solms, and Sterzer 2021) and even some visual illusion (Safavi and Dayan 2022), and other extensions (Kay et al. 2023). Thus, I believe it would be helpful to extend the discussion on the top-down and cognitive contributions of causal inference (of course that can also be hinted at, based on recent developments). Even adaptation, which is central in this study can be influenced by top-down factors (Keller et al. 2017). I believe, based on other work of Rolfs and colleagues, this is also aligned with their overall perspective on vision.
Indeed, we assessed bottom-up contributions to the perception of a causal relation. We agree with the reviewer that in more complex situations, for instance, in the presence of contextual influences or additional auditory signals, the perception of a causal relation may not be limited to bottom-up vision. While we had acknowledged this in the original manuscript (see excerpts below), we now make it even more explicit:
“[…] we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997).”
“[…] Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role.”
“[…] Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiology subserving causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”
However, there is also ample evidence that the perception of a simple causal relation—as we studied it in our experiments—escapes top-down cognitive influences. The perception of causality in launching events is described as automatic and irresistible, meaning that participants have the spontaneous impression of a causal relation, and participants typically do not voluntarily switch between a causal and a noncausal percept. This irresistibility has led several authors to discuss a modular organization underlying the detection of such events (Michotte, 1963; Scholl & Tremoulet, 2000). This view is further supported by a study that experimentally manipulated the contingencies between the movement of the two discs (Schlottmann & Shanks, 1992). In one condition the authors created a launching event where the second disc’s movement was perfectly correlated with a color change, but only sometimes coincided with the first disc’s movement offset. Nevertheless, participants reported seeing that the first disc caused the movement of second disc (regardless of the stronger statistical relationship with the color change). However, when asked to make conscious causal judgments, participants were aware of the color change as the true cause of the second disc’s motion—therefore recognizing its more reliable correlation. This study strongly suggests that perceived and judged causality (i.e., cognitive causal inference) can be dissociated (Schlottmann & Shanks, 1992). We have added this reference in the revised manuscript. Overall, we argue that our study focused on a visual routine that could be implemented in a simple bottom-up fashion, but we acknowledge throughout the manuscript, that in a more complex situation (e.g., integrating information from other sensory domains) the implementation could be realized in a more distributed fashion including top-down influences as in multisensory integration. However, it is important to stress that these potential top-down influences would be automatic and should not be confused with voluntary cognitive influences.
“Note, however, that perceived causality can be distinguished from judged causality (Schlottmann & Shanks, 1992). Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”
(3) The authors rightly implicate the neural substrate of causal inference in the early sensory system. Given their study is pure psychophysics, a more elaborate discussion based on other studies that used brain measurements is needed (in my opinion) to put into perspective this conclusion. In particular, as I mentioned in the first point, the authors mainly discuss the potential neural substrate of early vision, however much has been done about the role of higher-tier cortical areas in causal inference e.g., see (Cao et al. 2019; Coen et al. 2021).
In the revised manuscript, we addressed the limitations of a purely psychophysical approach and acknowledged alternative implementations in the Discussion section.
“Note that, while the present findings demonstrate direction-selectivity, it remains unclear where exactly that visual routine is located. As pointed out, it is also possible that the visual routine is located higher up in the visual system (or distributed across multiple levels) and is only using a directional-selective population response as input.”
Moreover, we cite also the two suggested papers when referring to the role of cortical areas in causal inference (Cao et al, 2019; Coen et al., 2023):
“Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role. Imaging studies in particular revealed a network for the perception of causality that is also involved in action observation (Blakemore et al., 2003; Fonlupt, 2003; Fugelsang et al., 2005; Roser et al., 2005). The fact that visual adaptation of causality occurs in a retinotopic reference frame emphazises the role of retinotopically organized areas within that network (e.g., V5 and the superior temporal sulcus). Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions, and also stressing that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiological underpinnings in causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”
There were many areas in this manuscript that I liked: clever questions, experimental design, and statistical analysis.
Thank you so much.
Reviewer #1 (Recommendations for the authors):
I congratulate the authors again on their manuscript and hope they will find my review helpful. Most of my notes are suggestions to the authors, and I hope will help them to improve the manuscript. None are intended to devalue their (interesting) work.
We would like to thank the reviewer for their thoughtful and encouraging comments.
In the following, I use pX-lY template to refer to a particular page number, say page number X (pX), and line number, say line number Y (lY).
Major concerns and suggestions
- I would suggest simplifying the abstract and significance statement or putting more background in it. It's hard (at least for me) to understand if one is not familiar with the task used in this study.
We followed the reviewer’s suggestion and added more background in the beginning of the abstract.
We made the following changes:
“Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e., the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e., a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature-similarity of the adaptor and the test event. We show that negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speed. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.”
- The authors highlight the importance of studying causal inference and understanding the underlying mechanisms by probing adaptation, however, their introduction justifying that is, in my humble opinion, quite short. Perhaps in the cited paper, this is discussed extensively, but I'd suggest providing some elaboration in the manuscript. Otherwise, the study would be very specific to certain visual phenomena, rather than general mechanisms.
We have carefully considered the reviewer’s set of comments and concerns (e.g., the role of top-down influences, the contributions of the frontal cortex, and illustration of the computational level). They all appear to share the theme that the reviewer looks at our study from the perspective of Bayesian inference. We conducted the current study in the tradition of classical phenomena in the field of the perception of causality (in the tradition of Michotte, 1963 and as reviewed in Scholl & Tremoulet, 2000) which aims to uncover the relevant visual parameters and rules for detecting causal relations in the visual domain. Indeed, we think that a causal inference perspective promises a lot of new insights into the mechanisms underlying the classical phenomena described for the perception of causality. In the revised manuscript, we discuss therefore causal inference and how it relates to the current study. We now emphasize that in our study, a) we used visual adaptation to reveal the bottom-up processes that allow for the detection of a causal interaction in the visual domain, b) that the perception of causality also integrates signals from other domains (which we do not study here), and c) that the neural substrates underlying the perception of causality might be best described by a distributed network. By discussing Bayesian causal inference, we point out promising avenues for future research that may bridge the fields of the perception of causality and Bayesian causal inference. However, we also emphasize that perceived causality and judged causality can be dissociated (Schlottmann & Shanks, 1992).
We added the following discussion:
“We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the second disc did not move). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”
- I'd suggest, at the outset, already set the context, that your study of causal inference in the brain is specifically targeting the visual domain, if you like, in the discussion connect it better to general ideas about causal inference in the brain (like the works by Ladan Shams and colleagues).
We would like to thank the reviewer for this comment. We followed the reviewer’s suggestion and made clear from the beginning that this paper is about the detection of causal relations in the visual domain. In the revised manuscript we write:
“Here, we will study the mechanisms underlying the computations of causal interactions in the visual domain by capitalizing on visual adaptation of causality (Kominsky & Scholl, 2020; Rolfs et al., 2013). Adaptation is a powerful behavioral tool for discovering and dissecting a visual mechanism (Kohn, 2007; Webster, 2015) that provides an intriguing testing ground for the perceptual roots of causality.”
As described in our reply to the previous comment, we now also discussed the ideas about causal inference.
- To better illustrate the implication of your study on the computational level, I'd suggest putting it in the context of recent approaches to perception (point 2 of my public review). I think this is also aligned with the comment of Reviewer#3 on your line 32 (recommendation for authors).
In the revised manuscript, we now discuss the role of top-down influences in causal inference when addressing point 2 of the reviewer’s public review.
Minor concerns and suggestions
- On p2-l3, I'd suggest providing a few examples for generalized and or specialized visual routines (given the importance of the abstract). I only got it halfway through the introduction.
We thank the reviewer for highlighting the need to better introduce the concept of a visual routine. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system. At the same time, the concept leaves space with respect to the extent to which the mechanism further involves mid- and higher-level processes. In the revised manuscript, we now refer to Ullman (1987) who introduced the concept of a visual routine—the idea of a modular operation that sequentially processes spatial and feature information. Moreover, we refer to the concept of attentional sprites (Cavanagh, Labianca, & Thornton, 2001)—attention-based visual routines that allow the visual system to semi-independently handle complex visual tasks (e.g., identifying biological motion).
We add the following footnote to the introduction:
“We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”
In the abstract we now write:
“Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality.”
- On p4-l31, I'd suggest mentioning the Matlab version. I have experienced differences across different versions of Matlab (minor but still ...).
We added the Matlab Version.
- On p6-l46 OSF-link is missing (that contains data and code).
Thank you. We made the OSF repository public and added the link to the revised manuscript.
We added the following information to the revised manuscript.
“The data analysis code has been deposited at the Open Science Framework and is publicly available https://osf.io/x947m/.”
Reviewer #2 (Public Review):
This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors). The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature specificity.
The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events.
The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process.
We would like to thank the reviewer for that thoughtful comment. We added the described implication to the manuscript:
“While the present study demonstrates direction-selectivity for the detection of launches, previous adaptation protocols demonstrated successful adaptation using adaptors with random motion direction (Rolfs et al., 2013; Kominsky & Scholl, 2020). These results therefore suggest independent direction-specific routines, in which adaptation to launches in one direction does not counteract an adaptation to launches in the opposite direction (as for example in opponent color coding).”
In addition, one limitation of the current method is that it's not clear whether the motion direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location?
This is an interesting idea! Because previous adaptation studies consistently showed retinotopic adaptation of causality, we would not expect to find transfer of directional tuning for launches to other locations. We agree that the suggested experiment on testing the reference frame of directional specificity constitutes an interesting future test of our findings.
The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way.
We thank the reviewer for highlighting the link to an experiment reported in Kominsky & Scholl (2020). We report the finding of that experiment now in the revised manuscript.
We added the following paragraph in the discussion:
“For instance, we demonstrated a transfer of adaptation across speed for symmetrical speed ratios. This result complements a previous finding that reported that the adaptation to triggering events (with an asymmetric speed ratio of 1:3) resulted in significant retinotopic adaptation of ambiguous (launching) test events of different speed ratios (i.e., test events with a speed ratio of 1:1 and of 1:3; Kominsky & Scholl, 2020).”
The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation.
We would like to thank the reviewer for highlighting the similarities (and differences) to the seminal study by Leslie and Keeble (1987). We included a discussion with respect to that paper in the revised manuscript. Indeed, that study showed a recovery from habituation to launches after reversal of the launching events. In their study, the reversal condition resulted in a change of two aspects, 1) motion direction and 2) a change of what color is linked to either cause (i.e., agent) or effect (i.e, patient). Our study, based on visual adaptation in adults, suggests that switching the two colors is not necessary for a recovery from the habituation, provided the motion direction is reversed. Importantly, the reversal of the motion direction only affected the perception of causality after adapting to launches (but not to slip events), which is consistent with Leslie and Keeble’s (1987) finding that the effect of a reversal is contingent on habituation/adaptation to a causal relationship (and is not observed for non-causal delayed launches). Based on our findings, we predict that switching colors without changing the event’s motion direction would not result in a recovery from habituation. Obviously, for infants, color may play a more important role for establishing an object identity than it does for adults, which could explain potential differences. We also agree with the reviewer’s point that the adaptation protocol might tap into different mechanisms than revealed by habituation studies in infants (e.g, Kominsky et al., 2017 vs. Kominsky & Scholl, 2020).
We revised the manuscript accordingly when discussing the role of direction selectivity in our study:
“Habituation studies in six-months-old infants also demonstrated that the reversal of a launch resulted in a recovery from habituation to launches (while a non-causal control condition of delayed-launches did not; Leslie & Keeble, 1987). In their study, the reversal of motion direction was accompanied by a reversal of the color assignment to the cause-effectrelationship. In contrast, our findings suggest, that in adults color does not play a major role in the detection of a launch. Future studies should further delineate similarities and differences obtained from adaptation studies in adults and habituation studies in children (e.g., Kominsky et al., 2017; Kominsky & Scholl, 2020).”
One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect.
We largely agree with these points. Indeed, we adopted the non-parametric analysis for a recent series of experiments in which the psychometric curves were more variable (Ohl & Rolfs, Vision Sciences Society Meeting 2024). In the present study, however, the model fits were very convincing. In Figures S1, S2 and S3 we show the model fits for each individual observer and condition on top of the mean proportion of launch reports. The inferential statistics based on the points of subjective equality, therefore, allowed us to report our findings very concisely.
In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function.
We thank the reviewer for this positive overall assessment.
Reviewer #2 (Recommendations for the authors):
Generally, the paper is great. The questions I raised in the public review don't need to be answered at this time, but they're exciting directions for future work.
We would like to thank the reviewer for the encouraging comments and thoughtful ideas on how to improve the manuscript.
I would have liked to see a little more description of the model parameters in the text of the paper itself just so readers know what assumptions are going into the PSE estimation.
We followed the reviewer’s suggestion and added more information regarding the parameter space (i.e., ranges of possible parameters of the logistic model) that we used for obtaining the model fits.
Specifically, we added the following information in the manuscript:
“For model fitting, we constrained the range of possible estimates for each parameter of the logistic model. The lower asymptote for the proportion of reported launches was constrained to be in the range 0–0.75, and the upper asymptote in the range 0.25–1. The intercept of the logistic model was constrained to be in the range 1–15, and the slope was constrained to be in the range –20 to –1.”
The models provided very good fits as can be appreciated by the fits per individual and experimental condition which we provide in response to the public comments. Please note, that all data and analysis scripts are available at the Open Science Framework (https://osf.io/x947m/).
I also have a recommendation about Figure 1b: Color-code "Feature A", "Feature B", and "Feature C" and match those colors with the object identity/speed/direction text. I get what the figure is trying to convey but to a naive reader there's a lot going on and it's hard to interpret.
We followed the reviewer’s suggestion and revised the visualization accordingly.
If you have space, figures showing the adaptation and corresponding test events for each experimental manipulation would also be great, particularly since the naming scheme of the conditions is (necessarily) not entirely consistent across experiments. It would be a lot of little figures, I know, but to people who haven't spent as long staring at these displays as we have, they're hard to envision based on description alone.
We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.
Reviewer #3 (Public Review):
We thank the reviewer for their thoughtful comments, which we carefully addressed to improve the revised manuscript.
Summary:
This paper presents evidence from three behavioral experiments that causal impressions of "launching events", in which one object is perceived to cause another object to move, depending on motion direction-selective processing. Specifically, the work uses an adaptation paradigm (Rolfs et al., 2013), presenting repetitive patterns of events matching certain features to a single retinal location, then measuring subsequent perceptual reports of a test display in which the degree of overlap between two discs was varied, and participants could respond "launch" or "pass". The three experiments report results of adapting to motion direction, motion speed, and "object identity", and examine how the psychometric curves for causal reports shift in these conditions depending on the similarity of the adapter and test. While causality reports in the test display were selective for motion direction (Experiment 1), they were not selective for adapter-test speed differences (Experiment 2) nor for changes in object identity induced via color swap (Experiment 3). These results support the notion that causal perception is computed (in part) at relatively early stages of sensory processing, possibly even independently of or prior to computations of object identity.
Strengths:
The setup of the research question and hypotheses is exceptional. The experiments are carefully performed (appropriate equipment, and careful control of eye movements). The slip adaptor is a really nice control condition and effectively mitigates the need to control motion direction with a drifting grating or similar. Participants were measured with sufficient precision, and a power curve analysis was conducted to determine the sample size. Data analysis and statistical quantification are appropriate. Data and analysis code are shared on publication, in keeping with open science principles. The paper is concise and well-written.
Weaknesses:
The biggest uncertainty I have in interpreting the results is the relationship between the task and the assumption that the results tell us about causality impressions. The experimental logic assumes that "pass" reports are always non-causal impressions and "launch" reports are always causal impressions. This logic is inherited from Rolfs et al (2013) and Kominsky & Scholl (2020), who assert rather than measure this. However, other evidence suggests that this assumption might not be solid (Bechlivanidis et al., 2019). Specifically, "[our experiments] reveal strong causal impressions upon first encounter with collision-like sequences that the literature typically labels "non-causal"" (Bechlivanidis et al., 2019) -- including a condition that is similar to the current "pass". It is therefore possible that participants' "pass" reports could also involve causal experiences.
We agree with the reviewer that our study assumes that the launch-pass dichotomy can be mapped onto a dimension of causal to non-causal impressions. Please note that the choice for this launch-pass task format was intentional. We consider it an advantage that subjects do not have to report causal vs non-causal impressions directly, as it allows us to avoid the oftencriticized decision biases that come with asking participants about their causal impression (Joynson, 1971; for a discussion see Choi & Scholl, 2006). This comes obviously at the cost that participants did not directly report their causal impression in our experiments. There is however evidence that increasing overlap between the discs monotonically decreases the causal impression when directly asking participants to report their causal impression (Scholl & Nakayama, 2004). We believe, therefore, that the assumption of mapping between launchesto-passes and causal-to-noncausal is well-justified. At the same time, the expressed concern emphasizes the need to develop further, possibly implicit measure for causal impressions (see Völter & Huber, 2021).
However, as pointed out by the reviewer, a recent paper demonstrated that on first encounter participants can have impressions in response to a pass event that are different from clearly non-causal impressions (Bechlivanidis et al., 2019). As demonstrated in the same paper, displaying a canonical launch decreased the impression of causality when seeing pass events in subsequent trials. In our study, participants completed an entire training session before running the main experiments. It is therefore reasonable to expect that participants observed passes as non-causal events given the presence of clear causal references. Nevertheless, we now acknowledge this concern directly in the revised manuscript.
We added the following paragraph to the discussion:
“In our study, we assessed causal perception by asking observers to report whether they observed a launch or a pass in events of varying ambiguity. This method assumes that launches and passes can be mapped onto a dimension that ranges from causal to non-causal impressions. It has been questioned whether pass events are a natural representative of noncausal events: Observers often report high impressions of causality upon first exposure to pass events, which then decreased after seeing a canonical launch (Bechlivanidis, Schlottmann, & Lagnado, 2019). In our study, therefore, participants completed a separate session that included canonical launches before starting the main experiment.”
Furthermore, since the only report options are "launch" or "pass", it is also possible that "launch" reports are not indications of "I experienced a causal event" but rather "I did not experience a pass event". It seems possible to me that different adaptation transfer effects (e.g. selectivity to motion direction, speed, or color-swapping) change the way that participants interpret the task, or the uncertainty of their impression. For example, it could be that adaptation increases the likelihood of experiencing a "pass" event in a direction-selective manner, without changing causal impressions. Increases of "pass" impressions (or at least, uncertainty around what was experienced) would produce a leftward shift in the PSE as reported in Experiment 1, but this does not necessarily mean that experiences of causal events changed. Thus, changes in the PSEs between the conditions in the different experiments may not directly reflect changes in causal impressions. I would like the authors to clarify the extent to which these concerns call their conclusions into question.
Indeed, PSE shifts are subject to cognitive influences and can even be voluntarily shifted (Morgan et al., 2012). We believe that decision biases (e.g., reporting the presence of launch before adaptation vs. reporting the absence of a pass after the adaptation) are unlikely to explain the high specificity of aftereffects observed in the current study. While such aftereffects are very typical of visual processing (Webster, 2015), it is unclear how a mechanism that increase the likelihood of perceiving a pass could account for the retinotopy of adaptation to launches (Rolfs et al., 2013) or the recently reported selective transfer of adaptation for only some causal categories (Kominsky et al., 2020). The latter authors revealed a transfer of adaptation from triggering to launching, but not from entraining events to launching. Based on these arguments, we decided to not include this point in the revised manuscript.
Leaving these concerns aside, I am also left wondering about the functional significance of these specialised mechanisms. Why would direction matter but speed and object identity not? Surely object identity, in particular, should be relevant to real-world interpretations and inputs of these visual routines? Is color simply too weak an identity?
We agree that it would be beneficial to have mechanisms in place that are specific for certain object identities. Overall, our results fit very well to established claims that only spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000). We have now explicitly listed these references again in the revised manuscript. It is important to note, that an understanding of a causal relation could suffice to track identity information based purely on spatiotemporal contingencies, neglecting distinguishing surface features.
We revised the manuscript and state:
“Our findings therefore provide additional support for the claim that an event’s spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000).”
Moreover, we think our findings of directional selectivity have functional relevance. First, direction-selective detection of collisions allows for an adaptation that occurs separately for each direction. That means that the visual system can calibrate these visual routines for detecting causal interactions in response to real-world statistics that reflect differences in directions. For instance, due to gravity, objects will simply fall to the ground. Causal relation such as launches are likely to be more frequent in horizontal directions, along a stable ground. Second, we think that causal visual events are action-relevant, that is, acting on (potentially) causal events promises an advantage (e.g., avoiding a collision, or quickly catching an object that has been pushed away). The faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available in the first stages of visual processing. Visual routines that are based on these direction-selective motion signals promise to enable such fast computations. Please note, however, that while our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is quite possible that the visual routine is located higher up in the visual system, relying on a direction-selective population response as input.
We added these points to the discussion of the functional relevance:
“We suggest that at least two functional benefits result from a specialized visual routine for detecting causality. First, a direction-selective detection of launches allows adaptation to occur separately for each direction. That means that the visual system can automatically calibrate the sensitivity of these visual routines in response to real-world statistics. For instance, while falling objects drop vertically towards the ground, causal relations such as launches are common in horizontal directions moving along a stable ground. Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”
Reviewer #3 (Recommendations for the authors):
- The concept of "visual routines" is used without introduction; for a general-interest audience it might be good to include a definition and reference(s) (e.g. Ullman.).
Thank you very much for highlighting that point. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system, but at the same time it leaves space regarding the extent to which the mechanism further involves mid- and higher-level processes. The term thus has a clear reference to a visual routine by Ullman (1987). We have now addressed what we mean by visual routine, and we also included the reference in the revised manuscript.
We add the following footnote to the introduction:
“We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”
- I would appreciate slightly more description of the phenomenology of the WW adaptors: is this Michotte's "entraining" event? Does it look like one disc shunts the other?
The stimulus differs from Michotte's entrainment event in both spatiotemporal parameters and phenomenology. We added videos for the launch, pass and slip events as Supplementary Material.
Moreover, we described the slip event in the methods section:
“In two additional sessions, we presented slip events as adaptors to control that the adaptation was specific for the impression of causality in the launching events. Slip events are designed to match the launching events in as many physical properties as possible while producing a very different, non-causal phenomenology. In slip events, the first peripheral disc also moves towards a stationary disc. In contrast to launching events, however, the first disc passes the stationary disc and stops only when it is adjacent to the opposite edge of the stationary disc. While slip events do not elicit a causal impression, they have the same number of objects and motion onsets, the same motion direction and speed, as well as the same spatial area of the event as launches.”
In the revised manuscript, we added also more information on the slip event in the beginning of the results section. Importantly, the stimulus typically produces the impression of two independent movements and thus serves as a non-causal control condition in our study. Only anecdotally, some observers (not involved in this study) who saw the stimulus spontaneously described their phenomenology of seeing a slip event as a double step or a discus throw.
We added the following description to the results section:
“Moreover, we compared the visual adaptation to launches to a (non-causal) control condition in which we presented slip events as adaptor. In a slip event, the initially moving disc passes completely over the stationary disc, stops immediately on the other side, and then the initially stationary disc begins to move in the same direction without delay. Thus, the two movements are presented consecutively without a temporal gap. This stimulus typically produces the impression of two independent (non-causal) movements.”
- In general more illustrations of the different conditions (similar to Figure 1c but for the different experimental conditions and adaptors) might be helpful for skim readers.
We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.
- Were the luminances of the red and green balls in experiment 3 matched? Were participants checked for color anomalous vision?
Yes, we checked for color anomalous vision using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016). We added that information to the manuscript. The red and green discs were not matched for luminance. We measured the luminance after the experiment (21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc). Please note, that the differences in luminance should not pose a problem for the interpretation of the results, as we see a transfer of the adaptation across the two different colors.
We added the following information to the manuscript:
“The red and green discs were not matched for luminance. Measurements obtained after the experiments yielded a luminance of 21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc.”
“All observers had normal or corrected-to-normal vision and color vision as assessed using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016).”
- Relationship of this work to the paper by Arnold et al., (2015). That paper suggested that some effects of adaptation of launching events could be explained by an adaptation of object shape, not by causality per se. It is superficially difficult to see how one could explain the present results from the perspective of object "squishiness" -- why would this be direction selective? In other words, the present results taken at face value call the "squishiness" explanation into question. The authors could consider an explanation to reconcile these findings in their discussion.
Indeed, the paper by Arnold and colleagues (2014) suggested that a contact-launch adaptor could lead to a squishiness aftereffect—arguing that the object elasticity changed in response to the adaptation. Importantly, the same study found an object-centered adaptation effect rather than a retinotopic adaptation effect. However, the retinotopic nature of the negative aftereffect as used in our study has been repeatedly replicated (for instance Kominsky & Scholl, 2020). Thus, the divergent results of Arnold and colleagues may have resulted from differences in the task (i.e., observers had to judge whether they perceived a soft vs. hard bounce), or the stimuli (i.e., bounces of a disc and a wedge, and the discs moving on a circular trajectory). It would be important to replicate these results first and then determine whether their squishiness effect would be direction-selective as well. We now acknowledge the study by Arnold and colleagues in the discussion:
“The adaptation of causality is spatially specific to the retinotopic coordinates of the adapting stimulus (Kominsky & Scholl, 2020; Rolfs et al., 2013; for an object-centered elasiticity aftereffect using a related stimulus on a circular motion path, see Arnold et al., 2015), suggesting that the detection of causal interactions is implemented locally in visual space.”
- Line 32: "showing that a specialized visual routine for launching events exists even within separate motion direction channels". This doesn't necessarily mean the routine is within each separate direction channel, only that the output of the mechanism depends on the population response over motion direction. The critical motion computation could be quite high level -- e.g. global pattern motion in MST. Please clarify the claim.
We agree with the reviewer, that it is also possible that critical parts of the visual routine could simply use the aggregated population response over motion direction at higher-levels of processing. We acknowledge this possibility in the discussion of the functional relevance of the proposed mechanism and when suggesting that a distributed brain network may contribute to the perception of causality.
We would like to highlight the following two revised paragraphs.
“[…] Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”
Moreover, when discussing the neurophysiological literature we write:
“Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions).”
- p. 10 line 30: typo "particual".
Done.
- p. 10 line 37: "This findings rules out (...)" should be singular "This finding rules out (...)".
Done.
- Spelling error throughout: "underly" should be "underlie".
Done.
- p.11 line 29: "emerges fast and automatic" should be "automatically".
Done.
paysage
Dans l'exercice fournit, il n'y a pas de section "paysage". Mais je suppose qu'il s'agit de "Voyages" dans notre code HTML... En revanche, il y a bien les images "paysage".
Reviewer #2 (Public review):
Summary:
This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.
Strengths:
This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.
Weaknesses:
I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.
My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).
I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.
Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor co-receptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.
Strengths:
The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.
Weaknesses:
There are the following major concerns:
(1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.
Thank you for your suggestion. In the Materials and Methods, we mention how we selected the target region and evaluated potential off-target sites by Exonerate and CHOPCHOP. Neither of these methods found potential off-target sites with a more-than-17-nt alignment identity. Therefore, we assumed no off-target effect in our Orco KO. Furthermore, we did not find any developmental differences between WT and KO caterpillars when these were reared on leaf discs in Petri dishes (Fig S4). We will further highlight this information on the off-target evaluation in the Results section of our revised manuscript.
(2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orco-expressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.
Thank you for pointing this out. The figure shows only a qualitative comparison between WT and KO and we did not aim to determine the total number of Orco positive neurons in the maxillary palps or antennae of WT and KO caterpillars, but please see our previous work for the neuron numbers in the caterpillar antennae (Wang et al., 2023). We did indeed find more than one neuron in the maxillary palps, but as these were in very different image planes it was not possible to visualize them together. However, we will add a few sentences in the Results and Discussion section to explain the results of the maxillary palp Orco staining.
(3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.
Thank you for pointing this out. The four glomeruli in Figure 1G and 1H are not strictly corresponding. We circled these glomeruli to highlight them, as they are the best visualized and clearly shown in this view. In this study, we only counted the number of glomeruli in both WT and KO, however, we did not clarify which glomeruli are missing in the KO caterpillar brain. We will further explain this in the figure legend.
(4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.
Thank you for your suggestion. We do agree with your suggestion, and we will consider moving this part to the supplementary information. Regarding larval olfactory response, we unfortunately failed to record any spikes using single sensillum recordings due to the difficult nature of the preparation; however, we do believe that this would be an interesting avenue for further research.
(5) Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.
Thank you for pointing this out. The sentence is “We compared the behaviors of both WT and Orco KO caterpillars in response to clean air, a healthy plant and a caterpillar-infested plant”. We tested these three stimuli in two comparisons: healthy plant vs no plant, infested plant vs no plant. The two comparisons are shown in Figure 3C separately. We will aim to describe this more clearly in the revised version of the manuscript.
(6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.
Thank you for pointing this out. We did not make a comparison between the data of Figures 3A and 3E since the two experiments were not conducted at the same time due to the limited space in our BioSafety Ⅲ greenhouse. We do agree that the weight decrease in Figure 3E is partly due to the reduced caterpillar growth shown in Figure 3A. However, we are confident that the additional decrease in caterpillar weight shown in Figure 3E is mainly driven by the presence of disarmed parasitoids. To be specific, the average weight in Figure 3A is 0.4544 g for WT and 0.4230 g for KO, KO weight is 93.1% of WT caterpillars. While in Figure 3E, the average weight is 0.4273 g for WT and 0.3637 g for KO, KO weight is 85.1% of WT caterpillars. We will discuss this interaction between caterpillar growth and the effect of the parasitoid attacks more extensively in the revised version of the manuscript.
(7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.
We are happy that you highlight this point. When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasps (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.
(8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.
Thank you for the suggestion. We assume you mean Figure 4D/4E instead of Figure 4B. In Figure 4B, many of the identified chemical compounds are essentially plant volatiles, especially those from caterpillar frass and caterpillar spit. In Figure 4D/4E, most of the tested chemicals are derived from plants. We did include several ITCs in the butterfly EAG tests shown in figure 2A/B, however because the butterfly antennae did not respond strongly to ITCs, we did not include ITCs in the subsequent larval behavioural tests. Instead, the tested chemicals in Figure 4D/4E either elicit high EAG responses of butterflies or have been identified as significant by VIP scores in the chemical analyses. We will add this explanation to the revised version of our manuscript.
(9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).
We will add more detailed descriptions for the setup and method in the Materials and Methods.
(10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.
Thank you for pointing this out. We used both clean filter paper and clean filter paper with 10 μL paraffin oil as negative controls, but we did not find a significant difference between the two controls. Therefore, in the EAG results of Figure 2A/2B, we presented paraffin oil as one of the tested chemicals. We will re-run our statistical tests with paraffin oil as negative control, although we do not expect any major differences to the previous tests.
Reviewer #2 (Public review):
Summary:
This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.
Strengths:
This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.
Weaknesses:
(1) I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.
We do agree with your comment that both mechanisms may be at work in nature, and we do address this in the Discussion section. In our study, we did find that wildtype caterpillars were more efficient in locating their food source and did grow faster on full plants than knockout caterpillars. This faster growth will enable wildtype caterpillars to more quickly outgrow the life-stages most vulnerable to the parasitoids (L1 and L2). The olfactory system therefore supports the escape from parasitoids indirectly by enhancing feeding efficiency directly.
In addition, we show in our Y-tube experiments that WT caterpillars were able to avoid plant where conspecifics are under the attack by parasitiods (Figure 3D). Therefore, we speculate that WT caterpillars make use of volatiles from the plant or from conspecifics via their spit or faeces to avoid plants or leaves potentially attracting natural enemies. Knockout caterpillars are unable to use these volatile danger cues and therefore do not avoid plants or leaves that are most attractive to their natural enemies, making KO caterpillars more susceptible and leading to more natural enemy harassment. Through this, olfaction also directly impacts the ability of a caterpillar to find an enemy-free feeding site.
We think that olfaction supports the enemy avoidance of caterpillars via both these mechanisms, although at different time scales. Unfortunately, our analysis was not detailed enough to discern the relative importance of the two mechanisms we found. However, we feel that this would be an interesting avenue for further research. Moreover, we will sharpen our discussion on the potential importance of the two different mechanisms in the revised version of this manuscript.
(2) My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).
We will revise the sample size in the text to make it clearer.
(3) I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.
Thank you for pointing this out. We will provide more detailed test statistics in the main text and in the supplementary materials of the revised version of the manuscript.
Cuando computamos, son importantes dos cosas:
Y los sujetos y las sujetas?
y mostraremos otra historia de la computación, alejándola de unos orígenes púramente militarista y de postguerra.
Estaría lindo que en otro momento estudiáramos el aporte de Adele Goldberg en esta historia de masculinidades.
objetos
¿por qué se retoma objeto y no mensaje?
Alan Kay dice que, desafortunadamente, cuando el ayudó a nombrar la Programación Orientada a Objetos, eligió un mal nombre, pues debió ser Programación Orientada a Mensajes, pues los objetos son una idea menor y lo clave son los mensajes.
De acuerdo, así todo sería más claro y con más sentido. Podríamos empezar a nombrarla así.
a la biología: pues tenemos un conjunto de entidades, permeables, cerradas y con funcionamiento propio, como las células.
me gusta ésta metáfora porque puede ser graficable, es decir, volviendo sobre la discusión de cómo descomplejizar el lenguaje especializado, y acercar a más personas a este tipo de tecnologías.
como las células.
Considero que acá hay una idea con mucha potencia en relación a la noción ecosistémica de la célula y de lo vivo en general, como lo concibe Margulis. Acá un video que me gusta mucho en términos visuales para aportar otro lenguaje al texto:
En el paradigma puro de la programación objetual: Todo es un mensaje y todo es un objeto Los objetos pueden comunicarse con otros objetos o consigo mismo. Los objetos tienen características reflexiva o de introspección: saber sobre su propio estado.
Aquí sería también importante una gráfica, así solo con texto me cuesta imaginarlo.
Me gusta la relación de la lectura con el hipervínculo, pero me parecería muy interesante la posibilidad de la marginalia como herramienta que aclara con múltiples posibilidades y le da otra estructura no lineal, ni arborea a los textos. Quizá una posibilidad para cardumem.
Esta página la he reescrito varias veces en la medida en que distintos talleres avanzan y luego de estar en la variante de Fossil de otro proyecto, llamado Holónica, finalmente está en esta última iteración de la Grafoscopedia.
Intenta dar una mirada conceptual de alto nivel, mientras prepara el terreno para el lugar donde explicaremos la sintaxis más en detalle. La idea es llegar a que podamos hacer ejercicios introductorios de para ver cómo estos conceptos o semántica encarnan en dicha sintaxis.
La Historia digital representa una democratización de la historia en la que cualquier persona con acceso a Internet puede hacer oír su voz, incluidos los grupos marginados que fueron excluidos a menudo en el "grandes narrativas" de la nación y el imperio
democratización de la historia
«El primer día de enero de 19.., seré poseedor de 50.000 dólares, que afluirán a mí en diversas sumas detiempo en tiempo durante ese lapso de cinco años.»A cambio de ese dinero daré los servicios más eficientes de que soy capaz, girando la mayor cantidadposible, y proporcionando la mejor calidad de servicios como vendedor de... (describa el servicio o lamercadería que se propone vender).»Confío en que tendré la posesión de ese dinero. Mi fe es tan fuerte que puedo verlo ahora ante mis ojos.Puedo tocarlo con las manos. Ahora está esperando ser de mi propiedad en el momento y en la proporción enque yo proporcione el servicio que estoy dispuesto a dar a cambio de él. Espero un plan con el que acumularese dinero, y lo ejecutaré tan pronto como aparezca.»
Ejemplo de como mentalizarme para magnetizar mi mente
FÓRMULA DE LA CONFIANZA EN UNO MISMO
Este es un compromiso a seguir fielmente para convertirse en un mejor ser humano, consta de 5 puntos interesantes.
In all of the following and most other analyses of the early Marx, the position that he was ‘idealist’, ‘philosophical’, or ‘Hegelian’ is repeated as received wisdom; rarely is it felt necessary to argue or support the case in any systematic or substantial way: J-Y. Calvez, La Penste de Karl Marx (Paris, 1956), p. 41; J-M. Gabaude, Le jeune Marx et le mattrialisme antique (Toulouse, 1970), p. 22; D. Howard, The Development of the Marxian Dialectic (Carbondale, 1972), p. 18; J. Hyppolite, ‘The Human Situation in the Hegelian Phenomenology’, in J. Hyppolite, Studies on Marx and Hegel (New York, 1969), p. 155; E Mehring, Karl Marx, (London (1936), 1966), p. 30; F. Mehring, ‘La Thèse de Karl Marx sur Democrite et Epicure’, in La Nouvelle Critique, 61 (1955), p. 28; H.F. Mins, ‘Marx’s Doctoral Dissertation’, in Science and Society, ΧΠ (Winter 1948), p. 168. There are others, like Althusser, who misconceive the point of studying Marx’s early works: ‘The terms of the discussion: whether the Young Marx was already and wholly Marx’ (L. Althusser, For Marx (London, 1977), p. 53).
Работы, в которых разделяется взгляд на то, что в этот период Маркс был идеалистом и гегельянцем
Present moment orientation
yws but b#ware that the present moment is the continual manifestation of future posibilities at ever expanding scale as fas as your heart mind can itself reach in momemnt of y/our intention guided persevering attention to matters that matter to y.our mind/s
The right place to start is at the centre
y/our situatedness particular complexes
8190
DOI: 10.1128/JVI.00254-18
Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)
Curator: @bdscstockkeepers
SciCrunch record: RRID:SCR_006457
anti-CD8 monoclonal antibody cM-T807
DOI: 10.1016/S0002-9440(10)65450-8
Resource: (NIH Nonhuman Primate Reagent Resource Cat# PR-0817, RRID:AB_2716320)
Curator: @giovanni.decastro
SciCrunch record: RRID:AB_2716320
Briefing Document : Accessibilité de la méthodologie de recherche pour les élèves ayant des troubles des fonctions cognitives
Source : Excerpts de la présentation "Session parallèle 5 : "Expérimenter les marges"..."
Présentatrice : J., Maîtresse de conférences à l'Université de Caen, membre du CNEF et co-directrice du Laboratoire International pour l'Inclusion Scolaire.
Thème principal : Réflexion sur la manière de rendre accessible la méthodologie de recherche, notamment à travers l'entretien biographique, pour permettre aux élèves ayant des troubles des fonctions cognitives (TFC) d'exprimer leur vision du monde et de se réapproprier leur parcours.
Introduction et Contexte :
La présentation s'inscrit dans le prolongement du travail doctoral de J., soutenu en 2020, portant sur les dispositifs ULIS dans le second degré et l'accueil des élèves estampillés TFC. Cette catégorie est définie comme large et hétérogène, incluant des jeunes avec des troubles autistiques, des troubles multiples, une déficience intellectuelle, des troubles du comportement, et des situations où le diagnostic est moins clair. Le choix du second degré se justifie par la phase charnière entre la poursuite scolaire et l'insertion professionnelle. La préoccupation centrale est de donner la parole à ces jeunes pour qu'ils partagent leur propre perspective.
J. s'appuie sur l'approche des récits biographiques, en écho aux travaux de Lorim Mon Berger, comme moyen de recueillir leur parcours de vie et de formation. Elle qualifie ce public comme un "public à la communication entre", soulignant la nécessité d'une approche spécifique pour faciliter leur expression.
Position et Posture de la Chercheuse :
Préoccupations Centrales de la Recherche :
J. expose trois préoccupations imbriquées :
L'Importance de la Coconstruction :
Entraves à la Communication dans le Contexte de l'Entretien :
J. identifie plusieurs types d'entraves spécifiques à la situation d'entretien avec ces jeunes :
Aspects émotionnels : Stress, timidité, potentielle signification du vouvoiement initial comme marque d'importance.
Questions Cruciales Concernant les Modalités d'Entretien :
Trois Exemples Illustratifs :
Responsabilité du Chercheur (Conclusion et Points de Discussion) :
Ces exemples soulignent la responsabilité du chercheur face aux effets parfois inattendus de la recherche. Il s'agit de prendre en considération la singularité des participants et d'accessibiliser l'environnement d'échange pour que leur parole puisse s'exprimer. Cela implique :
Une méthodologie "en situation" qui s'ajuste à la qualité de l'échange. Une réflexion sur les "dommages collatéraux" ou "effets secondaires" de l'entretien (prise de parole nouvelle, remise en question du vécu, etc.).
La question de la limite de la responsabilité du chercheur face aux conséquences de la prise de parole des participants.
La présentatrice conclut en ouvrant la discussion et en sollicitant des pistes de réflexion et des questions sur ces enjeux importants de la recherche avec des publics dits vulnérables.
Elle souligne la nécessité d'une approche flexible et attentive, reconnaissant que son expérience professionnelle antérieure est un atout fondamental dans cette démarche.
Author response:
The following is the authors’ response to the original reviews.
We thank the editor and reviewers for their supportive comments about our modeling approach and conclusions, and for raising several valid concerns; we address them briefly below. In addition, a detailed, point-by-point response to the reviewers’ comments are below, along with additions and edits we have made to the revised manuscript.
Concerns about model’s biological realism and impact on interpretations
The goal of this paper was to use an interpretable and modular model to investigate the impact of varying sensorimotor delays. Aspects of the model (e.g. layered architecture, modularity) are inspired by biology; at the same time, necessary abstractions and simplifications (e.g. using an optimal controller) are made for interpretability and generalizability, and they reflect common approaches from past work. The hypothesized effects of certain simplifying assumptions are discussed in detail in Section 3.5. Furthermore, the modularity of our model allows us to readily incorporate additional biological realism (e.g. biomechanics, connectomics, and neural dynamics) in future work. In the revision, we have added citations and edits to the text to clarify these points.
Concerns that the model is overly complex
To investigate the impact of sensorimotor delays on locomotion, we built a closed-loop model that recapitulates the complex joint trajectories of fly walking. We agree that locomotion models face a tradeoff between simplicity/interpretability and realism — therefore, we developed a model that was as simple and interpretable as possible, while still reasonably recapitulating joint trajectories and generalizing to novel simulation scenarios. Along these lines, we also did not select a model that primarily recreates empirical data, as this would hinder generalizability and add unnecessary complexity to the model. We do not think these design choices are significant weaknesses of this model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data. We have add citations and edits to the text to clarify these points in the revision.
Concerns about the validity of the Kinematic Similarity (KS) metric to evaluate walking
We chose to incorporate only the first two PCA modes dimensions in the KS metric because the kernel density estimator performs poorly for high dimensional data. Our primary use of this metric was to indicate whether the simulated fly continues walking in the presence of perturbations. For technical reasons, it is not feasible to perform equivalent experiments on real walking flies, which is one of the reasons we explore this phenomenon with the model. We note the dramatic shift from walking to nonwalking as delay increases (Figure 5). To be thorough, in the revision, we have investigated the effect of incorporating additional PCA modes, and whether this affects the interpretation of our results. We have additionally added to the discussion and presentation of the KS metric to clarify its purpose in this study. We agree with the reviewers that the KS metric is too coarse to reflect fine details of joint kinematics; indeed, in the unperturbed case, we evaluate our model’s performance using other metrics based on comparisons with empirical data (Figures 2, 7, 8).
Public Reviews:
Reviewer #1 (Public Review):
Summary:
In this work, the authors present a novel, multi-layer computational model of motor control to produce realistic walking behaviour of a Drosophila model in the presence of external perturbations and under sensory and motor delays. The novelty of their model of motor control is that it is modular, with divisions inspired by the fly nervous system, with one component based on deep learning while the rest are based on control theory. They show that their model can produce realistic walking trajectories. Given the mostly reasonable assumptions of their model, they convincingly show that the sensory and motor delays present in the fly nervous system are the maximum allowable for robustness to unexpected perturbations.
Their fly model outputs torque at each joint in the leg, and their dynamics model translates these into movements, resulting in time-series trajectories of joint angles. Inspired by the anatomy of the fly nervous system, their fly model is a modular architecture that separates motor control at three levels of abstraction:
(1) oscillator-based model of coupling of phase angles between legs,
(2) generation of future joint-angle trajectories based on the current state and inputs for each leg (the trajectory generator), and
(3) closed-loop control of the joint-angles using torques applied at every joint in the model (control and dynamics).
These three levels of abstraction ensure coordination between the legs, future predictions of desired joint angles, and corrections to deviations from desired joint-angle trajectories. The parameters of the model are tuned in the absence of external perturbations using experimental data of joint angles of a tethered fly. A notable disconnect from reality is that the dynamics model used does not model the movement of the body and ground contacts as is the case in natural walking, nor the movement of a ball for a tethered fly, but instead something like legs moving in the air for a tethered fly.
n order to validate the realism of the generated simulated walking trajectories, the authors compare various attributes of simulated to real tethered fly trajectories and show qualitative and quantitative similarities, including using a novel metric coined as Kinematic Similarity (KS). The KS score of a trajectory is a measure of the likelihood that the trajectory belongs to the distribution of real trajectories estimated from the experimental data. While such a metric is a useful tool to validate the quality of simulated data, there is some room for improvement in the actual computation of this score. For instance, the KS score is computed for any given time-window of walking simulation using a fraction of information from the joint-angle trajectories. It is unclear if the remaining information in joint-angle trajectories that are not used in the computation of the KS score can be ignored in the context of validating the realism of simulated walking trajectories.
The authors validate simulated walking trajectories generated by the trained model under a range of sensorimotor delays and external perturbations. The trained model is shown to generate realistic jointangle trajectories in the presence of external perturbations as long as the sensorimotor delays are constrained within a certain range. This range of sensorimotor delays is shown to be comparable to experimental measurements of sensorimotor delays, leading to the conclusion that the fly nervous system is just fast enough to be robust to perturbations.
Strengths:
This work presents a novel framework to simulate Drosophila walking in the presence of external perturbations and sensorimotor delay. Although the model makes some simplifying assumptions, it has sufficient complexity to generate new, testable hypotheses regarding motor control in Drosophila. The authors provide evidence for realistic simulated walking trajectories by comparing simulated trajectories generated by their trained model with experimental data using a novel metric proposed by the authors. The model proposes a crucial role in future predictions to ensure robust walking trajectories against external perturbations and motor delay. Realistic simulations under a range of prediction intervals, perturbations, and motor delays generating realistic walking trajectories support this claim. The modular architecture of the framework provides opportunities to make testable predictions regarding motor control in Drosophila. The work can be of interest to the Drosophila community interested in digitally simulating realistic models of Drosophila locomotion behaviors, as well as to experimentalists in generating testable hypotheses for novel discoveries regarding neural control of locomotion in Drosophila. Moreover, the work can be of broad interest to neuroethologists, serving as a benchmark in modelling animal locomotion in general.
We thank the reviewer for their positive comments.
Weaknesses:
As the authors acknowledge in their work, the control and dynamics model makes some simplifying assumptions about Drosophila physics/physiology in the context of walking. For instance, the model does not incorporate ground contact forces and inertial effects of the fly's body. It is not clear how these simplifying assumptions would affect some of the quantitative results derived by the authors. The range of tolerable values of sensorimotor delays that generate realistic walking trajectories is shown to be comparable with sensorimotor delays inferred from physiological measurements. It is unclear if this comparison is meaningful in the context of the model's simplifying assumptions.
We now discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We reproduce the relevant sentences below:
“The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”
“We anticipate that the increased sensory resolution from more detailed proprioceptor models and the stability from mechanical compliance of limbs in a more detailed biomechanical model would make the system easier to control and increase the allowable range of delay parameters. Conversely, we expect that modeling the nonlinearity and noise inherent to biological sensors and actuators may decrease the allowable range of delay parameters.”
The authors propose a novel metric coined as Kinematic Similarity (KS) to distinguish realistic walking trajectories from unrealistic walking trajectories. Defining such an objective metric to evaluate the model's predictions is a useful exercise, and could potentially be applied to benchmark other computational animal models that are proposed in the future. However, the KS score proposed in this work is calculated using only the first two PCA modes that cumulatively account for less than 50% of the variance in the joint angles. It is not obvious that the information in the remaining PCA modes may not change the log-likelihood that occurs in the real walking data.
The primary reason we designed the KS metric was to determine whether the simulated fly continues walking in the presence of perturbations. We initially limited the analysis of the KS to the first 2 principal components. For completeness, we now investigate the additional principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10.
Overall, the results look similar when including additional components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9, which shows that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation.
We added the following text in the methods:
“We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”
(Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)
We also reference Appendix 10 in the results:
“We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”
Reviewer #2 (Public Review):
Summary:
In this study, Karashchuk et al. develop a hierarchical control system to control the legs of a dynamic model of the fly. They intend to demonstrate that temporal delays in sensorimotor processing can destabilize walking and that the fly's nervous system may be operating with as long of delays as could possibly be corrected for.
Strengths:
Overall, the approach the authors take is impressive. Their model is trained using a huge dataset of animal data, which is a strength. Their model was not trained to reproduce animal responses to perturbations, but it successfully rejects small perturbations and continues to operate stably. Their results are consistent with the literature, that sensorimotor delays destabilize movements.
Weaknesses:
The model is sophisticated and interesting, but the reviewer has great concerns regarding this manuscript's contributions, as laid out in the abstract:
(1) Much simpler models can be used to show that delays in sensorimotor systems destabilize behavior (e.g., Bingham, Choi, and Ting 2011; Ashtiani, Sarvestani, and Badri-Sproewitz 2021), so why create this extremely complex system to test this idea? The complexity of the system obscures the results and leaves the reviewer wondering if the instability is due to the many, many moving parts within the model. The reviewer understands (and appreciates) that the authors tested the impact of the delay in a controlled way, which supports their conclusion. However, the reviewer thinks the authors did not use the most parsimonious model possible, and as such, leave many possible sources for other causes of instability.
We thank the reviewer for this observation — we agree that we did not make the goal of the work quite clear. The goal of this paper was to build an interpretable and generalizable model of fly walking, which was then used to investigate varying sensorimotor delays in the context of locomotion. To this end, we used a modular model to recreate walking kinematics, and then investigated the effect of delays on locomotion. Locomotion in itself is a complex phenomenon — thus, we have chosen a model that is complex enough to reasonably recapitulate joint trajectories, while remaining interpretable.
We have clarified this in the text near the end of the introduction:
“Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”
We also emphasize the investigation of sensorimotor delays in the context of locomotion in the beginning of the “Effect of sensory and motor delays on walking” section:
“... we used our model to investigate how changing sensory and motor delays affects locomotor robustness.”
We also remark that while they are very relevant papers for our work, neither of the prior papers focus on locomotion: the first involves a 2D balance model of a biped, and the second involves drop landings of quadrupeds.
Lastly, we note that the investigation of delay is not the only use for this model — in the future, this model can also be used to study other aspects of locomotion such as the role of proprioceptive feedback (see “Role of proprioceptive feedback in fly walking” section). The layered framework of the model can also be extended to other animals and locomotor strategies (see “Layered model produces robust walking and facilitates local control” section”).
(2) In a related way, the reviewer is not sure that the elements the authors introduced reflect the structure or function of the fly's nervous system. For example, optimal control is an active field of research and is behind the success of many-legged robots, but the reviewer is not sure what evidence exists that suggests the fly ventral nerve cord functions as an optimal controller. If this were bolstered with additional references, the reviewer would be less concerned.
We thank the reviewer for the comment — we have now further clarified how our model elements reflect the fly’s nervous system. The elements we introduce are plausible but only loosely analogous to the fly’s nervous system. While we draw parallels from these elements to anatomy (e.g. in Fig 1A-B, and in the first paragraph of the Results section), we do not mean to suggest that these functional elements directly correspond to specific structures in the fly’s nervous system. A substantial portion of the suggested future work (see “Towards biomechanical and neural realism”) aims to bridge the gap between these functional elements and fly physiology, which is beyond the scope of this work.
We have added clarifying text to the Results section:
“While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”
In the specific case of optimal control — optimal control is a theoretical model that predicts various aspects of motor control in humans, there is evidence that optimal control is implemented by the human nervous system (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011). Based on this, we make the assumption that optimal control is a reasonable model for motor control in flies implemented by the fly nervous system as well. Fly movement makes use of proprioceptive feedback signals (Mendes et al., 2013; Pratt et al., 2024; Berendes et al., 2016), and optimal control is a plausible mechanism that incorporates feedback signals into movement.
We have added the following clarifying text in the Results section:
“The optimal controller layer maintains walking kinematics in the presence of sensori motor delays and helps compensate for external perturbations. This design was inspired by optimal control-based models of movements in humans (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011)”
(3) "The model generates realistic simulated walking that matches real fly walking kinematics...". The reviewer appreciates the difficulty in conducting this type of work, but the reviewer cannot conclude that the kinematics "match real fly walking kinematics". The range of motion of several joints is 30% too small compared to the animal (Figure 2B) and the reviewer finds the video comparisons unpersuasive. The reviewer would understand if there were additional constraints, e.g., the authors had designed a robot that physically could not complete the prescribed motions. However the reviewer cannot think of a reason why this simulation could not replicate the animal kinematics with arbitrary precision, if that is the goal.
We agree with the reviewer that the model-generated kinematics are not perfectly indistinguishable from real walking kinematics, and now clarify this in the text. We also agree with the reviewer that one could build a model that precisely replicates real kinematics, but as they intuit, that was not our goal. Our goal was to build a model that both replicates animal kinematics, and is interpretable and generalizable (which allows us to investigate what happens when perturbations and varying sensorimotor delays are introduced). There is a trade-off between realism and generalizability — a simulation that fully recreates empirical data would require a model that is completely fit to data, which is likely to be more complex (in terms of parameters required) and less generalizable to novel scenarios. We have made design choices that result in a model that balances these trade-offs. We do not consider this to be a weakness of the model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data.
We have tempered the language in the abstract:
“The model generates realistic simulated walking that resembles real fly walking kinematics”
The tempered statement, we believe, is a fair characterization of the walking — it resembles but does not perfectly match real kinematics.
We have also introduced clarifying text in the introduction:
“Overall, existing walking models focus on either kinematic or physiological accuracy, but few achieve both, and none consider the effect of varying sensorimotor delays. Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
Potential typo on page 5:
2.1.2 Joint kinematics trajectory generator
Paragraph 4, last line: Original text - ".....it also estimates the current phase". Suggested correction - "...it also estimates the current phase velocity"
Done
Potential typo on page 8:
2.3 Model maintains walking under unpredictable external perturbations.
Paragraph 3, line 2: Original text - "...brief, unexpected force (e.g. legs slipping on an unstable surface)".
Consider replacing force with motion, or providing an example of a force as opposed to displacement (slipping).
Done
Potential typo on page 8:
2.3 Model maintains walking under unpredictable external perturbations.
Paragraph 3, line 4: Original text - "The magnitude of this velocity is drawn from a normal distribution...".
Is this really magnitude? If so, please discuss how the sign (+/-) is assigned to velocity, and how the normal distribution is centred so as to sample only positive values representing magnitude.
Indeed the magnitude of the velocity is drawn from a normal distribution. A positive or negative sign is then assigned with equal odds. We have added text to clarify this:
“The sign of the velocity was drawn separately so that there is equal likelihood for negative or positive perturbation velocities.”
Page 8:
2.3 Model maintains walking under unpredictable external perturbations.
In Paragraph 5: Why is the data reduced to only 2 dimensions? Could higher order PCA modes (cumulatively accounting for more than 50% variance in the data) not have distinguishing information between realistic and unrealistic walking trajectories?
We provide a longer response for this in the public review above.
Page 11:
Why wouldn't a system trained in the presence of external perturbations perform better? What is the motivation to remove external perturbations during training?
We agree that a system trained in the presence of external perturbations would probably perform better — however, we do not have data that contains walking with external perturbations. Nothing was removed — all the data used in this study involve a fly walking without perturbations.
We have added a clarification:
“our model maintains realistic walking in the presence of external dynamic perturbations, despite being trained only on data of walking without perturbations (no perturbation data was available).”
Page 16:
4.1 Tracking joint angles of D. melanogaster walking in 3D.
Paragraph 1: Readers who wish to collect similar data might benefit from specifying the exposure time, animal size in pixels (or camera sensor format and field of view), in addition to the frame rate. Alternatively, consider mentioning the camera and lens part numbers provided by the manufacturer.
This is a good point. We have updated the text to include these specifications:
“We obtained fruit fly D. melanogaster walking kinematics data following the procedure previously described in (Karashchuk et al, 2021). Briefly, a fly was tethered to a tungsten wire and positioned on a frictionless spherical treadmill ball suspended on compressed air. Six cameras (Basler acA800-510um with Computar zoom lens MLM3X-MP) captured the movement of all of the fly's legs at 300 Hz. The fly size in pixels ranges from about 300x300 up to 700x500 pixels across the 6 cameras. Using Anipose, we tracked 30 keypoints on the fly, which are the following 5 points on each of the 6 legs: body-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as well as the tip of the tarsus.”
Potential typos on page 18:
4.3.3 Training procedure
Paragraph 2, line 1: Original text - "..(, p)"
Do the authors mean "...(, )"
Paragraph 2, line 2: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?
Paragraph 3, line 3: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?
Thank you for pointing out this issue. We have now fixed the phase p to be \phi to be consistent with the rest of the text.
Paragraph 3, line 3: Original text - "...()"
Do the authors mean "(d)"? If not, please discuss the difference between and d.
Thank you for pointing this out. \hat \theta and \theta_d were used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.
Page 19:
Typo after eqn. (6):
Original text: "where x := q - q, ... A and B are Jacobians with respect to...."
Correction: "where x := q - q, ... Ac and Bc are Jacobians with respect to...."
Similar corrections in eqn. 7 and eqn. 8: A and B should be replaced with Ac and Bc. Done
Page 19, eqn. (10b):
Should the last term be qd(t+T) as opposed to qd(t+1)?
No: in fact (10a) contains the typo: it should be y(t+1) as opposed to y(t+T). This has been fixed.
Page 19
The authors' detailed description of the initial steps leading up to the dynamics model, involving the construction of the ODE, linearizing the system about the fixed point makes the text broadly accessible to the general reader. Similarly, adding some more description of the predictive model (eqn. 11 - 15) could improve the text's accessibility and the reader's appreciation for the model. This is especially relevant since the effects of sensorimotor delay and external perturbations, which are incorporated in the control and dynamics model, form a major contribution to this work. What do the matrices F, G, L, H, and K look like for the Drosophila model? Are there any differences between the model in Stenberg et al. (referenced in the paper) and the authors' model for predictive control? Are there any differences in the assumptions made in Stenberg et al. compared to the model presented in this work? The readers would likely also benefit from a figure showing the information flow in the model, and describing all the variables used in the predictive control model in eqn. 11 through eqn. 15 (analogous to Figure 1 in Stenberg et al. (2022)). Such a detailed description of the control and dynamics model would help the reader easily appreciate the assumptions made in modelling the effects of sensorimotor delay and external perturbations.
Done
Page 20:
Eqn. 12: Should z(t+1) be z(t+T) instead?
Similar comment for eqn. 14
No: we made a mistake in (10a); there should be no (t+T) terms; all terms should be (t+1) terms to reflect a standard discrete-time difference equation.
Eqn. 13: r(t) can be defined explicitly
Done
4.5 Generate joint trajectories of the complete model with perturbations Paragraph 2, line 2: Please read the previous comment
\hat \theta and \theta_d were previously used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.
Original text - "Every 8 timesteps, we set :=...."
Does this mean dis set to? If so, the motivation for this is not clear.
We mean that \theta_d is set to be equal to \theta. We have replaced “:=” with “=” for clarity.
General comments for the authors:
Could the authors discuss the assumptions regarding Drosophila physiology implied in the control model?
The control model is primarily included as a plausible functional element of the fly’s nervous system, and as such implies minimal assumptions on physiology itself. The main assumption, which is evident from the description of the model components, is that the fly uses proprioceptive feedback information to inform future movements.
We have added clarifying text to the Results section:
“While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”
The authors acknowledge the absence of ground contact forces in the model. It is probably worth discussing how this simplification may affect inferences regarding the acceptable range of sensorimotor delay in generating realistic walking trajectories.
We agree, and discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We replicate the relevant sentences below:
“The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”
The effects of other simplifications are also mentioned in the same section.
Can the authors provide an insight into why the use of a second derivative of joint angles as the output of the trajectory generator () leads to more realistic trajectories (4.3.1 Model formulation, paragraph 1)?
Does the use of a second-order derivative of joint angles lead to drift error because of integration?
Could the distribution of θd produced be out of the domain due to drift errors? Could this affect the performance of the neural network model approximating the trajectory generator?
We are not sure why the second derivative works better than the first derivative. It is possible that modeling the system as a second order differential equation gives the network more ability to produce complex dynamics.
As can be seen in the example time series in Figures 2 and 3 and supplemental videos, there is no drift error from integration, so it is unlikely to affect the performance of the neural network.
What does the model's failure (quantified by a low KS score) look like in the context of fly dynamics? What do the joint angles look like for low values of KS score? Does the fly fall down, for example?
Since the model primarily considers kinematics, a low KS score means that kinematics are unrealistic, e.g. the legs attain unnatural angles or configurations. Examples of this can be seen in videos 4-7 (linked from Appendix 1 of the paper), as well as in the bottom row of Fig. 5, panel A. Here, at 40ms of motor delay, L2 femur rotation is seen to attain values that far exceed the normal ranges.
We have added a small clarification in the caption of Fig.5 panel A:
“low KS indicates that the perturbed walking deviates from data and results in unnatural angles
(as seen at 40ms motor delay)”
We remark that since our simulations do not incorporate contact forces (as the reviewer remarks above, we simulate something like legs moving in the air for a tethered fly), the fly cannot “fall down” per se. However, if forces were incorporated then yes, these unrealistic kinematics would correspond to a fly that falls down or is no longer walking.
Reviewer #2 (Recommendations For The Authors):
L49: "Computational models of locomotion do not typically include delay as a tunable parameter, and most existing models of walking cannot sustain locomotion in the presence of delays and external perturbations". This remark confuses the reviewer.
(1) If models do not "typically" include delay as a tunable parameter, this suggests that atypical models do. Which models do? Please provide references.
Our initial phrasing was confusing. We meant to say that most models do not include delay, and some models do include delay as a fixed value (rather than a tunable value). We clarify in the updated text, which is replicated below:
“Computational models of locomotion typically have not included delays as a tunable parameter, although some models have included them as fixed values (Geyer and Herr, 2010; Geijtenbeek et al., 2013).”
(2) Has the statement that most existing models cannot sustain locomotion with delays been tested? If so, provide references. If not, please remove this statement or temper the language.
Since most models don’t include delays, they cannot be run in scenarios with delays. We clarify in the updated text, which is replicated below:
“Computational models of locomotion have not typically included delays. Some have included delay as a fixed value rather than a tunable parameter (Geyer and Herr, 2010; Geijtenbeek et al., 2013). However, in general, the impact of sensorimotor delays on locomotor control and robustness remains an underexplored topic in computational neuroscience.”
L57: "two of six legs lift off the ground at a time" - Two legs are off the ground at any time, but they do not "lift off" simultaneously in the fruit fly. To lift off simultaneously, contralateral leg pairs would need to be 33% out of phase with one another, but they are almost always 50% out of phase.
Thank you for pointing out this oversight. We have updated the text accordingly:
“Flies walk rhythmically with a continuum of stepping patterns that range from tetrapod (where two of six legs are off the ground at a time) to tripod (where three of six legs are off the ground at a time)"
L88: "a new model of fly walking" - The intention of the authors is to produce a model from which to learn about walking in the fly, is that correct? The reviewer has read the paper several times now and wants to be sure that this is the authors' goal, not to engineer a control system for an animation or a robot.
Indeed, this is our goal. We were previously unclear about this, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).
L126: "These desired phases are synchronized across pairs of legs to maintain a tripod coordination pattern, even when subject to unpredictable perturbations." - Does the animal maintain tripod coordination even when perturbed? In the reviewer's experience, flies vary their interleg coordination all the time. The reviewer would also expect that if perturbed strongly (as the supplemental videos show), the animal would adapt its interleg coordination in response. The author finds this assumption to be a weak point in the paper for the use of this disturbance exploring animal locomotion.
We do not know exactly how flies may react to our mechanical perturbations. However, we may hypothesize based on past papers.
Couzin-Fuchs et al (2015) apply a mechanical perturbation to walking cockroaches. They find that that tripod is temporarily broken immediately after the perturbation but the cockroach recovers to a full tripod within one step cycle.
DeAngelis et al (2019) apply optogenetic perturbations to fly moonwalker neurons that drive backward walking. Flies slow down following perturbation, but then recover after 200ms (about 2-3 steps) to their original speed (on average).
Thus, we think it is reasonable to model a fly’s internal phase coupling to maintain tripod and for its intended speed to remain the same even after a perturbation.
We do agree with the reviewer that it is plausible a fly might also slow down or even stop after a perturbation and we do not model such cases. We have added some text to the discussion on future work:
“Future work may also model how higher-level planning of fly behavior interacts with the lowerlevel coordination of joint angles and legs. Walking flies continuously change their direction and speed as they navigate the environment (Katsov et al, 2017; Iwasaki et al 2024). Past work shows that flies tend to recover and walk at similar speeds following perturbations (DeAngelis et al, 2019), but individual flies might still change walking speed, phase coupling, or even transition to other behaviors, such as grooming. Modeling these higher-level changes in behavior would involve combining our sensorimotor model with models for navigation (Fisher 2022) or behavioral transitions (Berman et al, 2016).”
L136: "...to output joint torques to the physical model of each leg" - Is this the ultimate output of the nervous system? Muscles are certainly not idealized torque generators. There are dynamics related to activation and mechanics. The reviewer is skeptical that this is a model of neural control in the animal, because the computation of the nervous system would be tuned to account for all these additional dynamics.
We agree with the reviewer that joint torques are not the ultimate output of the nervous system. We use a torque controller because it is parsimonious, and serves our purpose of creating an interpretable and modular locomotion model.
We also agree that muscles are an important consideration — we make mention of them later on in the paper under the section “Toward biomechanical and neural realism”, where we state “Another step toward biological realism is the incorporation of explicit dynamical models of proprioceptors, muscles, tendons, and other biomechanical aspects of the exoskeleton.”
Our goal is not to directly model neural control of the animal. We have introduced text clarifications to emphasize this — we provide a longer response for this in the public review above (see (2)).
L143: "To train the network from data, we used joint kinematics of flies walking on a spherical treadmill..." This is an impressive approach, but then the reviewer is confused about why the kinematics of the model are so different from those of the animal. The animal takes longer strides at a lower frequency than the model. If the model were trained with data, why aren't they identical? This kind of mismatch makes the reviewer think the approach in this paper is too complicated to address the main problem.
The design of our trajectory generator model is one of the simplest for reproducing the output of a dynamical system. It consists of a multilayer perceptron model that models the phase velocity and joint angle accelerations at each timestep. All of its inputs are observable and interpretable: the current joint angles, joint angle derivatives, desired walking speed, and phase angle.
We chose this model for ease of interpretability, integration with the optimal controller, and to allow for generalization across perturbations. Given all of these constraints, this is the best model of desired kinematics we could obtain. We note that the simulated kinematics do match real fly kinematics qualitatively (Figure 2A and supplemental videos) and are close quantitatively (Figure 2B and C). We speculate that matching the animals’ strides at all walking frequencies may require explicitly modeling differences across individual flies. We leave the design and training of more accurate (but more complex) walking models for future work.
We add some further discussion about fitting kinematics in the discussion:
“Although we believe our model matches the fly walking sufficiently for this investigation, we do note that our model still underfits the joint angle oscillations in the walking cycle of the fly (see Figure 2 and Appendix 3). More precise fitting of the joint angle kinematics may come from increasing the complexity of the neural network architecture, improving the training procedure based on advances in imitation learning (Hussein et al., 2018), or explicitly accounting for individual differences in kinematics across flies (Deangelis et al., 2019; Pratt et al., 2024).”
Figure 2: The reviewer thinks the violin plots in Figure 2C are misleading. Joint angles could be greater or less than 0, correct? If so, why not keep the sign (pos/neg) in the data? Taking the absolute value of the errors and "folding over" the distribution results in some strange statistics. Furthermore, the absolute value would shroud any systematic bias in the model, e.g., joint angles are always too small. The reviewer suggests the authors plot the un-rectified data and simply include 2 dashed lines, one at 5.56 degrees and one at -5.56 degrees.
These violin plots are averages of errors over all phases within each speed. We chose to do this to summarize the errors across all phase angle plots, which are shown in detail in Appendix 3 and 4.
For the reviewer, we have added a plot of the raw errors across all phase angle plots in Appendix 5, E.
L156: Should "\phi\dot" be "\phi"?
We originally had a typo: we said “phase” when we meant “phase velocity”. This has been fixed. \phi\dot is correct.
L160: "This control is possible because the controller operates at a higher temporal frequency than the trajectory generator...". This statement concerns the reviewer. To the reviewer, this sounds like the higher-level control system communicates with the "muscles" at a higher frequency than the low-level control system, which conflicts with the hierarchical timescales at which the nervous system operates. Or do the authors mean that the optimal controller can perform many iterations in between updates from the trajectory generator level? If so, please clarify.
We mean that the optimal controller can perform many iterations in between updates from the trajectory generator level. The text has been clarified:
“This control is possible because the controller operates at a higher temporal frequency than the trajectory generator in the model. The controller can perform many iterations (and reject disturbances) in between updates to and from the trajectory generator.”
L225: "We considered two types of perturbations: impulse and persistent stochastic". Are these realistic perturbations? Realistic perturbations such as a single leg slipping, or the body movement being altered would produce highly correlated joint velocities.
These perturbations are not quite realistic — nonetheless, we illustrate their analogousness to real perturbations in the subsequent text in the paper, and restrict our simulations to ranges that would be biologically plausible (see Appendix 7). We agree that realistic perturbations would produce highly correlated joint accelerations and velocities, whereas our perturbations produce random joint accelerations.
L265: "...but they are difficult to manipulate experimentally..." This is true, but it can and has been done. The authors should cite:
Bässler, U. (1993). The femur-tibia control system of stick insects-A model system for the study of the neural basis of joint control. Brain Research Reviews, 18(2), 207-226.
Thank you for the suggestion, we have incorporated it into the text at the end of the referenced sentence.
L274: "...since the controller can effectively compensate for large delays by using predictions of joint angles in the future". But can the nervous system do this? Or, is there a reason to think that the nervous system can? The reviewer thinks the authors need stronger justification from the literature for their optimal control layer.
To clarify, this sentence describes a feature of the model’s behavior when no external perturbations are present. This is not directly relevant to the nervous system, since organisms do not typically exist in an environment free of perturbations — we are not suggesting that the nervous system does this.
In response to the question of whether the nervous system can compensate for delays using predictions: we know that delays are present in the nervous system, perturbations exist in the environment, and that flies manage to walk in spite of them. Thus, some type of compensation must exist to offset the effects of delays (the reviewer themself has provided some excellent citations that study the effects of delays). In our model, we use prediction as the compensation mechanism — this is one of our central hypotheses. We further discuss this in the section “Predictive control is critical for responding to perturbations due to motor delay”.
L319: "The formulation of a modular, multi-layered model for locomotor control makes new experimentally-testable hypotheses about fly motor control...". What testable hypotheses are these? The authors should explicitly state them. They are not clear to the reviewer, especially given the nonphysiological nature of the control system and the mechanics.
A number of testable hypotheses are mentioned throughout the Discussion section:
“Our model predicts that at the same perturbation magnitude, walking robustness decreases as delays increase. This could be experimentally tested by altering conduction velocities in the fly, for example by increasing or decreasing the ambient temperature (Banerjee et al, 2021). If a warmer ambient temperature decreases delays in the fly, but fly walking robustness remains the same in response to a fixed perturbation, this would indicate a stronger role for central control in walking than our modeling results suggest.”
“In our model, robust locomotion was constrained by the cumulative sensorimotor delay. This result could be experimentally validated by comparing how animals with different ratios of sensory to motor delays respond to perturbations. Alternatively, it may be possible to manipulate sensory vs. motor delays in a single animal, perhaps by altering the development of specific neurons or ensheathing glia (Kottmeier et al., 2020). If sensory and motor delays have significantly different effects on walking quality, then additional compensatory mechanisms for delays could play a larger role than we expect, such as prediction through sensory integration, mechanical feedback, or compensation through central control.”
“we hypothesize that removing proprioceptive feedback would impair an insect's ability to sustain locomotion following external perturbations.”
“We propose that fly motor circuits may encode predictions of future joint positions, so the fly may generate motor commands that account for motor neuron and muscle delays.”
L323: "...and biomechanical interactions between the limb and the environment". In the reviewer's experience, the primary determinant of delay tolerance is the mechanical parameters of the limb: inertia, damping, and parallel elasticity. For example, in Ashtiani et al. 2021, equation 5 shows exactly how this comes about: the delay changes the roots and poles of the control system. This is why the reviewer is confused by the complexity of the model in this submission; a simpler model would explain why delays cannot be tolerated in certain circumstances.
We were previously unclear about the goal of the model, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).
L362: Another highly relevant reference here would be Sutton et al. 2023.
Done
L366: Szczecinski et al. 2018 is hardly a "model"; it is mostly a description of experimental data. How about Goldsmith, Szczecinski, and Quinn 2020 in B&B? Their model of fly walking has patterngenerating elements that are coordinated through sensory feedback. In their model, motor activation is also altered by sensory feedback. The reviewer thinks the statement "Models of fly walking have ignored the role of feedback" is inaccurate and their description of these references should be refined.
Thank you for the suggestion; we have tempered the language and revised this section to include more references, including the suggested one — text is replicated below.
“Many models of fly walking ignore the role of feedback, relying instead on central pattern generators (Lobato-Rios et al., 2022; Szczecinski et al., 2018; Aminzare et al., 2018) or metachondral waves (Deangelis et al., 2019) to model kinematics. Some models incorporate proprioceptive feedback, primarily as a mechanism that alters timing of movements in inter-leg coordination (Goldsmith et al., 2020; Wang-Chen et al., 2023).”
We remark that Szczecinski et al does include a model that replicates data without using sensory feedback, so we think it is fair to include.
L371: "...highly dependent on proprioceptive feedback for leg coordination during walking." What about Berendes et al. 2016, which showed that eliminating CS feedback from one leg greatly diminished its ability to coordinate with the other legs? This suggests that even flies depend on sensory feedback for proper coordination, at least in some sense.
Interesting suggestion – we have integrated it into the text a little further down, where it better fits:
“Silencing mechanosensory chordotonal neurons alters step kinematics in walking Drosophila (Mendes et al., 2013; Pratt et al., 2024). Additionally, removing proprioceptive signals via amputation interferes with inter-leg coordination in flies at low walking speeds (Berendes et al., 2016)”
L426: "The layered model approach also has potential applications for bio-mimetic robotic locomotion.". How fast can this model be computed? Can it run faster than real-time? This would be an important prerequisite for use as a robot control system.
The model should be able to be run quite fast, as it involves only
(1) Addition, subtraction, matrix multiplication, and sinusoidal computation on scalars (for the phase coordinator and optimal controller)
(2) Neural network inference with a relatively small network (for the trajectory generator) Whether this can run in real-time depends on the hardware capabilities of the specific robot and the frequency requirements — it is possible to run this on a desktop or smaller embedded device.
We do note that the model needs to first be set up and trained before it can be run, which takes some time (see panel D of Figure 1).
L432: "...which is a popular technique in robotics.". Please cite references supporting this statement.
We have added citations: the text and relevant citations are reproduced below:
“... which is a popular technique in robotics (Hua et al., 2021; Johns, 2021)
Hua J, Zeng L, Li G, Ju Z. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors. 2021; 21(4):1278
Johns E. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In:
2021 IEEE international conference on robotics and automation (ICRA) IEEE; 2021. p. 4613–4619
L509: "We find that the phase offset across legs is not modulated across walking speeds in our dataset". This is a surprising result to the reviewer. Looking at Figure 6C, the reviewer understands that there are no drastic changes in coordinate with speed, but there are certainly some changes, e.g., L1-R3, L3-R1. In the reviewer's experience, even very small changes in interleg phasing can change the visual classification of walking from "tripod" to "tetrapod" or "metachronal". Furthermore, several leg pairs do not reside exactly at 0 or \pi radians apart, e.g., L1-L3, L2-L3, R1-R3, R2-R3. In conclusion, the reviewer thinks that setting the interleg coordination to tripod in all cases is a large assumption that requires stronger justification (or, should be eliminated altogether).
We made a simplifying assumption of a tripod coordination across all speeds. The change in relative phase coordination across speeds is indeed relatively small and additionally we see little change in our results across forward speeds (see Figures 4B, 5C and 5D).
We have added text to clarify this assumption and what could be changed for future studies in the methods:
“We estimate $\bar \phi_{ij}$ from the walking data by taking the circular mean over phase differences of pairs the legs during walking bouts. We find that the phase offset across legs is not strongly modulated across walking speeds in our dataset (see Appendix 2) so we model $\bar \phi_{ij}$ as a single constant independent of speed. In future studies, this could be a function of forward and rotation speeds to account for fine phase modulation differences.”
L581: "of dimension...". Should the asterisk be replaced by \times? The asterisk makes the reviewer think of convolution. This change should be made throughout this paragraph.
Good point, done.
Figure 6: Rotational velocities in all 3 sections are reported in mm/s, but these units do not make sense. Rotational velocities must be reported in rad/s or deg/s.
The rotation velocity of mm/s corresponded to the tangential velocity of the ball the fly walked on. We agree that this does not easily generalize across setups, so we have updated the figure rotation velocities in rad/s.
L619: The reviewer is unconvinced by using only 2 principal components of the data to compare the model and animal kinematics. The authors state on line 626 that the 2 principal components do not capture 56.9% of the variation in the data, which seems like a lot to the reviewer. This is even more extreme considering that the model has 20 joints, and the authors are reducing this to 2 variables; the reviewer can't see how any of the original waveforms, aside from the most fundamental frequencies, could possibly be represented in the PCA dataset. If the walking fly models looked similar to each other, the reviewer could accept that this method works. But the fact that this method says the kinematics are similar, but the motion is clearly different, leads the reviewer to suspect this method was used so the authors could state that the data was a good match.
Our primary use of the KS metric was to indicate whether the simulated fly continues walking in the presence of perturbations, hence we limited the analysis of the KS to the first 2 principal components.
For completeness, we investigate the principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10.
The results look similar across components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9 showing that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation.
We add text in the methods:
“We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component)). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”
(Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)
We also reference Appendix 10 in the results:
“We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”
Briefing Document : Analyse du Plan Ministériel pour la Santé Mentale des Élèves (mars 2025)
Source : Excerpts from "Santé mentale des élèves : les insuffisances du plan ministériel.pdf", Café Pédagogique, 18 mars 2025.
Thème Principal : Le document analyse de manière critique le plan d'action ministériel pour la santé mentale des élèves, soulignant ses insuffisances au regard de la gravité de la situation et du manque de moyens structurels.
Idées et Faits Clés :
Reconnaissance Ministérielle et Insuffisances Soulignées : * Le ministère de l'Éducation nationale affiche sa mobilisation face à la dégradation préoccupante de la santé mentale des enfants et des jeunes, mettant en place un protocole-cadre pour la santé mentale allant "du repérage à la prise en charge". * Cependant, l'article met en évidence que ce plan, malgré des intentions louables, présente un certain nombre d'insuffisances. Selon Edmond Porra, secrétaire adjoint du Snupden-FSU, il s'inscrit dans le contexte d'"une santé scolaire dégradée".
Carence Dramatique de Ressources Humaines :
Solution des "Secouristes en Santé Mentale" Jugée Insuffisante :
Risque de Départementalisation et d'Interchangeabilité des Missions :
Déplacement de la Question des Moyens vers l'Organisation :
Nécessité de Moyens pour des Professionnels Qualifiés :
Critique de l'Usage du Concept de Santé Mentale Hors Contexte :
Ignorance des Facteurs Éducatifs et Sociaux :
Détérioration des Structures de Soin Existantes :
Critique du "Marketing Protocolaire" :
La présentation du plan est jugée axée sur une "forme protocolaire" qui induit des attentes potentiellement trompeuses auprès des familles, qui pourraient croire à une prise en charge médicale structurée.
"La communication par le renvoi dans les établissements à l’existence du « protocole » comme solution entretient l’ambiguïté dans un contexte de saturation des dispositifs déjà surchargés dans les secteurs de la pédopsychiatrie et des soins psychologiques." Cela alimente des attentes irréalistes face au manque de ressources.
Impact Négatif sur les Personnels :
Manque d'Ambition et Solutions de Fortune :
Il exprime une crainte quant aux effets réels du plan, anticipant plus de problèmes que de solutions.
Quote Significative :
"La meilleure garantie pour la sécurité psychique des enfants que nous accueillons, c’est d’abord d’avoir les moyens d’un travail d’équipes de professionnels spécialisés et qualifiés auprès des établissements, plus que de faire peser ces missions sur d’autres personnels."
Conclusion :
Le document critique sévèrement le plan ministériel pour la santé mentale des élèves, le considérant comme une réponse organisationnelle superficielle à un problème profond de manque de moyens structurels et de dégradation des services publics de santé et d'éducation.
L'accent mis sur la formation de "secouristes" et sur un protocole est perçu comme un cache-misère qui ne s'attaque pas aux racines du problème, telles que le manque de personnels spécialisés, la privatisation rampante de la médecine scolaire, et l'ignorance des facteurs éducatifs et sociaux contribuant à la détresse des élèves.
L'article exprime une forte inquiétude quant à l'efficacité réelle de ce plan et à son impact sur les élèves et les personnels.
Briefing webinaire fcpe sur l'École Inclusive
Date : 8 mai 2024
Source : Excerpts from "Texte collé" (Transcription d'une intervention orale)
Objet : Analyse des principaux thèmes, idées importantes et faits marquants concernant l'école inclusive en France, présentés lors d'une intervention.
Introduction :
Ce document synthétise les principaux points abordés dans l'extrait d'une intervention orale portant sur l'école inclusive.
L'intervenant, qui semble être un Inspecteur Conseil Technique en charge de l'école inclusive, partage sa vision, les évolutions récentes, les défis persistants et les moyens mis en œuvre pour favoriser une école pour tous en France.
L'intervention se situe dans le contexte du 20ème anniversaire de la loi du 11 février 2005, une législation marquante pour les droits des personnes en situation de handicap.
Thèmes Principaux et Idées Clés :
L'intervenant insiste sur l'importance de considérer chaque enfant d'abord comme un élève, avec une identité propre et des besoins éducatifs particuliers, plutôt que de se focaliser sur des étiquettes liées à un potentiel ou un handicap. "D'abord, je reconnais, c'est qu'il a des besoins, tu besoins éducatifs particuliers et vous voyez que essayer de sortir de cette idée de l'étiquette et de la et de l'identification, ça nous oblige nous aussi dans l'école à se demander d'abord quelle est l'identité de cet enfant?" (00:08:30-00:08:48).
Il rappelle les textes fondateurs comme la Déclaration de Salamanque (1994) qui pose les principes que "chaque enfant a des caractéristiques, des intérêts, des aptitudes et des besoins d'apprentissage qui lui sont propres" (00:11:29-00:11:38) et que "les différences humaines sont normales et par conséquent, l'apprentissage doit être adapté aux besoins de chaque femme" (00:11:49-00:11:55).
La Notion de Difficulté et l'Écart à la Norme :
La difficulté est définie comme un "écart entre les compétences et les performances de l'élève et ce qui est attendu de lui par rapport à son âge et aux attentes du système éducatif" (00:13:27-00:13:53).
L'intervenant perçoit ces enfants en difficulté non pas comme un problème, mais comme une "force" (00:14:43) qui oblige les professionnels à interroger, adapter et répondre aux projets de l'école.
L'École Inclusive comme Projet de Société :
L'école inclusive n'est pas uniquement l'affaire de l'école, mais engage la société dans son ensemble pour "faire une place dans la société à tous" (00:15:50-00:15:58).
L'enjeu est de passer d'une logique d'accessibilité ("je rends les choses accessibles") à une logique de compensation ("mesures complémentaires qui vont être décidées") et idéalement vers une société où l'environnement est adapté à chacun, sans nécessité de privilèges ou d'exclusion. Selon Charles Gardou, une société inclusive est une "société sans privilège ni exclusivité ni exclusion ni exclusion, chacun dans sa place et dans la société ni exclusivité" (00:21:36-00:22:29).
Évolution de la Loi de 2005 et Nécessité d'Interrogation :
La loi de 2005 a "bouleversé, elle a modifié, elle a engagé énormément les personnels, les moyens, mais aussi les partenariats" (00:03:25-00:03:37).
Après 20 ans, il est nécessaire d'interroger cette loi et de la regarder avec un œil nouveau en se projetant sur les prochaines années, notamment en ce qui concerne l'application du "droit commun".
Enseignants référents : Experts académiques (une centaine dans l'académie de Montpellier) qui suivent les enfants et les familles.
Accompagnants d'Élèves en Situation de Handicap (AESH) : Distinction entre différentes missions (aide aux actes de la vie quotidienne, aide à la scolarisation, aide à l'autonomie). La MDPH doit nommer clairement le type de mission.
Dispositifs spécifiques en établissement ordinaire : ULIS (Unités Localisées pour l'Inclusion Scolaire) pour différents types de besoins (TFC, TED, TSA, TSL, Troubles moteurs, Déficience visuelle, Déficience auditive, Troubles des fonctions cognitives).
Dispositifs pour les Troubles du Neuro-Développement (TND) : Stratégie nationale, plateformes de diagnostic et d'orientation (PCO), dispositifs d'accompagnement médico-social (CAMSP, CMPP, SESSAD).
Établissements Médico-Sociaux (EMS) : IME, ITEP, etc., indispensables pour les enfants avec des handicaps majorés nécessitant une prise en charge pluriprofessionnelle. Un identifiant national est donné à tous les élèves, y compris ceux scolarisés en EMS, soulignant leur statut d'élève avant tout.
Adaptation pédagogique : Nécessité d'interroger la pédagogie pour répondre aux besoins de tous.
Défis et Points de Vigilance :
Conclusion :
L'intervention met en lumière une volonté affirmée de faire progresser l'école inclusive en France, en s'appuyant sur un cadre législatif existant et des moyens humains et financiers en développement.
L'accent est mis sur une approche centrée sur les besoins individuels de chaque enfant, au-delà des étiquettes, et sur une vision de l'inclusion comme un projet sociétal.
Cependant, des défis importants subsistent en termes d'équité d'accès aux dispositifs, d'articulation entre les acteurs et de réponse à des problématiques spécifiques comme le refus scolaire anxieux.
La formation des professionnels et le partenariat avec les familles sont identifiés comme des leviers essentiels pour une école véritablement pour tous.
Citation Pertinente pour la Diffusion :
"Ce n'est pas juste de la du vocabulaire que j'utilise... on voit bien que c'est un paradigme qui modifie absolument tout dans la perception que l'on doit voir de ce qu'est l'école, pas une accumulation d'enfants à profil et avec une accumulation de structure ou de réponse..." (00:05:07-00:06:31)
Voici un sommaire de la présentation avec les horodatages correspondants :
culties i~ sb hast ily scra wlelt fEl~abetho • inal manuscript and just how Du yck1~a ekth Melvill e had inra t. . eve ralorig 1 'JI h cl h in c ce ns d co pying th e'tten, Me v1 e a no c ance to correct f or e wh at Melv ll h dwn b 1• cl proo s and f " 1 e ah Printed essay, ut 1ste only one . Th e r ound ugl y err o ,, .t e d • d • • •oo tnot
This section depicts the root of Melville's disdain for publishers and critics. As we have discussed, he was very particular about his style and hard on his own writing making it clear how any changes could be viewed as abominable. Furthermore, when it is his writing being criticized, it would be frustrating to know it had been altered in his own name. This idea is reflected in Pierre's struggles to find his footing as a writer when everyone in the world wants something different but he simply wants to write for himself and share that with the world.
When multiple keyframes are added to a property, a colored bar will appear within the sequencer between keyframes.
The vertical bar indicates that the keyframed property is vector-valued, rather than a scalar value. So you'll get it linking x,y,z components of a Vec3f for example, but wouldn't see it for floats. You won't see it for multiple keyframes at different relative frametimes.
This is a short-term solution for not being able to key the x,y,z individually. I'm hoping I'll get to add this before the v1 release, but assume not and I'll let you know if I get time.
Author response:
The following is the authors’ response to the original reviews.
We appreciate that both reviewers found our findings significant and recognized the strength of the presented data in demonstrating the potential value of ASO-mediated Emc10 expression modulation for treating 22q11.2DS. We are grateful for the reviewers' valuable input and constructive suggestions, which we believe have significantly strengthened our manuscript. Below, we address the main points and concerns, followed by our point-by-point responses:
Evaluation of ASO-Mediated Emc10 Reduction: We appreciate the feedback and the opportunity to clarify this point. While we agree that ASO-mediated reduction of Emc10 should ideally be evaluated at both the mRNA and protein levels, we would like to emphasize that this was indeed performed in our study. Specifically, we conducted both qRT-PCR and Western Blot (WB) assays on the same animal cohort, focusing on the left and right hippocampus (rather than the PFC) following ASO injection (see Figure S11C and D). We prioritized the hippocampus for the WB assay because our primary behavioral assays and observed phenotypes in this study are strongly hippocampus-centric. This approach reflects our aim to investigate Emc10's role in the brain regions most relevant to the observed phenotypes. We hope this clarification addresses the reviewer’s concerns. While protein-level analysis would ideally complement RNA measurements, the Emc10 antibodies available were suboptimal in specificity and sensitivity, requiring substantial optimization. Additionally, challenges in obtaining sufficient high-quality protein from small regions like the hippocampus limited the use of protein detection as a standalone method. We plan to refine antibody protocols or explore alternative methods in future work. Notably, in all instances where we performed parallel protein and RNA measurements in both, mouse brain tissue and human cell lines, there was excellent concordance between the datasets, strongly suggesting that mRNA levels are a reliable indicator of Emc10 protein levels in our model.
ASO Neuronal Uptake: While ASO uptake by neurons in the brain can vary considerably depending on factors such as ASO chemistry, delivery method, target brain region, and cell type, our targeted delivery approach, ASO design optimization, and ASO screening strategy were specifically tailored to achieve uniform and efficient uptake across hippocampal and cortical regions, in both neurons and glia. The figures included in our manuscript at both low and high magnification (see Figure S14A) clearly display the extensive (over 97%) overlap of ASO-positive cells (green signal) with cells expressing the neuronal marker NeuN (red signal). While quantifying ASO-positive cells in different brain regions could add value, the robust diffusion of ASO into neurons and glia is effectively demonstrated in the current figures and indirectly supported by the robust downregulation of Emc10 in ASO-treated animals as shown by qRT-PCR assays of hippocampal and cortical brain regions.
Transcriptomic Data in Mutant EMC10 NGN2-iNs: Reduction in EMC10 levels is not expected to directly affect transcription or to broadly reorganize the differential gene expression profile of the Q6/Q5 patient/control NGN2-iN lines. Accordingly, our transcriptional profiling was not designed to assess the direct impact of EMC10 deficiency on gene expression but rather to serve as an indirect measure of cellular pathways affected by the reduction in EMC10 levels in the patient Q6 line. We aimed to identify genes and related functional pathways differentially expressed between the Q6/Q5 patient/control lines, where these expression differences are either abolished or significantly attenuated in Q6/EMC10<sup>HET</sup> or Q6/EMC10<sup>HOM</sup> NGN2-iNs.
Statistical Analysis: We have meticulously reviewed all statistical analyses in the manuscript to ensure their appropriateness and adherence to established practices. For Figure S2, we acknowledge that the statistical details were not fully specified in the figure legend, though they are provided for each miRNA in Supplemental Table S2. In the revised manuscript, we ensured that the statistical methods and corresponding values are clearly indicated for each comparison.
We are confident that the revisions outlined above, along with the point-by-point responses provided below, will significantly strengthen our manuscript and address all the concerns raised by the reviewers. We would like to express our sincere thanks to the reviewers for their valuable feedback and constructive suggestions.
Reviewer #1 (Recommendations For The Authors):
My comments here are generally limited to minor comments that reflect possible small additions or edits to the manuscript:
(1) Panel 1A is very small. Please consider making that bigger as space permits.
We have increased the panel size of Figure 1A in the revised manuscript to improve its visibility and clarity.
(2) Are you able to identify the dot that represents EMC10 in panel 1C? I understand that EMC10 is represented in Supplementary Figure 4A.
We appreciate the reviewer's observation. In Figure 1C, the volcano plot depicts differentially expressed miRNAs in the Q5/Q6 neuronal samples, as identified through miRNA-sequencing. Since EMC10, as a protein-coding gene and a downstream target of miRNA dysregulation, is not included in this analysis. However, as the reviewer correctly notes, EMC10 gene expression is represented in the volcano plot in Supplementary Figure 4A, which displays differentially expressed genes identified through bulk RNA-seq analysis of the same neuronal samples. To avoid any confusion, we have clarified the title of Figure 1C to emphasize that it represents miRNA expression changes.
(3) With regard to studies using iPSC. Some of the studies are executed across multiple distinct pairs and some are only done in a single pair. Overall, while results are coherent and often complimentary, would it be valuable for the authors to comment on experiments where studies in multiple pairs seemed particularly important, or others wherein it was less important?
We thank the reviewer for this insightful question regarding our use of multiple versus single hiPSC pairs. Our investigation began with the Q5/Q6 sibling (dizygotic twin) pair, which shares the most similar genetic background. This minimized the impact of confounding genetic factors and provided a robust foundation for testing our hypothesis that EMC10 upregulation, driven by miRNA dysregulation, is a key consequence of the 22q11.2 deletion in human neurons, thus validating our previous findings from the Df(16)A<sup>+/-</sup> mouse model (Stark et al., 2008; Xu et al., 2013). To ensure the generalizability of our findings, we incorporated additional hiPSC lines from another sibling pair as well as a case/control pair, demonstrating that EMC10 upregulation is a consistent feature of 22q11.2DS. Subsequently, we focused on the well-matched Q5/Q6 pair for detailed morphological, functional, and genetic rescue experiments. This approach allowed us to perform in-depth studies while controlling for potential genetic confounders. By using both multiple and single hiPSC pairs, we balanced the need for generalizable findings with the practical considerations of conducting technically complex and resource-intensive experiments. This strategy enabled us to provide both broad and detailed insights into the mechanisms underlying 22q11.2DS. We have modified the introductory paragraph of the Results section to better highlight this issue.
(4) While the majority of the experiments seem sufficiently powered to test the hypothesis in question in the iPSC studies, Figure 2B raises the question if the study replicates here were underpowered, and perhaps the authors might consider mentioning this, although this is a very minor comment.
We thank the reviewer for raising this point. We acknowledge that the statistical power to detect a significant difference in pre-miR-485 levels in Figure 2B may be limited due to the relatively small sample size and the inherent variability in hiPSC-derived neuronal cultures. However, it is important to emphasize that the functional impact of miRNAs is primarily mediated by their mature transcript forms. Our miRNA-seq data (Supplementary Table 2 and Figure S2) did not show significant alterations in the levels of mature miR-485-5p or miR-485-3p. This finding aligns with the reported expression pattern of miR-485 in hiPSC-derived neurons, where relatively low levels are observed in early neuronal development, with increased expression occurring in older, more mature neurons (Soutschek et al. 2023; https://ethz-ins.org/igNeuronsTimeCourse/ database from the Institute of Neurogenomics, ETH Zurich). This database provides a valuable resource for examining gene expression dynamics during human neuronal differentiation. Given that our hiPSC-derived neurons were analyzed at a relatively early developmental stage (DIV8 for these experiments), it is likely that miR-485 expression had not yet reached levels sufficient to reveal significant differences. While we acknowledge the potential limitation in statistical power for detecting subtle changes in pre-miR-485 levels, the combined evidence suggests that miR-485 may not be a significant contributor to the observed phenotypes at this developmental stage.
A paragraph has been added in the corresponding Results section to address this issue.
(5) There are a few situations where the authors could help out the reader a little bit by providing more labels on the figures directly. For example: in Figure 2, there are expression levels, over-expression, and inhibition of miRNA but the X-axis is named with similar labels for the miRNAs in question for each of these distinct experiments. If the authors want to help the reader, they may consider labeling these panels with a descriptive title to reflect the experiment being done or use more descriptive terms in the X-axis panels. Again, this is minor. Similarly, in Figure 5, it might be helpful for the authors to help out the reader again with more labels on the panels, such as in Figures 5B, 5C, and 5D. Would they consider labeling these panels, HPC, PFC, SSC with the brain location as they did in Figure 4?
We thank the reviewer for these helpful suggestions to improve the clarity of our figures. We have implemented the proposed changes. In Figure 2C-E, we have added specific titles to the panels to clearly distinguish between the different experimental conditions such as miRNA overexpression and inhibition. Similarly, in Figure 5, we labeled panels 5B, 5C, and 5D with the brain regions analyzed (HPC, PFC, SSC) to match the labeling used in Figure 4. We believe these revisions enhance the readability and overall interpretability of the figures, making it easier for readers to follow the experiments and results.
(6) Figure 3: There is some overshoot of the data in EMC10 homozygous null, in panel 3E, and also, overshoot of the het in panel 3H. Would there be value in the authors commenting on the potential basis for this in the discussion? Some issues are minor, such as the lack of electrophysiological analysis of circuits in vivo or in ex vivo slices that may further support the proposed rescue.
The reviewer correctly highlights the observation in Figures 3E and 3H, where the number of branch points in the Q6/EMC10<sup>HOM</sup> line exceeds wildtype levels and the calcium response in the Q6/EMC10<sup>HET</sup> and Q6/EMC10<sup>HOM</sup> lines surpasses that of the control. This overshoot is indeed intriguing and warrants discussion. EMC10 is part of the ER Membrane Complex (EMC), which plays a critical role in the proper folding and localization of various membrane proteins, including neurotransmitter receptors and ion channels such as voltage-gated calcium channels (Chitwood et al., 2018; Shurtleff et al., 2018; Chitwood and Hegde, 2019). In the context of the 22q11.2 deletion, EMC10 dysregulation may disrupt the proper localization of these proteins at the synapse, affecting both dendritic morphology and calcium signaling. The precise basis of this overshoot remains unclear. The overshoot may result from a dosage-sensitive inhibitory effect of Emc10, where both reduced and increased expression alter normal neuronal processes, with excessive responses potentially triggered upon gene restoration by the mutant system’s adaptation to dysfunction, leading to altered receptor sensitivity or signaling dynamics. This underscores the critical importance of precise Emc10 expression for proper neuronal development and function, in line with previous findings suggesting that EMC10 plays an auxiliary or modulatory role in EMC function. A short comment on the potential basis for this overshoot has been added in the corresponding Results section of the manuscript. Regardless of the underlying mechanisms, these findings emphasize the importance of precise titration of ASO constructs, rigorous gene dosage controls, and thorough analysis of context-specific responses to ensure both efficacy and safety in clinical applications.
We also agree with the reviewer that electrophysiological studies, particularly in the 22q11.2 deletion mouse model, would provide valuable insights into the impact of EMC10 modulation by ASOs on neuronal activity and circuit function at the in vivo and ex vivo levels. Incorporating such experiments into future studies will allow us to assess synaptic transmission and plasticity, contributing to a more comprehensive understanding of the therapeutic potential of ASO-mediated EMC10 modulation in 22q11.2DS.
(7) Did the authors take out the behavior studies further than 9 weeks? Would the authors consider commenting on what they speculate might be the duration of the treatment effect? For both mice and definitely humans.
We thank the reviewer for raising the important question regarding the duration of the ASO treatment effect, which is crucial for translating our findings into clinically relevant therapies. While behavioral studies beyond 9 weeks were not conducted in this study, our in vivo experiments and findings from prior publications (detailed below) enable an informed speculative assessment.
We utilized 2'-O-methoxyethyl (2'-MOE) modified ASOs, known for their enhanced binding affinity, nuclease resistance, and increased metabolic stability. In our in vivo post-injection screening of ASOs (Figure S13C), we predicted that Emc10 expression levels return to normal WT levels (~T100%) approximately 26 weeks post-treatment in Emc10<sup>ASO</sup> (#1466182) treated mice. This prediction is supported by our Emc10 expression profiles across various brain regions, which demonstrate robust repression of Emc10 lasting up to 10 weeks post-administration (Figure 6D-F). While these findings suggest that the treatment effect in our model could extend significantly beyond 10 weeks following a single ASO injection, further empirical validation is required through extended follow-up studies. Encouragingly, long-term effects of 2'-MOE ASOs have been observed in other neurological disorders (Kordasiewicz et al., 2012; Scoles et al., 2017; Finkel et al., 2017; Darras et al., 2019). However, factors such as ASO distribution, target cell turnover, and disease-specific pathophysiology could influence the duration of the effect. To address these uncertainties, we have added a paragraph in the Discussion section emphasizing the need for additional studies, including extended follow-up periods and eventual clinical trials, to determine the specific duration of effect for our Emc10<sup>ASO</sup> constructs in treating 22q11.2DS.
Reviewer #2 (Recommendations For The Authors):
(1) It is acknowledged that the iPSC-derived cells in Figure 1 are no longer progenitors, but differentiation markers for astrocytes and glia are also needed in Figure 1b to establish that equal rates of differentiation have occurred across genotypes.
We thank the reviewer for raising this important point about ensuring equal rates of differentiation across genotypes. As the reviewer notes, we employed a well-established protocol for directed differentiation of hiPSCs into cortical neurons using a combination of small molecule inhibitors, as previously described by Qi et al. (2017). This protocol has been extensively validated and is known to robustly generate cortical neurons while actively suppressing glial differentiation, as evidenced by the lack of upregulation of glial markers such as GFAP, AQP4, or OLIG2 in the original study. Given the established neuronal specificity of this protocol and our focus on neuronal phenotypes, we prioritized the confirmation of successful neuronal differentiation using the established neuronal markers TUJ1 and TBR1. Therefore, additional markers for astrocytes and glia are not included in this figure, as we did not expect significant glial differentiation under these conditions. A sentence has been added in the corresponding Results section to address this issue.
(2) For the RNA-seq experiments outlined in Figures 3J and K, a more comprehensive analysis is needed of the genes disrupted in the parental Q6 line relative to the het and homo lines. What percent are rescued, unaffected, vs uniquely disrupted?
Reduction in EMC10 levels is not expected to directly affect transcription or broadly reorganize the gene expression profile of the Q6/Q5 NGN2-iN lines. Our transcriptional profiling was not designed to assess the direct impact of EMC10 deficiency on gene expression but rather to measure the cellular pathways affected by reduced EMC10 in the patient Q6 line. We identified genes differentially expressed between the Q6 (patient) and Q5 (control) lines, whose expression differences were either abolished or significantly attenuated ("rescued") in the Q6/EMC10<sup>HET</sup> or Q6/EMC10<sup>HOM</sup> lines. In the Q6/EMC10<sup>HET</sup> line, 237 DEGs (6%) were rescued, while in the Q6/EMC10<sup>HOM</sup> line, 382 DEGs (11%) were rescued. Importantly, further analysis revealed 103 shared rescued DEGs in these lines, which was statistically significant (enrichment factor = 1.7; p < 0.0001, based on a hypergeometric test). We added a new figure panel (Figure 3L) to visualize the significant overlap of rescued DEGs from the Q6/EMC10<sup>HET</sup> and Q6/EMC10<sup>HOM</sup> lines. This overlap suggests these genes play a critical role in biological pathways impacted by EMC10 levels, particularly in nervous system development, as indicated by our functional annotation analysis. We also performed protein-protein interaction (PPI) network analysis to explore the functional relationships among these 103 shared DEGs (Figure S8). Future studies will further investigate these gene sets to gain deeper insights into the molecular mechanisms underlying 22q11.2DS and the role of EMC10.
(3) The authors claim that 50% EMC10 loss in adult mice is safe and should be toned down. EMC10 knockout mice have motor, anxiety, and social phenotypes. It would be unique amongst highly dosage-sensitive genes (MeCP2, CDKL5, TCF4, FMR1, etc.) for there to only be a neurodevelopmental component. In all those cases, and others, the effects of over and under-expression are reversible into adulthood. Establishing the range in adults is critical to establishing therapeutic utility. Absent a detailed examination of non-cognitive phenotypes, this claim cannot be made.
The reviewer raises an important point about the potential effects of EMC10 reduction in adult mice and the need to establish a safe therapeutic window by evaluating both cognitive and non-cognitive phenotypes. We agree that such a comprehensive evaluation is critical for assessing the safety and translational potential of Emc10-targeting therapies. While the International Mouse Genotyping Consortium reported motor and anxiety phenotypes in homozygous Emc10 knockout mice, these data are unpublished and based on a relatively small number of animals. Furthermore, in our previous work (Diamantopoulou et al., 2017), we demonstrated that complete Emc10 loss does not impair cognition or social behavior, as assessed by prepulse inhibition (PPI), working memory (WM), and social memory (SM) assays (see Figure 3A-D; Diamantopoulou et al., 2017). Additionally, heterozygous Emc10 mice, which exhibit a ~50% reduction in Emc10 expression similar to that achieved with our ASO treatment, showed no evidence of motor deficits or anxiety-like behavior. Specifically, Emc10<sup>+/-</sup> mice displayed locomotor activity comparable to WT mice in the open field (OF) test (Figure S4A, Diamantopoulou et al., 2017). Moreover, genetic normalization of Emc10 expression in Df(16)A<sup>+/-</sup> mice demonstrated no signs of anxiety-like behavior, as assessed by the OF test (Figure S4A) and elevated plus maze (EPM) (Figure S4B; Diamantopoulou et al., 2017). To further support these findings, we have added new data to the current manuscript (see Figure S10J) showing that TAM treatment-mediated restoration of Emc10 levels in the brain of adult Df(16)A<sup>+/-</sup> mice did not affect the time that mutant mice spent in the center area of the OF (Fig. S10J), suggesting that Emc10 reduction does not influence anxiety-related behavior. These results suggest that a 50% reduction in EMC10 expression is unlikely to result in motor or anxiety-like phenotypes in adult mice. Finally, as noted in the manuscript, in addition to prior findings from animal models, a substantial number of relatively rare LoF variants or potentially damaging missense variants have been identified in the human EMC10 gene among likely healthy individuals in gnomAD, a database largely devoid of individuals known to be affected by severe neurodevelopmental disorders (NDDs).
Nevertheless, the Discussion has been revised to underscore the importance of establishing a more detailed safety profile, including non-cognitive phenotypes, to fully validate the therapeutic potential of Emc10-targeting approaches. It also highlights the need for future studies to expand on these evaluations, addressing this critical aspect and laying a stronger foundation for advancing these findings into clinical drug development
(4) Supplemental Figure 10: The protein validation of Emc10 knockout following tamoxifen injection needs to be validated in all brain regions, not just the PFC. This is particularly important as the rest of the paper focuses on HPC-mediated phenotypes.
First, we want to emphasize that we conducted both qRT-PCR and WB assays on the same animal cohort, specifically examining the left and right hippocampus following ASO injection (see Figure S11C and D). This approach is crucial, given the central role of hippocampus in the phenotypes investigated in our ASO-mediated Emc10 knockdown experiments.
The reviewer raises an important point regarding the validation of EMC10 reduction at the protein level across all relevant brain regions using the Emc10 conditional knockout strain. We agree that such validation would ideally confirm the efficacy of our tamoxifen-induced knockout model comprehensively. However, we hope the reviewer appreciates that obtaining sufficient high-quality protein for WB analysis from smaller brain regions like the hippocampus poses a significant technical challenge. This difficulty is further compounded by the need to reserve the same samples for qRT-PCR to ensure consistency between mRNA and protein measurements. Importantly, our data from ASO-mediated Emc10 knockdown experiments (Figures S11C-D) demonstrate a clear and consistent correlation between reductions in Emc10 mRNA and protein levels in both the left and right hippocampus. Furthermore, in our constitutive Emc10-knockout mouse model (Diamantopoulou et al., 2017; see Figure S1A-B), we observed a strong agreement between mRNA and protein levels, supporting the reliability of mRNA data as a proxy for EMC10 protein levels in our experiments. Importantly, in all instances where we performed parallel protein and RNA measurements in human cell lines, there was excellent concordance between the datasets. Thus, while we acknowledge the limitations of relying primarily on mRNA data, we are confident that the Emc10 mRNA expression data in Figure S10 accurately reflect protein-level changes across brain regions in our conditional knockout model. To address this concern more fully in the future, we are working to refine antibody detection and optimize our protein extraction protocols to enable more routine and precise protein-level validation across smaller brain regions. We appreciate the reviewer’s feedback and will continue to refine our methodologies to strengthen the robustness of our findings.
(5) Figure 3: 1 way ANOVA would be more appropriate to analyze the data in B-G than t-tests.
We appreciate the suggestion of the reviewer. As mentioned above, we carefully selected statistical tests appropriate for each analysis. For Figure 3B-G, we chose to use pairwise t-tests to address specific hypotheses regarding the disease phenotype and rescue effects. This approach is consistent with prior experimental studies in the field, including our own (e.g., Xu et al., 2013; Figure 7H-I). Importantly, most of our t-tests yielded highly significant results (p < 0.001 or p < 0.01), reinforcing the robustness of our findings.
(6) Figure 5-6: Protein data is needed to complement the mRNA knockdown data.
We agree with the reviewer on the importance of protein-level validation to complement the mRNA knockdown data. As mentioned in our response to Reviewer’s Comment (4), in all instances where we performed parallel protein and RNA measurements, either in mouse brain or human cell lines, we observed excellent concordance between the datasets. This supports the reliability of our mRNA data as a proxy for protein changes. Nevertheless, we acknowledge the value of including protein validation in future experiments and will consider incorporating it to further strengthen our findings.
(7) The use of additional phenotypic measures is applauded in Figure 6, however, to appropriately interpret the data more is needed. Shao et al 2021 (Figure S9) show data from the International Mouse Genotyping Consortium claiming EMC10 KO mice have gait, activity, and anxiety phenotypes. All of these parameters could impact the SM assay and the y-maze assay. Changes in SM interaction time could be linked to anxiety or motor impairments, but interpreted as cognitive deficits because these symptoms were not assessed. At a minimum, discussion is needed about this limitation, as well as the inclusion of distance explored in the SM and Y-maze assays.
We thank the reviewer for their insightful comment regarding the potential influence of locomotor, gait, or anxiety phenotypes on the observed deficits in the SM and Y-maze assays. The behavioral phenotypes reported for Emc10 knockout mice by the International Mouse Genotyping Consortium (https://www.mousephenotype.org/data/genes/MGI:1916933) were limited to homozygous female mice and based on a small sample size (4–6 females) compared to a larger WT control group. Moreover, these data are unpublished and thus challenging to evaluate fully. Importantly, no abnormal behaviors were reported for Emc10 heterozygous knockout mice in these datasets. Additionally, the claim by Shao et al. (2021) regarding cognitive impairments in Emc10 knockout mice based on our previous work (Diamantopoulou et al., 2017) is inaccurate.
Our analysis of both the constitutive Emc10 knockout model (Diamantopoulou et al., 2017) and the current conditional Emc10 heterozygous knockout model consistently demonstrates that Emc10 reduction does not affect locomotor activity or anxiety-like behavior. In our earlier characterization of constitutive heterozygous Emc10 knockout mice (Emc10<sup>+/-</sup>), we observed no signs of anxiety-like behavior or motor impairments in OF assays (see Figure 2A-B and Figure S4A, Diamantopoulou et al., 2017). Similarly, results from Df(16)A<sup>+/-</sup> mice with genetically normalized Emc10 expression [Df(16)A<sup>+/-</sup>; Emc10<sup>+/-</sup>] also showed no indications of anxiety-like behavior or locomotor changes in the OF and EPM assays (see Figure S4A-B, Diamantopoulou et al., 2017). Consistent with these findings, our current data from Df(16)A<sup>+/-</sup> mice with conditional Emc10 reduction in the brain show no significant differences in locomotor activity and anxiety-related measures as assessed by OF assays (Figure S10J). Furthermore, total arm entries in Y-maze assays conducted in Df(16)A<sup>+/-</sup> mice treated with Emc10 ASOs were comparable to controls (Figures S14C and G-H), providing additional support for the conclusion that locomotor activity remains unaffected in these models.
We further appreciate the reviewer’s suggestion that changes in social interaction time during the SM assay could be influenced by anxiety or motor impairments. However, we consider this scenario unlikely in our model. Interaction times during the first trial of the SM assay, which measures general social interest, are comparable between Df(16)A<sup>+/-</sup> mice with reduced Emc10 expression (either genetically or through ASO treatment) and WT controls (see Figures 4E, 5E, and S10G). These findings indicate that our mouse models do not exhibit inherent difficulties in initiating social interaction, as might be expected if motor impairments or heightened anxiety were present. Reduced social interaction is commonly used as a behavioral marker for anxiety in rodent studies (reviewed by Bailey and Crawley, Anxiety-Related Behaviors in Mice, 2009). “Anxious” mice typically exhibit decreased social interaction, spending less time engaging with other mice compared to non-anxious counterparts. However, the specific deficit we observe in the second trial of the SM assay—when mice are reintroduced to a familiar juvenile—is indicative of impaired social recognition memory, as previously documented for Df(16)A<sup>+/-</sup> mice (Piskorowski et al., 2016; Donegan et al., 2020). This deficit is distinct from the general social avoidance typically associated with heightened anxiety.
Based on our comprehensive assessment of locomotor activity, anxiety-related behaviors, and social interaction, we conclude that the observed rescue of social memory and spatial memory deficits in mice with reduced Emc10 expression is most likely due to improved cognitive function rather than alterations in motor or anxiety-related domains.
(8) For ASO optimization experiments, it is not sufficient to claim robust uptake. A quantitative measure is needed using the PO antibody showing what percentage of cells were positive for the ASO. Since the contention is that only Emc10 in excitatory neurons is important, it would be helpful if this also included a breakdown of ASO uptake in excitatory and inhibitory neurons and astrocytes.
We thank the reviewer for highlighting the importance of quantifying ASO uptake and assessing cell-type specificity. To address this, we have added new data to the panel, as shown in the high-magnification images in Figure S14A. These images provide evidence that a large majority of NeuN-positive neurons exhibit a strong ASO signal. Specifically, we observed widespread ASO uptake (green) that extensively colocalized with the neuronal marker NeuN (red) in both the hippocampus and prefrontal cortex. Quantitative analysis of this overlap indicates that over 97% of NeuN-positive neurons were ASO-positive, demonstrating efficient neuronal uptake. This robust neuronal uptake aligns with the significant normalization of Emc10 levels and the behavioral improvements observed in ASO-treated Df(16)A<sup>+/-</sup> mice, further supporting the functional efficacy of our approach in modulating Emc10 expression within the relevant neuronal populations. Overall, the observed ASO uptake in neurons, as demonstrated by IHC, combined with RNA assays and the behavioral improvements in treated mice, strongly supports the efficacy of our approach in targeting Emc10 expression in the intended neuronal populations.
(9) An interpretation is needed in Figure S3 as to why ~50% of the pathways increased are also present on the decreased list. Ie. G1/transition, viral reproductive process, pos regulator of cell stress, etc. 4/10 GO terms are present in both increased and decreased groups in A and 7/10 in B.
We thank the reviewer for pointing out the overlap between pathways enriched in both the upregulated and downregulated miRNA groups in Figure S3. This overlap likely reflects the complex nature of miRNA regulation, where individual miRNAs can target multiple genes within a pathway, and single genes can be regulated by multiple miRNAs, sometimes with opposing effects (reviewed in Bartel, 2009; Bartel, 2018). For example, in the “G1/S transition” pathway, upregulated miRNAs such as miR-92a-3p, miR-92b-3p, and miR-34a-5p may promote the transition by targeting cell cycle regulators like FBXW7, CDKN1C, and CDK6 (Zhou et al., 2015; Zhao et al., 2021; Oda et al., 2024). Conversely, downregulated miRNAs such as miR-143-3p and miR-200b are known to suppress the transition by targeting genes such as HK2 and GATA-4 (Zhou et al., 2015; Yao et al., 2013). Our analysis identified overlapping predicted target genes for both upregulated and downregulated miRNAs, supporting the notion that many genes are subject to complex regulation by multiple miRNAs with potentially synergistic or antagonistic effects. Thus, the enrichment of certain GO terms in both groups likely reflects this intricate interplay of miRNA-mediated gene regulation. Future investigations focusing on specific miRNA-target interactions within these pathways will be critical to fully elucidate the underlying mechanisms and better understand the functional consequences of these opposing regulatory effects.
Minor Concerns:
(1) Define SM before using it.
We have defined the SM assay in the main text upon its first mention, where we describe the assay and its relevance to cognitive function (see page 11 of the revised manuscript).
(2) Statistics have been run in Figure S2, but not presented. The text only states that the differences between groups are significant. Please add in.
We have revised the legend of Figure S2 to include the specific statistical test used (students t-tests) and the corresponding p-values.
(3) The switch from ASO1 to ASO2 between Figures 5 and 6 needs more discussion. Why were new ASOs generated when ASO1 worked?
We thank the reviewer for their question regarding the transition from Emc10<sup>ASO1</sup> to Emc10<sup>ASO2</sup> between Figure 4 and Figures 5-6. Emc10<sup>ASO1</sup> served as our initial proof-of-concept ASO construct, successfully demonstrating the feasibility of inhibiting Emc10 mRNA expression and providing evidence for behavioral rescue in our mouse model. As outlined in the manuscript, Emc10<sup>ASO2</sup> targets a different region of the Emc10 transcript (intron 1, Figure 5A) compared to Emc10<sup>ASO1</sup> (intron 2, Figure 4A). This distinction provides an additional layer of validation for our targeting strategy and ensures specificity in modulating Emc10 expression. In addition, Emc10<sup>ASO1</sup> exhibited limited distribution in the brain, primarily targeting the hippocampus with weaker inhibition of Emc10 in other regions such as the cortex (Figure 4C, right panel). Emc10<sup>ASO2</sup> overcame this limitation and achieve broader brain distribution, as demonstrated by the qRT-PCR data in Figure 5C. Given that 22q11.2DS can affect multiple brain regions and cognitive domains beyond the hippocampus, achieving broader distribution of the ASO is critical for a more comprehensive assessment of therapeutic potential.
(4) Page 3: Define "LoF"
We have defined Loss-of-Function (LoF) in the main text where it is first mentioned in the Introduction, where we discuss the potential of using LoF mutations to devise therapeutic interventions (see page 3 of the revised manuscript).
References
Bailey and Crawley, Anxiety-Related Behaviors in Mice, In: Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; Chapter 5, (2009).
Bartel, MicroRNAs: target recognition and regulatory functions, Cell 136(2):215-33, (2009).
Bartel, Metazoan MicroRNAs, Cell, 173(1):20-51, (2018).
Chitwood et al., EMC Is Required to Initiate Accurate Membrane Protein Topogenesis, Cell 175, 1507-1519 e1516, (2018).
Chitwood and Hegde, The Role of EMC during Membrane Protein Biogenesis, Trends Cell Biol. (5):371-384, (2019).
Darras et al., Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies, Neurology 92(21), (2019).
Diamantopoulou et al., Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion, Proc Natl Acad Sci U S A 114, E6127-E6136, (2017).
Donegan et al., Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model, Nat Neurosci 23, 1365-1375, (2020).
Finkel et al., Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy, N Engl J Med 377(18):1723-1732, (2017).
Kordasiewicz et al., Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis, Neuron 74(6):1031-44, (2012).
Oda et al., MicroRNA-34a-5p: A pivotal therapeutic target in gallbladder cancer, Mol Ther Oncol, 32(1):200765, (2024).
Piskorowski et al., Age-Dependent Specific Changes in Area CA2 of the Hippocampus and Social Memory Deficit in a Mouse Model of the 22q11.2 Deletion Syndrome. Neuron 89, 163-176, (2016).
Qi et al., Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35, 154-163, (2017).
Scoles et al., Antisense oligonucleotide therapy for spinocerebellar ataxia type 2, Nature 44(7650):362-366, (2017).
Shao et al., A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features, Genet Med 23, 1158-1162, (2021).
Shurtleff et al., The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins, Elife 7, (2018).
Soutschek et al., A human-specific microRNA controls the timing of excitatory synaptogenesis, bioRxiv, (2023).
Stark et al., Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40, 751-760, (2008).
Xu et al., Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion, Cell 152, 262-275, (2013).
Yao et al., miR-200b targets GATA-4 during cell growth and differentiation, RNA Biol.10(4):465-8, (2013).
Zhao et al., miR-92b-3p Regulates Cell Cycle and Apoptosis by Targeting CDKN1C, Thereby Affecting the Sensitivity of Colorectal Cancer Cells to Chemotherapeutic Drugs, Cancers 2;13(13):3323, (2021).
Zhou et al., miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7, Biochem Biophys Res Commun 458(1):63-9, (2015).
Zhou et al., MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer, Am J Cancer Res. 5(6):2056-6 (2015).
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC-2024-0284z
Corresponding author(s): Bérénice, Benayoun A
This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.
This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
This paper by McGill and colleagues explores sex differences in murine macrophages from different niches. They use a combination of publicly available, and newly developed datasets, and combine these using meta-analysis approaches. They explore DEGs between sexes - both common across niches, and specific to certain niches - and use enrichment analyses to identify pathways linked to these genes. Their overall conclusions are that gene expression changes in females are more consistent across niches, than for males, and are enriched in extracellular matrix-related genes. The paper is easy to follow and very well written.
Major Comments:
Line 106 - It should be clarified why 50 DEGs was selected as the cut off for exclusion.
We apologize that our cut off criteria was not explained clearly enough. Because these are publicly available datasets, every lab used different numbers of biological replicates, methods, and sequencing depths, impacting the power of the assay to detect differences in gene expression robustly. Since we were interested in functions that were sex-dimorphic, and that requires running functional enrichment analysis, we needed to have a minimum gene set size to be able to run these analyses, which, in the field, is usually accepted to be 50 genes for robustness. Thus, we used 50 DEGs and have updated the methods to explain our reasoning: “Applying a cutoff for the number of differentially expressed genes (DEGs) helps ensure data consistency and comparability across datasets with varying methodologies and sequencing depths. This prevents datasets with excessively low DEG counts from disproportionately influencing downstream analyses. A cutoff also reduces noise from spurious findings, prioritizing datasets with robust transcriptional changes that are more likely to be biologically meaningful. The excluded microglia dataset contained only 11 DEGs (whereas all other microglia datasets had hundreds of DEGs), the pleural macrophage dataset had 37 (whereas all other lung-related macrophage datasets had above 50), and the spleen macrophage dataset had only 30.” (page 12, lines 381-388).
Optional - would suggest sex chromosome-linked genes are excluded and the analysis redone to see if there are other autosomal genes that are statistically shadowed by the X and Y linked genes.
We thank the reviewer for this great suggestion, and we now added this point to the discussion (page 9, lines 260-268). However, we think that genes on the X and Y chromosomes will impact overall function of the macrophages and that they are necessary to understand how macrophages from males and females may support differences in immune function throughout life. We now add this in the discussion as a potential future direction: “We find that a majority of genes similarly differential across sexes among the macrophage niches are sex chromosome linked. X-linked genes like Tlr7, Cxcr3, and Kdm6a enhance immune responses in female macrophages, potentially increasing inflammation with age (Feng et al., 2024). Meanwhile, Y-linked genes such as Uty and Sry influence transcriptional regulation and inflammatory signaling in male macrophages, which may contribute to chronic low-grade inflammation (Lusis, 2019). These genetic differences affect macrophage activity, tissue-specific immune responses, and susceptibility to age-related diseases, highlighting the importance of sex-specific factors in immune research. Future research should also explore how non-sex chromosome-linked genes interact with these sex-specific mechanisms to further shape macrophage and immune function.” (page 9, lines 260-268).
More metadata about the included studies should be included eg mouse ages, strains, experimental manipulations etc. I can't seem to access all of the Supplemental tables so this may already be included in Table S1.
We agree that this information is important to take into consideration and have now included this information in Supplemental Table S1A, along with the accession numbers to each dataset. All mice were aged between 2 to 24 weeks and all on variations of the C57BL/6 background.
How relevant the findings in mice are for humans should be explained further in the discussion.
We agree that our discussion needs to better explain broader implications. Our findings are relevant for human health because macrophages play key roles in immunity, inflammation, and tissue homeostasis, and their functions are known to differ between sexes. Understanding these sex-specific transcriptional differences in mice can provide insights into how male and female immune systems respond differently to infections, autoimmune diseases, and aging in humans. Since macrophage phenotypes are influenced by both systemic factors (e.g., hormones) and tissue-specific environments, studying multiple macrophage subtypes from different organs helps identify conserved and context-dependent sex differences. Indeed, our findings suggest the ECM may be a potential mechanism underlying sex-biased diseases, such as higher autoimmune prevalence in females or increased susceptibility to certain infections in males. We have added this detail to the discussion (page 10, lines 269-275).
Minor Comments:
Line 61 and 69 - repeated.
We thank the reviewer for catching this oversight and have deleted the first instance of the sentence.
Reviewer #1 (Significance (Required)):
Although this study is primarily descriptive, it adds to the current knowledge about sex differences in macrophages, an important and relatively understudied area. Those interested in sex differences and in the innate immune system generally, plus those who study macrophages in any context, should be interested in this work.
We thank the reviewer for their interest in our work and their helpful suggestions.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary: The study investigates sex-specific differences in macrophage gene expression across various tissue niches by analyzing both newly generated and publicly available datasets of varying quality. The key finding is the identification of three consistently differentially expressed genes (DEGs) across all macrophage niches: the Y-chromosome-encoded genes Ddx3y and Eif2s3y, and the X-chromosome-specific gene Xist. However, the number of sex-dimorphic DEGs varied significantly between macrophage niches, with female-biased genes showing more consistency across datasets. To further explore these sex-specific differences, the authors performed an overrepresentation analysis of the DEGs across datasets. They found enriched gene sets associated with specific biological terms in female-biased macrophages from peritoneal macrophages, bone marrow-derived macrophages (BMDMs), and osteoclast progenitors (OCPs), while male-biased enrichment was observed in microglia, exudate macrophages, OCPs, and BMDMs. Notably, extracellular matrix (ECM)-related genes were specifically enriched in female peritoneal macrophages and OCPs, whereas the term "nucleic acid binding" was more prominent in male samples from microglia, BMDMs, and OCPs, driven by the Y-chromosome genes Uty and Kdm5d. A gene set enrichment analysis (GSEA) using Gene Ontology (GO) and Reactome databases further confirmed the enrichment of sex-biased pathways. Based on these findings, the authors conclude that three sex chromosome-associated genes are consistently differentially expressed across all datasets and that female-associated gene expression appears to be more stable, particularly in relation to ECM-associated processes.
Major Comments:
Are the key conclusions convincing?
Importantly, methods like gene set enrichment analysis [GSEA] use whole-transcriptome ranking, which means the results we obtain are driven by the entire transcriptome and not just a few genes (GSEA results are reported in Figure 5). We agree that further explanation of these methodologies would improve interpretation of our findings for readers unfamiliar with these analytical techniques. To address this, we have now added the following to the methods: “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes.” (page 13, lines 415-417).
Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?Some claims, particularly those regarding the role of macrophages in diseases such as AD, histiocytosis, and osteoporosis, lack relevant references.
This mirrors minor point #1 from Reviewer #1. We apologize for not originally including references for this statement and have now updated the introduction and discussion with appropriate references: “Excessive macrophage activation is associated with numerous conditions, including neurodegeneration, atherosclerosis, osteoporosis, and cancer, many of which exhibit sex-biased tendencies (Chen et al., 2020; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 4, lines 67-69) and “Thus, investigating female and male-biased processes in macrophages, including the contribution of the ECM, will be an important step in developing treatments for diseases including, but not limited to, AD, histiocytosis, and osteoporosis(Chen et al., 2020; Cox et al., 2021; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 10, lines 285-288).
Would additional experiments be essential to support the claims of the paper? While additional wet-lab experiments are not strictly necessary, a deconvolution analysis of the datasets could be highly beneficial. This would allow the identification of enriched macrophage subtypes and help assess whether differences between datasets are driven by specific macrophage populations rather than global sex differences. Since peritoneal macrophage origin is influenced by age and inflammation status, deconvolution could also clarify dataset comparability.
The reviewer makes an interesting point. We apologize for the confusion regarding the purity and origin of these datasets. All the datasets we curated from public repositories for our analysis are from purified populations of macrophages. To clarify this, we now include a column with the purification method used for each of the datasets based on the original manuscript in revised Supplemental Table S1A.
Since all the used datasets were derived from pure macrophage populations, deconvolution (which is used to identify cellular proportions in heterogeneous contexts) would not accomplish much, predicting that all the cells in the data are macrophages. While some people have argued that deconvolution may be used to identify different cell states, this is very controversial, especially since the “pure” reference and the heterogeneous query are subject to batch effects (i.e. either from differences in bench processing, sex of provenance for target/query datasets, transcriptional impact of sorting methods, differences in transcriptomic quantification methods, etc.) which overshadow most differences beyond cell types. Thus, due to the known batch sensitivity of deconvolution methods and the fact that we only selected pure macrophage transcriptomic profiling datasets, using deconvolution to identify macrophage subtypes would not be informative/feasible. Importantly, we focused our analyses on datasets derived only from young, healthy, naïve animals (2 to 24 weeks), without any interference from age-related inflammation.
To make this caveat clearer, we have added sentences to the results section indicating the age range of the animals (page 6, lines 100-101), as well as in the discussion to discuss how inflammation states and age may change some of our findings (page 10, lines 295-299).
Are the suggested experiments realistic in terms of time and resources? Performing cell-type deconvolution using established computational tools (e.g., CIBERSORT, BisqueRNA, or single-cell deconvolution methods) would be a realistic approach within a few weeks and would significantly strengthen the study. This analysis would not require additional experimental work but could refine the interpretation of the dataset. Additionally, a PCA of all datasets could help identify potential similarities among macrophages from different niches and between sexes.
As explained in our response to point #4, the use of only datasets from purified macrophages from young animals (before any influence of age or disease) makes deconvolution analysis meaningless, especially due to batching concerns. Specifically, it would require us to generate paired single-cell and bulk datasets on all macrophage subtypes in house to remove batch-inducing experimental biases, which we believe is outside of the scope of this small bioinformatics study.
To the second point, doing a PCA of all the datasets together would not provide much new information beyond cell type of origin due to batching concerns that could not be corrected, which are a known problem in transcriptomics analyses (PMID:20838408, PMID:28351613). Since datasets come from different labs, using different isolation methods, RNA capture choices, library construction kits and sequencing platforms, the main separating effects overall will be batch/dataset, not biology (PMID:20838408, PMID:28351613). Indeed, this is what we observe (Reviewer Figure 1), with broad separation of datasets by tissue of origin, then dataset of origin. Additionally, the top 10 loadings for PC1 and PC2 are primarily associated to autosomal genes (i.e. not on the sex chromosomes; Reviewer Table 1).
Reviewer Figure 1. (A) PCA of all samples across datasets. Read counts were processed together through R package sva v.3.46.0 for surrogate variable estimation, and surrogate variables were removed using the removeBatchEffect function from ‘limma’ v.3.54.2. DESeq2 normalized counts were used to make the PCA. (B) Zoomed in PCA excluding three outlier sample to enable easier visual discrimination of samples.
Principal Component – Gene
Loading
Chromosome
PC1- Srcin1
0.013601
11
PC1- Cacna1c
0.013593
6
PC1- Pclo
0.01357
5
PC1- Tro
0.013547
X
PC1- Ppp4r4
0.013541
12
PC1- Ppp1r1a
0.01354
15
PC1- Homer2
0.013538
7
PC1- Caskin1
0.013535
17
PC1- Arhgef9
0.013527
X
PC1- Slc4a3
0.013499
1
PC2- Gm15446
0.017978
5
PC2- 1810034E14Rik
0.017897
13
PC2- Gm19557
0.017871
19
PC2- Pkd1l2
0.017792
8
PC2- H60b
0.017274
10
PC2- Appbp2os
0.01723
11
PC2- Mir7050
0.017221
7
PC2- Nkapl
0.017166
13
PC2- Tmem51os1
0.017083
4
PC2- Dpep3
0.016962
8
Reviewer Table 1. Top 10 loadings for principal component 1 and principal component 2 with their respective chromosomal location.
Thus, since batch effects can only be accounted for rigorously when they are not confounded by biology (and in our case since each dataset only looks at one type of macrophage), this cannot be corrected in a rigorous manner to yield the desired results.
We have added a sentence to the discussion to highlight how future work where macrophages from diverse niches would be profiled in parallel may give greater insights into niche-specific sex-dimorphic effects (page 10, line 295-296).
Are the data and the methods presented in such a way that they can be reproduced? Some methodological details are missing, particularly regarding:
The isolation of mouse peritoneal macrophages (details on injection and harvesting procedure needed). Quality control of isolated macrophages (How were contaminating cells excluded? Was additional validation performed beyond using the kit?)
The age of mice used for bone marrow-derived macrophages (BMDMs) is not provided, which is important given that immune responses can be age-dependent.
We appreciate the reviewer’s request for additional methodological details. We apologize for not being clear with our details and have updated the methods to be clearer (page 11, lines 320-346), as well as added this information in revised Supplemental Table S1A (e.g. age of animals and purification method as described in the original papers). For all our in house datasets, mice were 4-months old, and the text is now updated to reflect this: “Long bones (tibia and femur) of young (4-months-old) from both sexes were collected and bone marrow was flushed into 1.5mL Eppendorf tubes via centrifugation (30 seconds, 10,000g) (Amend et al., 2016)” (page 11, lines 334-336).
While we couldn’t check the purity post hoc for published datasets we identified for meta-analysis, we performed a purity check on our isolated peritoneal macrophages using Cd11b-F4/80 staining by flow cytometry and have now included this data (including gating strategy) in Supplemental Figure S4. For BMDMs, no purity check was performed, as there is extensive literature on the efficiency of this differentiation protocol which consistently yields > 90% of macrophages. This has been added to the methods: “We used a protocol that is expected to yield ~90% Cd11b+ F4/80+ cells (Mendoza et al., 2022; Toda et al., 2021)” (page 11, lines 336-337).
Are the experiments adequately replicated and statistical analysis adequate? The statistical analysis appears generally appropriate, but there are concerns about dataset inconsistencies that should be addressed. Some datasets were not used across all analyses, which is not clearly indicated in figures or text. This should be explicitly mentioned to avoid misleading interpretations.
We appreciate the reviewer’s careful evaluation of our statistical analysis and the concern regarding dataset inconsistencies.
We believe that the reviewer is referring to the omission of the exudate dataset from the Venn Diagram analysis (Figure 2C), as this is the only time that we did not report the results from all datasets. We originally chose not to include the exudate dataset in the shared differentially expressed gene (DEG) analysis, because it contained over 1,300 DEGs, whereas all other datasets had between 4–30 DEGs, resulting in an unreadable figure.
However, we agree that it is important to include for the readers, and while we have decided to still exclude the exudate dataset from Figure 1C for readability purposes, we now include the overlap analyses for all datasets in Supplemental Figure S2 using an upset plot (an alternative visualization method) showing all 6 niches, as well as a table panel that lists the shared genes across niches “Three genes were found to be differentially expressed across all six niches: Xist, Ddx3y, and Eif2s3y (Figure 2C, Supplemental Figure 2A,B)” (page 6, lines 124-126). We thank the reviewer for drawing our attention to this and making our analysis clearer for future readers.
Minor Comments
The use of stereotypic colors in figures (e.g., blue for male, pink for female) could be reconsidered for better readability and to avoid reinforcing gender stereotypes.
While we understand that this color choice might feel gender normative, we respectfully disagree with the reviewer, as we believe that for the expediency of scientific communication it is important to choose a color palette that is easily understandable without confusion without even needing to consult a legend.
Importantly, we have been using the same color palette in all publications from the lab on sex-differences for consistency (Lu et al, Nat aging 2021 PMID: 34514433; McGill et al, PLoS ONE, 2023 PMID: 38032907; Kang et al, J Neuroinflammation, 2024 PMID: 38840206; McGill et al, STAR Protocols, 2021 PMID: 34820637), which is crucial for scientific rigor and communication consistency.
Results - Section 1
Line 92: The word 'identified' may not be the most appropriate choice here, as it implies discovery rather than selection. Consider rephrasing to 'compiled' or 'gathered' to more accurately reflect the process of assembling the datasets. Additionally, the sentence structure could be refined for clarity, such as specifying that the datasets include both newly generated and publicly available data.
We have changed two instances of using the word identified to “collected” and “gathered” (page 4, line 83 and page 6, line 98). We also adjusted the sentence to say, “Although we initially collected 21 datasets, both newly generated and publicly available, for our study, only 18 datasets were retained after various quality filtering steps for downstream analysis” (page 4, lines 83-85).
Line 95: Specify the source of exudate-derived macrophage data.
We have updated Supplemental Table S1A to make sure it was comprehensively describing the datasets we used in our analysis and double checked that it was complete (including for the exudate data). We have updated the text to reflect this: “All accession numbers and corresponding manuscripts are found in Supplemental Table S1A” (page 6, lines 103-104).
Figure 1/2A: The scheme overview lacks clarity-its purpose is unclear. The two identical boxes are redundant and do not provide additional insight. Consider illustrating the origins of different macrophage subtypes instead. The cutoff of >50 DEGs should be included in the schematic to improve clarity. Overrepresentation and GSEA analysis should not be illustrated multiple times across different figures-it is redundant.
In Figure 1A, we included the identical boxes to indicate that no datasets were excluded for incorrect labeling of males/females. However, we agree that this is unnecessary and have removed the second box as suggested.
In Figure 2A, we agree the identical boxes are unneeded as the Xist/Ddx3y quality control step was listed in Figure 1A, and we have modified the figure accordingly.
We also agree that including the DEG cutoff and removing the GSEA mention will streamline the figures and have updated them accordingly as well.
Line 100: The mention of R software should be moved to the Methods section instead of appearing in the Results section.
We have now updated the text to say, “Expression levels of male-specific Ddx3y and female-specific Xist genes across all samples were examined to ensure proper sex labeling of samples (Supplemental Figure 1A-U)” (page 6, lines 111-112).
Figure 1B-V: The current figure layout is visually cluttered. Consider plotting male and female datasets together in a single graph with different point shapes instead of separate panels for each specific niche.
This seems to echo the above request for a global PCA in Reviewer 2’s Major Point #4, which unfortunately cannot be included due to the disproportionate impact of batch effects that has been well documented in the literature (Reviewer Figure 1; PMID:20838408, PMID:28351613). However, to make the figure clearer and less cluttered, and to address related Reviewer 1’s Major Point #1, we have moved the Xist/Ddx3y plots to Supplemental Figure S1 and only include the Multidimensional Scaling plots in Figure 1 to showcase the sex separation in each dataset.
Text-Figure alignment: The text describes male/female-specific gene expression levels first, while the figure starts with MDS analysis. The order should be consistent.
We agree and have adjusted the text accordingly (lines 109-112).
Figure 2C: Exudate data is missing-explain why.
This point echoes major point #6. As explained above, we have clarified this and included new data panels for clarity (New Supplemental Figure S2).
Results - Section 2
Line 151: Use consistent terminology-either "DEGs" or "DE genes", not both.
We replaced all instances of “DE genes” with DEGs (lines 132, 137, 141, 147, 149, 163, and 397).
Figure 3A: The text suggests not all datasets were included in this analysis-this should be explicitly indicated in the figure.
We apologize for the confusion. All datasets were included in this analysis; however, some niches did not have any GO terms passing the FDR
Show the number of DEGs used for analysis.
We apologize for the confusion. For the ORA analyses (Figures 3 and 4), we indicate the number of DEGs used for analysis in the panel header. For the GSEA analysis (Figure 5, Supplemental Figure S3), all expressed genes are ranked based on effect size without any prior filter (see response to major point #1), so DEGs are irrelevant for these analyses.
Figure 3B: Smaller pale dots in the bubble plot are difficult to distinguish-consider using a darker outline.
We have now added outlines to all the bubbles in the plots to help improve visibility.
Line 158: The term "phagocytosis" appears inconsistent with the figure, where it is labeled "phagocytosis, recognition".
We have updated the text accordingly (page 7, line 170).
Figure 4B, D, E: The overrepresentation analysis is based on very few genes (often only 1-2 genes per term), which may lead to overinterpretation.
We apologize for the lack of clarity of our previous manuscript. The number of genes used for DEG analysis is in the panel titles of Figure 3 and 4. While the overlap is small, this is unlikely to be spurious since all of the pathways we discuss show significant enrichment with FDR
Consider explicitly naming these genes and discussing their biological role instead of assigning terms based on minimal evidence.
We now discuss these genes in the results: “Male-biased GO terms for microglia, OCPs, and BMDMs derived from four genes: Kdm5d, Uty, Ddx3y, and Eif2s3y. All of these are Y-linked genes and play crucial roles in regulating innate and adaptive immune responses (Meester et al., 2020). Kdm5d and Uty influence adaptive immunity through chromatin remodeling and histone modification, while Ddx3y and Eif2s3y shape innate immune responses by modulating macrophage activation and cytokine production via translation initiation and RNA processing (Bloomer et al., 2013; Hamlin et al., 2024; Meester et al., 2020) “(page 8, lines 195-200).
Figures S3G and S3H seem to be switched.
We are puzzled by this comment, as our original manuscript did not include a Supplemental Figure S3. Out of an abundance of caution, however, we checked that Supplemental Table S3G and H were correctly labelled, and independently confirmed that they are not switched.
Results - Section 3
Figure 5A does not add significant new insights. Consider refining its content to highlight key findings more effectively.
We respectfully disagree and believe that schematic overviews help readers understand what is accomplished in any specific figure and have thus decided to keep it.
Number of genes included in the analysis is not provided-this is important to assess significance and should be stated in methods and figure legends.
We apologize for the lack of clarity. As explained above, GSEA uses all the genes in rank order (PMID: 16199517), we now explain GSEA more explicitly in the text “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes” (page 13, lines 415-417).
Discussion 20. Line 201-203: Missing reference.
We have now updated the text with the proper reference: “Tissue-resident macrophages are crucial to proper immune system function (Guilliams et al., 2020). While all macrophages share the responsibility of clearing cellular debris and foreign bodies, tissue-resident macrophages also have unique responsibilities that facilitate homeostasis throughout the body (Guilliams et al., 2020; Varol et al., 2015)” (page 9, lines 227-230).
Reference 23 (1999) is outdated. Newer literature should be cited to reflect modern insights into sex differences in macrophages.
We have now updated the text with an updated reference for two outdated references: (i) “Sex differences have previously been reported in macrophages, with female macrophages having higher phagocytic activity than males (Scotland et al., 2011)” (page 9, lines 232-233) and (ii) “Dysfunctional OCPs are associated with development of osteoporosis, a disease that is four times more prevalent in women (Alswat, 2017)” (page 10, lines 284-285).
Peritoneal macrophages and OCPs originate from monocytes. Would deconvolution help identify enriched subtypes and assess dataset comparability?
As noted in Reviewer 2’s Major Points #3 and #4, deconvolution analysis is not meaningful for subtype analysis without paired isolated/bulk datasets, which are outside of the scope of this study to generate.
The 'more consistent' pathways found for female datasets are not discussed.
We now discuss pathways found among the female datasets: “In addition, GSEA analysis of REACTOME gene sets showed male-biased expression for cell cycle related pathways (average set size 499), and female-biased expression for G protein-coupled receptor (GPCR) signaling (average set size 122) and extracellular matrix organization (average set size 127) (Figure 5C, Supplemental Table S4S-AJ; consistent with our ECM observation, Supplemental Figure S3A). Macrophages express a wide variety of GPCRs that allow them to respond to different stimuli. The expression of specific GPCRs influences macrophage polarization toward either a pro-inflammatory or anti-inflammatory state (Wang et al., 2019). A manual review of the genes contributing to this GPCR enrichment reveals the presence of several chemokine-related genes (such as Ccl4, Ccr4, Cxcl1, and others) (Supplemental Table S4). This suggests that females may have an increased abundance of chemokine GPCRs, potentially contributing to heightened autoimmune activity, among other factors.” (page 8, lines 212-222).
Methods - Peritoneal macrophage isolation:
Details on injection and harvesting are missing.
We apologize for not being clear with our details and have modified the methods to be clearer (page 11, lines 320-331).
How was contamination from other cell types assessed? F4/80 selection may not be fully macrophage-specific, and contamination could occur due to insufficient washing or the presence of non-macrophage F4/80+ cells.
For the peritoneal macrophage datasets we generated, the macrophages were checked for purity through flow cytometry using Cd11b and F4/80 antibodies. We considered double positive Cd11b+ F4/80+ cells to be macrophages, which represents >95% of cells using our methodology (Supplemental Figure S4), without a difference between sexes.
For the BMDMs, we utilize a protocol that is expected to yield ~90% Cd11b+ F4/80+ cells (PMID: 35212988 and PMID: 33458708).
Finally, we now include the purification method for all publicly available datasets according to their original manuscript in Supplemental Table S1A and explicitly discuss the information for our in-house datasets in the methods (page 11, lines 321-346).
Mouse age is not provided in the results part.
We now provide this information in the methods (page 11, line 334). All ages for all datasets are now included in Supplemental Table S1A.
Figure Legends
Figure 2: Peritoneal macrophages are abbreviated as PeriMac-consider using this abbreviation consistently in the text.
We respectfully disagree with the reviewer and choose to keep Peritoneal Macrophages spelled out in the text for clarity. We use the shorthand “PeriMac” in Figure 2 and Figure 5 solely for spacing purposes, but these are explained in the figure legend.
Reviewer #2 (Significance (Required)):
The study's strengths include the integration of multiple datasets, the use of both overrepresentation and GSEA, and the exploration of tissue-specific macrophage niches. These findings have relevance for diverse communities, including immunologists, sex-difference researchers, and those studying macrophage-driven diseases such as osteoporosis, neurodegeneration, and chronic inflammation. The work provides a foundation for further studies on sex-specific macrophage biology and may have implications for sex-specific therapeutic strategies. However, the study has limitations. The conclusions regarding enriched pathways rely heavily on a small number of DEGs, raising concerns about overinterpretation. Additionally, dataset variability and missing data for some analyses (e.g., exudate macrophages) could affect the robustness of the results.
Despite these limitations, the study makes a meaningful but incremental advance by highlighting stable sex-dimorphic patterns in macrophage biology. It provides insights for both fundamental and translational research, particularly for audiences focused on immune regulation, sex-specific gene expression, and tissue-specific macrophage function.
We thank the reviewer for understanding the importance of our work.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary: McGill et al. explore sex-based differences in macrophage gene expression across various tissues. Using a meta-analysis of publicly available and newly generated datasets, they identify conserved and divergent sex-dimorphic genes and pathways between tissues. Overall, the report is easy to follow and guides the reader through the analysis. The authors highlight the relevance of the report by noting sex differences in immune responses to infection, autoimmunity, and chronic diseases. The inclusion of 17 independent transcriptomic datasets provides a robust and extensive analysis of sex-based transcriptional differences. The authors explore potential biological implications of sex-based transcriptional differences using pathway analysis. Despite the overall strengths, there are some points for which further clarification and analysis would improve the manuscript. Detailed comments are listed below.
Major comments:
Although it would not be possible to do this rigorously with the data we curated, the question of niche specific gene regulation of macrophages has been studied, showing extensive niche-specific regulation: “While the question of niche-specific gene regulation has been studied, showing extensive niche-specific regulation (Gosselin et al., 2014; Lavin et al., 2014), a comprehensive and systematic study of sex-differences across macrophage subtypes has not yet been performed” (page 4, lines 78-81).
It is unclear what age and strain the mice were and the number of samples that were included (n) for each dataset. This information should be included in S1A. If different ages or strains were used, how might this impact findings?
This mirrors Reviewer 1’s Major Point #4. We agree that this information is important to take into consideration and have now included this information in Supplemental Table 1A, along with the accession numbers to each dataset. Because there is no aging effect (all mice are aged between 2 to 24 weeks) and all mice are on a variation of the C57BL/6 background, we don’t expect this to be a major problem impacting our findings.
The authors used a Jaccard index to examine similarities in sex-based differences across tissue compartments. They claim that there are more similarities in females. However, the male are female graphs (Fig. 1E,D) do not look that different. Is there a better way to display this?
We apologize for the lack of clarity. We clustered the Jaccard matrices using hierarchical clustering to determine patterns of sharing. Thus, in these figures, the samples cluster based on the degree of similarity in sex-biased genes. In the females, there is clear separation by macrophage origin (yolk sac or circulating monocytes); whereas males have some separation but also have some mixing (e.g. Peritoneal Macrophage 2 clustering with the yolk-sac derived macrophage datasets). Additionally, four microglia datasets are together in the females with only one separate, whereas in the males they are split into three. We included colored bars by the dataset names to help highlight clear separation by niche of origin.
We have added this detail to the text to better explain the similarities: “Our results indicate that female-biased genes were more consistent among the cell types compared to male-biased genes (Figures 2D,E). In females, there is clear separation by macrophage origin (yolk sac or circulating monocytes), with all the peritoneal macrophages clustering together, followed by bone-related macrophages, then microglia and lung macrophages. In the males, the five microglia datasets are split into three groups, and Peritoneal Macrophage 2 clusters with the yolk-sac derived macrophage datasets” (page 7, lines 155-160).
In the Gene Ontology analysis, it is unclear what type of GO pathways were included (biological process, cellular component, molecular function). Also, some of the GO analyses were done with very few genes (as little as 4).
This echoes Reviewer #2’s Major Comment #1. For the Overrepresentation analysis (ORA) using Gene Ontology, we use the “ALL” option to include biological process, cellular component, and molecular function terms. We used ORA to look at shared DEGs across datasets of the same niche which is why some have very low input. For this reason, we also performed Gene Set Enrichment Analysis that uses all genes, not just those differentially expressed at FDR 5%, to examine gene changes at a broader level. In the methods we have added this information: “The differentially expressed genes shared within each niche were divided into up and down-regulated based on the sign of the DEseq2 log2 fold change. These gene lists were used as the shared genes and all expressed genes across datasets in that specific niche were used as the universe for the clusterProfiler function ‘enrichGO’, using the “ALL” option to include biological process, cellular component, and molecular function terms” (page 13, lines 405-410) and “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes.” (page 13, lines 415-417)”.
Is it possible to combine datasets by tissue to remove potential batch effects before downstream analyses? At the very least, PCA on combined data may help determine if some biological (e.g., age, strain) or technical (batch) differences are contributing to identifying few common sex differences.
This mirrors Reviewer #2’s Major Point #4. Unfortunately, since every dataset only examined a single niche, biology and batches are confounded, and thus performing a PCA on all datasets together will be driven by technical rather than biological drivers. Batch effects are a well-documented issue in genomics (PMID:20838408, PMID:28351613) Indeed, this is largely observed when we attempt this analysis, with datasets clustering by batch (Reviewer Figure 1). Due to the issue of uncorrectable batch effects, we do not believe this analysis meets the rigor required to be included in the revised manuscript and have chosen to not include it.
Validation of key results would further strengthen the manuscript.
We agree that future validation is important but is beyond the scope of this purely bioinformatic analysis. We have included text in the revision to highlight the importance of future validation studies: “Thus, investigating female- and male-biased processes in macrophages, including the contribution of the ECM, will be an important step in developing treatments for diseases including, but not limited to, AD, histiocytosis, and osteoporosis, and future research will be essential to validate these findings and further refine therapeutic strategies (Chen et al., 2020; Cox et al., 2021; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 10, lines 285-289).
Further contextualization of key results would enhance the discussion. For example, ECM-related differences in female macrophages could have broader roles in wound healing, fibrosis, and migration.
We agree with the reviewers and have added this detail to the discussion: “ECM components are emerging as key regulators of innate immune responses (García-García & Martin, 2019). Macrophages contribute to ECM remodeling by producing and degrading collagens (Sutherland et al., 2023), and ECM-related differences in female macrophages may impact wound healing, fibrosis, and migration. In lung and kidney tissues, macrophages recruit and activate fibroblasts, influencing fibrosis through direct interactions and ECM-degrading enzymes (Nikolic-Paterson et al., 2014). The balance between ECM deposition and degradation is crucial for tissue homeostasis, as excessive fibrosis leads to pathology (Nikolic-Paterson et al., 2014; Ran et al., 2025). Mechanical properties of the ECM, such as stiffness and collagen crosslinking, enhance macrophage adhesion, migration, and inflammatory activation (Hsieh et al., 2019). These ECM cues direct macrophage behavior during injury response, influencing their ability to reach inflammation sites and promote repair. Thus, female-biased expression of ECM-related genes may contribute to phenotypes such as enhanced wound healing or even fibrosis(Balakrishnan et al., 2021; Harness-Brumley et al., 2014; Rønø et al., 2013) “ (page 9, lines 248-259).
Minor comments:
Line 53: The authors state that after birth the primary source of new macrophages come from differentiation of monocytes. However, some tissue resident macrophages are self-renewing.
We apologize for this oversight and have adjusted the text to say: “After birth, the primary source of new macrophages comes from the differentiation of monocytes, which can be recruited to tissues throughout life. However, some tissue resident macrophages can self-renew, including those from the pleural and peritoneal cavities (Röszer, 2018)” (page 4, lines 53-56).
Line 123: "spermatogenial" should be "spermatogonial"
We have updated the text accordingly (page 6, line 130).
Reviewer #3 (Significance (Required)):
Significance: • General assessment: The study provides a novel and comprehensive analysis of sex-dimorphic gene expression in macrophages, with key findings that emphasize the importance of ECM remodeling in female macrophages. The strengths include the broad dataset inclusion, rigorous quality control, and methodological rigor. However, consideration of potential confounding variables (e.g., age, strain) should be included and validation of key results would strengthen the manuscript. • Advance: This study advances knowledge by analyzing sex differences across multiple macrophage niches rather than focusing on a single tissue type. It extends findings from previous immune studies. • Audience: This report would be of interest to immunologists and researchers studying sex differences. Expertise: Immunology, sex differences in disease, macrophage biology, transcriptomics, and inflammation research.
We thank the reviewer for their positive comments on the impact of our work and for their useful feedback.
__ __
References
Alswat, K. A. (2017). Gender Disparities in Osteoporosis. J Clin Med Res, 9(5), 382-387. https://doi.org/10.14740/jocmr2970w
Amend, S. R., Valkenburg, K. C., & Pienta, K. J. (2016). Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation. J Vis Exp(110). https://doi.org/10.3791/53936
Balakrishnan, M., Patel, P., Dunn-Valadez, S., Dao, C., Khan, V., Ali, H., El-Serag, L., Hernaez, R., Sisson, A., Thrift, A. P., Liu, Y., El-Serag, H. B., & Kanwal, F. (2021). Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol, 19(1), 61-71.e15. https://doi.org/10.1016/j.cgh.2020.04.067
Bloomer, L. D., Nelson, C. P., Eales, J., Denniff, M., Christofidou, P., Debiec, R., Moore, J., Zukowska-Szczechowska, E., Goodall, A. H., Thompson, J., Samani, N. J., Charchar, F. J., & Tomaszewski, M. (2013). Male-specific region of the Y chromosome and cardiovascular risk: phylogenetic analysis and gene expression studies. Arterioscler Thromb Vasc Biol, 33(7), 1722-1727. https://doi.org/10.1161/atvbaha.113.301608
Chen, K., Jiao, Y., Liu, L., Huang, M., He, C., He, W., Hou, J., Yang, M., Luo, X., & Li, C. (2020). Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front Cell Dev Biol, 8, 598263. https://doi.org/10.3389/fcell.2020.598263
Cox, N., Pokrovskii, M., Vicario, R., & Geissmann, F. (2021). Origins, Biology, and Diseases of Tissue Macrophages. Annu Rev Immunol, 39, 313-344. https://doi.org/10.1146/annurev-immunol-093019-111748
Gosselin, D., Link, V. M., Romanoski, C. E., Fonseca, G. J., Eichenfield, D. Z., Spann, N. J., Stender, J. D., Chun, H. B., Garner, H., Geissmann, F., & Glass, C. K. (2014). Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell, 159(6), 1327-1340. https://doi.org/10.1016/j.cell.2014.11.023
Hamlin, R. E., Pienkos, S. M., Chan, L., Stabile, M. A., Pinedo, K., Rao, M., Grant, P., Bonilla, H., Holubar, M., Singh, U., Jacobson, K. B., Jagannathan, P., Maldonado, Y., Holmes, S. P., Subramanian, A., & Blish, C. A. (2024). Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution. Sci Transl Med, 16(773), eadr1032. https://doi.org/10.1126/scitranslmed.adr1032
Harness-Brumley, C. L., Elliott, A. C., Rosenbluth, D. B., Raghavan, D., & Jain, R. (2014). Gender differences in outcomes of patients with cystic fibrosis. J Womens Health (Larchmt), 23(12), 1012-1020. https://doi.org/10.1089/jwh.2014.4985
Hou, P., Fang, J., Liu, Z., Shi, Y., Agostini, M., Bernassola, F., Bove, P., Candi, E., Rovella, V., Sica, G., Sun, Q., Wang, Y., Scimeca, M., Federici, M., Mauriello, A., & Melino, G. (2023). Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis, 14(10), 691. https://doi.org/10.1038/s41419-023-06206-z
Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung, S., & Amit, I. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell, 159(6), 1312-1326. https://doi.org/10.1016/j.cell.2014.11.018
Li, M., Yang, Y., Xiong, L., Jiang, P., Wang, J., & Li, C. (2023). Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol, 16(1), 80. https://doi.org/10.1186/s13045-023-01478-6
Mammana, S., Fagone, P., Cavalli, E., Basile, M. S., Petralia, M. C., Nicoletti, F., Bramanti, P., & Mazzon, E. (2018). The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci, 19(3). https://doi.org/10.3390/ijms19030831
Meester, I., Manilla-Muñoz, E., León-Cachón, R. B. R., Paniagua-Frausto, G. A., Carrión-Alvarez, D., Ruiz-Rodríguez, C. O., Rodríguez-Rangel, X., & García-Martínez, J. M. (2020). SeXY chromosomes and the immune system: reflections after a comparative study. Biol Sex Differ, 11(1), 3. https://doi.org/10.1186/s13293-019-0278-y
Rønø, B., Engelholm, L. H., Lund, L. R., & Hald, A. (2013). Gender affects skin wound healing in plasminogen deficient mice. PLoS One, 8(3), e59942. https://doi.org/10.1371/journal.pone.0059942
Röszer, T. (2018). Understanding the Biology of Self-Renewing Macrophages. Cells, 7(8). https://doi.org/10.3390/cells7080103
Scotland, R. S., Stables, M. J., Madalli, S., Watson, P., & Gilroy, D. W. (2011). Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood, 118(22), 5918-5927. https://doi.org/10.1182/blood-2011-03-340281
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 233(9), 6425-6440. https://doi.org/10.1002/jcp.26429
Wang, X., Iyer, A., Lyons, A. B., Körner, H., & Wei, W. (2019). Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Front Immunol, 10, 2031. https://doi.org/10.3389/fimmu.2019.02031
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The study investigates sex-specific differences in macrophage gene expression across various tissue niches by analyzing both newly generated and publicly available datasets of varying quality. The key finding is the identification of three consistently differentially expressed genes (DEGs) across all macrophage niches: the Y-chromosome-encoded genes Ddx3y and Eif2s3y, and the X-chromosome-specific gene Xist. However, the number of sex-dimorphic DEGs varied significantly between macrophage niches, with female-biased genes showing more consistency across datasets. To further explore these sex-specific differences, the authors performed an overrepresentation analysis of the DEGs across datasets. They found enriched gene sets associated with specific biological terms in female-biased macrophages from peritoneal macrophages, bone marrow-derived macrophages (BMDMs), and osteoclast progenitors (OCPs), while male-biased enrichment was observed in microglia, exudate macrophages, OCPs, and BMDMs. Notably, extracellular matrix (ECM)-related genes were specifically enriched in female peritoneal macrophages and OCPs, whereas the term "nucleic acid binding" was more prominent in male samples from microglia, BMDMs, and OCPs, driven by the Y-chromosome genes Uty and Kdm5d. A gene set enrichment analysis (GSEA) using Gene Ontology (GO) and Reactome databases further confirmed the enrichment of sex-biased pathways. Based on these findings, the authors conclude that three sex chromosome-associated genes are consistently differentially expressed across all datasets and that female-associated gene expression appears to be more stable, particularly in relation to ECM-associated processes.
Major Comments:
Are the key conclusions convincing?
The study provides valuable insights into sex-dimorphic gene expression in macrophages across different niches. However, some conclusions appear overinterpreted due to the limited number of differentially expressed genes (DEGs) driving specific terms in the overrepresentation analysis. The reliance on only a few recurring genes (e.g., Kdm5d, Eif2s3y, Uty, and Ddx3y) raises concerns about the biological significance of some enriched terms. A clearer discussion on the limitations of such findings is necessary.
Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Some claims, particularly those regarding the role of macrophages in diseases such as AD, histiocytosis, and osteoporosis, lack relevant references.
Would additional experiments be essential to support the claims of the paper?
While additional wet-lab experiments are not strictly necessary, a deconvolution analysis of the datasets could be highly beneficial. This would allow the identification of enriched macrophage subtypes and help assess whether differences between datasets are driven by specific macrophage populations rather than global sex differences. Since peritoneal macrophage origin is influenced by age and inflammation status, deconvolution could also clarify dataset comparability.
Are the suggested experiments realistic in terms of time and resources?
Performing cell-type deconvolution using established computational tools (e.g., CIBERSORT, BisqueRNA, or single-cell deconvolution methods) would be a realistic approach within a few weeks and would significantly strengthen the study. This analysis would not require additional experimental work but could refine the interpretation of the dataset. Additionally, a PCA of all datasets could help identify potential similarities among macrophages from different niches and between sexes.
Are the data and the methods presented in such a way that they can be reproduced?
Some methodological details are missing, particularly regarding: The isolation of mouse peritoneal macrophages (details on injection and harvesting procedure needed). Quality control of isolated macrophages (How were contaminating cells excluded? Was additional validation performed beyond using the kit?) The age of mice used for bone marrow-derived macrophages (BMDMs) is not provided, which is important given that immune responses can be age-dependent.
Are the experiments adequately replicated and statistical analysis adequate?
The statistical analysis appears generally appropriate, but there are concerns about dataset inconsistencies that should be addressed. Some datasets were not used across all analyses, which is not clearly indicated in figures or text. This should be explicitly mentioned to avoid misleading interpretations.
Minor Comments
Figures are included twice in the manuscript. The use of stereotypic colors in figures (e.g., blue for male, pink for female) could be reconsidered for better readability and to avoid reinforcing gender stereotypes.
Results - Section 1
Results - Section 2
Results - Section 3
Discussion
Methods
Figure Legends
The study's strengths include the integration of multiple datasets, the use of both overrepresentation and GSEA, and the exploration of tissue-specific macrophage niches. These findings have relevance for diverse communities, including immunologists, sex-difference researchers, and those studying macrophage-driven diseases such as osteoporosis, neurodegeneration, and chronic inflammation. The work provides a foundation for further studies on sex-specific macrophage biology and may have implications for sex-specific therapeutic strategies.
However, the study has limitations. The conclusions regarding enriched pathways rely heavily on a small number of DEGs, raising concerns about overinterpretation. Additionally, dataset variability and missing data for some analyses (e.g., exudate macrophages) could affect the robustness of the results.
Despite these limitations, the study makes a meaningful but incremental advance by highlighting stable sex-dimorphic patterns in macrophage biology. It provides insights for both fundamental and translational research, particularly for audiences focused on immune regulation, sex-specific gene expression, and tissue-specific macrophage function.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This paper by McGill and colleagues explores sex differences in murine macrophages from different niches. They use a combination of publicly available, and newly developed datasets, and combine these using meta-analysis approaches. They explore DEGs between sexes - both common across niches, and specific to certain niches - and use enrichment analyses to identify pathways linked to these genes. Their overall conclusions are that gene expression changes in females are more consistent across niches, than for males, and are enriched in extracellular matrix-related genes. The paper is easy to follow and very well written.
Major Comments:
Minor Comments:
Although this study is primarily descriptive, it adds to the current knowledge about sex differences in macrophages, an important and relatively understudied area. Those interested in sex differences and in the innate immune system generally, plus those who study macrophages in any context, should be interested in this work.
Cette page web provient du site Larousse dans la partie encyclopédie. Elle a pour sujet l'histoire de la médecine depuis ces débuts et l'évolution qu'il y a eu à travers le temps en partant de l'antiquité en passant par la période du moyen age où la médecine à cesser d'évoluer positivement puis la renaissance jusqu'au temps moderne.
narrativas de datos
Me parece potente la construcción que implica la narrativa de datos como una alternativa que representa esa forma flexible del pensamiento y las herramientas.
Sustitución: Esta etapa es la más sencilla de todas, en donde la tecnología es meramente, como lo dice su nombre, una sustitución de los medios tradicionales y la manera en que se aprende no cambia. Tan solo se cambia la forma en que el estudiantado recibe nuevos conocimientos, por ejemplo:
Etapa de prueba...
No cabe duda que las tecnologías educativas llegaron para quedarse, especialmente cuando no solo facilitan y agilizan el trabajo de docentes y estudiantes; sino que también llegan a mejorar la calidad de aprendizaje al integrar maneras de enseñar que en el pasado eran hasta imposibles.
Será??
Reviewer #1 (Public review):
Summary:
This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.
The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T) it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.
The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.
Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.
The reproducibility of the methods and the result is doubtful (see below).
I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.
3T layer-fMRI papers that are not cited:
Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382
Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x
Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086
Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019
Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045
Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020
Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117
Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154
Strengths:
See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.<br /> The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.
Weaknesses:
(1) I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aims to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:
Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.
Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725
Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666
Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.
The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).<br /> It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?
The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins and the bipolar crushing is not expected to help with this.
(2) The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.<br /> VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.
Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358
Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121
If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.
(3) The comparison with VASO is misleading.<br /> The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.<br /> Koiso et al. has performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation) and 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).<br /> Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).
Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502
Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855
Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544
The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that want to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401
Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?<br /> Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion it looks like random noise, with most of the activation outside the ROI (in white matter).
(4) The repeatability of the results is questionable.<br /> The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. Location of peaks turn into locations of dips and vice versa.<br /> The methods are not described in enough detail to reproduce these results.<br /> The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.
It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.<br /> No data are shared for reproduction of the analysis.
(5) The application of NODRIC is not validated.<br /> Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.
Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924
Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658
Comments on revisions:
Among all the concerns mentioned above, I think there is only one of the specific issues that was sufficiently addressed.<br /> The authors implemented a combination of three consecutive-dimensional flow crushers. Other concerns were not sufficiently addressed to change my confidence level of the study.<br /> - While the abstract is still focusing on the utility of using 3T, they do not give credit to early 3T layer-fMRI papers leading the way to larger coverage and connectivity applications.<br /> - While the author's choice of using custom SMS 2D readout is justified for them. I do not think that this very method will utilize widespread 3T whole brain connectivity experiments across the global 3T community. This lowers the impact of the paper.<br /> - The images in Fig. 5 are still suspiciously similar. To the level that the noise pattern outside the brain is identical across large parts of the maps with and without PR.<br /> - Maybe it's my ignorance, but I still do not agree why flow crushing focuses the local BOLD responses to small vessels.<br /> - While my feel of a misleading representation of the literature had been accompanied by explicit references, the authors claim that they cannot find them?!? Or claim that they are about something else (which they are not, in my viewpoint).<br /> Data and software are still not shared (not even example data, or nii data).
Author response:
The following is the authors’ response to the original reviews.
General responses:
The authors sincerely thank all the reviewers for their valuable and constructive comments. We also apologize for the long delay in providing this rebuttal due to logistical and funding challenges. In this revision, we modified the bipolar gradients from one single direction to all three directions. Additionally, in response to the concerns regarding data reliability, we conducted a thorough examination of each step in our data processing pipeline. In the original processing workflow, the projection-onto-convex-set (POCS) method was used for partial Fourier reconstruction. Upon examination, we found that applying the POCS method after parallel image reconstruction significantly altered the signal and resulted in considerable loss of functional feature. Futhermore, the original scan protocol employed a TE of 46 ms, which is notably longer than the typical TE of 33 ms. A prolonged TE can increase the ratio of extravascular to intravascular contributions. Importantly, the impact of TE on the efficacy of phase regression remains unclear, introducing potential confounding effects. To address these issues, we revised the protocol by shortening the TE from 46 ms to 39 ms. This adjustment was achieved by modifying the SMS factor to 3 and the in-plane acceleration rate to 3, thereby minimizing the confounding effects associated with an extended TE.
Following these changes, we recollected task-based fMRI data (N=4) and resting-state fMRI data (N=14) under the updated protocol. Using the revised dataset, we validated layer-specific functional connectivity (FC) through seed-based analyses. These analyses revealed distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with statistically significant inter-layer differences. Furthermore, additional analyses with a seed in the primary sensory cortex (S1) corroborated the robustness and reliability of the revised methodology. We also changed the ‘directed’ functional connectivity in the title to ‘layer-specific’ functional connectivity, as drawing conclusions about directionality requires auxiliary evidence beyond the scope of this study.
We provide detailed responses to the reviewers’ comments below.
Reviewer #1 (Public Review):
Summary:
(1) This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.
3T layer-fMRI papers that are not cited:
Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382
Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x
Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086
Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019
Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045
Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020
Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117
Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154
We thank the reviewer for listing out 8 papers related to 3T layer-fMRI papers. The primary goal of our work is to develop a methodology for brain-wide, layer-dependent resting-state functional connectivity at 3T. Upon review of the cited papers, we found that:
(1) One study (Lifshits et al.) was not an fMRI study.
(2) One study (Olman et al.) was conducted at 7T, not 3T.
(3) Two studies (Taso et al. and Wu et al.) employed relatively large voxel sizes (1.6 × 2.3 × 5 mm³ and 1.5 mm isotropic, respectively), which limits layer specificity.
(4) Only one of the listed studies (Huber et al., Aperture Neuro 2023) provides coverage of more than half of the brain.
While each of these studies offers valuable insights, the VASO study by Huber et al. is the most relevant to our work, given its brain-wide coverage. However, the VASO method employs a relatively long TR (14.137 s), which may not be optimal for resting-state functional connectivity analyses.
To address these limitations, our proposed method achieves submillimeter resolution, layer specificity, brain-wide coverage, and a significantly shorter TR (<5 s) altogether. We believe this advancement provides a meaningful contribution to the field, enabling broader applicability of layer-fMRI at 3T.
(2) The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T), it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.
We would like to thank the reviewer for their comments and the recognition of the technical efforts in implementing our sequence. We would like to address the points raised:
(1) We completely agree that in-house implementation of existing techniques does not constitute an advancement for the field. We did not claim otherwise in the manuscript. Our focus was on the development of a method for brain-wide, layer-dependent resting-state functional connectivity at 3T, as mentioned in the response above.
(2) The reviewer stated that "it is established to use 3D readouts over 2D (SMS) readouts". This is a strong claim, and we believe it requires robust evidence to support it. While it is true that 3D readouts can achieve higher tSNR in certain regions, such as the central brain, as shown in the study by Vizioli et al. (ISMRM 2020 abstract; https://cds.ismrm.org/protected/20MProceedings/PDFfiles/3825.html?utm_source=chatgpt.com ), higher tSNR does not necessarily equate to improved detection power in fMRI studies. For instance, Le Ster et al. (PLOS ONE, 2019; https://doi.org/10.1371/journal.pone.0225286 ). demonstrated that while 3D EPI had higher tSNR in the central brain, SMS EPI produced higher t-scores in activation maps.
(3) When choosing between SMS EPI and 3D EPI, multiple factors should be taken into account, not just tSNR. For example, SMS EPI and 3D EPI differ in their sensitivity to motion and the complexity of motion correction. The choice between them depends on the specific research goals and practical constraints.
(4) We are open to different readout strategies, provided they can be demonstrated suitable to the research goals. In this study, we opted for 2D SMS primarily due to logistical considerations. This choice does not preclude the potential use of 3D readouts in the future if they are deemed more appropriate for the project objectives.
The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.
We will elaborate the mechanism and reasoning in the later responses.
Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.
The reproducibility of the methods and the result is doubtful (see below).
In this revision, we updated the scan protocol and recollected the imaging data. Detailed explanations and revised results are provided in the later responses.
I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.
We respect the reviewer’s personal opinion. However, we can only address scientific comments or critiques.
Strengths:
See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.
The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.
Weaknesses:
(1) I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:
Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.
Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725
Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666
Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.
The proposed VN fMRI method employs VN gradients to selectively suppress signals from fast-flowing blood in large vessels. Although this approach may initially appear to diverge from the principles of CBV-based techniques (Chai et al., 2020; Huber et al., 2017a; Pfaffenrot and Koopmans, 2022; Priovoulos et al., 2023), which enhance sensitivity to vascular changes in arterioles, capillaries, and venules while attenuating signals from static tissue and large veins, it aligns with the fundamental objective of all layer-specific fMRI methods. Specifically, these approaches aim to maximize spatial specificity by preserving signals proximal to neural activation sites and minimizing contributions from distal sources, irrespective of whether the signals are intra- or extra-vascular in origin. In the context of intravascular signals, CBV-based methods preferentially enhance sensitivity to functional changes in small vessels (proximal components) while demonstrating reduced sensitivity to functional changes in large vessels (distal components). For extravascular signals, functional changes are a mixture of proximal and distal influences. While tissue oxygenation near neural activation sites represents a proximal contribution, extravascular signal contamination from large pial veins reflects distal effects that are spatially remote from the site of neuronal activity. CBV-based techniques mitigate this challenge by unselectively suppressing signals from static tissues, thereby highlighting contributions from small vessels. In contrast, the VN fMRI method employs a targeted suppression strategy, selectively attenuating signals from large vessels (distal components) while preserving those from small vessels (proximal components). Furthermore, the use of a 3T scanner and the inclusion of phase regression in the VN approach mitigates contamination from large pial veins (distal components) while preserving signals reflecting local tissue oxygenation (proximal components). By integrating these mechanisms, VN fMRI improves spatial specificity, minimizing both intravascular and extravascular contributions that are distal to neuronal activation sites. We have incorporated the responses into Discussion section.
The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).
In the new results in Figure 4, the application of VN gradients attenuated the bias towards pial surface. Consistent with the results in Figure 4, Figure 5 also demonstrated the suppression of macrovascular signal by VN gradients.
It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?
In this revision, the original Figure 5 has been removed. However, we would like to clarify that the two maps with TE = 43 ms in the original Figure 5 were not identical. This can be observed in the difference map provided in the right panel of the figure.
The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.
The reviewer’s statement that "most of the vein signal comes from extravascular dephasing around large unspecific veins" may hold true for 7T. However, at 3T, the susceptibility-induced Larmor frequency shift is reduced by 57%, and the extravascular contribution decreases by more than 35%, as shown by Uludağ et al. 2009 ( DOI: 10.1016/j.neuroimage.2009.05.051 ).
Additionally, according to the biophysical models (Ogawa et al., 1993; doi: 10.1016/S0006-3495(93)81441-3 ), the extravascular contamination from the pial surface is inversely proportional to the square of the distance from vessel. For a vessel diameter of 0.3 mm and an isotropic voxel size of 0.9 mm, the induced frequency shift is reduced by at least 36-fold at the next voxel. Notably, a vessel diameter of 0.3 mm is larger than most pial vessels. Theoretically, the extravascular effect contributes minimally to inter-layer dependency, particularly at 3T compared to 7T due to weaker susceptibility-related effects at lower field strengths. Empirically, as shown in Figure 7c, the results at M1 demonstrated that layer specificity can be achieved statistically with the application of VN gradients. We have incorporated this explanation into the Introduction and Discussion sections of the manuscript.
(2) The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.
VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.
Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358
Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121
If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.
We understand the reviewer’s concern regarding the directional limitation of bipolar crushing. As noted in the responses above, we have updated the bipolar gradient to include three orthogonal directions instead of a single direction. Furthermore, flow-related signal suppression does not necessarily require a longer time period. Bipolar diffusion gradients have been effectively used to nullify signals from fast-flowing blood, as demonstrated by Boxerman et al. (1995; DOI: 10.1002/mrm.1910340103). Their study showed that vessels with flow velocities producing phase changes greater than p radians due to bipolar gradients experience significant signal attenuation. The critical velocity for such attenuation can be calculated using the formula: 1/(2gGDd) where g is the gyromagnetic ratio, G is the gradient strength, d is the gradient pulse width and D is the time between the two bipolar gradient pulses. In the framework of Boxerman et al. at 1.5T, the critical velocity for b value of 10 s/mm<sup>2</sup> is ~8 mm/s, resulting in a ~30% reduction in functional signal. In our 3T study, b values of 6, 7, and 8 s/mm<sup>2</sup> correspond to critical velocities of 16.8, 15.2, and 13.9 mm/s, respectively. The flow velocities in capillaries and most venules remain well below these thresholds. Notably, in our VN fMRI sequences, bipolar gradients were applied in all three orthogonal directions, whereas in Boxerman et al.'s study, the gradients were applied only in the z-direction. Given the voxel dimensions of 3 × 3 × 7 mm<sup>3</sup> in the 1.5T study, vessels within a large voxel are likely oriented in multiple directions, meaning that only a subset of fast-flowing signals would be attenuated. Therefore, our approach is expected to induce greater signal reduction, even at the same b values as those used in Boxerman et al.'s study. We have incorporated this text into the Discussion section of the manuscript.
(3) The comparison with VASO is misleading.
The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.
Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).
Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).
Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502
Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855
Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544
We thank the reviewer for providing these references. While the protocol with a TR of 3.9 seconds in Koiso’s work demonstrated reasonable activation patterns, it was not tested for layer specificity. Given that higher acceleration factors (AF) can cause spatial blurring, a protocol should only be eligible for comparison if layer specificity is demonstrated.
Secondly, the TRs reported in Koiso’s study pertain only to either the VASO or BOLD acquisition, not the combined CBV-based contrast. To generate CBV-based images, both VASO and BOLD data are required, effectively doubling the TR. For instance, if the protocol with a TR of 3.9 seconds is used, the effective TR becomes approximately 8 seconds. The stable protocol used by Koiso et al. to acquire whole-brain data (94.08 mm along the z-axis) required 5.2 seconds for VASO and 5.1 seconds for BOLD, resulting in an effective TR of 10.3 seconds. The spatial resolution achieved was 0.84 mm isotropic.
Unfortunately, we could not find the Juelich paper mentioned by the reviewer.
To have a more comprehensive comparison, we collated relevant literature on brain-wide layer-specific fMRI. We defined brain-wide acquisition as imaging protocols that cover more than half of the human brain, specifically exceeding 55 mm along the superior-inferior axis. We identified five studies and summarized their scan parameters, including effective TR, coverage, and spatial resolution, in Table 1.
The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401
In this revision, we decided to focus on cortico-cortical functional connectivity and have removed the LGN-related content. Consequently, the text mentioned by the reviewer was also removed. Nevertheless, we apologize if our original description gave the impression that functional mapping of deep brain regions using VASO is not feasible. The word of caution we used is based on the layer-fMRI blog ( https://layerfmri.com/2021/02/22/vaso_ve/ ) and reflects the challenges associated with this technique, as outlined by experts like Dr. Huber and Dr. Strinberg.
According to the information provided, including the video, functional mapping of the hippocampus and amygdala using VASO is indeed possible but remains technically challenging. The short arterial arrival times in these deep brain regions can complicate the acquisition, requiring RF inversion pulses to cover a wider area at the base of the brain. For example, as of 2023, four or more research groups were attempting to implement layer-fMRI VASO in the hippocampus. One such study at 3T required multiple inversion times to account for inflow effects, highlighting the technical complexity of these applications. This is the context in which we used the word of caution. We are not sure whether recent advancements like MAGEC VASO have improved its applicability. As of 2024, we have not identified any published VASO studies specifically targeting deep brain structures such as the hippocampus or amygdala. Therefore, it is difficult to conclude that “sub-millimeter VASO is routinely being performed by MRI physicists on deep brain structures such as the hippocampus.”
Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?
We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.
Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).
As we mentioned in the ‘general response’ in the beginning of the rebuttal, the POCS method for partial Fourier reconstruction caused the loss of functional feature, potentially accounting for the activation in white matter. In this revision, we have modified the pulse sequence, scan protocol and processing pipelines.
According to the results in Figure 4, stable activation in M1 was observed at the single-subject level across most scan protocols. Yet, the layer-dependent activation profiles in M1 were spatially unstable, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to various factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Furthermore, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons between protocols, leaving residual artifacts unaddressed. Inconsistency in performing the button-pressing task across sessions may also have contributed to the observed variability. These results suggest that submillimeter-resolution fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping, unless group-level statistics are incorporated to enhance robustness. We have incorporated this text into the Limitation section of the manuscript.
(4) The repeatability of the results is questionable.
The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa.
The methods are not described in enough detail to reproduce these results.
The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.
We thank the reviewer for the comments regarding reproducibility and data sharing. In response, we have revised the Methods section and elaborated on the technical details to improve clarity and reproducibility.
Regarding code sharing, we acknowledge that the current in-house MATLAB reconstruction code requires further refinement to improve its readability and usability. Due to limited manpower, we have not yet been able to complete this task. However, we are committed to making the code publicly available and will upload it to GitHub as soon as the necessary resources are available.
For data sharing, we face logistical challenges due to the large size of the dataset, which spans tens of terabytes. Platforms like OpenNeuro, for example, typically support datasets up to 10TB, making it difficult to share the data in its entirety. Despite this limitation, we are more than willing to share offline reconstruction codes and raw data upon request to facilitate reproducibility.
Regarding data robustness, we kindly refer the reviewer to our response to the previous comment, where we addressed these concerns in greater detail.
It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.
No data are shared for reproduction of the analysis.
Obtaining phase data is relatively straightforward when the images are retrieved directly from raw data. For coil combination, we employed the adaptive coil combination approach described by (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g ) The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab .
(5) The application of NODRIC is not validated.
Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.
Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924
Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658
We appreciate the reviewer’s suggestion. To validate the application of NORDIC denoising in our study, we compared the BOLD activation maps before and after denoising in the visual and motor cortices, as well as the depth-dependent activation profiles in M1. These results are presented in Figure 3. The activation patterns in the denoised maps were consistent with those in the non-denoised maps but exhibited higher statistical significance. Notably, BOLD activation within M1 was only observed after NORDIC denoising, underscoring the necessity of this approach. Figure 3c shows the depth-dependent activation profiles in M1, highlighted by the green contours in Figure 3b. Both denoised and non-denoised profiles followed similar trends; however, as expected, the non-denoised profile exhibited larger confidence intervals compared to the NORDIC-denoised profile. These results confirm that NORDIC denoising enhances sensitivity without introducing distortions in the functional signal. The corresponding text has been incorporated into the Results section.
Regarding the implementation details of NORDIC denoising, the reconstructed images were denoised using a g-factor map (function name: NIFTI_NORDIC). The g-factor map was estimated from the image time series, and the input images were complex-valued. The width of the smoothing filter for the phase was set to 10, while all other hyperparameters were retained at their default values. This information has been integrated into the Methods section for clarity and reproducibility.
Reviewer #2 (Public Review):
This study developed a setup for laminar fMRI at 3T that aimed to get the best from all worlds in terms of brain coverage, temporal resolution, sensitivity to detect functional responses, and spatial specificity. They used a gradient-echo EPI readout to facilitate sensitivity, brain coverage and temporal resolution. The former was additionally boosted by NORDIC denoising and the latter two were further supported by parallel-imaging acceleration both in-plane and across slices. The authors evaluated whether the implementation of velocity-nulling (VN) gradients could mitigate macrovascular bias, known to hamper the laminar specificity of gradient-echo BOLD.
The setup allows for 0.9 mm isotropic acquisitions with large coverage at a reasonable TR (at least for block designs) and the fMRI results presented here were acquired within practical scan-times of 12-18 minutes. Also, in terms of the availability of the method, it is favorable that it benefits from lower field strength (additional time for VN-gradient implementation, afforded by longer gray matter T2*).
The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.
We appreciate and understand the reviewer’s concerns. Given the small size of the hand knob region within M1 and its intersubject variability in location, defining this region automatically remains challenging. However, we applied specific criteria to minimize bias during the delineation of M1: 1) the hand knob region was required to be anatomically located in the precentral sulcus or gyrus; 2) it needed to exhibit consistent BOLD activation across the majority of testing conditions; and 3) the region was expected to show BOLD activation in the deep cortical layers under the condition of b = 0 and TE = 30 ms. Once the boundaries across cortical depth were defined, the gray matter boundaries of hand knob region were delineated based on the T1-weighted anatomical image and the cortical ribbon mask but excluded the BOLD activation map to minimize potential bias in manual delineation. Based on the new criteria, the resulting depth-dependent profiles, as shown in Figure 4, are no longer superficial-bias-free.
As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.
We appreciate the reviewer’s comments and acknowledge that the LGN results from a single participant were not sufficiently convincing. In this revision, we have removed the LGN-related results and focused on cortico-cortical FC. To evaluate data quality, we opted to present BOLD activation maps rather than tSNR, as high tSNR does not necessarily translate to high functional significance. In Figure 3, we illustrate the effect of NORDIC denoising, including activation maps and depth-dependent profiles. Figure 4 presents activation maps acquired under different TE and b values, demonstrating that VN gradients effectively reduce the bias toward the pial surface without altering the overall activation patterns. The results in Figure 4 and Figure 5 provide evidence that VN gradients retain sensitivity while reducing superficial bias. The ability of the setup to obtain meaningful FC results was validated through seed-based analyses, identifying distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with significant inter-layer differences (see Figure 7). Further analyses with a seed in the primary sensory cortex (S1) demonstrated the reliability of the method (see Figure 8). For further details on the results, including the impact of VN gradients and NORDIC denoising, please refer to Figures 3 to 8 in the Results section.
Additionally, we acknowledge the limitations of our current protocol for submillimeter-resolution fMRI at the individual level. We found that robust layer-dependent functional mapping often requires group-level statistics to enhance reliability. This issue has been discussed in detail in the Limitations section.
The proposed setup might potentially be valuable to the field, which is continuously searching for techniques to achieve laminar specificity in gradient echo EPI acquisitions. Nonetheless, the above considerations need to be tackled to make a convincing case.
Reviewer #3 (Public Review):
Summary:
The authors are looking for a spatially specific functional brain response to visualise non-invasively with 3T (clinical field strength) MRI. They propose a velocity-nulled weighting to remove the signal from draining veins in a submillimeter multiband acquisition.
Strengths:
- This manuscript addresses a real need in the cognitive neuroscience community interested in imaging responses in cortical layers in-vivo in humans.
- An additional benefit is the proposed implementation at 3T, a widely available field strength.
Weaknesses:
- Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.
The major distinction between diffusion-weighted fMRI (DW-fMRI) and our methodology lies in the b-value employed. DW-fMRI typically measures cellular swelling using b-values greater than 1000 s/mm<sup>2</sup> (e.g., 1800 s/mm(sup>2</sup>). In contrast, our VN-fMRI approach measures hemodynamic responses by employing smaller b-values specifically designed to suppress signals from fast-flowing draining veins rather than detecting microstructural changes.
Regarding other functional contrasts, we agree that more layer-dependent fMRI approaches should be mentioned. In this revision, we have expanded the Introduction section to include discussions of the double spin-echo approach and CBV-based methods, such as MT-weighted fMRI, VAPER, ABC, and CBF-based method ASL. Additionally, the reference to Lu et al. (2013) has been cited in the revised manuscript. The corresponding text has been incorporated into the Introduction section to provide a more comprehensive overview of alternative functional imaging techniques.
- The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.
- Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.
- The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.
- Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.
We appreciate the reviewer’s suggestions. In this revision, we have made significant updates to the participant recruitment, scan protocol, data processing, and M1 delineation. Please refer to the "General Responses" at the beginning of the rebuttal and the first response to Reviewer #2 for more details.
Previously, the variation in depth-dependent profiles was calculated across upscaled voxels within a specific layer. However, due to the small size of the hand knob region, the number of within-layer voxels was limited, resulting in inaccurate estimations of signal variation. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section. Furthermore, while the initial submission used percentage signal change for the profiles of M1, the dramatic baseline fluctuations observed previously are no longer an issue after the modifications. For this reason, we retained the use of percentage signal change to present the depth-dependent profiles. After these adjustments, the profiles exhibited a bias toward the pial surface, particularly in the absence of VN gradients.
- In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.
We agreed with reviewer’s argument. In the revised results, the issues mentioned by the reviewer are largely diminished. The updated analyses demonstrate that phase regression effectively reduces superficial bias, as shown in Figures 4 and 5.
- Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.
We agreed with reviewer’s comments. In the revised manuscript, the results have been substantially updated to addressing the concerns raised. The original Figure 7 is no longer relevant and has been removed.
- Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.
We appreciate the reviewer’s comments and share the concern about SNR limitations. In the updated results presented in Figure 5, the activation patterns in the visual cortex were consistent across TEs and b values. At the motor cortex, stable activation in M1 was observed at the single-subject level across most scan protocols. However, the layer-dependent activation profiles in M1 exhibited spatial instability, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Additionally, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons across protocols, leaving some residual artifacts unaddressed. Variability in task performance during button-pressing sessions may have further contributed to the observed inconsistencies.
Although these findings suggest that submillimeter-resolution fMRI may not yet be reliable for individual-level layer-dependent functional mapping, the group-level FC analyses can still yield robust results. In Figure 7, group-level statistics revealed distinct functional connectivity (FC) patterns associated with superficial and deep layers in M1. These FC maps exhibited significant differences between layers, demonstrating that VN fMRI enhances inter-layer independence. Additional FC analyses with a seed placed in S1 further validated these findings (see Figure 8).
The claim of specificity is supported by the observation of the double-peak pattern in the motor cortex, previously shown in multiple non-BOLD studies. However, this same pattern is shown in some of the BOLD weighted data, which seems to suggest that the double-peak pattern is not solely due to the added velocity nulling gradients. In addition, the well-known draining towards the cortical surface is not replicated for the BOLD-weighted data in Figures 3, 4, or 7. This puts some doubt about the data actually having the SNR to draw conclusions about the observed patterns.
We appreciate the reviewer’s comments. In the updated results, the efficacy of the VN gradients is evident near the pial surface, as shown in Figures 4 and 5. In Figure 4, comparing the second and third columns (b = 0 and b = 6 s/mm<sup>2</sup>, respectively, at TE = 38 ms), the percentage signal change in the superficial layers is generally lower with b = 6 s/mm<sup>2</sup> than with b = 0. This indicates that VN gradient-induced signal suppression is more pronounced in the superficial layers. Additionally, in Figure 5, the VN gradients effectively suppressed macrovascular signals as highlighted by the blue circles. These observations support the role of VN gradients in enhancing specificity by reducing superficial bias and macrovascular contamination. Furthermore, bias towards cortical surface was observed in the updated results in Figure 4.
Recommendations for the authors:
Reviewer #2 (Recommendations For The Authors):
(1) L141: "depth dependent" is slightly misleading here. It could be misunderstood to suggest that the authors are assessing how spatial specificity varies as a function of depth. Rather, they are assessing spatial specificity based on depth-dependent responses (double peak feature). Perhaps "layer-dependent spatial specificity" could be substituted with laminar specificity?
We thank the reviewer for the suggestion. The term “depth dependent” has been replaced by “layer dependent” in the revised manuscript.
(2) L146-149: these do not validate spatial specificity.
The original text is removed.
(3) L180: Maybe helpful to describe what the b-value is to assist unfamiliar readers.
We have clarified the b-value as “the strength of the bipolar diffusion gradients” where it is first mentioned in the manuscript.
(4) Figure 1B: I think it would be appropriate with a sentence of how the authors define micro/macrovasculature. Figure 1B seems to suggest that large ascending veins are considered microvascular which I believe is a bit unconventional. Nevertheless, as long as it is clearly stated, it should be fine.
In our context, macrovasculature refers to vessels that are distal to neural activation sites and contribute to extravascular contamination. These vessels are typically larger in size (e.g., > 0.1 mm in diameter) and exhibit faster flow rates (e.g., > 10 mm/s).
(5) I think the authors could be more upfront with the point about non-suppressed extravascular effects from macrovasculature, which was briefly mentioned in the discussion. It could already be highlighted in the introduction or theory section.
We thank the reviewer’s suggestions. We have expanded the discussion of extravascular effects from macrovasculature in both the Introduction (5th paragraph) and Discussion (3rd paragraph) sections.
(6) The phase regression figure feels a bit misplaced to me. If the authors agree: rather than showing the TE-dependency of the effect of phase regression, it may be more relevant for the present study to compare the conventional setup with phase regression, with the VN setup without phase regression. I.e., to show how the proposed setup compares to existing 3T laminar fMRI studies.
In this revision, both the TE-dependent and VN-dependent effects of phase regression were investigated. The results in Figure 4 and Figure 5 demonstrated that phase regression effectively suppresses macrovascular contributions primarily near the gray matter/CSF boundary, irrespective of TE or the presence of VN gradients.
(7) L520: It might be beneficial to also cite the large body of other laminar studies showing the double peak feature to underscore that it is highly robust, which increases its relevance as a test-bed to assess spatial specificity.
We agreed. More literatures have been cited (Chai et al., 2020; Huber et al., 2017a; Knudsen et al., 2023; Priovoulos et al., 2023).
(8) L557: The argument that only one participant was assessed to reduce inter-subject variability is hard to buy. If significant variability exists across subjects, this would be highly relevant to the authors and something they would want to capture.
We thank the reviewer for the suggestions. In this revision, we have increased the number of participants to 4 for protocol development and 14 for resting-state functional connectivity analysis, allowing us to better assess and account for inter-subject variability.
(9) L637: add download link and version number.
The download link has been added as requested. The version number is not applicable.
(10) L638: How was the phase data coil-combined?
The reconstructed multi-channel data, which were of complex values, were combined using the adaptive combination method (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g). The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab . The phase data were then extracted using the MATLAB function ‘angle’.
(11) L639: Why was the smoothing filter parameter changed (other parameters were default)?
The smoothing filter parameter was set based on the suggestion provided in the help comments of the NIFTI_NORDIC function:
function NIFTI_NORDIC(fn_magn_in,fn_phase_in,fn_out,ARG)
% fMRI
%
% ARG.phase_filter_width=10;
In other words, we simply followed the recommendation outlined in the NIFTI_NORDIC function’s documentation.
(12) I assume the phase data was motion corrected after transforming to real and imaginary components and using parameters estimated from magnitude data? Maybe add a few sentences about this.
Prior to phase regression, the time series of real and imaginary components were subjected to motion correction, followed by phase unwrapping. The phase regression was incorporated early in the data processing pipeline to minimize the discrepancy in data processing between magnitude and phase images (Stanley et al., 2021).
(13) Was phase regression applied with e.g., a deming model, which accounts for noise on both the x and y variable? In my experience, this makes a huge difference compared with regular OLS.
We appreciate the reviewer’s insightful comment. We are aware that the noise present in both magnitude and phase data therefore linear Deming regression would be a good fit to phase regression (Stanley et al., 2021). To perform Deming regression, however, the ratio of magnitude error variance to phase error variance must be predefined. In our initial tests, we found that the regression results were sensitive to this ratio. To avoid potential confounding, we opted to use OLS regression for the current analysis. However, we agreed Deming model could enhance the efficacy of phase regression if the ratio could be determined objectively and properly.
(14) Figure 2: What is error bar reflecting? I don't think the across-voxel error, as also used in Figure 4, is super meaningful as it assumes the same response of all voxels within a layer (might be alright for such a small ROI). Would it be better to e.g. estimate single-trial response magnitude (percent signal change) and assess variability across? Also, it is not obvious to me why b=30 was chosen. The authors argue that larger values may kill signal, but based on this Figure in isolation, b=48 did not have smaller response magnitudes (larger if anything).
We agreed with the reviewer’s opinion on the across-voxel error. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section.
Additionally, the bipolar diffusion gradients were modified from a single direction to three orthogonal directions. As a result, the questions and results related to b=30 or b=48 are no longer applicable.
(15) Figure 5: would be informative to quantify the effect of phase regression over a large ROI and evaluate reduction in macrovascular influence from superficial bias in laminar profiles.
We appreciate the reviewer’s suggestion. In the revised manuscript, the reduction in macrovascular influence from superficial bias across a large ROI is displayed in Figure 5. Additionally, the impact on laminar profiles is demonstrated in Figure 4.
(16) L406-408: What kind of robustness?
We acknowledge that describing the protocol as “robust” was an overstatement. The updated results indicate that the current protocol for submillimeter fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping. However, group-level functional connectivity (FC) analyses demonstrated clear layer-specific distinctions with VN fMRI, which were not evident in conventional fMRI. These findings highlight the enhanced layer specificity achievable with VN fMRI.
(17) Figure 8: I think C) needs pointers to superficial, middle, and deep layers? Why is it not in the same format as in Figure 9C? The discussion of the FC results could benefit from more references supporting that these observations are in line with the literature.
In the revised results, the layer pooling shown in Figure 9c has been removed, making the question regarding format alignment no longer applicable. Additionally, references supporting the FC results have been added to the revised Discussion section (7th paragraph).
(18) L456-457: But correlation coefficients may also be biased by different CNR across layers.
That is correct. In the updated FC results in Figure 7 to 9, we used group-level statistics rather than correlation coefficients.
Reviewer #3 (Recommendations For The Authors):
The results in Figure 2-6 should be repeated over, or averaged over, a (small) group of participants. N=6 is usual in this field. I would seriously reconsider the multiband acceleration - the acquisition seemingly cannot support the SNR hit.
A few more specific points are given below:
(1) Abstract: The sentence about LGN in the abstract came for me out of the blue - why would LGN be important here, it's not even a motor network node? Perhaps the aims of the study should be made more clear - if it's about networks as suggested earlier then a network analysis result would be expected too. Expanding the directed FC findings would improve the logical flow of the abstract. Given the many concerns, removing the connectivity analysis altogether would also be an option.
We thank the reviewer for the suggestions. The LGN-related results indeed diluted the focus of this study and have been completely removed in this revision.
(2) Line 105: in addition to the VASO method, ..
The corresponding text has been revised, and as a result, the reviewer’s suggestion is no longer applicable.
(3) If out of the set MB 4 / 5 / 6 MB4 was best, why did the authors not continue with a comparison including MB3 and MB2? It seems to me unlikely that the MB4 acquisition is actually optimal.
Results: We appreciate the reviewer’s suggestions. In this revision, we decreased the MB factor to 3, as it allowed us to increase the in-plane acceleration rate to 3, thereby shortening the TE. The resulting sensitivity for both individual and group-level results is detailed in earlier responses, such as the response to Q16 for Reviewer #2.
(4) The formatting of the references is occasionally flawed, including first names and/or initials. Please consider using a reliable reference manager.
We used Zotero as our reference manager in this revision to ensure consistency and accuracy. The references have been formatted according to the APA style.
(5) In the caption of Figure 5, corrected and uncorrected p values are identical. What multiple comparisons correction was made here? A multiple comparisions over voxels (as is standard) would usually lead to a cut-off ~z=3.2. That would remove most of the 'responses' shown in figure 5.
We appreciate the reviewer’s comment. The original results presented in Figure 5 have been removed in the revised manuscript, making this comment no longer applicable.
for the age. Repeat for the height.
for age and height (tal vez poner age y height en negrita)
View the data in a data viewer window
Quizás incluir head() y tail()
Temps
Ça veut dire que quand les avocat·es sont seul·es, les Jaf parlent moins. Il y a 25% de ces audiences où personne d'autre ne parle cf 3e quartile. Quand les J sont seul·es, iels parlent plus mais ce n'est que 50% du temps
Selon
Avec Linda, les F parlent moins que les H quand pas d'avocat·e. NON, voir distribution Avec Thierry, elles parlent plus en présence d'avocat·e alors que c'est généralement moins quand il y en a.
Selon l’âge et le genre
Ce sont des courbes de niveau. Plus la couleur est claire, plus il y a une concentration d'individus.
Couleur de peau des justiciables selon le type de dossier
Les NA sont plus souvent concerné·es par des dossiers avec violences et parlent moins parce qu'il y a des avocat·es dans ces dossiers-là. Creuser pourquoi plus concerné·es par dossiers avec violences.
Indicateurs statistiques
Les dossiers à configuration mixte prennent le plus de temps. Peut-être est-ce dû à la complexité du dossier car les A accompagnent plus les J dans ces cas là. Peut-être est-ce dû au fait qu'il y a plus de personnes dans ces configurations.
54
Ne pas raisonner au niveau quanti sur les conciliés parce qu'il y en a trop peu. Les justiciables sont bcp plus nombreux en proportion à venir seul·es quand accord total.
Indicateurs statistiques
Chez les Jaf qui font uniquement des Jafad, il y a de vraies différences entre Linda et Patrice, d'un côté, et Eugénie et Sandra, de l'autre (les premier·es sont magistrat·es de formation, les secondes, sont avocates de formation initiale). Comment expliquer cet écart ?
Boxplot
Thierry a la plus grande amplitude. Linda ne descend généralement pas sous les 3h30. C'est lié à l'audience qui dure seulement 1h52 et au fait qu'il y a peu d'audience par Jaf. Faire le lien avec le temps de parole des justiciables et par statut pour analyser ces différences. Il y a un effet pro qui existe sur les durées.
Temps
Là c'est l'inverse donc les avocat·es parlent plus quand il y a des problèmes et moins quand il y a des accords. Les Jaf et justiciables parlent plus en cas d'accord. Ça illustre le rôle des différent·es acteurices à l'audience. Les avocat·es sont plus impliqué·es dans les dossiers à problèmes et le sont moins dans les accords EN AUDIENCE.
Temps
Quand il y a des violences, les avocat·es parlent plus et les autres parlent moins
Indicateurs statistiques
Les dossiers "à problèmes" sont donc entendus plus longuement que les standards. Les plus long sont ceux où il y a des violences et/ou des mesures d'investigation. Ce sont des dossiers qui peuvent être considérés comme conflictuels par les Jaf.
Violences selon la configuration
La configuration A+J est supérieure quand il y a des violences. Les justiciables et les avocat·es viennent bcp moins seul·es.
for the age. Repeat for the height.
for age and height (tal vez poner age y height en negrita)
View the data in a data viewer window
Quizás incluir head() y tail()
y[1] M{vas-int.Dm}ZH-2A w[*]; M{3xP3-RFP.attP}ZH-86Fb
DOI: 10.1016/j.molcel.2018.05.013
Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)
Curator: @bdscstockkeepers
SciCrunch record: RRID:SCR_006457
RRID:SCR_016159
DOI: 10.1093/gigascience/giaf005
Resource: Mikado (RRID:SCR_016159)
Curator: @scibot
SciCrunch record: RRID:SCR_016159
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
General Statement:
We appreciate the reviewers for acknowledging the impact of our work to the field of neurodegeneration and motor neuron diseases as well as for the understanding of the biology and function of VAPB itself; “the idea of assaying the function of ALS-causing VAPB mutants in iPSC-derived neurons is great and would be a great asset to the field” (Reviewer 1) “The new iPSC-derived system to study VAPB mutations in human motor neurons is significant and has led the authors to discover new functions for VAPB (i.e., mitochondria-ER contacts).” (Reviewer 2). The main concern raised by both reviewers is that the doxycycline inducible VAPB iPSC lines may not fully recapitulate the physiological environment found in patients, as patients are heterozygous for the VAPB P56S mutation, and our lines had VAPB under the control of an exogenous doxycycline inducible promoter. While we maintain that the doxycycline inducible lines do provide their own substantial benefits to the interrogation of the ALS pathogenesis, namely the opportunity to identify mutant VAPB interactors compared to wild type VAPB interactors through proteomics, as well as to identify pathogenesis associated to mutant VAPB without the confounding effects of wild type VAPB, we do agree with both reviewers that the inclusion of heterozygous patient iPSC lines would increase the significance of our study. Thus, in this revised manuscript we have included iPSC patient lines harboring the VAPB P56S mutation which we reprogrammed in our lab and to uphold the highest standards in the stem cell field we also performed CRISPR mediated genomic editing to generate the isogenic corrected pair. In our assessment of the ALS patient iPSC-derived motor neurons, we have already observed the same mitochondria and translation dysfunction previously described in our work with the doxycycline-inducible VAPB P56S mutant iPSC lines. Most importantly, these phenotypes were also similarly rescued by the integrated stress response inhibitor (ISRIB). Collectively, these findings suggest that the proposed mechanism initially identified in doxycycline-inducible iPSC-derived motor neurons is preserved in ALS patient iPSC-derived motor neurons.
Reviewer #1 Major Point 1. The method of knocking out and selecting an inducible line in problematic. VAPB is an essential gene-patients with P56S are always heterozygotes, since nonfunctional VAPB is embryonic lethal. Selecting a knockout cell line is already choosing a parent that is very far from physiological, and the reexpression of P56S VAPB as the sole form also is not a good a model for understanding the contributions of P56S to disease. This approach is unusual, as it seems to overlook the advantages of working with iPSCs and patient-derived neurons. Unfortunately, the value of this amazing and rare system is diminished by the design of the selection method.
*Reviewer #2 Major Point 1. Why did the authors decide to make VAPB knockouts and then introduce the WT or P56S VAPB constructs on a lentivirus instead of generating the point mutations (or correcting them) directly in the endogenous locus? Data in Extended Fig. 1c and Extended Fig. 2a indicate significant differences in either the kinetics of WT vs. P56S VAPB expression (1c) or levels (2a). It seems important to be able to compare comparable levels of WT and mutant proteins, especially for the interpretation of the subsequent IP-MS experiments to identify PTP151. The authors may wish to consider generating (or obtaining) isogenic lines harboring the mutations at the endogenous locus so that equal levels of expression of WT and mutant VAPB can be assessed. *
Carried Out Revisions
The development of the inducible system for VAPB was specifically designed to enable a systematic investigation of the effects of mutant VAPB (VAPB P56S) on cellular homeostasis while minimizing confounding influences from the wild-type (WT) protein. Additionally, this system allowed us to assess VAPB P56S binding partners and compare them to those of VAPB WT, which would not have been feasible in the context of heterozygous ALS8 patient cells.
In response to Reviewer 2’s concern regarding differences in VAPB WT and VAPB P56S expression levels, we utilized ALS8 patient cells and familial controls to calibrate the doxycycline dose response. This approach allowed us to precisely adjust VAPB protein levels in the inducible system to match those observed in ALS8 patient and familial control iPSCs. As a result, the inducible VAPB P56S iPSCs recapitulate the VAPB expression levels found in ALS8 patient iPSCs, whereas the inducible VAPB WT iPSCs mimic the levels present in familial control iPSCs. Furthermore, the differential expression of VAPB between ALS8 patient and control cells is well documented in the literature (Mitne-Neto, et al., 2011)
Nonetheless, we acknowledge the significance of studying ALS patient-derived iPSCs. To address this, we obtained fibroblasts from an ALS8 patient carrying the heterozygous VAPB P56S mutation, originating from a genetic background distinct from the cells used in our inducible system. These fibroblasts were reprogrammed into iPSCs in our laboratory, followed by CRISPR/Cas9-mediated genome editing to generate isogenic corrected iPSCs as controls.
The resulting iPSC isogenic pair was differentiated into motor neurons following the protocol described in our manuscript. Notably, ALS8 patient iPSC-derived motor neurons exhibited reduced mRNA translation, as assessed by the SUnSET assay (Fig. 6A), along with a decrease in mitochondrial membrane potential, as determined using the JC-1 assay (Fig. 6B). These findings confirm that the hypotranslation and mitochondrial dysfunction initially identified in VAPB P56S doxycycline-inducible iPSC-derived motor neurons were successfully recapitulated in ALS8 patient iPSC-derived motor neurons. Furthermore, ISRIB treatment effectively rescued these phenotypic defects.
Overall, these results demonstrate that the molecular and cellular abnormalities identified in the original inducible system can be reliably reproduced in an ALS patient-derived model with a different genetic background, thereby reinforcing the significance and broader applicability of our findings.
Currently, we are investigating the electrophysiological properties of ALS8 patient iPSC-derived motor neurons compared to the isogenic control using the multi-electrode array (MEA) system. If a reduction in electrophysiological activity is observed, consistent with our initial findings in doxycycline-inducible VAPB P56S iPSC-derived motor neurons, we plan to treat the heterozygous patient-derived cultures with ISRIB on day 45 of differentiation. This will allow us to determine whether neuronal firing deficits in the heterozygous patient-derived motor neurons can be rescued.
All other concerns have been addressed in this revision.
Citation:
Carried Out Revisions
We sincerely thank Reviewer 1 for highlighting this critical point. Previous studies have demonstrated that the VAPB P56S mutation increases its binding affinity for PTPIP51; however, it has been proposed that the overall reduction in VAPB levels in cells harboring the P56S mutation leads to a decrease in ER-mitochondrial contacts despite the enhanced affinity (De Vos et al., 2012).
To address this, we have repeated the co-immunoprecipitation experiment and normalized the data to VAPB levels. Consistent with Reviewer 1’s hypothesis, when normalized to soluble VAPB, we observe an increased affinity of VAPB P56S for PTPIP51. However, the total amount of PTPIP51 co-immunoprecipitated with VAPB remains significantly lower in the mutant compared to WT, likely due to the overall reduced levels of soluble VAPB P56S. This finding aligns with both Reviewer 1’s comment and the previous observations reported by De Vos et al. (2012).
Figure 2E has been updated to reflect the normalized co-immunoprecipitation data.
Citation:
De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21, 1299-1311, doi:10.1093/hmg/ddr559 (2012). *Reviewer #1 Major Point 3. The electron microscopy data is not interpretable in this form. The authors have provided no data at all on how analysis was performed, how contact sites were defined, how samples were collected and ensured to be representative, blinding that was performed, how sources of bias were accounted for, etc. It is clear even from what little is shown that the authors are not focused on what matters to address their own questions. For example, apart from the P56S Day 35 example, none of the "contact sites" selected for the figure are even possible to be mediated by VAPB, since the distance between the ER and the mitochondria is too far for the maximum tethering distance of VAPB-PTPIP51. Since the authors have neglected to include scale bars in their zooms, the reader cannot be sure of the distance, but it is clearly in excess of 50 nm since there are obviously visible ribosomes between the two organelles. Additionally, the authors provide no information on what "% mitochondria in contact with ER" means (By organelle? By unit surface area? Is the data grouped by cell or all comes from a single cell? How do you account for contact sites vs. proximity by crowding? Etc.). *
*
Carried Out Revisions
We thank Reviewer 1 for their insightful comments on the analysis of the electron microscopy (EM) data and recognize the need for greater clarity in describing our quantification approach. To address this, we have revised the Electron Microscopy section of the Methods to explicitly detail our methodology for quantifying ER-mitochondria-associated membranes (ER-MAMs), as follows:
"A series of images at various magnifications were provided, and data were collected from unique images at the highest magnification for each condition: D35 WT (13 unique images), D35 P56S (21 unique images), D60 WT (13 unique images), and D60 P56S (18 unique images). All images for a given condition originated from a single well of a 12 mm Snapwell™ Insert with 0.4 µm Pore Polyester Membranes (Corning). No information on cell grouping or sampling strategy was supplied with the images; therefore, we treated the dataset as a random sampling of the culture. Images were blinded, and quantification was performed using FIJI. Mitochondria were identified based on the presence of cristae and a double membrane. The mitochondrial perimeter was traced using the free-draw tool, and the length of ER membranes within 50 nm of this perimeter was quantified. The final measurement represents the percentage of each mitochondrion’s perimeter in contact with the ER, aggregating all visually distinct ER-MAMs, as continuity beyond the imaging plane cannot be determined (Cosson et al., 2012; Csordás et al., 2010; Stoica et al., 2014). Each data point on the graph corresponds to a single mitochondrion, with data collected from multiple cells across the unique images provided by the Core, originating from a single biological replicate."
Regarding the quantification of ER-MAM distances, VAPB has not been definitively localized exclusively to either the rough or smooth ER. To ensure comprehensive analysis, we quantified ER-MAMs without restricting our assessment to a specific ER subdomain. We adopted a 50 nm threshold as the maximum distance for defining ER-MAMs, a well-established criterion that Reviewer 1 also referenced.
Furthermore, we disagree with Reviewer 1’s assertion that the presence of ribosomes should justify extending the ER-MAM threshold beyond 50 nm. Ribosomes in human cells have a well-documented diameter of 20–30 nm (Anger et al., 2013), which does not support the claim that an observed ribosome within the contact site necessitates a redefinition of the ER-MAM boundary.
We stand by our methodological approach and have updated the manuscript to ensure precision and clarity in our EM data analysis.
Citations:
Reviewer #1 Major Point 4. The strange pooling of data without explanation, unusual sample sizes, and lack of clarity about statistical testing, false hypothesis testing, and really any clear rigor in statistics of any kind make it impossible for a reader to have any confidence in the results presented here. The fact that every experiment in the paper has just enough n to trigger statistical significance as determined by the authors raises some concerns, suggesting potential biases. The reliability of these conclusions is questionable, especially if the authors were blinded to the identity of their own samples. This is particularly relevant for the EM data, where the determination of contact sites appears to have been made subjectively.
Reviewer #1: "The strange pooling of data without explanation"
- When looking into the figures and their captions in more detail, we could also not understand the nature of the replicates and how the data was aggregated or “pooled”. In Figure 1, the stated number of replicates is "N=8 separate wells”. It is unclear whether these are 8 wells from a single dissociation/replating procedure (the procedure is described in Materials & Methods as follows: "Motor neurons were dissociated on day 25 of differentiation and re-plated onto 48-well MEA plate") or whether the eight are sampled across multiple plates across cultures obtained from independent dissociations procedures.
- In Figure 3, the number of replicates is "N=13-21 images”. Here, it is unclear whether these images come from the same or independent samples, how many quantifications were performed per image, and how many images per sample were used.
We are happy to make all images publicly available.
*- We also note that replicates are not mentioned in the proteomics analysis. *
Reviewer #1: “unusual sample sizes”:
- The wording is indeed not very explicit, but we believe it is reasonable to assume that this point refers to "N=13-21 images” and that it is not clear how the data were pooled. The reviewer makes the related point: "Is the data grouped by cell or all comes from a single cell?", which provides further context to this point.
We thank the editor for this clarification, our response to Reviewer #1 Major Point 3 details the updates to Electron Microscopy section of the Methods and covers this. All images were provided to us by the Case Western Reserve University Electron Microscopy Core based on the number of quality images their team were able to obtain from our samples. Reviewer #1: “lack of clarity about statistical testing”:
*
- We agree that without a clear description of the nature of the replicates, the statistical analysis is unclear.
We hope with the updated clarity on the description of the nature of the replicates as detailed above, the nature of the statistical analysis is clearer. In addition, we have added a Statistical Analysis subsection in the Methods Section. Reviewer #1: "The reliability of these conclusions is questionable, especially if the authors were blinded to the identity of their own samples.”:
*
- This is a typo; the word “not” is missing. It should read: "if the authors were NOT blinded to the identity…” and refers to concerns raised by the reviewers about evaluating the EM images.
Reviewer #1: “The figures suggest a lack of appropriate blinding, with cherry-picking evident even in the ‘representative’ images'”
- We agree the wording is somewhat problematic. However, we also feel that there is a discrepancy between the differences highlighted between the EM images shown in Fig 3A and a rather modest change of the median by only a few percent, as shown in the respective violin plots. We agree with the reviewer that the images of Fig 3A might, therefore, not be “representative” of the quantified changes.
*Reviewer#1 Minor points: 1. It is not accurate to describe Day 60 neurons as "aged" in the context of P56S-induced disease or imply they are a model for human aging. I could be mistaking, as I am not an iPSC expert, but I believe the field uses these terms in the context of iPSC-derived neurons to mean something more akin to "mature". The authors try to invoke this to argue for the relevance of their results to patient disease, unless the authors know this is somehow actually representative of neurons from older patients, I think this is misleading. *
Carried Out Revisions
We apologize for any confusion. Our use of the term "aged" was intended solely as a relative descriptor, indicating that day 60 motor neurons had been maintained in culture for a longer duration than day 35 motor neurons. It was not meant to suggest that these neurons represent a specific age or disease state, but rather that they had been cultured for an extended period.
Furthermore, we use the term "mature" specifically in the context of motor neuron differentiation to indicate the expression of motor neuron-specific markers, which occurs by day 25 of differentiation. To avoid ambiguity, we have revised the manuscript to use the term "culture time" instead, ensuring clarity in our terminology.
*Reviewer #1 Minor Point 2. The JC-1 experiment is not being appropriately controlled. These results are predicted by increased cell or mitochondrial death even if the membrane potentials are identical. The authors need to control for apoptotic signaling if they want to make this conclusion. There is an accepted standard in the mitochondrial field for assaying mitochondrial membrane potential (generally using TMRE or TMRM, but JC-1 can be used with proper controls), but it requires lots of careful controls not performed here (normalization to oligomycin- and FCCP-treated cells as a bare minimum. *
Carried Out Revisions
We would like to thank Reviewer 1 for this comment. We apologize for the omission, and we did treat the cells with CCCP provided in the JC-1 kit as a positive control. The JC-1 subsection of the methods has been updated to reflect this with the following: “A separate aliquot of cell suspension was also incubated with 1 uL of the supplied 50mM CCCP for 15 min prior to JC-1 dye addition, to act as a positive control and ensure the JC-1 dye was correctly detecting low MMP populations.”
Carried Out Revisions
We thank Reviewer #1 for this comment. Our citation of the study by Gómez-Suaga et al. (2019) was not intended to suggest that our investigation focuses exclusively on mitochondria at synapses but rather to provide context on the current understanding of the field. To clarify this point, we have revised the manuscript to include the following statement: "It has also been shown that this interaction can occur at synapses, and disruptions to it may impact synaptic activity (Gómez-Suaga et al., 2019)."
Citation:
Gómez-Suaga, P. et al. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathologica Communications 7, 35, doi:10.1186/s40478-019-0688-4 (2019).
In response, we have added a qPCR section to the Methods, detailing our experimental approach as follows:
"Quantitative PCR: RNA was extracted using TRIzol Reagent (Thermo Fisher), and the procedure was performed according to their provided protocol. cDNA was generated using SuperScript™ IV VILO™ Master Mix (Thermo Fisher), following the manufacturer’s instructions. qPCR was conducted using PowerTrack™ SYBR Green Master Mix for qPCR (Thermo Fisher), following the provided protocol, on a BioRad CFX96 thermocycler. Samples were run in triplicate. Quantification was performed using CFX Maestro software (BioRad). VAPB expression was normalized to Neomycin and RPL3 using the software, and the resultant expression values were graphed along with the provided SEM, per standards in the field (Livak & Schmittgen, 2001; Wong & Medrano, 2005)."
Additionally, we have modified the graph to more clearly illustrate the comparison between VAPB WT and P56S, emphasizing that there is no significant difference in mRNA expression.
Citations
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408 (2001).
I don't think the tunicamycin experiments make sense in this context. The authors start with premise that I do not understand: "if the decrease in MERC was underlying the decrease in MMP seen later in differentiation, inducing cell stress early in differentiation could mimic the decreased MMP." Most cell stress pathways enhance ER-mito contact, not decrease it, so I am not sure why they expected this to work this way. They then continue: "We selected tunicamycin, an ER stressor, as VAPB is an ER protein, and if the decreased MMP could be caused, at least partially, by loss of MERCs, ER stress would likely exacerbate it." I don't understand this either- Tunicamycin is not a general ER-stressing agent-it is a specific inhibitor of some N-linked glycosylation-maturation pathways in the ER lumen, which causes ER stress by dysregulation of misfolded protein pathways. Since VAPB has no luminal domains to speak of, is not known to interact with the protein folding and maturation machinery at all, and Tunicamycin has no obvious connection I'm aware of to MERCs, I am not able to follow the authors' intentions or conclusions here. I suspect this needs a major rewrite to explain what the goals were and how the authors controlled for their findings. *
Carried Out Revisions
We thank Reviewer 1 for this insightful comment. To provide greater clarity on this point, we have revised the manuscript to include the following statement:
"MAMs are known to be a hot spot for the transfer of stress signals from the ER to mitochondria (van Vliet & Agostinis, 2018). Consequently, to test whether we could induce mitochondrial dysfunction by exposing iPSC-derived motor neurons to stressors, we selected tunicamycin (TM), an ER stressor, as VAPB is an ER protein, and if the decreased MMP could be caused, at least partially, by loss of ER-MAM, ER stress would likely exacerbate it."
This revision aims to more clearly articulate the rationale behind our approach and the selection of tunicamycin as an ER stressor.
Citations
Several minor adjustments have been made in response to internal reviews and feedback, independent of any specific Reviewer comment. The only modification affecting the presented data resulted from a comment noting a minor discrepancy in the gating of green-fluorescing cells between VAPB WT and VAPB P56S on Day 30 (Figure 3C). To ensure consistency, the gating was redrawn and applied uniformly to both plots, leading to a slight change in values. However, the overall difference remains non-significant, and our interpretation of the data remains unchanged. Additionally, to facilitate visual comparison, the Y-axes of the quantification graphs in Figures 3C and 3D have been standardized, though the data in Figure 3D itself was not modified—only the Y-axis scaling was adjusted.
Description of analyses that authors prefer not to carry out
Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.
We have responded to both of Reviewer #2’s Major Points 2 and 3 together, as the answer applies to both questions and the points raised in each idea.
*Reviewer #2 Major Point 2. The authors highlight PTP151 binding to VAPB as a way to promote mitochondria ER contacts (MERC). They provide evidence that this association is diminished by the P56S VAPB mutation. This raises an important question. How does PTPIP51 binding connect with other phenotypes, such as the neuronal firing and ER stress sensitivity? Can the authors consider experiments to test this directly? For example, is there a way to drive PTP151 : VAPB interactions even in the face of mutant VAPB and see if this rescues the MERC defects and other phenotypes? *
Reviewer #2 Major Point 3. The authors propose that the detachment of the mitochondria from the ER most likely be the cause for why their mutant motor neurons are more sensitive to ER stressors. Along the lines of the above, is there a way to test this hypothesis directly? Can they use other means to promote ER mitochondria association even in the face of VAPB mutation and test if this rescues phenotypes?
Analyses We Prefer Not or Are Unable to Carry Out
We thank Reviewer 2 for these insightful suggestions and fully agree that enhancing PTPIP51:VAPB interactions in the presence of mutant VAPB would be an effective approach to directly demonstrate that the loss of this interaction is the causative event underlying the observed phenotypes or to drive increased ER-mitochondria attachment.
However, we have not identified a method to achieve this without introducing substantial alterations to the model system, which would likely compromise the interpretability of the results. The most promising approach we considered was the use of rapamycin-inducible linkers, as described by Csordás et al. (2010), which facilitate ER-mitochondria tethering upon rapamycin addition. Unfortunately, rapamycin directly affects translational regulation via mTOR (mammalian target of rapamycin) and given that translation dysregulation is a key phenotype in our study, its addition could influence multiple pathways, making it difficult to attribute any observed effects specifically to the intended manipulation.
If the reviewers or editors have suggestions for alternative approaches, we would greatly appreciate their input. However, based on the current state of the field, we do not believe there is a method to selectively drive ER-mitochondria attachment or specifically enhance VAPB-PTPIP51 interactions without introducing confounding factors that would obscure whether the resulting effects are due to VAPB P56S pathophysiology or the intervention itself.
Citation:
K E Y W O R D Sbusiness, conflict, defense, Europe, international business, Russia, Ukraine, wa
keywords are pointed out before the article, gives the reader an idea of what to expect to learn about. same with abstract
)
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
As our understanding of the immune system increases it becomes clear that murine models of immunity cannot always prove an accurate model system for human immunity. However, mechanistic studies in humans are necessarily limited. To bridge this gap many groups have worked on developing humanised mouse models in which human immune cells are introduced into mice allowing their fine manipulation. However, since human immune cells will attack murine tissues, it has proven complex to establish a human-like immune system in mice. To help address this, Vecchione et al have previously developed several models using human cell transfer into mice with or without human thymic fragments that allow negative selection of autoreactive cells. In this report they focus on the examination of the function of the B-helper CD4 T-cell subsets T-follicular helper (Tfh) and T-peripheral helper (Tph) cells. They demonstrate that these cells are able to drive both autoantibody production and can also induce B-cell independent autoimmunity.
Strengths:
A strength of this paper is that currently there is no well-established model for Tfh or Tph in HIS mice and that currently there is no clear murine Tph equivalent making new models for the study of this cell type of value. Equally, since many HIS mice struggle to maintain effective follicular structures Tfh models in HIS mice are not well established giving additional value to this model.
Weaknesses:
A weakness of the paper is that the models seem to lack a clear ability to generate germinal centres. For Tfh it is unclear how we can interpret their function without the structure where they have the greatest influence. In some cases, the definition of Tph does not seem to differentiate well between Tph and highly activated CD4 T-cells in general.
The limited ability of HIS mice to generate well-defined lymphoid tissue structures is well noted. While the emergence of T cells in HIS mice increases the size of lymphoid tissues, the structure remains suboptimal and vaccination responses are limited. We believe this is mainly due to the common gamma chain knockout, which results in a lack of murine lymphoid tissue inducer (LTi) cells, which require IL-7 signaling to interact with murine mesenchymal cells for normal lymphoid tissue development. Ongoing efforts by our group and others aim to address this challenge by providing the necessary signals. Despite this challenge, these mice do develop Tfh cells, allowing us to study this cell subset.
We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.
However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1 expression, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production.
Reviewer #2 (Public Review):
Summary:
Humanized mice, developed by transplanting human cells into immunodeficient NSG mice to recapitulate the human immune system, are utilized in basic life science research and preclinical trials of pharmaceuticals in fields such as oncology, immunology, and regenerative medicine. However, there are limitations to using humanized mice for mechanistic analysis as models of autoimmune diseases due to the unnatural T cell selection, antigen presentation/recognition process, and immune system disruption due to xenogeneic GVHD onset.
In the present study, Vecchione et al. detailed the mechanisms of autoimmune disease-like pathologies observed in a humanized mouse (Human immune system; HIS mouse) model, demonstrating the importance of CD4+ Tfh and Tph cells for the disease onset. They clarified the conditions under which these T cells become reactive using techniques involving the human thymus engraftment and mouse thymectomy, showing their ability to trigger B cell responses, although this was not a major factor in the mouse pathology. These valuable findings provide an essential basis for interpreting past and future autoimmune disease research conducted using HIS mice.
Strengths:
(1) Mice transplanted with human thymus and HSCs were repeatedly executed with sufficient reproducibility, with each experiment sometimes taking over 30 weeks and requiring desperate efforts. While the interpretation of the results is still debatable, these description is valuable knowledge for this field of research.
(2) Mechanistic analysis of T-B interaction in humanized mice, which has not been extensively addressed before, suggests part of the activation mechanism of autoreactive B cells. Additionally, the differences in pathogenicity due to T cell selection by either the mouse or human thymus are emphasized, which encompasses the essential mechanisms of immune tolerance and activation in both central and peripheral systems.
Weaknesses:
(1) In this manuscript, for example in Figure 2, the proportion of suppressive cells like regulatory T cells is not clarified, making it unclear to what extent the percentages of Tph or Tfh cells reflect immune activation. It would have been preferable to distinguish follicular regulatory T cells, at least. While Figure 3 shows Tregs are gated out using CD25- cells, it is unclear how the presence of Treg cells affects the overall cell population immunogenic functionally.
We analyzed the % FOXP3+ cells and the % of ICOS+ cells within the Tfh and Tph cells in the spleen of Hu/Hu and Mu/Hu mice at 20 weeks post-transplantation. Importantly, we see no difference in FOXP3 expression between Tfh of Mu/Hu and Hu/Hu mice. The results have been added to panels J and K of Figure 2.
(2) The definition of "Disease" discussed after Figure 6 should be explicitly described in the Methods section. It seems to follow Khosravi-Maharlooei et al. 2021. If the disease onset determination aligns with GVHD scoring, generally an indicator of T cell response, it is unsurprising that B cell contribution is negligible. The accelerated disease onset by B cell depletion likely results from lymphopenia-induced T cell activation. However, this result does not prove that these mice avoid organ-specific autoimmune diseases mediated by auto-antibodies and the current conclusion by the authors may overlook significant changes. For instance, would defining Disease Onset by the appearance of circulating autoantibodies alter the result of Disease-Free curve? Are there possibly histological findings at the endpoint of the experiment suggesting tissue damage by autoantibodies?
We have added a definition of disease to the Methods section as requested. Regarding the possibility of antibody-mediated disease that may be missed by this definition, we acknowledge this point in the Discussion section. However, we also discuss the point that the deficient complement pathway in NSG mice is likely to have protected the HIS mice from autoantibody-mediated organ damage.
(3) Helper functions, such as differentiating B cells into CXCR5+, were demonstrated for both Hu/Hu and Mu/Huderived T cells. This function seemed higher in Hu/Hu than in Mu/Hu. From the results in Figure 7-8, Hu/Hu Tph/Tfh cells have a stronger T cell identity and higher activation capacity in vivo on a per-cell basis than Mu/Hu's ones. However, Hu/Hu-T cells lacked an ability to induce class-switching in contrast to Mu/Hu's. The mechanisms causing these functional differences were not fully discussed. Discussions touching on possible changes in TCR repertoire diversity between Mu/Hu- and Hu/Hu- T cells would have been beneficial.
Consistent with the reviewer’s suggestion, we have previously shown that the TCR repertoire in Mu/Hu mice is less diverse than that in Hu/Hu mice (Khosravi-Maharlooei M, et al., J Autoimmun., 2021). We believe that the narrowed TCR repertoire in the periphery of Mu/Hu mice, combined with the inadequate negative selection in the murine thymus reported in the paper cited above, results in selective peripheral expansion primarily of the few T cell clones that are cross-reactive with HLA/murine self peptide complexes presented by human APCs in the periphery. We have discussed the reasons why these cells, when transferred to secondary recipients containing the same APCs, might not be as active as the more diverse, HLA-selected T cell repertoire transferred from Hu/Hu mice. These possible reasons include exhaustion of the T cells in Mu/Hu mice, limited expression of the few targeted HLA-peptide complexes recognized by the narrow cross-reactive TCR repertoire of Mu/Hu T cells and the consequent relatively impaired T-B cell collaboration in these mice.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
The authors note that they removed an outlier result from Figures 1 B & C. With only 4 mice it seems difficult to see exactly how they determined the result was an outlier. Presumably, it was quite different from the others but in such a small dataset removing data without a very clear statistical rationale seems likely to strongly influence the results.
We have revised Fig 1 to include the previously-deleted outlier mouse.
Figure 4. The authors describe the follicular area. Were they able to observe any GC-like structures in their data?
From the examples, I can see that the PNA staining is sometimes diffuse but even if the authors felt they could not observe a distinct GC this should be stated and discussed in the text.
We now describe the three colors IF staining in more detail in accordance with this comment. We characterized 4 Hu/Hu and 3 Mu/Hu spleens earlier than 20 weeks post-transplant. In all of these mice, distinct B cell areas (CD20+) were obvious and PNA+ cells were more concentrated in the B cell zones. We stained 4 Hu/Hu and 3 Mu/Hu spleens from mice between 20-30 weeks post-transplant and found that B cell areas were smaller in all these spleens compared to those taken before 20-weeks post-transplant. PNA+ areas are also more diffusely distributed and are not enriched in the B cell areas. Only 2 Mu/Hu mice showed clear B cell zones with some enriched PNA+ areas in the B cell zones. Additionally, we stained 2 Hu/Hu and 2 Mu/Hu mice later than week 30 post-transplant. No distinct B cell areas were observed in any of the spleens of these mice and PNA+ cells were diffusely distributed.
In Figure 3E the authors sort CD25-CXCR5-CD45RA- CD4 T-cells as Tph. This does seem a very loose definition including essentially all non-naïve CD4 cells that are not Tregs or Tfh.
We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.
However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production.
Tph is sometimes a hard cell type to separate from more general highly activated CD4 T-cells. The broad CXCR5PD1+ phenotype they have used is common in the literature and the authors have confirmed some enrichment of IL21 production by these cells. However, they should consider if there are ways of further confirming this by examination of other markers such as CCR2 and CCR5 or elimination of other effector identities such as Th1 and Th17 or PD1+ exhaustion phenotypes.
For this study, we chose to follow the commonly used definitions in the literature for Tph and Tfh cells. For this reason, we are careful to refer to “Tph-like” cells rather than Tph cells in this manuscript. Distinguishing Tph cells from other subsets of activated CD4 cells would require further studies such as single cell RNA seq, which we hope to be able to perform in the future with additional funding.
Figure 8. The authors perform some analysis of B-cell phenotypes looking at markers such as CD27, IgD in 8B, and CD11c in 8C. Why is CD11c considered in isolation? The level of expression of the other markers would change how this data would be interpreted e.g. IgD-CD27-CD11c+ = DN2/Atypical cells, IgD-CD27+CD11c+ = Activated or ageassociated, etc.
In response to this comment, we reanalyzed the splenic samples of the donor Mu/Hu and Hu/Hu mice and their adoptive recipients. Interestingly, in the T cell donors, the Mu/Hu B cells included greater proportions of activated/age-associated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+), compared to the Hu/Hu B cells. This is consistent with the increased disease, increased Tph/Tfh and increased IgG antibody findings in the primary Mu/Hu compared to Hu/Hu mice. These results have been added to Figure 5G. We performed a similar analysis in the blood (week 9) and spleen of adoptive recipient mice. These studies showed that activated/ageassociated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+) were significantly increased in the adoptive recipients of Hu/Hu Tph and Tfh cells compared to the adoptive recipients of Mu/Hu Tph and Tfh cells (Fig. 8C). These results are consistent with the disease, T cell expansion and antibody results in the adoptive recipients.
Data not shown occurs often in this manuscript. In some cases what is not shown is potentially important. The authors note in the text relating to Figure 7 that the "purity of the cell populations as assessed by FCM ranged from 56-60% (data not shown)". Those numbers are a little alarming. They are referring to the purity of the FCS sorted Tfh and Tph prior to transfer? Currently, some of the discussion of this paper is about the possibility of plasticity, with Tfh switching into a Tph phenotype. If the transferred cell populations are 56-60% pure I don't think it is possible to make any interpretation of plasticity.
We looked into this further and realized that the purity figure cited in the original manuscript was erroneous due to a misunderstanding on the part of the first author of a question from the senior author. Unfortunately, data on the purity of the FACS-sorted population was not saved. However, we have added panel B to Figure 7 to show the sorting strategy for Tfh and Tph cells. We agree that any discussion of plasticity between these cell types is speculative, as outgrowth of a minor population is possible even from well-purified sorted cells.
Minor points:
Some graphs have issues with presentation; Figures 5D and 5E, split scale clips data points. 5F the color representing time would be better replaced with direct labels. 6C and 6C some distortion of text clipping other elements.
We changed 5D and 5E y axis scales to avoid cutting the data points. Also, we changed 5F labels. Distortion of text clipping and other elements in Fig 6E and 6A have been corrected.
The abbreviation LIP is used in the abstract without a clear definition until later in the text.
This abbreviation has been defined again in the text.
Generally, the discussion section is quite long.
We agree that the discussion is quite long, but the results are quite complex and require considerable discussion. We have attempted to be as concise as possible.
Reviewer #2 (Recommendations For The Authors):
Suggestion
Can Supplementary Figures be merged into the mains for the convenience of readers? There is enough extra margin.
We prefer to keep the order of main and supplementary figures as they are.
There are some confusing results which I would recommend to make the additional explanation for readers. For example, about 10% of Hu/Hu CD3+ T cells reacted to Auto-DC in Figure 1B, but neither CD4+ nor CD8+ cells did in Figure 1C.
We have re-analyzed the data in Fig 1 and included the previously-deleted outlier mouse.
Minor
Figure 3C
The figure legend does not explain the figure. Hu/Mu or Mu/Mu?
Both groups were combined in the figure, as the results were similar for both. The N per group is given in the figure legend. The same applies to figure 3D.
Figure 4B, 4C
Why were Hu/Hu and Mu/Hu data merged only in 4B? They should be discussed in the context of parallel comparison. Both y-axis labels are the same between B and C despite the legend saying differently.
We switched the order of Figure 4B and 4C, each of which serves a different purpose. Figure 4B aims to demonstrate the similarity between the two groups at each timepoint. Figure 4C combines the two groups in order to provide sufficient animal numbers to demonstrate the statistically significant changes over time.
Figure 5D
The axis label was missing and the uncertain bar emerged. The authors should replace it with the corrected one.
The axis and the bar in 5D have been corrected.
Figure 5F
The legend does not explain the figure. What are these numbers? Also, it is better if the authors add a detailed explanation to the manuscript about the reason why the sum of antibody titer represents the poly-reactivity of IgM in these mice.
The numbers in the previous version of the figure were eartag numbers, which we have now renumbered as animal 1,2,3, etc in each group. Please refer to the final paragraph of the "Autoreactivity of IgM and IgG in HIS Mice" section in the Results section for an explanation of IgM polyreactivity.
Fig. 7D-E etc.
The definition of Asterisk is insufficient. Between what to what in the multiple comparisons?
The green asterisks show significant differences between the Tph in Hu/Hu vs Mu/Hu mice, while the orange asterisks show significant differences between the Tfh in Hu/Hu vs Mu/Hu mice. This has been added to the figure legend.
Figure 7 ~ Figure 8
The legends on the figure are confusing due to the different order of figures. The scales are inappropriate in some figures. The readers cannot interpret the data from the unfairly compressed plots.
We made the plots bigger to make them readable and changed the order.
Methods
In the description of B cell depletion Experiments, the authors should directly mention the figure number instead of "In the second Experiment ..."
We have corrected this in the Methods section.
There is no definition of how to define the "disease" onset.
This definition has been added to the Methods section.
Several undefined abbreviations: "LIP", "BLT" ...
We defined these in the text.
Author response:
The following is the authors’ response to the original reviews.
Reviewer 1:
Comment 1- I would like the authors to discuss and justify their use of high-dose (1.3%) isolfurane. A recent consensus paper on rat fMRI (Grandjean et al., "A Consensus Protocol for Functional Connectivity Analysis in the Rat Brain.") found that medetomidine combined with low dose isoflurane provided optimal control of physiology and fMRI signal. To overcome any doubts about the effects of the high-dose anaesthetic I'd encourage the authors to show the results of their functional connectivity specificity using the same or similar image processing protocol as described in that consensus paper. This is especially true since the fMRI ICs in Figure 2A appear fairly restricted.
We thank the reviewer for their insightful comments. We agree that the combination of medetomidine and isoflurane, as recommended by Grandjean et al. in their consensus paper, provides superior physiological stability and fMRI signal quality, and should indeed be considered the preferred protocol for future studies. In fact, we have adopted this combination in our subsequent research [1]. However, the data acquired in the present study were acquired prior to the publication of the consensus recommendations and have been previously published [2, 3]. While isoflurane is not the ideal anesthetic for functional connectivity studies, we have demonstrated in earlier work [4], that using isoflurane at 1.3% maintains stable physiological parameters and avoids burst suppression, a key issue with higher isoflurane doses.
Regarding preprocessing, we acknowledge the importance of standardized approaches as outlined in the consensus paper. However, to maintain methodological consistency with our prior work, we retained the original preprocessing pipeline for this study. This decision ensures comparability with our previous analyses. To address the reviewer’s concerns and encourage further verification, we have uploaded the full dataset to a public repository (as suggested in Comment 4). This will enable other researchers to reanalyze the data using updated preprocessing pipelines or explore additional analyses.
We have updated the manuscript discussion (page 19) to clearly acknowledge these points:
“One limitation of our study is that our experimental protocols predate the recently published consensus recommendations for rat fMRI [42], particularly concerning anesthesia and preprocessing pipelines. The use of isoflurane anesthesia, although common at the time of data acquisition, introduces a potential confound due to its known effects on neuronal activity. However, we previously demonstrated that isoflurane at 1.3% maintains stable physiological parameters and avoids burst suppression [43], a concern at higher doses. Furthermore, other studies have reported that low-dose isoflurane remains feasible for resting-state functional connectivity studies [44]. While isoflurane, as a GABA-A agonist, could theoretically interact with the mechanisms of MDMA in the brain, we found no evidence in the literature suggesting significant cross-talk between these substances. Future studies employing medetomidine-based protocols may help minimize this potential confound.
Regarding data preprocessing, we chose to retain the same pipeline used in our prior publications [13, 14] to maintain methodological consistency. While we recognize the advantages of adopting standardized preprocessing as outlined in the consensus guidelines, this approach ensures comparability with our previous analyses. To facilitate further investigation, we have made the full dataset publicly available (see Data Availability Statement), enabling reanalysis with updated pipelines or additional explorations of this dataset.”
Comment 2 - I'd also be interested to read more about why the cerebellum was chosen as a reference region, given that serotonin is highly expressed in the cerebellum, and what effects the choice of reference region has on their quantification.
This is something we ourselves have examined in a paper, dedicated to determine the most suitable reference region for [11C]DASB, and while the reviewer is correct in saying there is also serotonin in the cerebellum, we found the lowest binding for this tracer in the cerebellar gray matter, recommending this region as a valid reference area. (“Displaceable binding of (11)C-DASB was found in all brain regions of both rats and mice, with the highest binding being in the thalamus and the lowest in the cerebellum. In rats, displaceable binding was largely reduced in the cerebellar cortex”, please refer to [5]).
We amended our materials and methods part to specify that we had shown in this previous publication that the cerebellar gray matter is appropriate as a reference region (page 6):
“Binding potentials were calculated frame-wise for all dynamic PET scans using the DVR-1 (equation 1) to generate regional BPND values with the cerebellar gray matter as a reference region, which our earlier studies have demonstrated to be the most appropriate for this tracer in rats [5, 6]:”
Comment 3 - The PET ICs appear less bilateral than the fMRI ICs. Is that simply a thresholding artefact or is it a real signal?
We thank the reviewer for this observation. The reduced bilaterality of PET ICs compared to fMRI ICs is likely due to the inherent limitation in the temporal resolution of PET, which provides significantly fewer frames (100 frames compared to 3000 frames for fMRI). This lower temporal resolution leads to reduced signal-to-noise ratio when computing the ICA, which can affect the stability and symmetry of the ICs during ICA computation, particularly at higher IC numbers. While thresholding may also a minor role, we believe the primary factor is poorer SNR associated with the PET data. We have clarified this point in the discussion section (page 17) as follows:
“In our analysis, PET ICs appeared less bilateral than fMRI ICs. This is likely due to the lower temporal resolution of PET (100 frames) compared to fMRI (3000 frames), resulting in reduced signal-to-noise ratio (SNR) and potentially affecting the stability and symmetry of the independent components.”
Comment 4 - "The data will be made available upon reasonable request" is not sufficient - please deposit the data in an open repository and link to its location.
We agree with the request of the reviewer and uploaded the data to a Dryad repository. We amended our Data Availability Statement accordingly.
Comment 5 (recommendation) - Please add the age and sex of the rats in lines 92-97.
Amended.
Comment 6 (recommendation) - There are multiple typos throughout the manuscript - for example, "z-vlaue" on line 164, "negligable" on line 194, etc.. Sometimes the 11 in 11C is superscripted, sometimes it isn't. This paper would benefit from a careful proofread.
Thank you for pointing this out. We sent the manuscript for language and grammar editing to AJE (see certificate).
Reviewer 2:
Comment 1 - While the study protocol is referenced in the paper, it would be useful to at least report whether the study uses bolus, constant infusion, or a combination of the two and the duration of the frames chosen for reconstruction. Minimal details on anesthesia should also be reported, clarifying whether an interaction between the pharmacological agent for anesthesia and MDMA can be expected (whole-brain or in specific regions).
We fully agree that this would improve the readability of our manuscript and added the information to the materials and methods and discussion accordingly. Please refer to page 4/5.
Comment 2 - Some terminology is used in a bit unclear way. E.g. "seed-based" usually refers to seed-to-voxel and not ROI-to-ROI analysis, or e.g. it is a bit confusing to have IC1 called SERT network when in fact all ICs derived from DASB data are SERT networks. Perhaps a different wording could be used (IC1 = SERT xxxxx network; IC2= SERT salience network).
Based on the reviewer´s suggestion, we suggest to rename IC1 and IC2 according to their anatomical and functional characteristics (page 13):
“IC1 = SERT Salience Network: This name highlights the involvement of the regions typically associated with the salience network (e.g., CPu, Cg, NAc, Amyg, Ins, mPFC), which play key roles in emotional and cognitive processing.”
“IC2 = SERT Subcortical Network: This name reflects the involvement of subcortical regions which play a role in arousal, stress response, and autonomic regulation, which are heavily modulated by serotonin in areas like the hypothalamus, PAG, and thalamus.”
Comment 3 - The limited sample size for the rats undergoing pharmacological stimulation which might make the study (potentially) not particularly powerful. This could not be a problem if the MDMA effect observed is particularly consistent across rats. Information on inter-individual variability of FC, MC, and BPND could be provided in this regard.
We thank the reviewer for raising this point. To address the concern about limited sample size and inter-individual variability, we have added this information to Figures 5 B and D. Regarding the BPND variability, the dotted lines in Figure 3 indicate the standard deviation in the regional BPNDs, however, this was not clearly stated in the original figure description. We have now amended the figure legend to explicitly clarify this point.
Comment 4 (recommendation) - "Our research employs a novel approach named "molecular connectivity" (MC), which merges the strengths of various imaging methods to offer a comprehensive view of how molecules interact within the brain and affect its function." I'd recommend rephrasing to "..how molecular interact across different areas within the brain..". Molecular connectivity is a potentially ambiguous term (used to study interactions across different molecules (in the same compartment/environment) vs. to study interactions across the same molecules in different areas). I'd add a couple of references to help the reader disambiguate too (e.g. https://pubmed.ncbi.nlm.nih.gov/30544240/ , https://pubmed.ncbi.nlm.nih.gov/36621368/)
We appreciate the reviewer’s suggestion and agree that the term "Molecular Connectivity" could be ambiguous. To clarify, we rephrased the description to emphasize that our approach specifically examines interactions of the same molecule (i.e., serotonin transporter) across different brain regions, rather than interactions between different molecules within the same environment. We propose the following revised text (page 2):
“Our research employs a novel approach termed molecular connectivity (MC), which combines the strengths of various imaging methods to provide a comprehensive view of how specific molecules, such as the serotonin transporter, interact across different brain regions and influence brain function.”
Additionally, we will incorporate the suggested references to help the reader further contextualize the use of this term.
Comment 5 - In the methods, it is not clear if for MC the authors also compute ROI-to-ROI correlations or only ICA.
Thank you for highlighting this point. To clarify, our MC analysis, includes both ROI-to-ROI correlations and ICA. Specifically, as described at the end of the “Molecular Connectivity Analysis” subchapter, we compute ROI-to-ROI correlations using the following steps: 1. The first 20 minutes of each scan are discarded to account for perfusion effects. 2. A detrending approach is applied to the remaining 60 minutes of BP<sub>ND</sub> time courses. 3. ROI-to-ROI calculations are then calculated and organized into subject-level correlation matrices, which are subsequently z-transformed to generate mean correlation matrices across subjects.
We revised the methods section to explicitly state that both ROI-to-ROI correlations and ICA are integral components of the MC analysis to ensure this point is clear to readers (page 6).
“The BP<sub>ND</sub> time courses were then used to calculate MC as described above for fMRI: ROI-to-ROI subject-level correlation matrices between all regional time courses were generated and z-transformed correlation coefficients were used to calculate mean correlation matrices.”
Comment 7 - In the discussion, it could be useful to relate IC1 and IC2 to well-established neuroanatomical/molecular knowledge of the serotoninergic system. Did the authors expect the IC1 and IC2 anatomical distributions? is there a plausible biological reason as to why the time courses of BPnd variations would be somehow different between IC1 and IC2?
We appreciate the reviewer’s insightful comment and agree on the importance of relating IC1 and IC2 to well-established neuroanatomical and molecular knowledge of the serotonergic system.
In our discussion, we noted that IC1 primarily encompasses subcortical structures such as the brainstem, midbrain, and thalamus. These regions are consistent with areas housing dense serotonergic projections originating from the raphe nuclei, the primary source of serotonin release. In contrast, IC2 involves limbic and cortical regions - including the striatum, amygdala, cingulate, insular, and prefrontal cortices - which are key targets of the serotonergic pathways. This anatomical distinction aligns with the hierarchical organization of the serotonergic system, where the brainstem nuclei exert both local and distal serotonergic modulation.
The observed differences in the temporal dynamics of the binding potential (BP<sub>ND</sub>) variations between IC1 and IC2 likely reflect the distinct functional roles of these regions within the serotonergic network. The more immediate changes in IC1 could be attributed to the direct effect of MDMA on the raphe nuclei, leading to rapid serotonin release in subcortical structures. In contrast, the delayed changes in IC2 may reflect downstream modulation in cortical and limbic regions involved in processing more complex emotional and cognitive functions.
That said, while these interpretations are plausible based on current neuroanatomical and functional knowledge, the exact biological mechanisms underlying the differential time courses remain unclear. As discussed in the manuscript, future studies incorporating direct, simultaneous measurements of serotonin levels and imaging data will be essential to fully elucidate the temporal and spatial dynamics of serotonin transmission in these regions. We have revised to better highlight this limitation in the discussion section (page 17) as an important area for further investigation:
“Our results demonstrate that compared with FC, MDMA induces more pronounced changes in MCs, particularly in regions associated with the SERT subcortical network. The distinct temporal dynamics of BPnd variations between these components may reflect the hierarchical organization of the serotonergic system. Specifically, the raphe nuclei, as the primary source of serotonin, are likely to exert more immediate modulation on posterior subcortical structures (IC2), whereas downstream effects on limbic and cortical regions (IC1) may occur more gradually. While these findings align with current neuroanatomical and molecular knowledge, the precise biological mechanisms driving these temporal differences remain unclear. Future investigations are warranted to elucidate these mechanisms. Future studies combining direct measurements of serotonin levels with neuroimaging data will be critical to fully understanding these components’ distinct roles and temporal profiles in regulating serotonergic function.”
Comment 8 - In the discussion (physiological basis), could the authors detail the expected "time scale" in changes in SERT expression? How quickly can SERT expression change, especially under resting-state conditions? Is it reasonable to consider tracer fluctuations under rest conditions as biologically meaningful?
SERT regulation can occur over different time scales depending on the mechanism involved [7].
Acute, rapid changes (milliseconds to seconds): Protein-protein interactions with key regulatory proteins (e.g., syntaxin1A, neuronal nitric oxide synthase) can lead to rapid modulation of SERT surface expression [8-11]. These interactions often involve changes in transporter trafficking or conformational states and can occur within milliseconds to seconds. For example, syntaxin1A directly interacts with the N-terminus of SERT, influencing its availability on the plasma membrane within short timescales.
Intermediate time scales (seconds to minutes): Posttranslational modifications, such as phosphorylation by kinases (e.g., protein kinase C) or dephosphorylation by phosphatases, are known to influence SERT function and surface expression [12-14]. These processes are typically initiated in response to cellular signaling and occur over seconds to minutes, affecting the SERT trafficking dynamics and serotonin uptake capacity [15, 16].
Longer-term changes (minutes to hours): Longer-term regulation involves processes like endocytosis, recycling, or degradation of SERT. These pathways typically take minutes to hours and are often part of more sustained cellular responses to changes in neuronal activity or serotonin levels. Such changes are slower but contribute to the overall cellular homeostasis of SERT under prolonged stimulation.
Under resting-state conditions, where neurons are not subjected to rapid or dramatic fluctuations in neurotransmitter release or signaling, SERT expression and activity are generally stable but still subject to subtle fluctuations due to ongoing basal regulatory processes. Basal phosphorylation or low-level protein-protein interactions can still dynamically modulate SERT trafficking and function, albeit at a lower intensity than under stimulated conditions. These fluctuations, although smaller in magnitude, may reflect fine-tuning of serotonin homeostasis and can occur on shorter timescales (seconds to minutes).
Biological Relevance of Tracer Fluctuations at Rest:
It is reasonable to consider that tracer fluctuations under resting conditions could reflect biologically meaningful variations in SERT expression and function. Even subtle shifts in SERT surface availability or activity can impact serotonin clearance and signaling, given the fine balance required to maintain serotonergic tone. These fluctuations may reflect intrinsic neuronal variability or ongoing homeostatic adjustments to maintain optimal neurotransmitter levels or serve as early indicators of adaptive responses to environmental or physiological changes before more overt modifications in transporter expression or activity become apparent.
In summary, while SERT expression can change rapidly in response to signaling events (milliseconds to minutes), even under resting-state conditions, subtle regulatory fluctuations can be biologically meaningful. These fluctuations likely reflect ongoing regulatory adjustments essential for maintaining serotonergic balance and should not be disregarded as noise, particularly in experimental measurements using tracers.
We added the following paragraph to the discussion (page 16):
“In addition, SERT regulation occurs over multiple time scales, ranging from milliseconds to hours, depending on the mechanism involved [31]. Rapid changes in SERT surface expression can be mediated by protein-protein interactions or posttranslational modifications [32, 33], such as phosphorylation, which occur on a timescale of milliseconds to minutes. These processes dynamically modulate surface availability and function, allowing fine-tuned regulation of serotonin uptake even under resting-state conditions. Additionally, while slower processes involving endocytosis, recycling, and degradation typically occur over minutes to hours, subtle fluctuations in SERT trafficking and activity can still occur under basal conditions. These minor yet biologically relevant changes likely reflect ongoing homeostatic regulation essential for maintaining serotonergic balance. Therefore, tracer fluctuations observed during resting-state measurements should not be dismissed, as they may represent meaningful variations in SERT regulation that contribute to the fine control of serotonin clearance.”
Comment 9 - In the discussion, the SERT network results should be commented on more extensively, as there is now only a generic reference to MC changes being stronger than FC ones, without spatial reference to the SERT network (while only negative salience network results are referenced explicitly instead, making the paragraph a bit confusing).
We expanded the discussion to accommodate a more thorough contemplation of this network. This revised paragraph (page 17) directly addresses the spatial aspects of the SERT network, highlighting the specific regions involved in serotonergic connectivity and contrasting molecular and functional connectivity changes induced by MDMA.
Comment 10 - Figure 3; I'd switch left and right charts in the bottom panel (last row only), to keep the SERT network always on the left of the Figure.
We agree with the suggestion and changed the figure accordingly.
Comment 11 - Figure 4: I'd add FC decreases to the figure, to allow the reader to compare BPnd, MC, and FC changes more easily and I'd add a horizontal line at the equivalent of e.g. Z-1.96 (or similar) so that it is clear which measures/regions display significant changes.
We prefer to keep the figure focusing on the two analyses of PET alterations, since we want to emphasize their complementarity in the context of PET specifically. However, we added lines indicating significances, in line with the reviewer’s suggestion.
Comment 12 - In Figure 5D, the y-axis mentioned FC but I suppose it should mention MC.
We amended the figure accordingly, together with the changes to the names of the networks implemented across the manuscript.
(1) Marciano, S., et al., Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A, 2022. 119(40): p. e2122552119.
(2) Ionescu, T.M., et al., Striatal and prefrontal D2R and SERT distributions contrastingly correlate with default-mode connectivity. Neuroimage, 2021. 243: p. 118501.
(3) Ionescu, T.M., et al., Neurovascular Uncoupling: Multimodal Imaging Delineates the Acute Effects of 3,4-Methylenedioxymethamphetamine. J Nucl Med, 2023. 64(3): p. 466-471.
(4) Ionescu, T.M., et al., Elucidating the complementarity of resting-state networks derived from dynamic [(18)F]FDG and hemodynamic fluctuations using simultaneous small-animal PET/MRI. Neuroimage, 2021. 236: p. 118045.
(5) Walker, M., et al., In Vivo Evaluation of 11C-DASB for Quantitative SERT Imaging in Rats and Mice. J Nucl Med, 2016. 57(1): p. 115-21.
(6) Walker, M., et al., Imaging SERT Availability in a Rat Model of L-DOPA-Induced Dyskinesia. Mol Imaging Biol, 2020. 22(3): p. 634-642.
(7) Lau, T. and P. Schloss, Differential regulation of serotonin transporter cell surface expression. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 2012. 1(3): p. 259-268.
(8) Haase, J., et al., Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans, 2001. 29(Pt 6): p. 722-8.
(9) Quick, M.W., Regulating the conducting states of a mammalian serotonin transporter. Neuron, 2003. 40(3): p. 537-49.
(10) Ciccone, M.A., et al., Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology, 2008. 55(5): p. 763-70.
(11) Chanrion, B., et al., Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A, 2007. 104(19): p. 8119-24.
(12) Qian, Y., et al., Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci, 1997. 17(1): p. 45-57.
(13) Ramamoorthy, S., et al., Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem, 1998. 273(4): p. 2458-66.
(14) Jayanthi, L.D., et al., Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol, 2005. 67(6): p. 2077-87.
(15) Steiner, J.A., A.M. Carneiro, and R.D. Blakely, Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic, 2008. 9(9): p. 1393-402.
(16) Lau, T., et al., Monitoring mouse serotonin transporter internalization in stem cell-derived serotonergic neurons by confocal laser scanning microscopy. Neurochem Int, 2009. 54(3-4): p. 271-6.
A system forassessing EOP value to present the success of infection by the phage:
fig 2E: explain the 1-72 numbers in the y-axis briefly in the legend
Reviewer #3 (Public review):
Summary:
This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNK-cJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.
Overall, this is a thorough and well-performed investigation of the mechanism of spared-branch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.
Strengths:
The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably is originating from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).
Weaknesses:
While there are many questions raised by these results that are not answered here, including the pathways upstream and downstream of DLK and how the binary switch control of DLK/puc signaling is executed, the model built in this manuscript is valuable to future work going after these important questions.
Because the conclusions of the paper are focused on a single (albeit well validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling, or whether this is a binary/threshold response in all contexts (for example, sensory axons or interneurons). However, the author points out in the response that there are sensory neuron examples where a spared connection does not block DLK activation. As such, it may not be a universal mechanism but could provide a model for better understanding of DLK control across different contexts.
Comments on revisions:
The new panels in Figure 1E do not have Y-axis labels. (mean puc-lacZ intensity?)
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public review):
This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.
In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated.
However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated. The results presented in this manuscript support this interpretation. Strong stimulation, such as axotomy of all synaptic branches, caused robust DLK activation, as indicated by puc-lacZ expression. In contrast, weak stimulation, such as axotomy of some synaptic branches, resulted in weaker DLK activation, which did not induce the puc-lacZ reporter. This suggests that the strength of DLK activation depends on the severity of the injury rather than the presence of intact synapses. Given that this is a central conclusion of the study, it may be worthwhile to confirm this further. Alternatively, the authors may consider refining their conclusion to better align with the evidence presented.
In Figure 1E we have replotted the puc-lacZ data to show comparisons between different injuries that leave different numbers of spared (or lost) boutons and branches. We observed no differences between injuries that remove only a small fraction of boutons (injury location (a)) and injuries that remove nearly all of them (injury locations (b) and (c)) and uninjured neurons (Figure 1E). These observations argue against the interpretation that the strength of DLK activation (at least within the cell body) depends on the severity of injury. Rather, puc-lacZ induction appears to be bimodal. It is either induced (in various injuries that remove all synaptic boutons), or not induced, including in injuries that spared only a small fraction of the total boutons. We therefore think that the presence of a remaining synaptic connection rather than the extent of the injury per se is a major determinant of whether the cell body component of Wnd signaling can be activated.
The reviewer (and others) fairly point out that our current study focuses on puc-lacZ as a reporter of Wnd signaling in the cell body. We consider this to be a downstream integration of events in axons that are more challenging to detect. It is striking that this integration appears strongly sensitized to the presence of spared synaptic boutons. Examination of Wnd’s activation in axons and synapses is a goal for our future work.
As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.
While it has been noted that inhibition of DLK can mildly delay Wallerian degeneration (Miller et al., 2009), this does not appear to be the case for retinal ganglion cell axons following optic nerve crush (Fernandes et al., 2014). It is also not the case for Drosophila motoneurons and NMJ terminals following peripheral nerve injury (Xiong et al., 2012; Xiong and Collins, 2012). Instead, overexpression of Wnd or activation of Wnd by a conditioning injury leads to an opposite phenotype - an increase in resiliency to Wallerian degeneration for axons that have been previously injured (Xiong et al., 2012; Xiong and Collins, 2012). The downstream outcome of Wnd activation is highly dependent on the context; it may be an integration of the outcomes of local Wnd/DLK activation in axons with downstream consequences of nuclear/cell body signaling. The current study suggests some rules for the cell body signaling, however, how Wnd is regulated at synapses and why it promotes degeneration in some circumstances but not others are important future questions.
For the reviewer’s suggestion, it is interesting to consider DLK’s potential contributions to the loss of NMJ synapses in a mouse model of ALS (Le Pichon et al., 2017; Wlaschin et al., 2023). Our findings suggest that the synaptic terminal is an important locus of DLK regulation, while dysfunction of NMJ terminals is an important feature of the ‘dying back’ hypothesis of disease etiology (Dadon-Nachum et al., 2011; Verma et al., 2022). We propose that the regulation of DLK at synaptic terminals is an important area for future study, and may reveal how DLK might be modulated to curtail disease progression. Of note, DLK inhibitors are in clinical trials (Katz et al., 2022; Le et al., 2023; Siu et al., 2018), but at least some have been paused due to safety concerns (Katz et al., 2022). Further understanding of the mechanisms that regulate DLK are needed to understand whether and how DLK and its downstream signaling can be tuned for therapeutic benefit.
Reviewer #2 (Public review):
Summary:
The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.
Strengths:
(1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.
(2) Suggests a new mode of Wnd regulation, independent of Hiw.
Weaknesses:
(1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study
We agree. The puc-lacZ reporter tells us about signaling in the cell body, but whether and how Wnd is regulated in axons and synaptic branches, which we think occurs upstream of the cell body response, remains to be addressed in future studies.
(2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?
This is indeed an important future question, and would still be a question even if Hiw were part of the protective mechanism by the spared synaptic branch. Our current hypothesis (outlined in Figure 4) is that regulation of Wnd is tied to the retrograde trafficking of a signaling organelle in axons. The Hiw-independent regulation complements other observations in the literature that multiple pathways regulate Wnd/DLK (Collins et al., 2006; Feoktistov and Herman, 2016; Klinedinst et al., 2013; Li et al., 2017; Russo and DiAntonio, 2019; Valakh et al., 2013). It is logical for this critical stress response pathway to have multiple modes of regulation that may act in parallel to tune and restrain its activation.
Reviewer #3 (Public review):
Summary:
This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNKcJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.
Overall, this is a thorough and well-performed investigation of the mechanism of sparedbranch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.
Strengths:
The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably originates from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).
Weaknesses:
The weakest data presented by this manuscript is the study of the actual amounts of Wallenda protein in the axon. The authors argue that increased Wnd protein is being anterogradely delivered from the soma, but no support for this is given. Whether this change is due to transcription/translation, protein stability, transport, or other means is not investigated in this work. However, because this point is not central to the arguments in the paper, it is only a minor critique.
We agree and are glad that the reviewer considers this a minor critique; this is an area for future study. In Supplemental Figure 1 we present differences in the levels of an ectopically expressed GFP-Wnd-kinase-dead transgene, which is strikingly increased in axons that have received a full but not partial axotomy. We suspect this accumulation occurs downstream of the cell body response because of the timing. We observed the accumulations after 24 hours (Figure S1F) but not at early (1-4 hour) time points following axotomy (data not shown). Further study of the local regulation of Wnd protein and its kinase activity in axons is an important future direction.
As far as the scope of impact: because the conclusions of the paper are focused on a single (albeit well-validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling in all contexts (for example, sensory axons or interneurons). Is the nerve-muscle connection the rule or the exception in terms of regeneration program activation?
DLK signaling is strongly activated in DRG sensory neurons following peripheral nerve injury (Shin et al., 2012), despite the fact that sensory neurons have bifurcated axons and their projections in the dorsal spinal cord are not directly damaged by injuries to the peripheral nerve. Therefore it is unlikely that protection by a spared synapse is a universal rule for all neuron types. However the molecular mechanisms that underlie this regulation may indeed be shared across different types of neurons but utilized in different ways. For instance, nerve growth factor withdrawal can lead to activation of DLK (Ghosh et al., 2011), however neurotrophins and their receptors are regulated and implemented differently in different cell types. We suspect that the restraint of Wnd signaling by the spared synaptic branch shares a common underlying mechanism with the restraint of DLK signaling by neurotrophin signaling. Further elucidation of the molecular mechanism is an important next step towards addressing this question.
Because changes in puc-lacZ intensity are the major readout, it would be helpful to better explain the significance of the amount of puc-lacZ in the nucleus with respect to the activation of regeneration. Is it known that scaling up the amount of puc-lacZ transcription scales functional responses (regeneration or others)? The alternative would be that only a small amount of puc-lacZ is sufficient to efficiently induce relevant pathways (threshold response).
While induction of puc-lacZ expression correlates with Wnd-mediated phenotypes, including sprouting of injured axons (Xiong et al., 2010), protection from Wallerian degeneration (Xiong et al., 2012; Xiong and Collins, 2012) and synaptic overgrowth (Collins et al., 2006), we have not observed any correlation between the degree of puc-lacZ induction (eg modest, medium or high) and the phenotypic outcomes (sprouting, overgrowth, etc). Rather, there appears to be a striking all-or-none difference in whether puc-lacZ is induced or not induced. There may indeed be a threshold that can be restrained through multiple mechanisms. We posit in figure 4 that restraint may take place in the cell body, where it can be influenced by the spared bifurcation.
Recommendations for the authors:
Reviewer #2 (Recommendations for the authors):
This is a beautiful study. Naturally, you're searching now for the underlying mechanism.
A few questions:
(1) At present you can not determine if the Wnd signal is never initiated (when a spared branch is present) or if it gets to the cell body but is incapable of activating the puckered reporter. Is there any optical reporter (JNK activation?) that could differentiate this?
The reviewer is correct that a tool to detect local activity of JNK kinase in axons would be ideal for probing the mechanisms that underlie our observations. A FRET reporter for JNK kinase activity has been developed and utilized in cultured cells (Fosbrink et al. 2010). It would be interesting to implement this reporter in Drosophila; it would need to be sensitive enough to visualize in single Drosophila axons. We have previously noted Wnd-dependent phosphorylated JNK in the cell body of injured motoneurons following nerve crush (Xiong et al., 2010). However anti-pJNK antibodies detect what appears to be a constitutive signal in uninjured axons that does not appear to be influenced by activation or inhibition of Wnd (Xiong et al., 2010).
(2) What happens when you injure the axon in a dSarm KO? This is more of a curiosity, not a necessity, but is it the axon dying or the detection of the injury itself?
We have tested whether overexpression of Nmnat or the WldS transgene, which inhibit Wallerian degeneration of injured axons, affect the induction of puc-lacZ following nerve injury. This manipulation has no effect on puc-lacZ expression in uninjured animals, and also has no effect on the induction of puc-lacZ following peripheral nerve crush (TJ Waller, personal communication).
(3) Are Wnd rescue experiments possible in this context? Would be an interesting place to do Wnd structure-function and compare it to the synaptic work.
This is not possible with current reagents. Expression of wild type wnd cDNA under the Gal4/UAS promoter leads to strong induction of puc-lacZ in uninjured animals, even when weak Gal4 driver lines are used (Xiong et al., 2012, 2010). Similar observations of constitutively active signaling have been observed for expression studies of DLK in mammalian cells ((Hao et al., 2016; Huntwork-Rodriguez et al., 2013; Nihalani et al., 2000), and data not shown). These and other observations suggest that the levels of Wnd/DLK protein are tightly controlled by posttranscriptional mechanisms. Delineation of sequences within Wnd/DLK that are required for its regulation would be helpful for addressing this question.
This will be required reading in my lab.
That is an honor. We look forward to help from the field to understand how and why this pathway is restrained at synapses. Your students may bring new ideas to the table.
Reviewer #3 (Recommendations for the authors):
Piezo is spelled incorrectly in the supplemental table in multiple places.
Thank you for pointing this out! We have made the correction.
References cited (in rebuttal)
Collins CA, Wairkar YP, Johnson SL, DiAntonio A. 2006. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51:57–69.
Dadon-Nachum M, Melamed E, Offen D. 2011. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43:470–477.
Feoktistov AI, Herman TG. 2016. Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons. Development 143:2983–2993.
Fernandes KA, Harder JM, John SW, Shrager P, Libby RT. 2014. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis 69:108–116.
Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW. 2011. DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764.
Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB, Giger RJ, DiAntonio A, Collins C. 2016. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife 5. doi:10.7554/eLife.14048
Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol 202:747–763.
Katz JS, Rothstein JD, Cudkowicz ME, Genge A, Oskarsson B, Hains AB, Chen C, Galanter J, Burgess BL, Cho W, Kerchner GA, Yeh FL, Ghosh AS, Cheeti S, Brooks L, Honigberg L, Couch JA, Rothenberg ME, Brunstein F, Sharma KR, van den Berg L, Berry JD, Glass JD. 2022. A Phase 1 study of GDC-0134, a dual leucine zipper kinase inhibitor, in ALS. Ann Clin Transl Neurol 9:50–66.
Klinedinst S, Wang X, Xiong X, Haenfler JM, Collins CA. 2013. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 33:12764–12778.
Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. 2023. Discovery of IACS-52825, a potent and selective DLK inhibitor for treatment of chemotherapy-induced peripheral neuropathy. J Med Chem 66:9954–9971.
Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, Gogineni A, Sengupta Ghosh A, Jiang Z, Lee S-H, Maloney J, Gandham VD, Pozniak CD, Wang B, Lee S, Siu M, Patel S, Modrusan Z, Liu X, Rudhard Y, Baca M, Gustafson A, Kaminker J, Carano RAD, Huang EJ, Foreman O, Weimer R, Scearce-Levie K, Lewcock JW. 2017. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9. doi:10.1126/scitranslmed.aag0394
Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. 2017. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. Elife 6. doi:10.7554/eLife.24271
Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A. 2009. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389.
Nihalani D, Merritt S, Holzman LB. 2000. Identification of structural and functional domains in mixed lineage kinase dual leucine zipper-bearing kinase required for complex formation and stress-activated protein kinase activation. J Biol Chem 275:7273–7279.
Russo A, DiAntonio A. 2019. Wnd/DLK is a critical target of FMRP responsible for neurodevelopmental and behavior defects in the Drosophila model of fragile X syndrome. Cell Rep 28:2581–2593.e5.
Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. 2012. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74:1015– 1022.
Siu M, Sengupta Ghosh A, Lewcock JW. 2018. Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. J Med Chem 61:8078–8087.
Valakh V, Walker LJ, Skeath JB, DiAntonio A. 2013. Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 33:17863–17873.
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. 2022. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol Neurobiol 59:1502–1527.
Wlaschin JJ, Donahue C, Gluski J, Osborne JF, Ramos LM, Silberberg H, Le Pichon CE. 2023. Promoting regeneration while blocking cell death preserves motor neuron function in a model of ALS. Brain 146:2016–2028.
Xiong X, Collins CA. 2012. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 32:610–615.
Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA. 2012. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10:e1001440.
Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. 2010. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211– 223.
Author response:
The following is the authors’ response to the original reviews.
Public reviews:
We thank the three reviewers for the constructive suggestions made in the Public Reviews and the Recommendations to Authors. We have now addressed these comments in a revised manuscript as follows:
(1) We will revise the text according to the reviewer suggestions and provide more detailed explanations in results and discussion.
(2) We have uploaded higher resolution images of several figures (resolution had been reduced to achieve lower file sizes) to address the comment regarding “data quality”.
(3) We have included additional data on eCLIP control experiments in the supplementary figures.
(4) We have performed additional replications of the western blot analysis for Rbm20 knock-out animals and provided the data in a new Figure.
Recommendations for the authors:
Reviewer #1:
(1) The study is missing CLIP-seq data from control mice that do not express HA, or HA-knocked into a safe-harbor locus. This is important because there is plenty of background HA staining in Figure S2B, in wild-type mice. Including this control would allow subsequent peak calling to distinguish between non-specific HA peaks and RBM20 specific peaks.
The biochemical conditions used in immunostaining are much less stringent than the buffers employed for immunoprecipitation in the eCLIP protocol. Thus, background staining is not a an informative reference to assess specificity of CLIP isolations. In previous experiments, we confirmed very low background with the anti-HA antibodies in our eCLIP protocol. In the present study, we used a “no-crosslinking control” where samples were not irradiated with UV light. This negative control is now included in Supplementary Figure 4.
(2) The GO analysis performed to infer synapse-gene specific regulation would be more useful if the authors would discuss specific genes that are represented within these terms and have been shown to be associated with neuronal function.
We have now noted several synapse-related genes identified in the text.
(3) Some figures would benefit from larger size and higher resolution including Fig S1, S3.
We had previously embedded Figures as png files in the text document. In the revised version we uploaded the figures in higher resolution as individual jpeg files. Moreover, we now split Figure S1 into two separate supplementary figures (new Fig.S2) which allowed for enlarging the size of panels. We further enlarged the panels of (former) Fig.S3 (now Fig.S4).
(4) RBP genes in Figure 1A x-axis are all lowercase. This is not standard mouse gene nomenclature.
We corrected this.
(5) Typo in Figure S4F rightmost panel y-axis - 'Length' is misspelled.
We corrected this.
Reviewer #2:
Minor points:
- Shortly explain DESEQ2 (p4)
We now added a brief note and corresponding reference in the main text of the manuscript.
- Is RBM20 a shuttling protein? Any detection in the cytoplasm?
Our immunostainings for the endogenous RBM20 in heart and olfactory bulb cells suggest that the vast majority of wild-type RBM20 is localized to the nucleus. Previous work on RBM20 disease mutants suggest that pathological forms can accumulate in the cytoplasm. However, with the sensitivity of our detection we did not obtain evidence for a significant cytoplasmic pool in neurons. This does not exclude the possibility that the protein is shuttling – but assessing this would require different types of experiments.
Reviewer #3:
(1) Figure 1C: It is shown that some of the RBM20 staining do not colocalize with PV. This observation requires further explanation and discussion to clarify the significance.
As seen in the fluorescent in situ hybridizations as well as the RiboTRap purifications (Fig.S1C,D), we observe mRNA RBM20 expression not only in parvalbumin-positive interneurons but also somatostatin-positive cells of the neocortex. Accordingly, some RBM20-positive cells do not express parvalbumin. We now clarified this in the text.
Additionally, in Figure S1C, the resolution of the image is low, making it difficult to conclusively determine whether RBM20 RNA is localized in the nucleus. A high-resolution image would be beneficial to address this ambiguity.
The Rbm20 mRNA is localized in the nucleus and cytoplasm. We have now split Figure S1 into two separate figures to enlarge the panels for S1C and make this more visible. Moreover, we uploaded higher resolution figure files.
(2) Figure 1E: The molecular weight of RBM20 is approximately 135 kDa, yet there is a band near 135 kDa in the KO heart. How do the authors determine that the 150 kDa band represents RBM20 rather than the 135 kDa band? The authors may consider increasing the sample size to confirm whether the smaller band consistently appears across all KO heart tissues.
We appreciate that in this higher molecular weight range, the indicated weight markers may not be entirely accurate. We used a validated knock-out mouse line to identify the appropriate RBM20 protein band. As the 150kDa band was reproducibly lost in the knock-out tissue in the brain and the heart tissue whereas the fainter band of lower mobility remained we concluded that on our gel system RBM20 protein has an apparent molecular weight of 150 kDa. This is further supported by the fact that also the endogenously tagged RBM20 protein has a similar mobility.
As suggested by the reviewer, we now re-ran Western blots from multiple wild-type and corresponding knock-out tissues. This further confirmed the migration of the protein and loss of the 150 kDa band in the mutant mice (new Figure 1E).
(3) Figure 2A: A higher-resolution image is recommended. Prior studies on RBM20 mutation knock-in mice suggest that when RBM20 localizes to the cytoplasm, it promotes molecular condensate formation. This seems to be the case in Figure 2A; however, the low image quality makes it difficult to see these molecular condensates.
Figure2A shows endogenous RBM20 (not the epitope-tagged protein in the knock-in mice). The vast majority of the protein is localized in the nucleus rather than the cytoplasm. We are a bit uncertain what “condensates” the reviewer refers to. In the heart, we indeed see accumulations of RBM20 in foci (as described previously in the literature). As judged by their location within the DAPI-positive area, these foci are in the nucleus. By contrast, in the olfactory bulb neurons (which express lower levels of RBM20) we do not see a comparable concentration in nuclear foci but rather broad and diffuse staining. This is consistent with the hypothesis that the nuclear foci depend on the expression of highly expressed target transcripts such as titin. To better visualize this, we now uploaded files with higher resolution for the revised manuscript.
(4) Figure 4D: This figure is not cited in the main text and should be referenced appropriately.
We corrected this.
(5) Page 5: The sentence "Finally, introns bound by RBM20 were significantly longer than expected by chance as assed..." contains a typo. The word "assed" should be corrected to "assessed".
We corrected this.
(6) Functional data: The study would benefit from functional experiments to elucidate the physiological role of RBM20 in PV neurons. For instance, since RBM20 regulates calcium-handling genes in neurons, does its absence impair calcium signaling in PV neurons? Additionally, given that RBM20 is involved in synaptic regulation, could RBM20 KO disrupt synaptic function? While it may not be feasible to address all these questions, providing some functional data would greatly enhance the overall significance of the study.
We completely agree with the reviewer that this would greatly advance the study and the lack of data on cellular functions is the most significant limitation of this work. We attempted to obtain insights into cellular function through the structural investigations (Fig.S5). We had obtained some data on a behavioral phenotype in the mice which indicates that knock-out in vGLUT2 neurons precipitates alterations in behavior. However, due to conditions in our animal facility (emissions from construction) we struggled to solidify/confirm this data. Thus, in the interest of sharing the existing data in a timely manner we felt that more elaborate functional studies on synaptic transmission or calcium imaging should better be performed in a separate effort.
y the mid-1970s, arrests of persons under eighteen had increased by 144% while arrests of persons over eighteen increased byonly 12.9%.34 As a result, society began calling for a “get tough on crime” stance. Support for rehabilitative and preventativesystems quickly gave way to more punitive theories. Many states lowered the minimum age for trial in criminal court for seriouscrimes and redefined the circumstances under which a juvenile could be transferred to adult criminal court.35The shift in juvenile treatment philosophy from rehabilitation to punishment, combined with recent public sentiment andconcern over the rising juvenile crime rate has facilitated the transfer of juvenile offenders to criminal court for trial as adults.The prosecution of juveniles in adult courts is one of the most extreme responses to serious juvenile crime. Many states nowallow a judge to order juveniles to criminal court (“judicial waiver”) and have statutory guidelines to facilitate such transfers(“legislative offense exclusion”).36 Between 1978 and 1982, *138 juvenile codes were amended in half of the state legislaturesin order to simplify and expedite the transfer of juveniles to criminal court for trial as adults.37 In addition, some states haveamended their juvenile codes to the effect of a more punitive approach. Some states use legislative offense exclusion to removejuveniles charged with capital crimes from the juvenile system.38 Others exclude longer lists of offenses such as rape orarmed robbery. These statutes reflect legislative distrust of judicial discretion in sentencing juveniles and signal a shift fromthe individualized treatment philosophy in the juvenile courts to a more retributive one
HISTORY: 70S JUVENILE CRIME GOT BIG, TOUGH ON CRIME GOT POPULAR, PHILOSOPHY SHIFTED FROM REHABILITATION TO PUNISHMENT, HALF OF THE STATES FROM 78-82 ADDED GUIDELINES TO MAKE IT EASIER TO SHIFT KIDS TO ADULT COURTS, TONS OF JUVENILES TRANSFERRED TO ADULT COURTS
Universidad de Ciencias Empresariales y Sociales (UCES), Paraguay 1401, C1061 Ciudad Autónoma deBuenos Aires, Buenos Aires, Argentina. E-mail: kennyanunesuk@gmail.com2 Universidade Federal de Ouro Preto (UFOP) Mariana, Minas Gerais, Brasil.E-mail: simone.rocha@ufop.edu.br3 Universidade Federal Rural de Pernambuco (UFRPE) Dois Irmãos, Recife, Brasil.E-mail: mariagabrielaufrpe@gmail.com4 Universidade Federal do Maranhão (UFMA) Açailândia, Maranhão, Brasil. E-mail: airtonleao@outlook.comOrcid: https://orcid.org/0000-0002-1444-56395 Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Recife, Pernambuco, Brasil.E-mail: prof.zillcarvalho@gmail.com6 Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil. E-mail: mairadanuse@ufpi.edu.brOrcid: https://orcid.org/0009-0000-9524-47347 Universidade Federal de Campina Grande, Centro de Desenvolvimento Sustentável (UFCG - CDSA), Sumé,Paraíba, Brasil. E-mail: anaveronicasn@gmail.com8 Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, Pernambuco, Brasil.E-mail: everaldocostas@gmail.com9 Universidade do Extremo Sul Catarinense (UNESC) Santa Catarina, Brasil. E-mail: gsm@unesc.netOrcid: https://orcid.org/0009-0008-6761-888010 Universidad del Sol (UNADES), Assunción, Paraguai, Brasil. E-mail: carloshenrique.gs@icloud.com
List of authors (10 total). Plenty of writers, all from different institutions within Brazil. Definitely a collaborative effort.
Definition 5.2 (Shape Extension of Morphisms)Given a Index Morphism φ : Zx → Zy ; and a shape s ∈ Zy , we can extend themorphism to yield Index Ranges:IndexMorphismx,y : Zx → Zy(71)s : Extenty(72)φ⊕s(p) := [φ(p), φ(p) + s
Not immediately following this. A bit more explanation of what you mean by "shape" maybe? Do you just mean that the IndexMorphism can map IndexRanges as well as index points?
Diseñar la comunicación gráfica consiste en proyectar los mensajes que el hom-bre requiere para establecer un orden significativo; por eso constituye un oficio fun-damental cuya evolución demanda una definición formal y expresiva.La tarea esencial del diseñador gráfico consiste en una transformación del entor-no expresada en objetos gráficos que por extensión modifican al hombre mismo y lainvestigación en esta disciplina se ocupa de explicar las condicionantes de este pro-ceso cuyo factor integrante lo constituye la interacción del diseño, el diseñador y lodiseñado. El diseño gráfico es un lenguaje cotidiano de cuyos fenómenos inherentestodavía no sabemos dar cuenta.
Este fragmento destaca dos aspectos clave que influyen en la realización de un proyecto de diseño:
La resolución de problemas de comunicación visual, lo que implica comprender el contexto, el público objetivo y los medios adecuados para transmitir un mensaje. La evolución y definición del diseño, lo que subraya la importancia de los valores formales y expresivos en el proceso creativo. El diseño no es solo una cuestión estética, sino un proceso estratégico que busca generar significado. Para que un proyecto sea efectivo, es crucial considerar el impacto cultural y comunicativo, además de las herramientas técnicas y conceptuales que lo sustentan. La capacidad de adaptación del diseñador a nuevas tecnologías y tendencias también es un factor determinante en la ejecución de proyectos exitosos.
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC-2024-02713
Corresponding author(s): Igor, Kramnik
[Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.
If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]
Dear Editors,
We are grateful for constructive reviewers’ comments and criticisms and have thoroughly addressed all major and minor comments in the revised manuscript.
Summary of new data.
We have performed the following additional experiments to support our concept:
Following reviewers requests we updated figures to include isotype control antibodies, effects of inhibitors on non-stimulated cells, positive and negative controls for labile iron pool, additional images of 4-HNE and live/dead cell staining.
Isotype control for IFNAR1 blockade were included in Fig.3M, Fig.4C -E, Fig.6L-M
Suppl.Fig.4F -G, 7I.
Positive and negative controls for labile iron pool measurements were added to Fig.3E, Fig.5D, Suppl.Fig.3B
Cell death staining images were added Suppl.Fig.3H
Co-staining of 4-HNE with tubulin was added to Suppl.Fig.3A.
High magnification images for Figure 7 __were added in __Suppl.Fig.8 to demonstrate paucibacillary and multibacillary image classification.
Single-channel color images for individual markers were provided in Fig.____7E and Suppl.Fig.13B–F.
Inhibitor effects on non-stimulated cells were included in Fig.____5 D – H, Suppl.Fig.6A and B.
Titration of CSF1R inhibitors for non-toxic concentration determination are included in Suppl.Fig.6D.
In addition, we updated the figure legends in the revised manuscript to include more details about the experiments. We also clarified our conclusions in the Discussion.
Responses to every major and minor comment of the reviewers are provided below.
This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary
The study by Yabaji et al. examines macrophage phenotypes B6.Sst1S mice, a mouse strain with increased susceptibility to M. tuberculosis infection that develops necrotic lung lesions. Extending previous work, the authors specifically focus on delineating the molecular mechanisms driving aberrant oxidative stress in TNF-activated B6.Sst1S macrophages that has been associated with impaired control of M. tuberculosis. The authors use scRNAseq of bone marrow-derived macrophages to further characterize distinctions between B6.Sst1S and control macrophages and ascribe distinct trajectories upon TNF stimulation. Combined with results using inhibitory antibodies and small molecule inhibitors in in vitro experimentation, the authors propose that TNF-induced protracted c-Myc expression in B6.Sst1S macrophages disables the cellular defense against oxidative stress, which promotes intracellular accumulation of lipid peroxidation products, fueled at least in part by overexpression of type I IFNs by these cells. Using lung tissue sections from M. tuberculosis-infected B6.Sst1S mice, the authors suggest that the presence of a greater number of cells with lipid peroxidation products in lung lesions with high counts of stained M. tuberculosis are indicative of progressive loss of host control due to the TNF-induced dysregulation of macrophage responses to oxidative stress. In patients with active tuberculosis disease, the authors suggest that peripheral blood gene expression indicative of increased Myc activity was associated with treatment failure.
__Major comments __ The authors describe differences in protein expression, phosphorylation or binding when referring to Fig 2A-C, 2G, 3D, 5B, 5C. However, such differences are not easily apparent or very subtle and, in some cases, confounded by differences in resting cells (e.g. pASK1 Fig 3L; c-Myc Fig 5B) as well as analyses across separate gels/blots (e.g. Fig 3K, Fig 5B). Quantitative analyses across different independent experiments with adequate statistical analyses are required to strengthen the associated conclusions.
Author: We updated our Western blots as follows: 1. Densitometery of normalized bands is included above each lane (Fig.2A – C; Fig.3C – D and 3K; Fig.4A – B; Fig.5B,C,I,J). New data in Fig.3K is added to highlight differences between B6 and B6.Sst1S at individual timepoints after TNF stimulation. In Fig.5I we added new data comparing Myc levels in B6 and B6.Sst1S with and without JNK inhibitor and updated the results accordingly. New Fig.3K clearly demonstrates the persistent activation of p-cJun and p-Ask1 at 24 and 36h of TNF stimulation. In Fig.5B we clearly demonstrate that Myc levels were higher in B6.Sst1S after 12 h of TNF stimulation. At 6h, however, the basal differences in Myc levels are consistently higher in B6.Sst1S and the induction by TNF is 1.6-fold similar in both backgrounds. We noted this in the text.
A representative experiment is shown in individual panels and the corresponding figure legend contains information on number of biological repeats. Each Western blot was repeated 2 – 4 times.
The representative images of fluorescence microscopy in Fig 3H, 4H, 5H, S3C, S3I, S5A, S6A seem to suggest that under some conditions the fluorescence signal is located just around the nucleus rather than absent or diminished from the cytoplasm. It is unclear whether this reflects selective translocation of targets across the cell, morphological changes of macrophages in culture in response to the various treatments, or variations in focal point at which images were acquired. Control images (e.g. cellular actin, DIC) should be included for clarification. If cell morphology changes depending on treatments, how was this accounted for in the quantitative analyses? In addition, negative controls validating specificity of fluorescence signals would be warranted.
Author: Our conclusion of higher LPO production is based on several parameters: 4-HNE staining, measurements of MDA in cell lysates and oxidized lipids using BODIPY C11. Taken together they demonstrate significant and reproducible increase in LPO accumulation in TNF-stimulated B6.Sst1S macrophages. This excludes imaging artefact related to unequal 4-HNE distribution noted by the reviewer. In fact, we also noted that the 4-HNE was spread within cell body of B6.Sst1S macrophages and confirmed it using co-staining with tubulin, as suggested by the reviewer (new Suppl.Fig.3A). Since low molecular weight LPO products, such as MDA and 4-HNE, traverse cell membranes, it is unlikely that they will be strictly localized to a specific membrane bound compartment. However, we agree that at lower concentrations, there might be some restricted localization, explaining a visible perinuclear ring of 4-HNE staining in B6 macrophages. This phenomenon may be explained just by thicker cytoplasm surrounding nucleus in activated macrophages spread on adherent plastic surface or by proximity to specific organelles involved in generation or clearance of LPO products and definitively warrants further investigation.
We also included images of non-stimulated cells in Fig.3H, Suppl.Fig.3A and 3E. We used multiple fields for imaging and quantified fluorescence signals (Suppl. Fig.3D and 3F, Suppl.Fig.4G, Suppl.Fig.6A and B).
We used negative controls without primary antibodies for the initial staining optimization, but did not include it in every experiment.
To interpret the evaluation on the hierarchy of molecular mechanisms in B6.Sst1S macrophages, comparative analyses with B6 control cells should be included (e.g. Fig 4C-I, Fig 5, Fig 6B, E-M, S6C, S6E-F). This will provide weight to the conclusions that the dysregulated processes are specifically associated with the susceptibility of B6.Sst1S macrophages.
Author: Understanding the sst1-mediated effects on macrophage activation is the focus of our previously published studies Bhattacharya et al., JCI, 2021) and this manuscript. The data comparing B6 and B6.Sst1S macrophage are presented in Fig.1, Fig.2, Fig.3, Fig.4, Fig.5A – C, I and J, Fig.6A – C, 6J and corresponding supplemental figures 1, 2, 3, 4A and B, Suppl.Fig.5, Suppl.Fig.6C, Suppl.Fig.7A-D,7F.
Once we identified the aberrantly activated pathways in the B6.Sst1S, we used specific inhibitors to correct the aberrant response in B6.Sst1S.
All experiments using inhibitory antibodies require comparison to the effect of a matched isotype control in the same experiment (e.g. Fig 3J, 4F, G, I; 6L, 6M, S3G, S6F).
Author: Isotype control for IFNAR1 blockade were included in Fig.3M, Fig.4C -E, Fig.6L-M
Suppl.Fig.4F -G, 7I.
Experiments using inhibitors require inclusion of an inhibitor-only control to assess inhibitor effects on unstimulated cells (e.g. Fig 4I, 5D-I)
Author: Inhibitor effects on non-stimulated cells were included in Fig.5 D – H, Suppl.Fig.6A and B.
Fig 3K and Fig 5J appear to contain the same images for p-c-Jun and b-tubulin blots.
Author: Fig.3K and 5J partially overlapped but had different focus – 3K has been updated to reflect the time course of stress kinase activation. Fig.5J is updated (currently Fig.5I and J) to display B6 and B6.Sst1S macrophage data including cMyc and p-cJun levels.
Data of TNF-treated cells in Fig 3I appear to be replotted in Fig 3J.
Author: Currently these data is presented in Fig.3L and 3M and has been updated to include comparison of B6 and B6.Sst1S cells (Fig.3L) and effects of inhibitors in Fig.3M.
Rev.1: It is stated that lungs from 2 mice with paucibacillary and 2 mice with multi-bacillary lesions were analyses. There is contradicting information on whether these tissues were collected at the same time post infection (week 14?) or whether the pauci-bacillary lesions were in lungs collected at earlier time points post infection (see Fig S8A). If the former, how do the authors conclude that multi-bacillary lesions are a progression from paucibacillary lesions and indicative of loss of M. tuberculosis control, especially if only one lesion type is observed in an individual host? If the latter, comparison between lesions will likely be dominated by temporal differences in the immune response to infection. In either case, it is relevant to consider density, location, and cellular composition of lesions (see also comments on GeoMx spatial profiling). Is the macrophage number/density per tissue area comparable between pauci-bacillary and multi-bacillary lesions?
Author: We did not collect lungs at the same time point. As described in greater detail in our preprints (Yabaji et al., https://doi.org/10.1101/2025.02.28.640830 and https://doi.org/10.1101/2023.10.17.562695) pulmonary TB lesions in our model of slow TB progression are heterogeneous between the animals at the same timepoint, as observed in human TB patients and other chronic TB animal models. Therefore, we perform analyses of individual TB lesions that are classified by a certified veterinary pathologist in a blinded manner based on their morphology (H&E) and acid fast staining of the bacteria, as depicted in Suppl.Fig.8. Currently it is impossible to monitor progression of individual lesions in mice. However, in mice TB is progressive disease and no healing and recovery from the disease have been observed in our studies or reported in literature. Therefore, we assumed that paucibacillary lesions preceded the multibacillary ones, and not vice versa, thus reflecting the disease progression. In our opinion, this conclusion most likely reflects the natural course of the disease. However, we edited the text : instead of disease progression we refer to paucibacillary and multibacillary lesions.
Rev1: Does 4HNE staining align with macrophages and if so, is it elevated compared to control mice and driven by TNF in the susceptible vs more resistant mice?
Author: We performed additional staining and analyses to demonstrate the 4-HNE accumulation in CD11b+ myeloid cells of macrophage morphology. Non-necrotic lesions contain negligible proportion of neutrophils (Fig.7B, Suppl.Fig.9B). B6 mice do not develop advanced multibacillary TB lesions containing 4-HNE+ cells. Also, 4-HNE staining was localized to TB lesions and was not found in uninvolved lung areas of the infected mice, as shown in Suppl.Fig.9A (left panel).
It is well established that TNF plays a central role in the formation and maintenance of TB granulomas in humans and in all animal models. Therefore, TNF neutralization would lead to rapid TB progression, rapid Mtb growth and lesions destruction in both B6 and B6.Sst1S genetic backgrounds.
Pathway analysis of spatial transcriptomic data (Suppl.Fig.11) identified TNF signaling via NF-kB among dominant pathways upregulated in multibacillary lesions, suggesting that the 4-HNE accumulation paralleled increased TNF signaling. In addition, in vivo other cytokines, including IFN-I, could activate macrophages and stimulate production of reactive oxygen and nitrogen species and lead to the accumulation of LPO products as shown in this manuscript.
Rev.1: It would be relevant to state how many independent lesions per host were sampled in both the multiplex IHC as well as the GeoMx data. Can the authors show the selected regions of interest in the tissue overview and in the analyses to appreciate within-host and across-host heterogeneity of lesions. The nature of the spatial transcriptomics platform used is such that the data are derived from tissue areas that contain more than just Iba1+ macrophages. At later stages of infection, the cellular composition of such macrophage-rich areas will be different when compared to lesions earlier in the infection process. Hence, gene expression profiles and differences between tissue regions cannot be attributed to macrophages in this tissue region but are more likely a reflection of a mix of cellular composition and per-cell gene expression.
Author: We used Iba1 staining to identify macrophages in TB lesions and programmed GeoMx instrument to collect spatial transcriptomics probes from Iba1+ cells within ROIs. Also, we selected regions of interest (ROI) avoiding necrotic areas (depicted in Suppl.Fig.10). We agree that Iba1+ macrophage population is heterogenous – some Iba1+ cells are activated iNOS+ macrophages, other are iNOS-negative (Fig.7C and D, and Suppl.Fig.13A). Multibacillary lesions contain larger areas occupied by activated (iNOS+) macrophages (Fig.7D, Suppl.Fig.13B and 13F). Although the GeoMx spatial transcriptomic platform does not provide single cell resolution, it allowed us to compare populations of Iba1+ cells in paucibacillary and multibacillary TB lesions and to identify a shift in their overall activation pattern.
It is stated that loss of control of M. tuberculosis in multibacillary lesions was associated with "downregulation of IFNg-inducible genes". If the authors base this on the tissue expression of individual genes, this requires further investigation to support such conclusion (also see comment on GeoMx above). Furthermore, how might this conclusion be compatible with significantly elevated iNOS+ cells (Fig 7D) in multibacillary lesions?
Author: We demonstrated that Ciita gene expression is specifically induced by IFN-gamma and is suppressed by IFN-I (Fig.6M). The expression of Ciita in paucibacillary lesions suggest the presence of the IFN-gamma activated cells and its disappearance in the multibacillary lesion is consistent with massive activation of IFN-I pathway (Fig.7C).
Rev1. It is appreciated that the human blood signature analyses contain Myc-signatures but the association with treatment failure is not very strong based on the data in Fig 13B and C (Suppl.Fig.15B and C now). The authors indicate that they have no information on disease severity, but it should perhaps not be assumed that treatment failure is indicative of poor host control of the infection. Perhaps independent analyses in separate cohort/data set can add strength and provide -additional insights (e.g. PMID: 35841871; PMID: 32451443, PMID: 17205474, PMID: 22872737). In addition, the human data analyses could be strengthened by extension to additional signatures such as IFN, TNF, oxidative stress. Details of the human study design are not very clear and are lacking patient demographics, site of disease, time of blood collection relative to treatment onset, approving ethics committees.
Author: X axis of Suppl.Fig.15A represent pre-defined molecular signature gene sets (MSigDB) in Gene Set Enrichment Analysis (GSEA) database (https://www.gsea-msigdb.org/gsea/msigdb). On Y axis is area under curve (AUC) score for each gene set. The Myc upregulated gene set myc_up was identified among top gene sets associated with treatment failure using unbiased ssGSEA algorithm. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis.
Pathway analysis of the differentially expressed genes revealed that treatment failures were associated with the following pathways relevant to this study: NF-kB Signaling, Flt3 Signaling in Hematopoietic Progenitor Cells (indicative of common myeloid progenitor cell proliferation), SAPK/JNK Signaling and Senescence (indicative of oxidative stress). The upregulation of these pathways in human patients with poor TB treatment outcomes correlates with our findings in TB susceptible mice. The detailed analysis of differentially regulated pathways in human TB patients is beyond the scope of this study and is presented in another manuscript entitled “ Tuberculosis risk signatures and differential gene expression predict individuals who fail treatment” by Arthur VanValkenburg et al., submitted for publication.
Blood collection for PBMC gene expression profiling of TB patients was prior to TB treatment or within a first week of treatment commencement. Boxplot of bootstrapped ssGSEA enrichment AUC scores from several oncogene signatures ranked from lowest to highest AUC score, with myc_up and myc_dn genes highlighted in red.
We agree with the reviewer that not every gene in the myc_up gene set correlates with the treatment outcome. But the association of the gene set is statistically significant, as presented in Suppl.Fig.15B – C.
We updated the details of the study, including study sites and the ethics committee approval statement and references describing these cohorts. __ Other comments__
It is excellent that the authors provide individual data points. Choosing a colour other than black would increase clarity when black bars are used.
Author: We followed this useful suggestion and selected consistent color codes for B6 and B6.Sst1S groups to enhance clarity throughout the revised manuscript.
Error bars are inconsistently depicted as either bi-directional or just unidirectional.
Author: We used bi-directional error bars in the revised manuscript.
Fig 1E, G, H- please include a scale to clarify what the heat map is representing.
Author: We have included the expression key in Fig.1E,G and H and Suppl.Fig.1C and D in the revised version.
Fig 2K, Fig S10A gene information cannot be deciphered.
Author: We increased the font in previous Fig.2K and moved to supplement to keep larger fonts (current Suppl.Fig.2G).
Fig S4A,B please add error bars.
Author: These data are presented as Suppl.Fig.5 in the revised version. We performed one experiment to test the hypothesis. Because the data indicated no clear increase in transposon small RNAs in the sst1S macrophages, we did not pursue this hypothesis further, and therefore, the error bars were not included. However, we decided to include these negative data because it rejects a very attractive and plausible hypothesis.
Please use gene names as per convention (e.g. Ifnb1) to distinguish gene expression from protein expression in figures and text.
Author: We addressed the comment in the revised manuscript.
Fig S8B. Contrary to the description of results, there seems to be minimal overlap between the signal for YFP and the Ifnb1 probe. Is the Ifnb1 reporter mouse a legacy reporter? If so, it is worth stating this and including such considerations in the data interpretation.
Author: The YFP reporter expresses YFP protein under the control of the Ifnb1 promoter. The YFP protein accumulates within the cells and while Ifnb protein is rapidly secreted and does not accumulate in the producing cells in appreciable amounts. So YFP is not a lineage tracing reporter, but its accumulation marks the Ifnb1 promoter activity in cells, although the YFP protein half-life is longer than that of the Ifnb1 mRNA that is rapidly degraded (Witt et al., BioRxiv, 2024; doi:10.1101/2024.08.28.61018). Therefore, there is no precise spatiotemporal coincidence of these readouts.
Please clarify what is meant by "normal interstitium" ? If the tissue is from uninfected mice, please state clearly.
Author: In this context we refer to the uninvolved lung areas of the infected lungs. In every sample we compare uninvolved lung areas and TB lesions of the same animal. Also, we performed staining of lung of non-infected mice as additional controls.
Rev1: If macrophage cultures underwent media changes every 48h, how was loss of liberated Mtb taken into account especially if differences in cell density/survival were noted? The assessment of M. tuberculosis load by qPCR is not well described. In particular, the method of normalization applied within the experiments (not within the qPCR) here remains unclear, even with reference to the authors' prior publication.
Author: Our lab has many years of experience working with macrophage monolayers infected with virulent Mtb and uses optimized protocols to avoid cell losses and related artifacts. Recently we published a detailed protocol for this methodology in STAR Protocols (Yabaji et al., 2022; PMID 35310069). In brief, it includes preparation of single cell suspensions of Mtb by filtration to remove clumps, use of low multiplicity of infection, preparation of healthy confluent monolayers and use of nutrient rich culture medium and medium change every 2 days. We also rigorously control for cell loss using whole well imaging and quantification of cell numbers and live/dead staining.
Please add citation for the limma package.
Author: The references has been added (Ritchie et al, NAR 2015; PMID 25605792).
The description of methodology relating to the "oncogene signatures" is unclear.
Author: This signature was described in Bild etal, Nature, 2006 and McQuerry JA, et al, 2019 “Pathway activity profiling of growth factor receptor network and stemness pathways differentiates metaplastic breast cancer histological subtypes”. BMC Cancer 19: 881 and is cited in Methods section Oncogene signatures
Please clearly state time points post infection for mouse analyses.
Author: We collected lung samples from Mtb infected mice 12 – 20 weeks post infection. The lesions were heterogeneous and were individually classified using criteria described above.
Reference is made to "a list of genes unique to type I [interferon] genes [....]" (p29). Can the authors indicate the source of the information used for compiling this list?
Author: The lists were compiled from Reactome, EMBL's European Bioinformatics Institute and GSEA databases. The links for all datasets are provided in Suppl.Table 8 “Expression of IFN pathway genes in Iba1+ cells from pauci- and multi-bacillary lesions of Mtb infected B6.Sst1S mouse lungs” in the “Pool IFN I & II gene sets” worksheet.
The discussion at present is very long, contains repetition of results and meanders on occasion.
Author: Thank you for this suggestion, We critically revised the text for brevity and clarity.
Reviewer #1 (Significance (Required)):
Strengths and limitations
Strengths: multi-pronged analysis approaches for delineating molecular mechanisms of macrophage responses that might underpin susceptibility to M. tuberculosis infection; integration of mouse tissues and human blood samples
Weaknesses: not all conclusions supported by data presented; some concerns related to experimental design and controls; links between findings in human cohort and the mechanistic insights gained in mouse macrophage model uncertain
Author: The revised manuscript addresses every major and minor comment of the reviewers, including isotype controls and naïve T cells, to provide additional support for our conclusions. Our study revealed causal links between Myc hyperactivity with the deficiency of anti-oxidant defense and type I interferon pathway hyperactivity. We have shown that Myc hyperactivity in TNF-stimulated macrophages compromises antioxidant defense leading to autocatalytic lipid peroxidation and interferon-beta superinduction that in turn amplifies lipid peroxidation, thus, forming a vicious cycle of destructive chronic inflammation. This mechanism offers a plausible mechanistic explanation of for the association of Myc hyperactivity with poorer treatment outcomes in TB patients and provide a novel target for host-directed TB therapy.
Advance
The study has the potential to advance molecular understanding of the TNF-driven state of oxidative stress previously observed in B6.Sst1S macrophages and possible implications for host control of M. tuberculosis in vivo.
Audience
Experts seeking understanding of host factors mediating M. tuberculosis control, or failure thereof, with appreciation for the utility of the featured mouse model in assessing TB diseases progression and severe manifestation. Interest is likely extended to audience more broadly interested in TNF-driven macrophage (dys)function in infectious, inflammatory, and autoimmune pathologies.
Reviewer expertise
In preparing this review, I am drawing on my expertise in assessing macrophage responses and host defense mechanisms in bacterial infections (incl. virulent M. tuberculosis) through in vitro and in vivo studies. This includes but is not limited to macrophage infection and stimulation assays, microscopy, intra-macrophage replication of M. tuberculosis, analyses of lung tissues using multi-plex IHC and spatial transcriptomics (e.g. GeoMx). I am familiar with the interpretation of RNAseq analyses in human and mouse cells/tissues, but can provide only limited assessment of appropriateness of algorithms and analysis frameworks.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Yabaji et al. investigated the effects of BMDMs stimulated with TNF from both WT and B6.Sst1S mice, which have previously been identified to contain the sst1 locus conferring susceptibility to Mycobacterium tuberculosis. They identified that B6.Sst1S macrophages show a superinduction of IFNß, which might be caused by increased c-Myc expression, expanding on the mechanistic insights made by the same group (Bhattacharya et al. 2021). Furthermore, prolonged TNF stimulation led to oxidative stress, which WT BMDMs could compensate for by the activation of the antioxidant defense via NRF2. On the other hand, B6.Sst1S BMDMs lack the expression of SP110 and SP140, co-activators of NRF2, and were therefore subjected to maintained oxidative stress. Yabaji et al. could link those findings to in vivo studies by correlating the presence of stressed and aberrantly activated macrophages within granulomas to the failure of Mtb control, as well as the progression towards necrosis. As the knowledge regarding Mtb progression and necrosis of granulomas is not yet well understood, findings that might help provide novel therapy options for TB are crucial. Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection.
However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn. In particular a) important controls are often missing, e.g. T-cells form non-immune mice in Fig. 6J, in F, effectivity of BCG in B6 mice in 6N; b) single experiments are shown throughout the manuscript, in particular western blots and histology without proper quantification and statistics, this is absolutely not acceptable; c) very few repetitions are shown in in vitro experiments, where there is no evidence for limitation in resources (usually not more than 3), it is not clear what "independent experiment means" - i.e. the robustness of the findings is questionable; d) data are often normalized multiple times, e.g. in the case of qPCR, and the methods of normalization are not clear (what house-keeping gene exactly?);
Moreover, experiments regarding IFN I signaling (e.g. short term TNF treatment of BMDMs to analyze LPO, making sure that the reporter mouse for IFNß works in vivo) and c-Myc (e.g. the increase after M-CSF addition might impact on other analysis as well and the experiments should be adjusted to control for this effect; MYC expression in the human samples) should be carefully repeated and evaluated to draw correct conclusions.
In addition, we would like to strongly encourage the authors to more precisely outline the experimental set-ups and figure legends, so that the reader can easily understand and follow them. In other words: The legends are - in part very - incomplete. In addition, the authors should be mindful of gene names vs. protein names and italicize where appropriate.
Author: We appreciate a very thorough evaluation of our manuscript by this reviewer. Their insightful comments helped us improve the manuscript. As outlined below in point-by-point responses 1) we added important controls including isotype control antibodies in IFNAR blocking experiments and non-vaccinated T cells in T cell – macrophage interactions experiments; updated figure legends to indicate number of repeated experiment where a representative experiment is shown, numbers of mouse lungs and individual lesions, methods of data normalization, where it was missing. We also explained our in vitro experimental design and how we analyzed and excluded effects of media change and fresh CSF1 addition, by using a rest period before TNF stimulation and Mtb infection. The data shown in Suppl. Fig. 6C (previously Suppl. Fig. 5B) demonstrate that Myc levels induced by CSF1 return to the basal level at 12 h after media change. Our detailed in vitro protocol that contains these details has been published (Yabaji et al., STAR Protocols, 2022). We added new data demonstrating the ROS and LPO production at 6h of TNF stimulation, while the Ifnb1 mRNA super-induction occurred at 16 – 18 h, and edited the text to highlight these dynamics. The upregulation of Myc pathway in human samples does not necessarily mean the upregulation of Myc itself, it could be due to the dysregulation of downstream pathways. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis. The detailed analysis of this cell populations in human patients is suggested by our findings but it is beyond the scope of this study.
The reviewer’s comments also suggested that a summary of our findings was necessary. The main focus of our study was to untangle connections between oxidative stress and Ifnb1 superinduction. It revealed that Myc hyperactivity caused partial deficiency of anti-oxidant defense leading to type I interferon pathway hyperactivity that in turn amplifies lipid peroxidation, thus establishing a vicious cycle driving inflammatory tissue damage.
Our laboratory worked on mechanisms of TB granuloma necrosis over more than two decades using genetic, molecular and immunological analyses in vitro and in vivo. It provided mechanistic basis for independent studies in other laboratories using our mouse model and further expanding our findings, thus supporting the reproducibility and robustness of our results and our lab’s expertise.
Specific comments to the experiments and data:
Author: For our scRNAseq data presentation, we used formats accepted by computational community. To clarify Fig.1E, we added labels above B6 and B6.Sst1S-specific clusters.
Fig. 2D, E: The staining legend is missing. For the quantification it is not clear what % total means. Is this based on the intensity or area? What do the dots represent in the bar chart? Is one data point pooled from several pictures? If not, the experiments need to be repeated, as three pictures might not be representative for evaluation.
Fig. 2E: Statistics comparing B6/ B6,SsT1S with TNF (different) is required: Absence of induction is not a proof for a difference!
Author: We included staining with NRF2-specific antibodies and performed area quantification per field using ImageJ to calculate the NRF2 total signal intensity per field. Each dot in the graph represents the average intensity of 3 fields in a representative experiment. The experiment was repeated 3 times. We included pairwise comparison of TNF-stimulated B6 and B6.Sst1S macrophages and updated the figure legend.
Author: We have added the positive and negative controls for the determination of labile iron pool to the data in Fig. 3E and related Suppl. Fig. 3B and to Fig. 5D that also demonstrates labile iron determination.
Author: To validate the specificity of the viability staining method, we have provided fluorescent images as Suppl.Fig.3H. The main point of this experiment was to demonstrate a modest, but reproducible, increase in cell death in the sst1-mutant macrophages that suggested an IFN-dependent oxidative damage. In our study, we did not focus on mechanisms of cell death, but on a state of chronic oxidative stress in the sst1 mutant live cells during TNF stimulation.
Author: We performed this assay in 96 well format and each dot represent the % cell death in an individual well.
Fig. 3L: ASK1 seems to be higher at 12h for the B6 BMDMs and similar for both lines at 24h, which is not fitting to the statement in the text. ("Also, the ASK1 - JNK - cJun stress kinase axis was upregulated in B6.Sst1S macrophages, as compared to B6, after 12 - 36 h of TNF stimulation")
Author: These experiments were repeated, and new data were added to highlight differences in ASK1 and c-Jun phosphorylation between B6 and B6.Sst1S at individual timepoints after TNF stimulation (presented in new Fig.3K). It demonstrated that after TNF stimulation the activation of stress kinases ASK1 and c-Jun initially increased in both genetic backgrounds. However, their upregulation was maintained exclusively in the sst1-susceptible macrophages from 24 to 36 h of TNF stimulation, while in the resistant macrophages their upregulation was transient. Thus, during prolonged TNF stimulation, B6.Sst1S macrophages experience stress that cannot be resolved, as evidenced by this kinetic analysis. The quantification of the band intensity was added to Western blot images above individual lanes.
Reviewer 2 pointed to missing isotype control antibodies in Fig.3 and Fig.4:
Figure 3J: the isotype control for the IFNAR antibody is missing
Figure 4E: It seems the isotype control itself has already an effect in the reduction of IFNb.
Fig. 4H: It seems that the Isotype control antibody had an effect to increase 4-HNE (compared to TNF stimulated only).
Author: We always include isotype control antibodies in our experiments because antibodies are known to modulate macrophage activation via binding to Fc receptor. To address the reviewer’s comments, we updated all panels that present the effects of IFNAR1 blockade with isotype-matched non-specific control antibodies in the revised manuscript. Specifically, we included isotype control in Fig. 3M (previously Fig.3J), Fig.4I, Suppl.4E – G, Fig.6L-M), Suppl.Fig.7I (previously Suppl.Fig.6F).
Maybe not above the isotype but it is higher than the TNF alone stimulation at least for NRF2 at 8h and for Ftl at both time points. Why does the isotype already cause stimulation/induction of the cells? !These experiments need repetitions and quantification and statistics!
Author: To determine specific effects of IFNAR blockade we compared effects of non-specific isotype control and IFNAR1-specific antibodies. In our experiments, the isotype control antibody modestly increased of Nrf2 and Ftl protein levels and the Fth and Ftl mRNA levels, but their effects were similar to the effect of IFNAR-specific antibody. The non-IFN -specific effects of antibodies, although are of potential biological significance, are modest in our model and their analysis is beyond the scope of this study.
Author: The IFNAR1 blocking antibodies and isotype control antibodies were added at 2 h after TNF stimulation in Fig.4H and 4I, as described in the corresponding figure legend. The data demonstrating effects of IFNAR blockade after 12, 24,and 33h of TNF stimulation are presented in Suppl.Fig.4 E - G.
Author: The microscopy images and bar graphs were updated to include isotype control and presented in Suppl. Fig.4E - G of the revised version. We also revised the statistical analysis to include correction for multiple comparisons.
Figure 4C and subsequent: How exactly was the experiment done (house-keeping gene)?
Author: We included the details in the figure legends of revised version. We quantified the gene expression by DDCt method using b-actin (for Fig. 4C-E) and 18S (For Fig. 4F and G) as internal controls.
Author: The updated Fig. 4D and E present comparison of B6 and B6.Sst1S BMDMs clearly demonstrating significant difference between these macrophages in Ifnb1 mRNA expression 16 h after TNF stimulation, in agreement with our previous publication(Bhattacharya, et al., 2021). There we studied the time course of responses of B6 and B6.Sst1S macrophages to TNF at 2h intervals and demonstrated the divergence between their activation trajectories starting at 12 h of TNF stimulation Therefore, to reveal the underlying mechanisms we focus our analyses on this critical timepoint, i.e. as close to the divergence as possible. However, the difference between the strains in Ifnb1 mRNA expression achieved significance only by 16h of TNF stimulation. That is why we have used this timepoint for the Ifnb1 and Rsad2 analyses. It clearly shows that the superinduction was not driven by the positive feedback via IFNAR, as has been shown by the Ivashkiv lab for B6 wild type macrophages previously PMID 21220349.
-The data for Ifnb expression (or better protein level) should be provided for B6 BMDMs as well.
Author: We have previously reported the differences in Ifnb protein secretion (He et al., Plos Pathogens, 2013 and Bhattacharya et al., JCI 2021). We use mRNA quantification by qRT-PCR as a more sensitive and direct measurement of the sst1-mediated phenotype. The revised Fig.4D and E include responses of B6 in addition to the B6.Sst1S to demonstrate that the IFNAR blockade does not reduce the Ifnb1 mRNA levels in TNF-stimulated B6.Sst1S mutant to the B6 wild type levels. A slight reduction can be explained by a known positive feedback loop in the IFN-I pathway (see above). In this experiment we emphasized that the effect of the sst1 locus is substantially greater, as compared to the effect of the IFNAR blockade (Fig.4D), and updated the text accordingly.
Fig. 4F: To what does the fold induction refer to? If it is again to unstimulated cells, then why is the induction now so much higher than in (E) where it was only 50x (now to 100x).
Figure 4G: Again to what is the fold induction referring to? It seems your Fer-1 treatment only contains 2 data points. This needs to be fixed.
Author: Yes, the fold induction was calculated by normalizing mRNA levels to untreated control incubated for the same time. Regarding the variation in Ifnb1 mRNA levels - a two-fold variation is not unusual in these experiments that may result in the Ifnb1 mRNA superinduction ranging from 50 -200-fold at this timepoint (16h). The graph in Fig.4G was modified to make all datapoints more visible.
"These data suggest that type I IFN signaling does not initiate LPO in our model but maintains and amplifies it during prolonged TNF stimulation that, eventually, may lead to cell death". Data for a short term TNF stimulation are not shown, however, so it might impact also on the initiation of LPO.
The overall conclusion drawn from Fig. 3 and 4 is not really clear with regard that IFN does not initiate LPO. Where is that shown? Data on earlier stimulation time points should be added to make this clear.
Author: We demonstrated ROS production (new Suppl.Fig.3G) and the rate of LPO biosynthesis (new Suppl.Fig.4E-F) at 6 h post TNF stimulation, while the Ifnb1 superinduction occurs between 12-18 h post TNF stimulation. This temporal separation supports our conclusion that IFN-β superinduction does not initiate LPO. We clarified it in the text:
“Thus, Ifnb1 super-induction and IFN-I pathway hyperactivity in B6.Sst1S macrophages follow the initial LPO production, and maintain and amplify it during prolonged TNF stimulation”. (Previously: These data suggest that type I IFN signaling does not initiate LPO in our model). We also edited the conclusion in this section to explain the hierarchy of the sst1-regulated AOD and IFN-I pathways better:
“Taken together, the above experiments allowed us to reject the hypothesis that IFN-I hyperactivity caused the sst1-dependent AOD dysregulation. In contrast, they established that the hyperactivity of the IFN-I pathway in TNF-stimulated B6.Sst1S macrophages was itself driven by the initial dysregulation of AOD and iron-mediated lipid peroxidation. During prolonged TNF stimulation, however, the IFN-I pathway was upregulated, possibly via ROS/LPO-dependent JNK activation, and acted as a potent amplifier of lipid peroxidation”.
We believe that these additional data and explanation strengthen our conclusions drawn from Figures 3 and 4.
Author: We agree with the reviewer that the data presented in Suppl.Fig.4 (Suppl.Fig.5 in the revised version) indicated no increase in single- and double-stranded transposon RNAs in the B6.Sst1S macrophages. The purpose of these experiment was to test the hypothesis that increased transposon expression might be responsible for triggering the superinduction of type I interferon response in TNF-stimulated B6.Sst1S macrophages. In collaboration with a transposon expert Dr. Nelson Lau (co-author of this manuscript) we demonstrated that transposon expression was not increased above the B6 level and, thus, rejected this attractive hypothesis. We explained the purpose of this experiment in the text and adequately described our findings as “the levels in the B6.Sst1S BMDMs were similar to or lower than those seen in B6”…and concluded that ” the above analyses allowed us to exclude the overexpression of persistent viral or transposon RNAs as a primary mechanism of the IFN-I pathway hyperactivity” in the sst1-mutant macrophages.
Author: We observed these differences in c-Myc mRNA levels by independent methods: RNAseq and qRT-PCR. The qRT-PCR experiments were repeated 3 times. A representative experiment in Fig.5A shows 3 data points for each condition. We reformatted the panel to make all data points clearly visible.
Author: We agree with the reviewer’s point that cells need to be rested after media change that contains fresh CSF-1. Indeed, in Suppl.Fig.6C, we show that after media change containing 10% L929 supernatant (a source of CSF1) there is an increase in c-Myc protein levels that takes approximately 12 hours to return to baseline.
Our protocol includes resting period of 18 – 24 h after medium change before TNF stimulation. We updated Methods to highlight this detail. Thus, the increase in c-Myc levels we observe at 12 h of TNF stimulation (Fig.5B) is induced by TNF, not the addition of growth factors, as further discussed in the text.
The two c-Myc bands observed in Fig.5B,I and J, are similar to patterns reported in previous studies that used the same commercial antibodies (PMIDs: 24395249, 24137534, 25351955). Whether they correspond to different c-Myc isoforms or post-translational modifications is unknown.
Author: In addition to Fig.5B, the time course of Myc protein expression up to 24 h is presented in new panels Fig. 5I-5J. It demonstrates the gradual decrease of Myc protein levels. The observed dissociation between the mRNA and protein levels in the sst1-mutant BMDMs at 12 and 24 h is most likely due to translation inhibition as a result of the development of the integrated stress response, ISR (as shown in our previous publication by Bhattacharya et al., JCI, 2021). Translation of Myc is known to be particularly sensitive to the ISR (PMID18551192, PMID25079319, PMID28490664). Perhaps, the IFN-driven ISR may serve as a backup mechanism for Myc downregulation. We are planning to investigate these regulatory mechanisms in greater detail in the future.
Author: This experiment was repeated twice and the average normalized densitometry values are presented in the updated Fig.5J. The main question addressed in this experiment was whether hyperactivity of JNK in TNF-stimulated sst1 mutant macrophages contributed to Myc upregulation, as had been previously shown in cancer. Comparing effects of JNK inhibition on phospho-cJun and c-Myc protein levels in TNF stimulated B6.Sst1S macrophages (updated Fig.5J), we rejected the hypotghesis that JNK activity might have a major role in c-Myc upregulation in sst1 mutant macrophages.
Author: Suppl.Fig.6B (currently Suppl.Fig.7B) shows the 4-HNE accumulation at day 3 post infection. The data obtained after 5 days of Mtb infection are shown in Fig.6A. We clarified this in the text: “By day 5 post infection, TNF stimulation induced significant LPO accumulation only in the B6.Sst1S macrophages (Fig.6A)”.
What time point is this? Are the mycobacteria cleared at MOI1, since it looks that there are fewer than that? How does this look like for the B6 BMDMs? Are there even less mycobacteria?
Author: We included B6 infection data to the updated Fig.6B and added Suppl.Fig.7C and 7D that address this reviewer’s comment. The data represent day 5 of Mtb infection as indicated in the updated Fig.6B and Suppl.Fig.7C and 7D legends. New Suppl.Fig.7D shows quantification of replicating Mtb using Mtb replication reporter stain expressing single strand DNA binding protein GFP fusion, as described in Methods. We observed fewer Mtb and a lower percentage of replicating Mtb in B6 macrophages, but we did not observe a complete Mtb elimination in either background.
We used red fluorescence for both Mtb::mCherry and 4-HNE staining to clearly visualize the SSB-GFP puncta in replicating Mtb DNA. In the revised manuscript, we have included the relevant channels in Suppl. Fig.7C and D to demonstrate clearly distinct patterns of Mtb::mCherry and 4-HNE signals. We did not aim to quantify the 4-HNE signal intensity in this experiment. For the 4-HNE quantification we use Mtb that expressed no reporter proteins (Fig.6A-B and Suppl.Fig.7A-B).
Author: We updated Fig.6 legend to indicate that the cell number percentages were calculated based on the number of cells at Day 0 (immediately after Mtb infection). We routinely use fixable cell death staining to enumerate cell death to exclude artifacts due to cell loss. Brief protocol containing this information is included in Methods section. The detailed protocol including normalization using BCG spike has been published – Yabaji et al, STAR Protocols, 2022. Here we did not present dead cell percentage as it remained low and we did not observe damage to macrophage monolayers. The fold change of Mtb was calculated after normalization using Mtb load at Day 0 after infection and washes.
"The 3D imaging demonstrated that YFP-positive cells were restricted to the lesions, but did not strictly co-localize with intracellular Mtb, i.e. the Ifnb promoter activity was triggered by inflammatory stimuli, but not by the direct recognition of intracellular bacteria. We validated the IFNb reporter findings using in situ hybridization with the Ifnb probe, as well as anti-GFP antibody staining (Suppl.Fig.8B - E)." The colocalization is not present within the tissue sections. It seems that the reporter line does not show the same staining pattern in vivo as the IFNß probe or the anti GFP antibody staining. The reporter line has to be tested for the specificity of the staining. Furthermore, to state that it was restricted to the lesions, an uninvolved tissue area needs to be depicted.
Author: The Ifnb secreting cells are notoriously difficult to detect in vivo using direct staining of the protein. Therefore, lineage tracing of reporter expression are used as surrogates. The Ifnb reporter used in our study has been developed by the Locksley laboratory (Scheu et al., PNAS, 2008, PMID: 19088190) and has been validated in many independent studies. The reporter mice express the YFP protein under the control of the Ifnb1 promoter. The YFP protein accumulates within the cells, while Ifnb protein is rapidly secreted and does not accumulate in the producing cells in appreciable amounts. Also, the kinetics of YFP protein degradation is much slower as compared to the endogenous Ifnb1 mRNA that was detected using in situ hybridization. Thus, there is no precise spatiotemporal coincidence of these readouts in Ifnb expressing cells in vivo. However, this methodology more closely reflect the Ifnb expressing cells in vivo, as compared to a Cre-lox mediated lineage tracing approach. In the revised manuscript we demonstrate that both YFP and mRNA signals partially overlap (Suppl.Fig.12B). In Suppl.Fig.12B. we also included a new panel showing no YFP expression in the uninvolved area of the reporter mice infected with Mtb. The YFP expression by activated macrophages is demonstrated by co-staining with Iba1- and iNOS-specific antibodies (new Fig.7D and Suppl.Fig.13A). Our specificity control also included TB lesions in mice that do not carry the YFP reporter and did not express the YFP signal, as reported elsewhere (Yabaji et al., BioRxiv, https://doi.org/10.1101/2023.10.17.562695).
Author: The heterogeneity of pulmonary TB lesions has been widely acknowledged in clinic and highlighted in recent experimental studies. In our model of chronic pulmonary TB (described in detail in Yabaji et al., https://doi.org/10.1101/2025.02.28.640830 and https://doi.org/10.1101/2023.10.17.562695) the development of pulmonary TB lesions is not synchronized, i.e. the lesions are heterogeneous between the animals and within individual animals at the same timepoint. Therefore, we performed a lesion stratification where individual lesions were classified by a certified veterinary pathologist in a blinded manner based on their morphology (H&E) and acid fast staining of the bacteria, as depicted in Suppl.Fig.8.
Author: These data is now presented in Suppl.Fig.11 and following the reviewer’s comment, we moved reference to panels 11D – E up to previous paragraph in the main text, where it naturally belongs . We also edited the figure legend to refer to the list of IFN-inducible genes compiled from the literature that is discussed in the text. We appreciate the reviewer’s suggestion that helped us improve the text clarity. The inputs for the Hallmark pathway analysis are presented in Suppl.Tables 7 and 8, as described in the text.
Author: We thoroughly revised this figure to address the reviewer’s concern about the lack of clarity. We provide individual channels for each marker in Fig.7D – E and Suppl.Fig.13F. We have to use DAPI in these presentation in gray scale to better visualize other markers.
Author: Currently these data demonstrating the co-localization of stress markers phospho-c-Jun and Chac1 with YFP are presented in Fig.7E (images) and Suppl.Fig.13D (quantification). The co-localization of stress markers phospho-cJun and Chac1 with iNOS is presented in Suppl.Fig.13F (images) and Suppl.Fig.13E (quantification). We agree that some iNOS+ cells are Iba1-negative (Fig.7D). We manually quantified percentages of Iba1+iNOS+ double positive cells and demonstrated that they represent the majority of the iNOS+ population(Suppl.Fig.13A). Regarding the required FACS analysis, we focus on spatial approaches because of the heterogeneity of the lesions that would be lost if lungs are dissociated for FACS. We are working on spatial transcriptomics at a single cell resolution that preserves spatial organization of TB lesions to address the reviewer’s comment and will present our results in the future.
Author: We have included the details of time post infection in figure legends for Fig.7, Suppl.Figures 8, 9, 12B, 13, 14A of the revised manuscript. We have performed staining with CD11b, CD206 and CD163 to differentiate the recruited and lung resident macrophages and determined that in chronic pulmonary TB lesions in our model the vast majority of macrophages are recruited CD11b+, but not resident (CD206+ and CD163+) macrophages. These data is presented in another manuscript (Yabaji et al., BioRxiv https://doi.org/10.1101/2023.10.17.562695).
Spatial sequencing: The manuscript would highly profit from more data on that. It would be very interesting to check for the DEGs and show differential spatial distribution. Expression of marker genes should be inferred to further define macrophage subsets (e.g. alveolar macrophages, interstitial macrophages, recruited macrophages) and see if these subsets behave differently within the same lesion but also between the lesions. Additional bioinformatic approaches might allow you to investigate cell-cell interactions. There is a lot of potential with such a dataset, especially from TB lesions, that would elevate your findings and prove interesting to the TB field.
"Thus, progression from the Mtb-controlling paucibacillary to non-controlling multibacillary TB lesions in the lungs of TB susceptible mice was mechanistically linked with a pathological state of macrophage activation characterized by escalating stress (as evidenced by the upregulation phospho-cJUN, PKR and Chac1), the upregulation of IFNβ and the IFN-I pathway hyperactivity, with a concurrent reduction of IFNγ responses." To really show the upregulation within macrophages and their activation, a more detailed IF microscopy with the inclusion of additional macrophage markers needs to be provided. Flow cytometry would enable analysis for the differences between alveolar and interstitial macrophages, as well as for monocytes. As however, it seems that the majority of iNOS, as well as the stress associated markers are not produced by Iba1+ cells. Analyzing granulocytes and T lymphocytes should be considered.
Author: We appreciate the reviewer’s suggestion. Indeed, our model provides an excellent opportunity to investigate macrophage heterogeneity and cell interactions within chronic TB lesions. We are working on spatial transcriptomics at a single cell resolution that would address the reviewer’s comment and will present our results in the future.
In agreement with classical literature the overwhelming majority of myeloid cells in chronic pulmonary TB lesions is represented by macrophages. Neutrophils are detected at the necrotic stage, but our study is focused on pre-necrotic stages to reveal the earlier mechanisms pre-disposing to the necrotization. We never observed neutrophils or T cells expressing iNOS in our studies.
Author: We have carefully considered the impact of fixation time on fluorescence and have separately analyzed the non-infected and infected samples to address this concern.
For the non-infected samples, we examined the effect of TNF in both B6 and B6.Sst1S backgrounds, ensuring that a consistent fixation protocol (10 min) was applied across all experiments without Mtb infection.
For the Mtb infection experiments, we employed an optimized fixation protocol (30 min) to ensure that Mtb was killed before handling the plates, which is critical for preserving the integrity of the samples. In this context, we compared B6 and B6.Sst1S samples to evaluate the effects of fixation and Mtb infection on lipid peroxidation (LPO) induction.
We believe this approach balances the need for experimental consistency with the specific requirements for handling infected cells, and we have revised the manuscript to reflect this clarification.
Author: We have conducted experiments to measure ROS production in both B6 and B6.Sst1S BMDMs and demonstrated higher levels of ROS in the susceptible BMDMs after prolonged TNF stimulation (new Fig.3I – J and Suppl. Fig. 3G). Additionally, we have previously published a comparison of ROS production between B6 and B6.Sst1S by FACS (PMID: 33301427), which also supports the findings presented here.
Author: We have included the untreated control to the Suppl. Fig. 2C (currently Suppl. Fig. 2D) in the revised manuscript.
Author: The data in Fig.4D (Fig.4E in the revised manuscript) and Suppl.Fig.3F (currently Suppl.Fig.4C) represent separate experiments and this variation between experiments is commonly observed in qRT-PCR that is affected by slight variations in the expression in unsimulated controls used for the normalization and the kinetics of the response. This 2-4 fold difference between same treatments in separate experiments, as compared to 30 – 100 fold and higher induction by TNF does not affect the data interpretation.
Author: To ensure that the observed effects were not confounded by cytotoxicity, we determined non-toxic concentrations of the CSF1R inhibitors during 48h of incubation and used them in our experiments that lasted for 24h. To address this valid comment, we have included cell viability data in the revised manuscript to confirm that the treatments did not result in cell death (Suppl. Fig. 6D). This experiment rejected our hypothesis that CSF1 driven Myc expression could be involved in the Ifnb superinduction. Other effects of CSF1R inhibitors on type I IFN pathway are intriguing but are beyond the scope of this study.
Author: We thank the reviewer for bringing this inadvertent field replacement in the single phospho-cJun channel to our attention. However, the quantification of Iba1+phospho-cJun+ double positive cells in Suppl.Fig.12 and our conclusions were not affected. In the revised manuscript, images and quantification of phospho-cJun and Iba1 co-expression are shown in new Suppl.Fig.13B and C, respectively. We have also updated the figure legends to denote the number of lesions analyzed and statistical tests. Specifically, lesions from 6–8 mice per group (paucibacillary and multibacillary) were evaluated. Each dot in panels Suppl.Fig.13 represent individual lesions.
Author: The difference in MYC mRNA expression tended to be higher in TB patients with poor outcomes, but it was not statistically significant after correction for multiple testing. The upregulation of Myc pathway in the blood transcriptome associated with TB treatment failure most likely reflects greater proportion of immature cells in peripheral blood, possibly due to increased myelopoiesis. Pathway analysis of the differentially expressed genes revealed that treatment failures were associated with the following pathways relevant to this study: NF-kB Signaling, Flt3 Signaling in Hematopoietic Progenitor Cells (indicative of common myeloid progenitor cell proliferation), SAPK/JNK Signaling and Senescence (possibly indicative of oxidative stress). The upregulation of these pathways in human patients with poor TB treatment outcomes correlates with our findings in TB susceptible mice.
Author: We are well aware of the technical difficulties associated with using mouse on mouse staining. In those cases, we use rabbit anti-mouse isotype specific antibodies specifically developed to avoid non-specific background (Abcam cat#ab133469). Each antibody panel for fluorescent multiplexed IHC is carefully optimized prior to studies. We did not use any primary mouse antibodies in the final version of the manuscript and, hence, removed this mention from the Methods.
Author: In collaboration with the Vance laboratory, we tested effects of type I IFN pathway inhibition in B6.Sst1S mice on TB susceptibility: either type I receptor knockout or blocking antibodies increased their resistance to virulent Mtb (published in Ji et al., 2019; PMID 31611644). Unfortunately, blocking Myc using neutralizing antibodies in vivo is not currently achievable. Specifically blocking Myc using small molecule inhibitors in vivo is notoriously difficult, as recognized in oncology literature. We consider using small molecule inhibitors of either Myc translation or specific pathways downstream of Myc in the future.
Author: The reviewer refers to the first version of this manuscript uploaded to BioRxiv, but it has never been published. We continued this work and greatly expanded our original observations, as presented in the current manuscript. Therefore, we do not consider the previous version as an independent manuscript and, therefore, do not cite it.
Author: Thank you, we corrected the gene and protein names according to current nomenclature.
Minor points: - Fig. 1: Please provide some DEGs that explain why you used this resolution for the clustering of the scRNAseq data and that these clusters are truly distinct from each other.
Author: Differential gene expression in clusters is presented in Suppl.Fig.1C (interferon response) and Suppl.Fig.1D (stress markers and interferon response previously established in our studies).
Author: The lines indicate pseudotime trajectories of B6 (magenta) and B6.Sst1S (green) BMDMs.
Author: This cluster was not different between B6 and B6.Sst1S, so it was not useful for drawing the strain-specific trajectories.
Author: We have included the scale in revised manuscript (Fig.1E,G,H and Suppl.Fig.1C-D).
Author: We revised the panels’ order accordingly
Author: We added the inhibitor only controls to Fig. 5D - H. We also indicated the number of replicates in the updated Fig.5 legend.
Author: The Fig. 7A shows 3D images with all the stacks combined.
Author: We have removed this panel in the revised version and replaced it with better images.
Author: The Suppl. Fig.1A shows the relative proportions of either naïve (R and S) or TNF-stimulated (RT and ST) B6 or B6.Sst1S macrophages within individual single cell clusters depicted in Fig.1B. The color code is shown next to the graph on the right.
Author: We updated the headings, as in Fig.1C. The dots represent individual cells expressing Sp110 mRNA (upper panels) and Sp140 mRNA (lower panels).
Author: We resized the scale bar to make it visible and presented in Suppl. Fig.3E (previously Suppl. Fig.3C).
Sup. Fig. 3D: There is not figure legend or the legend to C-E is wrong.
Sup. Fig. 3F, G: You do not state to what the data is relative to.
Author: We identified an error in the Suppl.Fig.3 legend referring to specific panels. The Suppl.Fig.3 legend has been updated accordingly. New panels were added and Suppl.Fig.3-G panels are now Suppl.Fig.4C-D.
Author: Following the reviewer’s comment, we repeated statistical analysis to include correction for multiple comparisons and revised the figure and legend accordingly.
Author: This previous Sup. Fig 4 is now Sup. Fig. 5. The “TE@” is a leftover label from the bioinformatics pipeline, referring to “Transposable Element”. We apologize for this confusion and have removed these extraneous labels. We have also added transposon names of the LTR (MMLV30 and RTLV4) and L1Md to Suppl.Fig.5A and 5B legend, respectively.
Author: We apologize for the missing label for the y-scale on the right which represents the mRNA expression level for the SetDB1 gene, which has a much lower steady state level than the LINE L1Md, so we plotted two Y-scales to allow both the gene and transposon to be visualized on this graph.
Author: We apologize for the missing labels for the y-scales of these coverage plots, which were originally meant to just show a qualitative picture of the small RNA sequencing that was already quantitated by the total amounts in Sup. 4B. We have added thee auto-scaled Y-scales to Sup. 4C and improved the presentation of this figure.
Author: We recognize that the reviewer refers to Suppl.Fig.6A-B (Suppl.Fig.7A-B in the revised manuscript). We did not add antibodies to live cells. The figure legend describes staining with 4-HNE-specific antibodies 3 days post Mtb infection.
Author: We discussed our lesion classification according to histopathology and bacterial loads above. Of note, in the revised manuscript we simplified our classification to denote paucibacillary and multibacillary lesions only. We agree with reviewers that designation lesions as early, intermediate and advanced lesions were based on our assumptions regarding the time course of their progression from low to high bacterial loads.
Author: We replaced this panel with clearer images in Suppl.Fig.12B.
Author: Suppl.Fig.11A (now Suppl.Fig.13B) shows the low-magnification images of TB lesions. In the Fig. 7 and Suppl. Fig. 13F of the revised manuscript we provided images for individual markers.
Author: X axis of Suppl.Fig.15A represent pre-defined molecular signature gene sets MSigDB) in Gene Set Enrichment Analysis (GSEA) database (https://www.gsea-msigdb.org/gsea/msigdb). On Y axis is area under curve (AUC) score for each gene set.
Author: The Myc upregulated gene set myc_up was identified among top gene sets associated with treatment failure using unbiased ssGSEA algorithm. We agree with the reviewer that not every gene in the myc_up gene set correlates with the treatment outcome. But the association of the gene set is statistically significant, as presented in Suppl.Fig.15B – C.
Author: We have included clearly visible scale bars to all the microscopy images in the revised version.
Author: We followed this useful suggestion and selected consistent color codes for B6 and B6.Sst1S groups to enhance clarity throughout the revised manuscript.
Within the methods section: - At which concentration did you use the IFNAR antibody and the isotype?
Author: We updated method section by including respective concentrations in the revised manuscript.
Author: Yes, the mice are specific pathogen free. We used 10 - 14 week old mice for Mtb infection.
Author: We obtain LCCM by collecting the supernatant from L929 cell line that form confluent monolayer according to well-established protocols for LCCM collection. The supernatants are filtered through 0.22 micron filters to exclude contamination with L929 cells and bacteria. The medium is prepared in 500 ml batches that are sufficient for multiples experiments. Each batch of L929-conditioned medium is tested for biological activity using serial dilutions.
Author: We infected mice with M. bovis BCG Pasteur subcutaneously in the hock using 106 CFU per mouse.
Author: In 96 well plates, we seed 12,000 cells per well and allow the cells to grow for 4 days to reach confluency (approximately 50,000 cells per well). For a 6-well plate, we seed 2.5 × 10^5 cells per well and culture them for 4 days to reach confluency. For a 24-well plate, we seed 50,000 cells per well and keep the cells in media for 4 days before starting any treatments. This ensures that the cells are in a proliferative or near-confluent state before beginning the stimulation or inhibitor treatments. Our detailed protocol is published in STAR Protocols (Yabaji et al., 2022; PMID 35310069).
Author: For bulk sequencing we used 3 RNA samples for each condition. The samples were sequenced at Boston University Microarray & Sequencing Resource service using Illumina NextSeq™ 2000 instrument.
Author: We used one sample per condition. For the mitochondrial cutoff, we usually base it off of the total distribution. There is no "universal" threshold that can be applied to all datasets. Thresholds must be determined empirically.
Author: We considered 50 PCAs, this information was added to Methods
Author: The following package versions were used: Seurat v4.0.4, VAM v1.0.0, Slingshot v2.3.0, SingleCellTK v2.4.1, Celda v1.10.0, we added this information to Methods.
Author: Human blood samples were collected at five sites, as described in the updated Methods section and two RNAseq batches were processed separately that required batch correction.
Author: We performed the IF at 4oC. We included the details in revised version.
Reviewer #2 (Significance (Required)):
Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection. However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary The authors use a mouse model designed to be more susceptible to M.tb (addition of sst1 locus) which has granulomatous lesions more similar to human granulomas, making this mouse highly relevant for M.tb pathogenesis studies. Using WT B6 macrophages or sst1B6 macrophages, the authors seek to understand the how the sst1 locus affects macrophage response to prolonged TNFa exposure, which can occur during a pro-inflammatory response in the lungs. Using single cell RNA-seq, revealed clusters of mutant macrophages with upregulated genes associated with oxidative stress responses and IFN-I signaling pathways when treated with TNF compared to WT macs. The authors go on to show that mutant macrophages have decreased NRF2, decreased antioxidant defense genes and less Sp110 and Sp140. Mutant macrophages are also more susceptible to lipid peroxidation and iron-mediated oxidative stress. The IFN-I pathway hyperactivity is caused by the dysregulation of iron storage and antioxidant defense. These mutant macrophages are more susceptible to M.tb infection, showing they are less able to control bacterial growth even in the presence of T cells from BCG vaccinated mice. The transcription factor Myc is more highly expressed in mutant macs during TNF treatment and inhibition Myc led to better control of M.tb growth. Myc is also more abundant in PBMCs from M.tb infected humans with poor outcomes, suggesting that Myc should be further investigated as a target for host-directed therapies for tuberculosis.
Major Comments Isotypes for IF imaging and confocal IF imaging are not listed, or not performed. It is a concern that the microscopy images throughout the manuscript do not have isotype controls for the primary antibodies.
Fig 4 (and later) the anti-IFNAR Ab is used along with the Isotype antibody, Fig 4I does not show the isotype. Use of the isotype antibody is also missing in later figures as well as Fig 3J. Why was this left off as the proper control for the Ab?
Author: We addressed the comment in revised manuscript as described above in summary and responses to reviewers 1 and 2. Isotype controls for IFNAR1 blockade were included in Fig.3M (previously 3J), Fig. 4I, Suppl.Fig.4G (previously Fig.4I), and updated Fig.4C -E, Fig.6L-M, Suppl.Fig.4F -G, 7I.
Conclusions drawn by the authors from some of the WB data are worded strongly, yet by eye the blots don't look as dramatically different as suggested. It would be very helpful to quantify the density of bands when making conclusions. (for example, Fig 4A).
Author: We added the densitometry of Western blot values after normalization above each lane in Fig.2A – C, Fig.3C – D and 3K; Fig.4A – B, Fig5B,C,I,J.
Fig 5A is not described clearly. If the gene expression is normalized to untreated B6 macs, then the level of untreated B6 macs should be 1. In the graph the blue bars are slightly below 1, which would not suggest that levels "initially increased and subsequently downregulated" as stated in the text. It seems like the text describes the protein expression but not the RNA expression. Please check this section and more clearly describe the results.
Author: We appreciate the reviewer’s comment and modified the text to specify the mRNA and protein expression data, as follows:
“We observed that Myc was regulated in an sst1-dependent manner: in TNF-stimulated B6 wild type BMDMs, c-Myc mRNA was downregulated, while in the susceptible macrophages c-Myc mRNA was upregulated (Fig.5A). The c-Myc protein levels were also higher in the B6.Sst1S cells in unstimulated BMDMs and 6 – 12 h of TNF stimulation (Fig.5B)”.
Also, why look at RNA through 24h but protein only through 12h? If c-myc transcripts continue to increase through 24h, it would be interesting to see if protein levels also increase at this later time point.
Author: The time-course of Myc expression up to 24 h is presented in new panels Fig. 5I-5J
It demonstrates the decrease of Myc protein levels at 24 h. In the wild type B6 BMDMs the levels of Myc protein significantly decreased in parallel with the mRNA suppression presented in Fig.5A. In contrast , we observed the dissociation of the mRNA and protein levels in the sst1-mutant BMDMs at 12 and 24 h, most likely, because the mutant macrophages develop integrated stress response (as shown in our previous publication by Bhattacharya et al., JCI, 2021) that is known to inhibit Myc mRNA translation.
Fig 5J the bands look smaller after D-JNK1 treatment at 6 and 12h though in the text is says no change. Quantifying the bands here would be helpful to see if there really is no difference.
Author: This experiment was repeated twice, and the average normalized densitometry values are presented in the updated Fig.5J. The main question addressed in this experiment was whether the hyperactivity of JNK in TNF-stimulated sst1 mutant macrophages contributed to Myc upregulation, as was previously shown in cancer. Comparing effects of JNK inhibition on phospho-cJun and c-Myc protein levels in TNF stimulated B6.Sst1S macrophages (updated Fig.5J), we concluded that JNK did not have a major role in c-Myc upregulation in this context.
Section 4, third paragraph, the conclusion that JNK activation in mutant macs drives pathways downstream of Myc are not supported here. Are there data or other literature from the lab that supports this claim?
Author: This statement was based on evidence from available literature where JNK was shown to activate oncogens, including Myc. In addition, inhibition of Myc in our model upregulated ferritin (Fig.Fig.5C), reduced the labile iron pool, prevented the LPO accumulation (Fig.5D - G) and inhibited stress markers (Fig.5H). However, we do not have direct experimental evidence in our model that Myc inhibition reduces ASK1 and JNK activities. Hence, we removed this statement from the text and plan to investigate this in the future.
Fig 6N Please provide further rationale for the BCG in vivo experiment. It is unclear what the hypothesis was for this experiment.
Author: In the current version BCG vaccination data is presented in Suppl.Fig.14B. We demonstrate that stressed BMDMs do not respond to activation by BCG-specific T cells (Fig.6J) and their unresponsiveness is mediated by type I interferon (Fig.6L and 6M). The observed accumulation of the stressed macrophages in pulmonary TB lesions of the sst1-susceptible mice (Fig.7E, Suppl.Fig.13 and 14A) and the upregulation of type I interferon pathway (Fig.1E,1G, 7C), Suppl.Fig.1C and 11) suggested that the effect of further boosting T lymphocytes using BCG in Mtb-infected mice will be neutralized due to the macrophage unresponsiveness. This experiment provides a novel insight explaining why BCG vaccine may not be efficient against pulmonary TB in susceptible hosts.
The in vitro work is all concerning treatment with TNFa and how this exposure modifies the responses in B6 vs sst1B6 macrophages; however, this is not explored in the in vivo studies. Are there differences in TNFa levels in the pauci- vs multi-bacillary lesions that lead to (or correlate with) the accumulation of peroxidation products in the intralesional macrophages. How to the experiments with TNFa in vitro relate back to how the macrophages are responding in vivo during infection?
Author: Our investigation of mechanisms of necrosis of TB granulomas stems from and supported by in vivo studies as summarized below.
This work started with the characterization necrotic TB granulomas in C3HeB/FeJ mice in vivo followed by a classical forward genetic analysis of susceptibility to virulent Mtb in vivo.
That led to the discovery of the sst1 locus and demonstration that it plays a dominant role in the formation of necrotic TB granulomas in mouse lungs in vivo. Using genetic and immunological approaches we demonstrated that the sst1 susceptibility allele controls macrophage function in vivo (Yan, et al., J.Immunol. 2007) and an aberrant macrophage activation by TNF and increased production of Ifn-b in vitro (He et al. Plos Pathogens, 2013). In collaboration with the Vance lab we demonstrated that the type I IFN receptor inactivation reduced the susceptibility to intracellular bacteria of the sst1-susceptible mice in vivo (Ji et al., Nature Microbiology, 2019). Next, we demonstrated that the Ifnb1 mRNA superinduction results from combined effects of TNF and JNK leading to integrated stress response in vitro (Bhattacharya, JCI, 2021). Thus, our previous work started with extensive characterization of the in vivo phenotype that led to the identification of the underlying macrophage deficiency that allowed for the detailed characterization of the macrophage phenotype in vitro presented in this manuscript. In a separate study, the Sher lab confirmed our conclusions and their in vivo relevance using Bach1 knockout in the sst1-susceptible B6.Sst1S background, where boosting antioxidant defense by Bach1 inactivation resulted in decreased type I interferon pathway activity and reduced granuloma necrosis. We have chosen TNF stimulation for our in vitro studies because this cytokine is most relevant for the formation and maintenance of the integrity of TB granulomas in vivo as shown in mice, non-human primates and humans. Here we demonstrate that although TNF is necessary for host resistance to virulent Mtb, its activity is insufficient for full protection of the susceptible hosts, because of altered macrophages responsiveness to TNF. Thus, our exploration of the necrosis of TB granulomas encompass both in vitro and extensive in vivo studies.
Minor comments Introduction, while well written, is longer than necessary. Consider shortening this section. Throughout figures, many graphs show a fold induction/accumulation/etc, but it is rarely specified what the internal control is for each graph. This needs to be added. Paragraph one, authors use the phrase "the entire IFN pathway was dramatically upregulated..." seems to be an exaggeration. How do you know the "entire" IFN pathway was upregulated in a dramatic fashion?
Author: 1) We shortened the introduction and discussion; 2) verified that figure legends internal controls that were used to calculate fold induction; 3) removed the word “entire” to avoid overinterpretation.
Figures 1E, G and H and supp fig 1C, the heat maps are missing an expression key Section 2 second paragraph refers to figs 2D, E as cytoplasmic in the text, but figure legend and y-axis of 2E show total protein.
Author: The expression keys were added to Fig.1E,G,H, Fig.7C, Suppl.Fig.1C and 1D and Suppl.Fig.11A of the revised manuscript.
Section 3 end of paragraph 1 refers to Fig 3h. Does this also refer to Supp Fig 3E?
Author: Yes, Fig.3H shows microscopy of 4-HNE and Suppl.Fig.3H shows quantification of the image analysis. In the revised manuscript these data are presented in Fig.3H and Suppl.Fig.3F. The text was modified to reflect this change.
Supplemental Fig 3 legend for C-E seems to incorrectly also reference F and G.
Author: We corrected this error in the figure legend. New panels were added to Suppl.Fig.3 and previous Suppl.Fig.3F and G were moved to Suppl.Fig.4 panels C and D of the revise version.
Fig 3K, the p-cJun was inhibited with the JNK inhibitor, however it’s unclear why this was done or the conclusion drawn from this experiment. Use of the JNK inhibitor is not discussed in the text.
Author: The JNK inhibitor was used to confirm that c-Jun phosphorylation in our studies is mediated by JNK and to compare effects of JNK inhibition on phospho-cJun and Myc expression. This experiment demonstrated that the JNK inhibitor effectively inhibited c-Jun phosphorylation but not Myc upregulation, as shown in Fig.5I-J of the revised manuscript.
Fig 4 I and Supp Fig 3 H seem to have been swapped? The graph in Fig 4I matches the images in Supp Fig 3I. Please check.
Author: We reorganized the panels to provide microscopy images and corresponding quantification together in the revised the panels Fig. 4H and Fig. 4I, as well as in Suppl. Fig. 4F and Suppl. Fig. 4G.
Fig 6, it is unclear what % cell number means. Also for bacterial growth, the data are fold change compared to what internal control?
Author: We updated Fig.6 legend to indicate that the cell number percentages were calculated based on the number of cells at Day 0 (immediately after Mtb infection). We routinely use fixable cell death staining to enumerate cell death. Brief protocol containing this information is included in Methods section. The detailed protocol including normalization using BCG spike has been published – Yabaji et al, STAR Protocols, 2022. Here we did not present dead cell percentage as it remained low and we did not observe damage to macrophage monolayers. This allows us to exclude artifacts due to cell loss. The fold change of Mtb was calculated after normalization using Mtb load at Day 0 after infection and washes.
Fig 7B needs an expression key
Author: The expression keys was added to Fig.7C (previously Fig. 7B).
Supp Fig 7 and Supp Fig 8A, what do the arrows indicate?
Author: In Suppl.Fig.8 (previously Suppl.Fig.7) the arrows indicate acid fast bacilli (Mtb).
In figures Fig.7A and Suppl.Fig.9A arrows indicate Mtb expressing fluorescent reporter mCherry. Corresponding figure legends were updated in the revised version.
Supp Fig 9A, two ROI appear to be outlined in white, not just 1 as the legend says Methods:
Author: we updated the figure legend.
Certain items are listed in the Reagents section that are not used in the manuscript, such as necrostatin-1 or Z-VAD-FMK. Please carefully check the methods to ensure extra items or missing items does not occur.
Author: These experiments were performed, but not included in the final manuscript. Hence, we removed the “necrostatin-1 or Z-VAD-FMK” from the reagents section in methods of revised version.
Western blot, method of visualizing/imaging bands is not provided, method of quantifying density is not provided, though this was done for fig 5C and should be performed for the other WBs.
Author: We used GE ImageQuant LAS4000 Multi-Mode Imager to acquire the Western blot images and the densitometric analyses were performed by area quantification using ImageJ. We included this information in the method section. We added the densitometry of Western blot values after normalization above each lane in Fig.2A – C, Fig.3C – D and 3K; Fig.4A – B, Fig5B,C,I,J.
Reviewer #3 (Significance (Required)):
The work of Yabaji et al is of high significance to the field of macrophage biology and M.tb pathogenesis in macrophages. This work builds from previously published work (Bhattacharya 2021) in which the authors first identified the aberrant response induced by TNF in sst1 mutant macrophages. Better understanding how macrophages with the sst1 locus respond not only to bacterial infection but stimulation with relevant ligands such as TNF will aid the field in identifying biomarkers for TB, biomarkers that can suggest a poor outcome vs. "cure" in response to antibiotic treatment or design of host-directed therapies. This work will be of interest to those who study macrophage biology and who study M.tb pathogenesis and tuberculosis in particular. This study expands the knowledge already gained on the sst1 locus to further determine how early macrophage responses are shaped that can ultimately determine disease progression. Strengths of the study include the methodologies, employing both bulk and single cell-RNA seq to answer specific questions. Data are analyze using automated methods (such as HALO) to eliminated bias. The experiments are well planned and designed to determine the mechanisms behind the increased iron-related oxidative stress found in the mutant macrophages following TNF treatment. Also, in vivo studies were performed to validate some of the in vitro work. Examining pauci-bacillary lesions vs multi-bacillary lesions and spatial transcriptomics is a significant strength of this work. The inclusion of human data is another strength of the study, showing increased Myc in humans with poor response to antibiotics for TB. Limitations include the fact that the work is all done with BMDMs. Use of alveolar macrophages from the mice would be a more relevant cell type for M.tb studies. AMs are less inflammatory, therefore treatment with TNF of AMs could result in different results compared to BMDMs. Reviewer's field of expertise: macrophage activation, M.tb pathogenesis in human and mouse models, cell signaling Limitations: not qualified to evaluate single cell or bulk RNA-seq technical analysis/methodology or spatial transcriptomics analysis.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary
The authors use a mouse model designed to be more susceptible to M.tb (addition of sst1 locus) which has granulomatous lesions more similar to human granulomas, making this mouse highly relevant for M.tb pathogenesis studies. Using WT B6 macrophages or sst1B6 macrophages, the authors seek to understand the how the sst1 locus affects macrophage response to prolonged TNFa exposure, which can occur during a pro-inflammatory response in the lungs. Using single cell RNA-seq, revealed clusters of mutant macrophages with upregulated genes associated with oxidative stress responses and IFN-I signaling pathways when treated with TNF compared to WT macs. The authors go on to show that mutant macrophages have decreased NRF2, decreased antioxidant defense genes and less Sp110 and Sp140. Mutant macrophages are also more susceptible to lipid peroxidation and iron-mediated oxidative stress. The IFN-I pathway hyperactivity is caused by the dysregulation of iron storage and antioxidant defense. These mutant macrophages are more susceptible to M.tb infection, showing they are less able to control bacterial growth even in the presence of T cells from BCG vaccinated mice. The transcription factor Myc is more highly expressed in mutant macs during TNF treatment and inhibition Myc led to better control of M.tb growth. Myc is also more abundant in PBMCs from M.tb infected humans with poor outcomes, suggesting that Myc should be further investigated as a target for host-directed therapies for tuberculosis.
Major Comments
Isotypes for IF imaging and confocal IF imaging are not listed, or not performed. It is a concern that the microscopy images throughout the manuscript do not have isotype controls for the primary antibodies. Fig 4 (and later) the anti-IFNAR Ab is used along with the Isotype antibody, Fig 4I does not show the isotype. Use of the isotype antibody is also missing in later figures as well as Fig 3J. Why was this left off as the proper control for the Ab? Conclusions drawn by the authors from some of the WB data are worded strongly, yet by eye the blots don't look as dramatically different as suggested. It would be very helpful to quantify the density of bands when making conclusions. (for example, Fig 4A) Fig 5A is not described clearly. If the gene expression is normalized to untreated B6 macs, then the level of untreated B6 macs should be 1. In the graph the blue bars are slightly below 1, which would not suggest that levels "initially increased and subsequently downregulated" as stated in the text. It seems like the text describes the protein expression but not the RNA expression. Please check this section and more clearly describe the results. Also, why look at RNA through 24h but protein only through 12h? If c-myc transcripts continue to increase through 24h, it would be interesting to see if protein levels also increase at this later time point. Fig 5J the bands look smaller after D-JNK1 treatment at 6 and 12h though in the text is says no change. Quantifying the bands here would be helpful to see if there really is no difference. Section 4, third paragraph, the conclusion that JNK activation in mutant macs drives pathways downstream of Myc are not supported here. Are there data or other literature from the lab that supports this claim? Fig 6N Please provide further rationale for the BCG in vivo experiment. It is unclear what the hypothesis was for this experiment. The in vitro work is all concerning treatment with TNFa and how this exposure modifies the responses in B6 vs sst1B6 macrophages; however, this is not explored in the in vivo studies. Are there differences in TNFa levels in the pauci- vs multi-bacillary lesions that lead to (or correlate with) the accumulation of peroxidation products in the intralesional macrophages. How to the experiments with TNFa in vitro relate back to how the macrophages are responding in vivo during infection?
Minor comments
Introduction, while well written, is longer than necessary. Consider shortening this section. Throughout figures, many graphs show a fold induction/accumulation/etc, but it is rarely specified what the internal control is for each graph. This needs to be added. Paragraph one, authors use the phrase "the entire IFN pathway was dramatically upregulated..." seems to be an exaggeration. How do you know the "entire" IFN pathway was upregulated in a dramatic fashion? Figures 1E, G and H and supp fig 1C, the heat maps are missing an expression key Section 2 second paragraph refers to figs 2D, E as cytoplasmic in the text, but figure legend and y-axis of 2E show total protein. Section 3 end of paragraph 1 refers to Fig 3h. Does this also refer to Supp Fig 3E? Supplemental Fig 3 legend for C-E seems to incorrectly also reference F and G. Fig 3K, the p-cJun was inhibited with the JNK inhibitor, however its unclear why this was done or the conclusion drawn from this experiment. Use of the JNK inhibitor is not discussed in the text. Fig 4 I and Supp Fig 3 H seem to have been swapped? The graph in Fig 4I matches the images in Supp Fig 3I. Please check.<br /> Fig 6, it is unclear what % cell number means. Also for bacterial growth, the data are fold change compared to what internal control? Fig 7B needs an expression key Supp Fig 7 and Supp Fig 8A, what do the arrows indicate? Supp Fig 9A, two ROI appear to be outlined in white, not just 1 as the legend says Methods: Certain items are listed in the Reagents section that are not used in the manuscript, such as necrostatin-1 or Z-VAD-FMK. Please carefully check the methods to ensure extra items or missing items does not occur. Western blot, method of visualizing/imaging bands is not provided, method of quantifying density is not provided, though this was done for fig 5C and should be performed for the other WBs.
The work of Yabaji et al is of high significance to the field of macrophage biology and M.tb pathogenesis in macrophages. This work builds from previously published work (Bhattacharya 2021) in which the authors first identified the aberrant response induced by TNF in sst1 mutant macrophages. Better understanding how macrophages with the sst1 locus respond not only to bacterial infection but stimulation with relevant ligands such as TNF will aid the field in identifying biomarkers for TB, biomarkers that can suggest a poor outcome vs. "cure" in response to antibiotic treatment or design of host-directed therapies. This work will be of interest to those who study macrophage biology and who study M.tb pathogenesis and tuberculosis in particular. This study expands the knowledge already gained on the sst1 locus to further determine how early macrophage responses are shaped that can ultimately determine disease progression. Strengths of the study include the methodologies, employing both bulk and single cell-RNA seq to answer specific questions. Data are analyze using automated methods (such as HALO) to eliminated bias. The experiments are well planned and designed to determine the mechanisms behind the increased iron-related oxidative stress found in the mutant macrophages following TNF treatment. Also, in vivo studies were performed to validate some of the in vitro work. Examining pauci-bacillary lesions vs multi-bacillary lesions and spatial transcriptomics is a significant strength of this work. The inclusion of human data is another strength of the study, showing increased Myc in humans with poor response to antibiotics for TB. Limitations include the fact that the work is all done with BMDMs. Use of alveolar macrophages from the mice would be a more relevant cell type for M.tb studies. AMs are less inflammatory, therefore treatment with TNF of AMs could result in different results compared to BMDMs.
Reviewer's field of expertise: macrophage activation, M.tb pathogenesis in human and mouse models, cell signaling
Limitations: not qualified to evaluate single cell or bulk RNA-seq technical analysis/methodology or spatial transcriptomics analysis
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Yabaji et al. investigated the effects of BMDMs stimulated with TNF from both WT and B6.Sst1S mice, which have previously been identified to contain the sst1 locus conferring susceptibility to Mycobacterium tuberculosis. They identified that B6.Sst1S macrophages show a superinduction of IFNß, which might be caused by increased c-Myc expression, expanding on the mechanistic insights made by the same group (Bhattacharya et al. 2021). Furthermore, prolonged TNF stimulation led to oxidative stress, which WT BMDMs could compensate for by the activation of the antioxidant defense via NRF2. On the other hand, B6.Sst1S BMDMs lack the expression of SP110 and SP140, co-activators of NRF2, and were therefore subjected to maintained oxidative stress. Yabaji et al. could link those findings to in vivo studies by correlating the presence of stressed and aberrantly activated macrophages within granulomas to the failure of Mtb control, as well as the progression towards necrosis. As the knowledge regarding Mtb progression and necrosis of granulomas is not yet well understood, findings that might help provide novel therapy options for TB are crucial.
Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection.
However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn.
In particular a) important controls are often missing, e.g. T-cells form non-immune mice in Fig. 6J, in F, effectivity of BCG in B6 mice in 6N; b) single experiments are shown throughout the manuscript, in particular western blots and histology without proper quantification and statistics, this is absolutely not acceptable; c) very few repetitions are shown in in vitro experiments, where there is no evidence for limitation in resources (usually not more than 3), it is not clear what "independent experiment means" - i.e. the robustness of the findings is questionable; d) data are often normalized multiple times, e.g. in the case of qPCR, and the methods of normalization are not clear (what house-keeping gene exactly?);
Moreover, experiments regarding IFN I signaling (e.g. short term TNF treatment of BMDMs to analyze LPO, making sure that the reporter mouse for IFNß works in vivo) and c-Myc (e.g. the increase after M-CSF addition might impact on other analysis as well and the experiments should be adjusted to control for this effect; MYC expression in the human samples) should be carefully repeated and evaluated to draw correct conclusions.
In addition, we would like to strongly encourage the authors to more precisely outline the experimental set-ups and figure legends, so that the reader can easily understand and follow them. In other words: The legends are - in part very - incomplete. In addition, the authors should be mindful of gene names vs. protein names and italicize where appropriate.
Finally, it is necessary that the connection to several overlapping preprints by the same author group is outlined, e.g. to https://www.biorxiv.org/content/10.1101/2020.12.14.422743v1.full.
part very - incomplete. In addition, the authors should be mindful of gene names vs. protein names and italicize where appropriate.
Finally, it is necessary that the connection to several overlapping preprints by the same author group is outlined, e.g. to https://www.biorxiv.org/content/10.1101/2020.12.14.422743v1.full.
Specific comments to the experiments and data:
Minor points:
Sup. 13D: Maybe you could reorder the patients, so that the impression is clearer, as right now only the top genes seem to show a diverging gene signature, while the rest gives the impression of an equal distribution.
The scale bars for many microscopy pictures are missing.
Within the methods section:
Overall, the manuscript has interesting findings with regard to macrophage responses in Mycobacteria tuberculosis infection.
However, in its current form there are several shortcomings, both with respect to the precision of the experiments and conclusions drawn.
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
We thank the editor for handling our manuscript and the reviewers for their constructive critiques. We are deeply convinced that the reviewers’ suggestions have substantially raised the quality and possible impact of our manuscript. We also like to thank the reviewers for their judgements that the subject of our manuscript is biologically and clinically significant and of high importance, and that our manuscript might help to increase focus and visibility for affected individuals.
New text passages in the manuscript are colored in red. Below is a point-by-point response to the reviewers’ comments.
Response to reviewer 1 comments
Major comments
Point 1-1
The authors performed qRT-PCR validation for markers of differentiation and hypoxia, with a major absence of VEGF and HIF1a. The paper would be strengthened by mention of these factors, especially by qRT-PCR or Western blot.
We thank the reviewer for the suggestion to include the bona fide hypoxia markers Vegfa and Hif1-alpha. We followed the suggestion and performed qRT-PCR on Vegfa transcripts at each tested condition (Figs. 1A,2A,3A,4A,5A,5D,5I,5N). As Hif1α is rather regulated on protein than on transcript level, we followed the advice to perform Western blots. We analyzed Hif1α protein levels on proliferating cells and quantified by normalization to actin (Figs. 1B,C and 5 B,C).
Point 1-2
Please provide justification of selection 0.5% as their hypoxic condition or perhaps repeat experiments in a less extreme environment to see if their conclusions still hold true.
We admit that our approach to use 0.5% hypoxia was a drastic challenge for the cells. It should be noted, however, that physiologic oxygen levels during pregnancy at times drop to lower than 1% (Hansen et al, 2020; Ng et al, 2017). In the first place, we had used oxygen levels lower than this, because we had wanted to ensure that we can detect responses by bulk RNA-seq with a limited number of samples. As we had many conditions to compare, we did not want to use more than 3-4 samples per condition. The fact that the cells showed normal proliferation underscores the fact that 0.5% O2 per se was not so low that it would be overly stressful to the cells.
Nevertheless, we are very grateful to the reviewer for the suggestion to include a milder hypoxic condition. We chose 2% O2, because this equals the physiological oxygen concentration shortly before the onset of cranial neural crest cell (CNCC) differentiation. We could recapitulate the phenomenon of impaired differentiation to chondrocytes, osteoblasts and smooth muscle cells at these mild hypoxic conditions, as shown by qRT-PCR and immunofluorescence of typical markers (Figs. 5D-R). Moreover, the differentiation-specific induction of the two central hypoxia-attenuated risk genes associated with orofacial clefts that we had identified by our bioinformatic analyses at 0.5% O2 (Boc and Cdo1), was still observable at 2% O2 (Figs. EV6C,D). Interestingly, in some rare cases, the attenuation of induction was lost or not as drastic as in 0.5% O2.
We are convinced that the experiments at 2% O2 strongly increased the relevance of our manuscript, because we thus detected that oxygen levels prevailing shortly before the onset of CNCC differentiation still can influence their differentiation. This leads to the conclusion that only slight decreases of intra-uterine oxygen levels indeed might interfere with correct differentiation of CNCC.
Point 1-3
Standard immunohistochemistry or histology of differentiated cells would strengthen the authors' claims of reduced differentiation under hypoxic conditions, e.g., Alcian blue, alk-phos or Alizarin red, and smooth muscle actin or other indicator.
We are grateful to the reviewer for the suggestion to include stainings of cells, as these stainings visualized the drastic effects of hypoxia on the cells. We performed immunofluorescent stainings against at least one marker protein for each differentiation paradigm. At 0.5% O2, each protein signals were nearly completely absent and cell morphology was disrupted (Figs. 2E,F, 3E, 4E). At 2% O2, we detected some more protein deposition than at 0.5%. Importantly, cells had retained their normal shape at mild hypoxia (Figs. 5H,M,R, EV5A).
Point 1-4
The authors identify a few genes that appear down-regulated in all three differentiation conditions. If it is within the scope of the study, it would strengthen the claim of these genes' function to show the effect of knock-down or knock-out for validation.
We thank the reviewer for the suggestion of gene knock-down or knock-out in order to prove functional relevance of our findings. As this would have been too much effort and beyond the scope of our study, we rather followed the suggestion of reviewer 2 (cf. points 2-6, and 2-8) that headed to the same direction: we mined publicly available sequence data on orofacial development for gene expression or marks of active enhancers. We found robust expression of the two central hypoxia-attenuated OFC risk genes Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells with the help of a single cell RNA-seq dataset (Figs. 7C-E, EV6B).
Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are grateful for the suggestion to circumvent gene knockouts by reviewer 2, as we think these data strongly emphasized the importance of our findings.
Point 1-5
Another major critique lies in the initial claim that proliferation of O9-1 cells is not significantly impacted by hypoxia. In figures 1E-H, photograms of the cells cultured 24 -72 hours and quantifications of live vs dead cells are shown as evidence for this argument. However, the increased density of cells in normoxic conditions may be a confounding variable in this assay. It would be interesting for the researchers to assess the percent of dead vs alive cells between normoxic and hypoxic conditions when the plates reach equivalent densities.
We apologize for the use of image sections from photographs with different cell densities. Of course, as demonstrated by our quantification, cell densities between 0.5% and 21% O2 in total were equal (cf. Figs. 1D,E). We therefore replaced the formerly used sections with new image sections with equal cell numbers.
We thank the reviewer for the suggestion to examine if cell numbers influence cell death rates. We followed this advice by several approaches: first, we seeded cells at different densities, incubated them for 72 h (the same time span where a minimal difference had been detected) and performed live/dead stainings (Fig. EV1B). The seeding density did not affect percentages of dead cells and the values were in the same range as in our initial experiment (Fig. 1J). Moreover, we performed TUNEL stainings of apoptotic cells at different time points to have an additional readout of cell death (Figs. 1K,L). As expected, the percentages of TUNEL-positive cells were identical between hypoxic and normoxic cells at all analyzed time points.
We therefore concluded that hypoxia does not influence the rate of cell death of proliferating CNCC and accordingly specified our wording in the results section.
Point 1-6
At end of Fig 1 section authors attempt to tie phenotypes observed in a cell line in vitro to the complex biological processes. They are not comparable and in vivo models would be better suited for these types of comparisons.
We apologize for the overconfident wording in our manuscript. Of course, our in vitro experiments cannot fully simulate the complex developmental processes taking place in vivo. We therefore changed the text to a more careful formulation. Moreover, we kept the wording in the discussion section that we cannot exclude that in the in vivo situation proliferation of CNCC is also affected by low oxygen levels because nutrients might not be available in such excess as they are in cell culture.
Point 1-7
Fig 2: if qRT-PCR did not show statistically different results between experimental and control groups why move on to bulk RNA seq?
We apologize that the sentence about statistical significance was misleading. What we wanted to express is that there was only a little difference (if any at all) between differentiated cells at 0.5% O2 and proliferating cells at 0.5% O2 or 21% O2. For the sake of clarity and readability, we deleted this misleading sentence.
Point 1-8
Fig 5: hypoxia this intense is going to affect broad range of biological processes and genes. Finding a few genes that are affected in extreme hypoxia that are also risk genes is highly unlikely. How can the authors be assured that these overlaps are actually significant and not just by chance?
We thank the reviewer for the suggestion to test for statistical significance. We tested significance of the overlap of respective gene sets (nsOFC vs. hyp-a; OFC vs. hyp-a) by Fisher’s exact test. We included Venn diagrams depicting the overlap and present the exact p-values (Figs. EV5C,D). In each case where overlap of genes occurred, p-values indicated significance.
Point 1-9
Would appreciate discussion on how examination of neural crest is relevant for OFC, as most animal models of OFC demonstrate the pathogenesis in embryonic epithelium or periderm, not in the neural crest. Defects in neural crest are associated with other congenital craniofacial anomalies such as craniosynostosis or complex (Tessier) clefts, not the typical orofacial cleft. Please revise rationale of study, interpretation of data and Discussion to specifically state how neural crest cells are involved in the pathogenesis of orofacial cleft.
We apologize for not pointing out enough the role of epithelial cells in the emergence of orofacial clefts. We revised our introduction, results and discussion sections in this regard and emphasized the role of epithelial cells. Importantly, we addressed the possible influence of the results gained in CNCC on epithelial cells by analyzing scRNA-seq data with the algorithm CellChat, as suggested by reviewer 2 (cf. point 2-8). We detected several cell communication pathways from CNCC to epithelial cells which contain components that are misexpressed upon hypoxia in our dataset (Figs. 7F-I). Therefore, during hypoxia, these pathways might influence epithelial cells and therefore indirectly cause orofacial clefts. We outlined this possible interplay in the discussion and briefly mentioned it in the abstract.
We have not discussed more strongly the role of CNCC in the emergence of OFC in the revised manuscript, because we did not want to put even more emphasis on this matter. Numerous studies have proven the contribution of cranial neural crest tissue to the emergence of orofacial clefts. This fact is also pointed out in several review articles about orofacial clefts. In most cases, this knowledge was achieved by mouse models, because tissue-specific conditional knockouts are feasible (in contrast to genetic studies on patients), usually via deletion with the Wnt1-Cre driver. Funato et al. give an excellent (but quite old) overview of mouse models in which the neural crest-specific knockout of a gene leads to emergence of OFC and lists 17 genes for which this is the case (Funato et al, 2015). Moreover, several recent studies also report on the emergence of orofacial clefts upon neural crest-specific deletion (Forman et al, 2024; Li et al, 2025). These include genes responsible for DNA methylation (Ulschmid et al, 2024), and a study on subunits of chromatin remodeling complexes that are necessary for correct transcription of their target genes, which was conducted by our group (Gehlen-Breitbach et al, 2023).
Minor comments
__Point 1-10 __
The author should replace "Final proof" in the introduction with "further evidence supporting."
We apologize for the incorrect wording. Of course, it is highly questionable if there is such a thing as final proof in life sciences. We re-phrased the text according to the reviewer’s suggestion.
Point 1-11
Authors are inconsistent when referring to Figures- sometimes they capitalize (i.e. 1J) and other times they leave lower case (i.e. 1i). Needs to be consistent throughout. Figures are not numbered.
We apologize for the inconsistency. We corrected the references to figures. Moreover, we apologize for the missing figure numbers. We also corrected this and included figure numbers.
Point 1-12
In figures authors would sometimes list 21% O2 first then 0.5% O2 or vice versa. (i.e. Fig on page 21 panels I, J, K). Needs to be consistent.
We again apologize for being inconsistent. We corrected the inconsistency in Fig. 1D. Now, 21% O2 is presented before/above 0.5% O2.
Point 1-13
Figures on pages 28, 29, 30 panel J and page 31 panel F: there is no legend on what the scale/measurement is for the difference in expression level other than it ranges from -1 to +3.
We thank the reviewer for the hint. We are aware that from the heatmaps we used one cannot infer relative expression rates of different genes or similar. If we would have considered expression strength of single genes, many of the gene-specific differing expression rates under the different conditions would have been hard to detect, as presentation would have been dominated by the differences in expression rates between genes. We therefore plotted gene-wise scaled expression.
We included an explanation of the procedure in the materials and methods section.
Point 1-14
Will the authors please comment on the one normoxic sample in Figure 1I that did not cluster with the others? Did this meet the standards to merit exclusion as an outlier?
We regret that the default scale of our plot of the principal component analysis is a bit misleading. This is the case because x-axis accounts for 80.3% of variance and y-axis only accounts for 6.1%. Therefore, the sample that might seem as an outlier actually met our standards. Nevertheless, we decided to keep the default scaling as is, in order not to embellish the graph (Fig. 1M).
Point 1-15
The authors refer to DEG as deregulated genes; while not strictly incorrect, the more standard usage is "differentially expressed genes." Please address.
We apologize for the incorrect explanation of the acronym. Of course, this was corrected in the revised manuscript.
Significance
This work on neural crest cells and hypoxia are biologically and clinically significant.
We are deeply grateful to the reviewer for considering our manuscript significant for both biologists and clinicians. We are convinced that the additional data we gathered in the course of the revision has significantly increased the importance of our work. Therefore, we once again express our gratitude to the reviewer for the valuable suggestions.
Response to reviewer 2 comments
Major comments
Point 2-1
The conclusions drawn from the experimental data are carefully formulated for the most part. One of the main concerns is that the cells were subjected to extreme hypoxic conditions, while it may be more biologically relevant to include a condition representing more mild hypoxia (e.g. 10%).
Please refer to the response to point 1-2.
Point 2-2
One of the opening claims regarding severe hypoxia only mildly affecting cell proliferation is not shown clearly, since no mitotic markers have been analyzed (i.e. KI67 or PCNA staining or a simple EdU incorporation assay). Thus, the claim that they assessed cell proliferation is not very convincing, even though cell death was analyzed.
We appreciate the reviewer’s suggestion to include a more thorough analysis of proliferation rates. We followed the advice and performed immunofluorescent stainings against Ki67 (accounting for cells in proliferative state) and phospho-histone H3 (accounting for cells undergoing mitosis). We performed this assay at different time points of culture in order to address the question if cell density might influence proliferation rates (Figs. 1F-H). Neither for Ki67 nor for pHH3 a difference was detected between 21% and 0.5% O2.
We are convinced that these analyses strengthened our initial findings and provide strong evidence that hypoxia does not influence proliferation rates of CNCC.
Point 2-3
Additionally, cellular morphology of the cells could be assessed (brightfield images), since previous studies observed that hypoxia can be an inducive factor in cranial neural crest and driving EMT (Scully et al. 2016; Barriga et al. 2013).
We thank the reviewer’s hint and followed the advice. We analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. EV1C-F). As outlined in the results section, we did not detect a difference in these parameters between 21% and 0.5% O2.
We included the second reference mentioned by the reviewer (Barriga et al, 2013) additionally to Scully et al. 2016 that had already been cited.
Point 2-4
Furthermore, in the RNA seq analysis of chondrogenic fate biased cells the authors draw a conclusion based on the proximity of the samples on the PCA plot, which is not very convincing. More careful analysis of the bulk RNA seq data sets they have generated for key marker genes will be more convincing (for example, a heatmap with selected genes would be a helpful representation).
We apologize for the rash and inaccurate conclusion based on proximity on PCA plots. We are grateful to the reviewer for the suggestion to include heatmaps with selected marker genes. Following this advice, we generated heatmaps on our bulk RNA-seq data with the GO terms specific for each differentiation paradigm (Figs. EV2F, EV3F, EV4F).
We are convinced that these maps are perfect additions to the heatmaps of the 200 top differentially-expressed genes that already had been included in the manuscript (Figs. 2K, 3J, 4J) and helped to strengthen our findings. For chondrocytes and smooth muscle cells, the new, GO-specific heatmaps perfectly recapitulated the phenomenon of hypoxia-attenuated induction. Interestingly, for osteoblasts, about half of the induced genes were hypoxia-attenuated, while the other half was induced stronger than under normoxia. This pointed to gene-specific mechanisms of hypoxia-dependent attenuation of transcription. Moreover, it shed light on a hypoxia-evoked complete dysregulation of transcriptional induction in osteoblasts, as nearly none of the genes was induced similar to normoxia.
__ __
Point 2-5
As mentioned above, a straight-forward and not time consuming experiment (given that it was assessed for a maximum of 72 hrs) would be to repeat the culture of NCCs and stain for mitotic markers, and quantify the number of positively stained cells over total cell numbers. Furthermore, it is not that demanding to add an experimental condition of less severe hypoxia in this assay.
We thank the reviewer for the suggestion and followed the advice (cf. point 2-2). The conducted experiments straightened our results, because the initially detected slight tendency to lower cell numbers at 0.5% O2 could thus be falsified: We did not detect any difference for Ki67 and pHH3 between 0.5% and 21% O2 at any analyzed time point (Figs. 1F-H). Moreover, percentages of dead or apoptotic cells at 0.5% O2 did not vary from 21% (Figs. 1I-L, EV1B). As we could not detect any difference in proliferation between 21% and 0.5% O2, we skipped the analysis of proliferating cells at 2% O2.
Point 2-6
Without underestimating how time consuming this would be, a major lack of experimental validation of the key genes they identify as important across all conditions may be the limitation of the study (this would be the difference between correlation and a probable underlying mechanism). This can be circumvented by more extensive reference to in situ data sets from mouse or existing data sets of single cell and spatial transcriptomics. A suggested targeted knock-down (for example with siRNA, shRNA or CRISPR) to validate a few of the key genes revealed as important could take a few months, with an estimated cost up to 5,000 euros per targeted gene and replicate.
We thank the reviewer for the notion that targeted knockdowns are beyond the scope of our manuscript. We are deeply grateful for the reviewer’s constructive criticism and for the suggestion to analyze publicly available data sets in order to gather data depicting in vivo relevance of our identified central hypoxia-attenuated OFC risk genes Boc, Cdo1 and Actg2 (cf. point 1-4). We detected robust expression of Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells by reanalysis of a scRNA-seq dataset (Figs. 7C-E, EV6B). This data comprised scRNA-seq of mouse embryonic maxillary prominence at stages E11.5 and E14.5 (Sun et al, 2023).
Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are deeply grateful for the suggestion, as we think these data strongly emphasize the importance of our findings.
Point 2-7
On methods, replicates and statistics: The experimental methods and approach are described efficiently and seem reproducible. All biological and technical replicates are of a minimum of N=3 from independent experiments and statistical tests have been run in all cases.
We thank the reviewer for the appreciation of our methodology, descriptions and statistical analyses.
Minor points
Point 2-8
One of the key implications of NCCs in palate formation is interaction with orofacial epithelial cells, which the authors also mention. It may be interesting to check if any signaling pathways involved in this crosstalk are affected under hypoxic conditions in their existing data sets of bulk RNA SEQ. This can be done by using available algorithms such as CellChat (Jin et al. 2021; Jin, Plikus, and Nie 2023), which has been reported to work also in bulk RNA seq data analysis (according to GitHub). The authors could mine the literature for existing RNA sequencing data that include osteoblasts, chondrocytes and epithelial cells (Ozekin, O'Rourke, and Bates 2023; Piña et al. 2023).
We are very grateful to the reviewer for this suggestion. Moreover, we like to thank the reviewer for mentioning exemplary references. We followed the advice by the methodology lined out in results and materials and methods sections: we applied the CellChat algorithm on a scRNA-seq dataset (Pina et al, 2023; Sun et al., 2023) to identify pathways containing components that are hypoxia-attenuated (and associated with a risk for OFC) in our bulk RNA-seq dataset (Figs. 7F-I). We did not use the datasets the reviewer had suggested, because the data were not available for us or the file format was not well-suited for the analysis with CellChat. Importantly, the dataset from Sun et al. has the following advantages over the suggested references: the complete maxillary prominence was used (instead of palatal shelves only), and different time points were included. Thus, we were able to follow the expression of genes of interest at different developmental stages before the onset of differentiation and after (Figs. 7C-E and EV6B). By our approach, we identified several OFC-related pathways that contain hypoxia-attenuated components such as BMP and FGF signaling and deposition of collagen and fibronectin (Figs. 7F-I). Importantly, the named pathways (and others) send outgoing communication patterns to epithelial cells. Therefore, hypoxia-attenuated gene induction in CNCC could influence epithelial cells via these pathways.
We believe that the use of the CellChat algorithm has brought a deeper understanding of how hypoxia can have indirect consequences on the important topic of epithelial cells and thus could also evoke OFC. We therefore once again like to express our gratitude to the reviewer.
Point 2-9
Additionally, another process that may be affected is EMT (epithelial-to-mesenchymal-transition) and is possible to assess by re-analysis of bulk RNA-seq data while focusing on key genes implicated in this process (i.e. E-cadherin, vimentin, EpCAM, Snail, Twist, PRRX1).
We thank the reviewer for the advice. We followed the advice and analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. EV1C-F) (cf. point 2-3). As we did not detect any differences between 21% and 0.5% O2, and because the cells we used for our analyses represent mesenchymal cells, i.e. cells that had already undergone EMT, we did not re-analyze our dataset with the focus on EMT.
Point 2-10
Lastly, when the authors report on the significantly up- or down-regulated genes, it may be interesting to categorize them by ligands, receptors, intracellular molecules and transcription factors (and use separate plots to visualize them). While a big focus of the manuscript are down-regulated genes, less emphasis was given in upregulated genes (other than the response to hypoxia gene module).
We thank the reviewer for the advice. Following this advice, we categorized genes according to Panther protein classes "intercellular signal molecule" (PC00207), "transmembrane signal receptor" (PC00197) and "gene-specific transcriptional regulator" (PC00264) and depicted the results with violin plots (Fig. EV5B). We could not analyze intracellular molecules, because this protein class does not exist in the Panther database. We had not focused on the genes with stronger induction in hypoxic condition, because the number of genes was low in each differentiation paradigm (7 in chondrocytes, less than 30 in osteoblasts, none in smooth muscle cells) and the transcriptional changes were mostly not as drastic as for the attenuated genes. In order to achieve a broader overview of deregulated processes, we now included GO term analyses of genes downregulated during the differentiation regimes both at 21% and 0.5% O2 (Figs. EV2D,E, EV3D,E, EV4D,E).
Point 2-11
The authors are referencing extensively and accurately existing studies in the field and the manuscript is exceptionally well-written, with only a few points of limited clarity or increased complexity. Such an example is when the authors refer to OFC risk genes, because it is not clearly stated how the referenced studies reached their conclusions (for example, are they mouse studies, do they involve mutants, are any of these studies based on GWAS on human cohorts). This matter would significantly improve the flow of the text and highlight the importance of the study and their findings.
We would like to thank the reviewer very much for the appreciation of our scientific writing. We apologize for not explaining exactly how our OFC risk gene lists had been curated. We included this information for both non-syndromic and other OFC risk genes at the respective sites in the results section. Moreover, we included the Human Phenotype Ontology terms that had been used in the search in the materials and methods section.
We thank the reviewer for this suggestion, as we agree that this information significantly highlights the importance of our findings.
Point 2-12
The figures could be redesigned to be more intuitive to interpret. For example, using violin plots and heatmaps, as discussed, and including references or re-analysis/re-use of existing spatial transcriptomics and in situs for marker genes.
In all cases where there is a comparison of gene expression levels, violin plots would be a better representation of up- and down-regulated genes (i.e. selected genes from Fig1K, comparison of gene expression between normoxic and hypoxic NCCs, Fig 2G when analyzing chondrogenesis and the respective analysis for osteoblasts and smooth muscle cells, as well as when comparing the three fate-biasing conditions to identify common genes that are misregulated).
We thank the reviewer for the advice and for the appreciation of the usage of heatmaps (Figs. 2K, 3J, 4J, 6F). Unfortunately, as the number of biological replicates is only three to four, the visualization of gene expression data from our bulk RNA-seq data with violin plots was not intuitive. We therefore retained the heatmaps rather than choosing bar graphs, because they are much clearer when presenting expression data of several to many genes. We included violin plots whenever possible due to high numbers of data points (Figs. EV1C, EV1D, EV1E, EV1F, EV5B). Moreover, we added additional heatmaps to depict transcriptional changes of genes associated with GO terms with the various differentiation regimes (Figs. EV2F, EV3F, EV4F). Unfortunately, we did not detect the three central hypoxia-attenuated genes in spatial transcriptomics data on craniofacial development. But we used scRNA-seq data of different stages of orofacial mouse tissue where we could identify expression of Boc and Cdo1 (cf. points 1-4 and 2-6). These data helped, together with other in vivo data to gain evidence for the in vivo function of Boc and Cdo1 during CNCC differentiation and helped to dismiss Actg2 as another central player.
Significance
Several pieces of evidence have pointed to hypoxia as an environmental factor contributing to congenital orofacial clefts, ranging from studies in mouse to observations in human. The authors are doing an excellent job in putting this information together and the question they are trying to answer is of high importance, given the prevalence of such congenital syndromes.
We are deeply grateful to the reviewer for the appreciation of our work and for classifying our research topic as highly important.
In terms of the methods and model employed, there are some limitations, related to the choice of a mouse cell line over one from human, the severe hypoxia induced (over a more mild), and the conditions of directed differentiation not allowing for simultaneous examination of more complex lineage transitions. The methods as a whole are not that up-to-date, given the single cell and multiplexed transcriptomic advances the last couple of decades, advanced bioinformatics that could be used in combination with in vitro lineage tracing methods.
We thank the reviewer for the honest evaluation of our methods, especially for the constructive suggestions that were given to address our hypotheses with more up-to-date methods and at milder hypoxic conditions. As outlined above, we followed the advice and re-analyzed existing scRNA-seq datasets (cf. points 2-6 and 2-8) and checked our central hypotheses at milder hypoxic conditions (cf. response to point 1-3).
We are deeply convinced that both significantly increased the biological relevance of our results, because we thus (1) gathered evidence for the in vivo function of Boc and Cdo1 and (2) were able to show that the phenomenon of hypoxia-attenuated gene induction still holds true at biologically relevant hypoxic conditions.
The audience this work will reach are neural crest experts, developmental biologists, and potentially clinical doctors. The general public outreach of such a paper is also diverse, as more focus and visibility is required for the individuals affected by those syndromes and their families.
We thank the reviewer for the judgement that our manuscript will not only reach neural crest experts, but also developmental biologists in general and potentially also clinicians. We are very much pleased that the reviewer shares our opinion that affected individuals should be more in the focus of public attention. We like to express our gratitude for the judgement that our manuscript might help to increase focus and visibility for them.
References
Barriga EH, Maxwell PH, Reyes AE, Mayor R (2013) The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. The Journal of cell biology 201: 759-776, 10.1083/jcb.201212100.
Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA (2024) PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. Elife 13, 10.7554/eLife.98531.
Funato N, Nakamura M, Yanagisawa H (2015) Molecular basis of cleft palates in mice. World journal of biological chemistry 6: 121-138, 10.4331/wjbc.v6.i3.121.
Gehlen-Breitbach S, Schmid T, Fröb F, Rodrian G, Weider M, Wegner M, Gölz L (2023) The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development. International Journal of Oral Science 15: 16, 10.1038/s41368-023-00222-7.
Hansen JM, Jones DP, Harris C (2020) The Redox Theory of Development. Antioxid Redox Signal 32: 715-740, 10.1089/ars.2019.7976.
Li D, Tian Y, Vona B, Yu X, Lin J, Ma L, Lou S, Li X, Zhu G, Wang Y et al (2025) A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Hum Mol Genet 34: 392-401, 10.1093/hmg/ddae188.
Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y (2017) In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update 24: 15-34, 10.1093/humupd/dmx028.
Pina JO, Raju R, Roth DM, Winchester EW, Chattaraj P, Kidwai F, Faucz FR, Iben J, Mitra A, Campbell K et al (2023) Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis. Nature communications 14: 5687, 10.1038/s41467-023-41349-9.
Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q (2023) Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 50: 676-687, 10.1016/j.jgg.2023.02.008.
Ulschmid CM, Sun MR, Jabbarpour CR, Steward AC, Rivera-González KS, Cao J, Martin AA, Barnes M, Wicklund L, Madrid A et al (2024) Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice. Proc Natl Acad Sci U S A 121: e2317668121, 10.1073/pnas.2317668121.
perpendicular
vertical axis.
The horizontal axis is the X axis The vertical axis is the Y axis. They are perpendicular to each other.
Briefing Document : Analyse du concept de "Documenteur" et de son potentiel pédagogique pour l'esprit critique Source : Transcription d'une intervention orale intitulée "Les documenteurs : un outil pour enseigner l'esprit critique ?"
Auteur de l'intervention : Non spécifié dans l'extrait.
Date de l'intervention : Non spécifiée dans l'extrait, mais contexte d'une conférence.
Introduction et Contexte de la Recherche :
L'intervenant(e) introduit sa recherche portant sur les liens entre le cinéma et l'esprit critique, en s'appuyant sur une thèse antérieure concernant l'histoire de l'enseignement du cinéma et l'utilisation de la notion d'esprit critique depuis l'après-guerre. La question centrale actuelle de sa recherche est de déterminer comment le cinéma, et plus spécifiquement le genre du "documenteur", peut être utilisé pour enseigner et développer l'esprit critique. Cette conception de l'esprit critique est envisagée sous deux angles :
Factuel et scientifique : Développer la capacité à distinguer le vrai du faux, en lien avec le mouvement du scepticisme scientifique. Politique : Donner un sens aux faits, favoriser l'autoréflexivité et la compréhension des normes et valeurs qui influencent notre analyse du monde. La "Septicotèque" : Un Outil Pédagogique Central :
L'une des premières actions concrètes de cette recherche a été la création de la "septicotèque", une liste de films jugés intéressants pour aborder les différents aspects de l'esprit critique. Cette liste est disponible en ligne et est conçue pour être participative. Les personnes qui identifient un film pertinent peuvent le soumettre avec une argumentation, et après validation, il est inclus dans la liste avec la contribution de la personne. L'objectif est de permettre aux utilisateurs de piocher des films pour explorer des thématiques liées à l'esprit critique.
"Une de de mes premières actions là-dessus ça été de créer ce que j'ai ce que j'ai appelé la septicotèque donc la septicotèque c'est une liste de films qui sont à notre sens intéressants pour traiter des divers aspects de ces différents aspects de l'esprit critique donc qui est une liste de voilà de de films qui est disponible sur Internet [...] vous pouvez d'ailleurs participer si vous voyez un film qui vous semble intéressant du point de vue de l'esprit critique euh vous nous contactez donc via nos réseau avec une petite argumentation pour nous dire en quoi c'est intéressant selon vous et nous l'inclurons dans dans la liste avec votre votre remarque."
Art et Culture comme Intrinsèquement Politiques :
L'intervenant(e) souligne que l'art et la culture sont intrinsèquement politiques, car quasiment aucune œuvre ne traite de faits purement factuels sans les inscrire dans un cadre sociologique, politique ou culturel particulier. Le cinéma et la culture en général favorisent donc une conception globale de l'esprit critique, au-delà des définitions plus restreintes que l'on peut trouver dans les milieux sceptiques. Il est précisé que le terme "politique" n'est pas utilisé ici dans un sens partisan (exclusivement "de gauche").
"Forcé de constater d'ailleurs que l'art et la culture sont à mon sens donc intrinsèquement euh politique et donc puisque don en fait il y a quasi aucune œuvre qui peuvent traiter en fait des faits purement factuels en fait il y a aucune œuvre qui fait ça toute œuvre a un point de vue sur le monde et ça je vais y revenir à peu près ensuite euh et donc voilà ces œuvres ne peuvent pas juste traiter des faits montrer des faits comment est-ce qu'on a démontré des faits sans les inscrire forcément dans un cadre sociologique euh politique ou culturel particul."
Le Podcast Associé : Un Lieu d'Analyse :
Pour rendre la septicotèque plus vivante, une association a été créée, donnant naissance à un podcast mensuel. Chaque épisode est consacré à l'analyse d'un film différent, avec l'objectif de mettre en lumière des œuvres méconnues et de discuter de leur intérêt éducatif et pédagogique dans une approche de l'esprit critique. Des films comme Matrix, Don't Look Up, Le Village, et Piku (film indien) ont déjà été traités, témoignant d'une approche large des questionnements. Les films de procès et les documentaires sont des genres particulièrement pertinents dans cette démarche.
Intérêt pour le Genre du Documentaire et la Rencontre avec Alain Krivine :
L'intérêt spécifique pour le genre documentaire a été déclenché par le film Opération Lune. Une rencontre avec Alain Krivine (directeur de Science et pseudo-sciences à l'époque, il s'agit en réalité d'Alain Cirou) a été un catalyseur. La définition proposée par ce dernier du documentaire comme un "film complotiste" a suscité un désaccord et a poussé l'intervenant(e) à approfondir la littérature scientifique sur le cinéma et les documentaires.
Clarification des Définitions du "Documentaire" :
La conférence se concentre ensuite sur la nécessité d'éclaircir les différentes définitions du "documentaire", car il n'existe pas une compréhension unique de ce terme. Deux définitions principales sont identifiées :
Le "Documenteur" comme faux documentaire : Définition originellement liée au film Documenteur d'Agnès Varda (bien que Varda n'ait pas théorisé le concept tel qu'on l'entend aujourd'hui). Cette définition a été popularisée dans les années 2000 et désigne une fiction qui adopte les apparences et les codes du genre documentaire. L'objectif de ces films est souvent de révéler progressivement leur nature fictionnelle après avoir créé l'illusion du réel. Des exemples cités incluent La Bombe, Punishment Park, Spinal Tap, Forgotten Silver, Opération Lune, Bye Bye Belgium, et C'est arrivé près de chez vous. Nicolas Landais (directeur du festival Envoûtement) y inclut même parfois les found footage.
L'intervenant(e) note que le terme "documenteur" pourrait avoir ressurgi via le Québec, où le terme anglais "mocumentary" (combinant "mockery" et "documentary") pourrait avoir trouvé une traduction équivalente. Une mention de la revue québécoise 24 images et d'un réalisateur nommé Robert Morin est faite à cet égard.
Le "Documentaire" comme documentaire mensonger : Utilisée notamment dans les milieux de la "zététique" (militantisme en ligne autour des questions scientifiques et du scepticisme), cette définition rapproche le "documentaire" des films qui présentent de fausses informations, comme les documentaires complotistes et pseudoscientifiques (exemples : La Révélation des Pyramides, Hold Up, et certaines productions diffusées sur RMC Découverte). Analyse Critique des Définitions et Proposition Terminologique :
L'intervenant(e) souligne la contradiction fondamentale entre ces deux définitions. La première définit un outil potentiellement utile pour développer l'esprit critique en stimulant la méfiance de manière ludique, tandis que la seconde désigne des productions manipulatrices.
Une référence est faite à l'ouvrage Les documenteurs des années noires de Jean-Pierre Bertin-Maghit (2004), qui utilise le terme "documentaire" pour désigner des documentaires de propagande. Cependant, l'intervenant(e) note que Bertin-Maghit ne théorise pas véritablement le concept et que cette définition n'a pas été largement reprise dans la recherche. Bertin-Maghit lui-même indique que dans la propagande, la vérité est payante et le mensonge se situe au niveau des intentions et des interprétations, ce qui ne correspond pas nécessairement aux films ouvertement mensongers.
L'intervenant(e) critique l'utilisation du terme "documentaire" par certains acteurs de la zététique (mention de l'émission de la Tronche en Biais "L'air des documenteurs" et d'un article publié dans la Revue internationale d'intelligence économique intitulé "Les Documenteurs nouvelle arme dans la guerre de l'information"). Bien qu'il soit reconnu que le langage évolue, l'absence d'un terme clair en français pour définir les documentaires complotistes et pseudoscientifiques est soulignée. L'hypothèse est que le développement de ces productions est lié à l'accès facilité aux outils de tournage et de diffusion numériques.
L'intervenant(e) propose de conserver le terme "documentaire" pour désigner le faux documentaire à visée critique (comme défini par François Niney dans Le documentaire et ses faux semblants) et de créer un nouveau terme pour les "mauvais documentaires" qui mentent et falsifient les faits. Des suggestions incluent "pseudo-documentaire" (par analogie avec "pseudo-science") ou "documentaire moisi" (comme utilisé par Christophe Michel d'Hygiène Mentale). Il est rappelé que la recherche sur le documentaire et les questions de réel et de croyance au cinéma est déjà riche.
"Ainsi donc le terme documentaire tel qu'il est utilisé parfois dans la spère sceptique ne semble correspondre ici en fait à aucune définition réelle [...] on sait également que la langue et ses usages fluctuent et qu'aucun mot et qu'aucune définition n'est finalement gravée dans le marbre [...] là là en fait il y a bien ici un vide sémantique c'està dire qu'en fait il y a pas de mot en fait en français en tout cas à ma connaissance pour l'instant pour définir des documentaires complotistes pudoncientifique et mentend en fait ouvertement en fait en falsifiant des faits."
Usages Possibles du Documentaire pour l'Éducation à l'Esprit Critique (Exemple d'Opération Lune) :
La deuxième partie de l'intervention se concentre sur la manière dont le documentaire, en tant que faux documentaire (ou "documenteur"), peut aider à développer l'esprit critique, notamment dans le cadre de l'éducation aux médias. Le principe fondamental repose sur le canular.
Le canular est défini comme une construction en trois temps :
Dimension ludique. Dimension sociale (mettant à défaut l'institution visée). Médiation de la plaisanterie (révélation de la supercherie). Le canular permet de mettre à jour les phénomènes de croyance et les systèmes de valeurs. Il interroge la frontière entre le réel et la fiction, la vérité et la croyance. Le canular médiatique peut être considéré comme une initiation au fonctionnement inconscient de notre rapport avec la machine médiatique.
L'exemple central utilisé est le film Opération Lune. L'analyse porte sur les effets de mise en scène utilisés pour faire adhérer le spectateur au propos du film :
Présence d'intervenants réels (experts, anciens de la NASA, etc.) qui apportent une caution de crédibilité. Utilisation d'images d'archives qui semblent attester ce qui est dit (mais dont le lien peut être manipulé). Le commentaire et l'image s'auto-entretiennent, créant une boucle de croyance. Le "mythe de l'image d'archive" (promesse d'un accès direct et non filtré au passé) est souligné comme fallacieux.
Présence d'une voix off qui incarne une figure d'autorité et de savoir omniscient. Rythme narratif rapide qui ne laisse pas le temps à la réflexion et à la vérification.
Champ sémantique et éléments de langage qui peuvent influencer la perception. Mise en place d'un énonciateur (le documentariste hors champ) qui sert de filtre et de garant du discours.
Utilisation des codes visuels du documentaire (caméra non diégétique, etc.). La manière dont le faux est inséré dans le réel est également analysée :
Insertion de faux témoins (comme la secrétaire dans Opération Lune interprétée par une actrice) dont le discours fait le lien entre les propos réels mais hors contexte des autres intervenants. Montage suggestif qui donne l'impression de conversations ou de liens qui n'existent pas. Utilisation de musiques qui accompagnent et peuvent influencer l'émotion et l'adhésion. La façon dont le "documentaire" révèle sa supercherie est examinée à travers Opération Lune :
Indices subtils disséminés dans le montage (incohérences, faux raccords, etc.). Exagération progressive des éléments invraisemblables jusqu'à l'absurde (scènes de traque au Vietnam). Contradiction croissante entre le commentaire et les images. Utilisation de l'humour de plus en plus marqué. Présence d'un bêtisier à la fin qui révèle la nature fictionnelle de certaines scènes et interventions. Mélange assumé de vrais et faux éléments jusqu'à la fin. Limites et Précautions dans l'Utilisation Pédagogique :
L'intervenant(e) souligne plusieurs limites à l'utilisation des documenteurs pour enseigner l'esprit critique :
Réceptivité du public au canular : Le public doit être disposé à se faire tromper pour ensuite prendre conscience de ses mécanismes de croyance. Un public braqué ou non réceptif peut ne pas tirer les bénéfices attendus. Nécessité d'un accompagnement : Le film seul ne suffit pas. Il est crucial de l'accompagner d'un discours et d'une analyse pour décrypter les procédés utilisés et encourager la réflexion.
Risque de neutralisation de la posture critique : L'impression d'avoir compris les mécanismes de manipulation peut paradoxalement conduire à une forme de désengagement critique vis-à-vis du documenteur lui-même, qui reste une œuvre avec un point de vue.
Délégation de l'esprit critique à l'auteur : Le spectateur peut passivement accepter la "leçon" du film sans développer sa propre capacité d'analyse critique. Il est rappelé que toute œuvre, y compris le documentaire, défend un discours et une position qu'il est essentiel d'analyser.
Conclusion :
Le "documentaire" peut être un outil puissant pour l'éducation aux médias et le développement de l'esprit critique, en nous rendant conscients des dispositifs et des esthétiques utilisés par les médias et en nous incitant à remettre en question ce que nous prenons pour acquis.
Cependant, il est crucial de l'utiliser avec précaution, en l'accompagnant d'une analyse critique et en encourageant le spectateur à conserver son propre esprit critique, non seulement face aux médias traditionnels, mais aussi face à la forme et au discours du "documentaire" lui-même.
Questions et Échanges (Points saillants) :
La diffusion d'Opération Lune à la télévision et son potentiel impact sur les théories du complot lunaires sont évoqués. Il est confirmé que les théories complotistes préexistaient au film, qui s'en est surtout moqué. Le risque d'une réception au premier degré par un public non averti est souligné.
La question de l'utilisation du terme "documentaire" et de sa pertinence face aux avancées technologiques comme l'intelligence artificielle est soulevée. La nécessité de rester vigilant face à toutes les formes de manipulation d'images, qu'elles soient issues d'IA ou de montages traditionnels, est rappelée.
L'intérêt pour des "documentaires" destinés à un jeune public est exprimé. Des exemples comme un court-métrage sur le dahu et une vidéo YouTube sur le "complot des chats" sont mentionnés comme pistes. L'idée de faire réaliser des faux documentaires par des jeunes est également suggérée comme exercice pédagogique.
La ressource pédagogique du Brass Bruxell s'appuyant sur Opération Lune est mentionnée. Le film canadien Vendre la guerre est cité comme exemple de documentaire dont le propos peut être déconstruit pour révéler des mécanismes de manipulation.
sommaire de la présentation avec des estimations de timestamps basées sur la lecture du transcript : • [0:00 - 0:50] Introduction de la conférence : Remerciements, présentation du sujet de recherche de l'intervenant (liens entre cinéma et esprit critique depuis l'après-guerre) et de l'objectif de la présentation (comment le cinéma, et plus particulièrement le documentaire, peut aider à développer l'esprit critique). • [0:50 - 1:55] La "Septicotèque" : Présentation de la "Septicotèque", une liste de films intéressants pour traiter divers aspects de l'esprit critique, disponible en ligne et participative. L'art et la culture sont intrinsèquement politiques. • [1:55 - 2:50] Le podcast associé à la "Septicotèque" : Création d'un podcast mensuel par l'association "Sceptique" pour discuter de films méconnus sous l'angle de l'esprit critique (exemples : Matrix, Don't Look Up, Le Village, un film indien). Intérêt pour les films de procès et les documentaires. • [2:50 - 3:50] Intérêt pour les documentaires et rencontre avec Alain Krivine : Fascination pour le genre documentaire depuis le film "Opération Lune". Discussion avec Alain Krivine (Science et Pseudosciences) et désaccord sur sa définition du documentaire comme film complotiste, ce qui a poussé l'intervenant à approfondir la question. • [3:50 - 4:25] Plan de l'intervention : Éclaircir les définitions du documentaire et leurs enjeux, puis examiner les usages possibles du documentaire dans l'éducation à l'esprit critique, notamment dans l'éducation aux médias, avec l'exemple d'"Opération Lune". Conclusion avec des nuances. • [4:25 - 5:55] Définition du mot "documenteur" : Étymologie du mot "documenteur" (documentaire + menteur), inventé a priori par Agnès Varda dans son film "Documenteur" (1981), un film de fiction avec des éléments documentaires. Varda n'a pas théorisé le concept. • [5:55 - 7:05] Première définition de "documenteur" : le faux documentaire : Définition d'un "documenteur" comme une fiction habillée des apparences du genre documentaire, soit un faux documentaire. Exemples : La Bombe, Punishment Park, Spinal Tap, Forgotten Silver, Opération Lune, Bye Bye Belgium, C'est arrivé près de chez vous. • [7:05 - 9:45] Deuxième définition de "documenteur" : le documentaire mensonger : Définition alternative du "documenteur" dans les milieux zététiques comme des documentaires mensongers mettant en avant de fausses informations (documentaires complotistes et pseudoscientifiques). Exemples : La Révélation des Pyramides, Hold Up, documentaires sur RMC Découverte. • [9:45 - 12:00] La résurgence du mot "documenteur" et hypothèse québécoise : Le mot "documenteur" ressurgit dans les années 2000, potentiellement via le Québec et le croisement avec le terme anglais "mocumentary". Première utilisation retrouvée dans la revue québécoise "24 Images" en lien avec le réalisateur Robert Morin. • [12:00 - 13:00] L'ouvrage de Jean-Pierre Bertin-Maghit : "Les Documenteurs des années noires" : Présentation de l'ouvrage qui utilise "documenteur" dans le sens de documentaire de propagande (films vichystes), mais le terme n'est pas réellement théorisé. L'ouvrage est excellent sur le cinéma de propagande. • [13:00 - 14:30] Le terme "documenteur" dans la sphère sceptique et le vide sémantique : Le terme "documenteur" tel qu'utilisé parfois (ex : émission "L'Heure des Documenteurs") ne correspond à aucune définition réelle. Il y a un vide sémantique en français pour définir les documentaires complotistes et pseudoscientifiques. • [14:30 - 16:00] Propositions de termes alternatifs et retour à la définition du faux documentaire : Proposition de continuer à parler de documentaire de propagande ou de "pseudo-documentaire" ou "documentaire moisi". La définition de "documenteur" comme faux documentaire est privilégiée par les chercheurs en cinéma et les cinéphiles (Festival Envisions, Festival Documentaire de l'Abitibi-Témiscamingue). • [16:00 - 17:30] Définition de François Niney du "documenteur" : Présentation de la définition de François Niney : un faux documentaire qui révèle progressivement son illusion (proche du "mocumentary" anglais et du canular). • [17:30 - 19:00] Contradiction entre les définitions et position personnelle : Les deux définitions de "documenteur" sont contradictoires. L'intervenant préfère utiliser "documenteur" pour les faux documentaires à visée critique et regrette son utilisation pour les documentaires mensongers. • [19:00 - 21:15] Difficulté de définir le "documenteur" comme genre et exemple de "Bye Bye Belgium" : Difficulté de définir un genre par l'intention du créateur et la réception du spectateur. Présentation de "Bye Bye Belgium" comme exemple de "documenteur" parodiant les codes télévisuels pour inciter à la méfiance envers les médias. • [21:15 - 24:30] Introduction à l'analyse d'"Opération Lune" : Comment le "documenteur" peut développer l'esprit critique en fonctionnant comme un canular (tromperie révélée). Introduction à l'analyse des effets de mise en scène dans "Opération Lune" pour faire adhérer au propos. • [24:30 - 27:00] Analyse d'un extrait d'"Opération Lune" (jusqu'à 21:45 du film) : Identification des éléments qui poussent à l'adhésion : interviews de vrais témoins, musique, images d'archives (et d'illustration), voix off (comme voix omnisciente), montage, champ sémantique (mafia), mise en place d'un énonciateur (le documentariste), caméra non diégétique. Le mythe des images d'archives est déconstruit (images comme construction sociale et point de vue). Critique du traitement des images d'archives dans "Apocalypse". • [27:00 - 33:00] Comment le faux est inséré dans "Opération Lune" (extrait à 27:30 du film) : Le canular doit avoir un fond réaliste. L'image d'archive et le discours s'auto-alimentent. Analyse d'un deuxième extrait où une fausse témoin (une actrice) est utilisée pour créer le lien entre les propos réels mais hors contexte d'autres intervenants. Critique du montage qui ne correspond pas à la réalité. Importance du rythme rapide du film qui ne laisse pas le temps de la réflexion. Discours des hommes politiques parfois vides et réinterprétables. Le vrai soutient le faux dans le montage. Effets de montage (fondu enchaîné sur une photo) pour accréditer la fausse témoin. • [33:00 - 37:30] Comment "Opération Lune" révèle la supercherie : Indices dans le montage. L'humour devient de plus en plus présent, contradiction entre le narrateur et les images (exagérations, situations absurdes au Vietnam). Faux sous-titres. Le film se termine par un bêtisier. Mélange de rires de vrais intervenants dans le bêtisier. • [37:30 - 40:45] Le "documenteur" et l'éducation à l'esprit critique : Le "documenteur" sert à l'éducation aux médias en faisant prendre conscience des dispositifs utilisés. Citation de Jérémy Hur sur le bénéfice éducatif de la prise de conscience de la lecture "documentarisante". Limites de l'utilisation des "documenteurs" : réceptivité du public (risque de blocage ou d'adhésion totale), nécessité d'un accompagnement discursif. Risque de neutralisation de la posture critique par excès de dévoilement et de délégation de l'esprit critique au réalisateur. Importance de garder un esprit critique sur le film lui-même (discours politique). Exemples de "documenteurs" militants (Peter Watkins). Le degré d'adhésion peut révéler le caractère potentiellement réaliste de certaines situations ("Bye Bye Belgium"). Conclusion : toute œuvre défend un discours et une position. • [40:45 - 42:45] Question 1 : Influence d'"Opération Lune" sur les croyances concernant le programme Apollo ? Difficile à dire. Le film ne dit pas qu'on n'a jamais marché sur la lune, mais que les images sont fausses. Les théories du complot lunaire préexistaient au film. Diffusion du film en France et risque de mauvaise interprétation si le spectateur ne voit pas le début. Exemples d'éléments humoristiques dans le film qui passent inaperçus pour certains. • [42:45 - 45:20] Question 2 : "Documenteur" et intelligence artificielle ? L'IA crée une illusion de vérité, mais la manipulation des images et des discours existait déjà avant. Importance de toujours se méfier des images, même non générées par des IA. Exemple d'exercice pédagogique possible avec des sujets télévisés sans le son. • [45:20 - 47:35] Question 3 : Existe-t-il des "documenteurs" pour un jeune public ? Difficulté à trouver des exemples précis. Mention d'un court-métrage documentaire humoristique sur le dauphin fait par des étudiants. Problème d'accessibilité de certains "documenteurs". Exemple de "Vendre la guerre" (Gulf War Syndrome). Mention d'un outil pédagogique (codes) du Brass à Bruxelles utilisant "Opération Lune". Exemple de la vidéo YouTube "Le complot des chats" faite par des adolescents pour des adolescents pour expliquer les mécanismes complotistes. Suggestion de réaliser directement un "documenteur" à des fins pédagogiques. • [47:35 - Fin] Remerciements.
Briefing Document : Exploration de la Nature Humaine et du Concept d'Essence Source : Extraits de "De la nature humaine (1) - Claudine Tiercelin (2024-2025)"
Date : 20 octobre 2024 (date du cours mentionnée dans l'introduction)
Introduction : La Question Obsédante de la Nature Humaine
Claudine Tiercelin entame son dernier cycle de cours au Collège en s'attaquant à la question complexe et controversée de la nature humaine.
Dès son introduction, elle souligne l'audace qu'il y aurait aujourd'hui à rédiger un traité sur ce sujet, tant la notion est considérée par beaucoup comme obsolète, voire réactionnaire.
Elle note un clivage persistant entre ceux qui nient l'existence d'une nature humaine et ceux qui, principalement en psychologie cognitive et philosophie expérimentale, en défendent l'urgence de la compréhension.
Face à ce "déluge passionnel" et ces "raccourcis en tout genre", Tiercelin annonce son intention d'"enquêter" sur cette notion, s'inscrivant dans la continuité de ses travaux antérieurs sur la connaissance, les vertus épistémiques et la vérité.
Thème 1 : Le Scepticisme Contemporain Face à la Notion de Nature Humaine
Tiercelin met en évidence un scepticisme généralisé quant à la pertinence et même à l'existence de la nature humaine.
Elle cite Maria Kronfeldner et son livre "What's Left of Human Nature?" (Que reste-t-il de la nature humaine ?), dont le titre reflète l'état d'esprit dominant. Kronfeldner elle-même dresse une liste étendue des domaines et des questions auxquels la notion de nature humaine est connectée (évolution, culture, animalité, génétique, IA, morale, etc.), soulignant ainsi la complexité et les multiples angles d'approche.
"qui oserait aujourd'hui rédiger un volumineux Traité de la nature humaine qui aurait le culot d'intitulé un livre d'Aristote à Darwin et retour qui sent passer pour un FIFé réactionnaire... prendrait le risque de s'intéresser à la nature humaine notion obsolète pure superstition voilà bien une notion parfaitement inutile au dire du plus grand nombre d'ailleurs c'est bien connu la nature humaine cela ne correspond à rien cela n'existe pas"
Tiercelin relève également la division disciplinaire sur cette question, avec les biologistes et psychologues souvent plus enclins à défendre le concept, tandis que les historiens et anthropologues se montrent plus sceptiques.
Elle mentionne les travaux de Steven Pinker ("The Blank Slate") qui critique le déni moderne de la nature humaine, s'appuyant sur une perspective évolutionniste, et l'anthropologue Marshall Sahlins qui considère que la civilisation occidentale s'est construite sur une idée erronée de la nature humaine.
"le chercheur en sciences cognitive stevenen pinger signale à ses lecteur qu'une perspective évolutionniste appropriée nous apprend que nous ne sommes som pas des ardoises vierges et en qu'en conséquence on ne saurait nier la nature humaine."
"l'antrop l'anthropologue Marshall sins a défendu la conclusion modeste selon laquelle comme il le dit la civilisation occidentale s'est largement construite sur une idée erronée de la nature humaine"
Cependant, Tiercelin nuance cette division, rappelant que même au sein de la théorie de l'évolution, les avis divergent.
Elle cite David Hull, dont le travail a influencé de nombreuses critiques du concept, mais souligne aussi des perspectives nuancées venant des sciences sociales, comme celle de Sahlins qui ne nie pas l'existence d'une nature humaine, mais insiste sur sa dépendance à la culture.
"Salins d'ailleurs ne prétend pas qu'une telle nature n'existe pas mais affirme plutôt que je cite son mode d'existence et son efficacité sociale dépendent de la culture concernerné fin de citation"
Thème 2 : Les Sources et la Complexité des Désaccords
Tiercelin identifie plusieurs sources aux désaccords concernant la nature humaine.
Polysémie du terme "humain" : Le terme peut se référer à l'espèce biologique Homo sapiens, à des espèces plus anciennes du genre Homo partageant certaines propriétés, aux humains modernes sur le plan comportemental (symbolisme, outils complexes, etc.), ou même aux humains contemporains vivant dans des structures sociales complexes.
Cette variation de référence complexifie les discussions. "l'hypothèse naturelle peut sembler être que nous parlons de spécimen de l'espèce biologique Homo sapiens n'est-ce pas, c'est-à-dire d'organismes appartenant au taxon qui s'est séparé euh et bien du reste de la lignée hinine il y a environ pardon 150000 ans." "toutefois certaines affirmations semblent mieux se comprendre comme faisant au moins potentiellement référence à des organismes appartenant à diverses espèces plus anciennes au sein de la sous-tribu homo avec lesquels les spécimes d'Homo sapiens partagent des propriétés qui ont souvent été jugé significatives"
Confusion entre caractéristique typique et distinctive : On mélange souvent ce qui est commun ou typique de l'humanité avec ce qui la distingue des animaux et lui conférerait une supposée supériorité.
Différentes conceptions du mot "nature" dans "nature humaine" : On peut s'intéresser au concept lui-même (sa signification, son utilité, ses implications) ou à ce que signifie être humain (les traits caractéristiques de l'homme). Tiercelin annonce qu'elle privilégiera la première approche, l'analyse conceptuelle.
"il est deux manières en effet d'aborder évidemment la question de la nature humaine en mettant l'accent soit sur la nature humaine soit sur la nature humaine si vous optez pour la seconde question vous vous intéresserez au concept de nature humaine à son contenu à sa signification explicative le plus important étant de savoir si l'expression nature humaine se réfère à quoi que ce soit aut dit vous vous demanderez par exemple ce que signifie avoir une nature humaine ce concept est-il comme la monarchie britannique la relique d'un âge révolu correspondt-il seulement à quelque chose de réel n'est-ce pas qu'un pur mot quelle est l'utilité d'un tel concept quels sont les engagements épistémiques et ontologiques et ajoutons sociau et politique que l'on prend lorsqu'on utilise un tel terme et de t"
Influence des traditions philosophiques et des préjugés : Les débats sont souvent surdéterminés par un "lourd bagage de tradition" et les connotations normatives attachées au terme.
Thème 3 : Le Débat Historique et Philosophique Illustré par Voltaire et Hartog
Tiercelin illustre la complexité du débat à travers deux exemples :
Thème 4 : La Portée Normative et les Inquiétudes Liées au Concept de Nature Humaine
Tiercelin souligne que la violence des débats autour de la nature humaine provient souvent moins d'un désaccord sur son contenu que sur le rôle normatif qu'on lui accorde (descriptif, comparatif, mais surtout normatif). On craint qu'il ne serve de base à l'exclusion, à la négation de l'égalité et à des interdictions morales.
"pour beaucoup vous voyez ce qui met tant de monde mal à l'aise hein c'est la portée normative considérable de l'expression on y voit une source possible d'exclusion de négation de possibilités sociales en terme notamment d'égalité et d'interdiction morale bref le simple déploiement d'un concept typiquement voire nécessairement pernicieux"
Elle présente l'analyse de Maria Kronfeldner, qui identifie trois rôles épistémiques (classification, description, explication) et des fonctions pragmatiques de la nature humaine, la plus importante étant selon elle la déshumanisation. Kronfeldner lie cette fonction à l'essentialisme, à l'évolution, à l'hérédité, au clivage nature-culture et aux hypothèses de normalité.
Elle propose de dépasser ces difficultés en adoptant une conception "post-essentialiste, pluraliste et interactive" de la nature humaine.
"la plus importante étant selon elle que la référence à la nature humaine est utilisée pour la déshumanisation c'est-à-dire pour considérer les autres comme moins humains"
"elle répond pour sa part ce qui incidemment n'est pas ma position je la cite une conception antiessentialiste post essentialiste pluraliste et interactive de la nature humaine"
Thème 5 : La Question de l'Essence et de l'Essentialisme
Tiercelin aborde ensuite la notion d'essence, souvent au cœur des critiques de la nature humaine.
Elle constate une "forme de consensus anti-essentialiste" et souligne la mauvaise presse générale de l'essentialisme, souvent associé à une vision téléologique dépassée.
Elle mentionne la critique de Quine qui remet en question la possibilité de distinguer les propriétés essentielles des propriétés accidentelles sans une explication claire de ce qui détermine le statut modal des propriétés.
"quin n'avait-il pas raison d'être sceptique quant à la possibilité d'expliquer comment et pourquoi un objet à telle propriété essentiellement et teles autres accidentellement et d'en conclure que nous n'avions besoin de rien d'aut autre que d'une explication naturelle de ce pourquoi nous attribuons certaines propriétés modales d'éré à certains objets"
"l'essentialisme dixitquin sont incapables de répondre à la demande de conditions nécessairire et suffisante permettant d'identifier la même entité à travers différents scénarios ou monde poss possible"
Cependant, Tiercelin note un regain d'intérêt pour la métaphysique et un "renouveau de l'essentialisme" dans les années 70 (Kripke, Putnam), ainsi que des formes contemporaines d'essentialisme (scientifique, aristotélicien, "liquiditisme" qu'elle défend elle-même).
La question centrale devient alors de savoir si ces nouvelles formes d'essentialisme peuvent éclairer le concept de nature humaine.
Thème 6 : Clarifications Conceptuelles sur l'Essence et l'Essentialisme
Tiercelin propose plusieurs clarifications concernant les termes d'"essence" et d'"essentialisme" :
Conclusion Provisoire : Vers une Nouvelle Compréhension ?
En guise de conclusion de cet extrait, Tiercelin pose la question de savoir si les nouvelles formes d'essentialisme peuvent renouveler notre compréhension de la nature humaine.
Elle suggère que la distinction entre l'essentialisme concernant les espèces et celui concernant les individus sera importante pour la suite de sa réflexion.
Elle annonce que la semaine prochaine, elle explorera plus en détail les objections issues de la biologie contre tout essentialisme.
Ce briefing met en lumière la complexité et la richesse du débat autour de la nature humaine, ainsi que le rôle central qu'y joue le concept d'essence.
L'approche de Tiercelin, privilégiant l'analyse conceptuelle et s'inscrivant dans une perspective métaphysique, promet une exploration approfondie des enjeux épistémiques et ontologiques soulevés par cette question persistante.
a Comisión Europea ha instado este viernes al presidente de Estados Unidos, Donald Trump, a “retirar” los aranceles al acero y aluminio y abstenerse de nuevas medidas que escalen la crisis abierta, al tiempo que ha avisado de que “las amenazas no ayudan a crear certidumbre”, después de que el norteamericano afirmara la víspera que gravará un 200% los vinos y otras bebidas alcohólicas europeas si la UE no da marcha atrás en sus contramedidas por valor de 26.000 millones de euros.
Esta es una nota que quiero compartir
Me ha parecido raro que alguien okupe mi plaza y más con un vehículo tan nuevo, así que para hacer la nota más amenazante he pedido un informe detallado del coche en la DGT y he sacado el nombre de la propietaria, que resulta ser una Charo estándar de unos 60 años con nombre y apellidos en varios perfiles de redes sociales
Este es un Comment PUBLICO
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
(1) The questions after reading this manuscript are what novel insights have been gained that significantly go beyond what was already known about the interaction of these receptors and, more importantly, what are the physiological implications of these findings? The proposed significance of the results in the last paragraph of the Discussion section is speculative since none of the receptor interactions have been investigated in TNBC cell lines. Moreover, no physiological experiments were conducted using the PRLR and GH knockout T47D cells to provide biological relevance for the receptor heteromers. The proposed role of JAK2 in the cell surface distribution and association of both receptors as stated in the title was only derived from the analysis of box 1 domain receptor mutants. A knockout of JAK2 was not conducted to assess heteromers formation.
We thank the reviewer for these comments. The novel insight is that two different cytokine receptors can interact in an asymmetric, ligand-dependent manner, such that one receptor regulates the other receptor’s surface availability, mediated by JAK2. To our knowledge this has not been reported before. Beyond our observations, there is the question if this could be a much more common regulatory mechanism and if it has therapeutic relevance. However, answering these questions is beyond the scope of this work.
Along the same line, the question regarding the biological relevance of our receptor heteromers and JAK2’s role in cell surface distribution is undoubtfully very important. Studying GHR-PRLR cell surface distributions in JAK2 knockout cells and certain TNBC cell lines as proposed by the reviewer could perhaps be insightful. However, most TNBCs down-regulate PRLR [1], so we would first have to identify TNBC cell lines that actually express PRLR at sufficiently high levels. Moreover, knocking out JAK2 is known to significantly reduce GHR surface availability [2,3], such that the proposed experiment would probably provide only limited insights.
Unfortunately, our team is currently not in the position to perform any experiments (due to lack of funding and shortage of personnel). However, to address the reviewer’s comment as much as possible, we have revised the respective paragraph of the discussion section to emphasize the speculative nature of our statement and have added another paragraph discussing shortcoming and future experiments (see revised manuscript, pages 23-24).
(1) López-Ozuna, V., Hachim, I., Hachim, M. et al. Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy. Sci Rep 6, 30934 (2016). https://www.nature.com/articles/srep30934
(2) He, K., Wang, X., Jiang, J., Guan, R., Bernstein, K.E., Sayeski, P.P., Frank, S.J. Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol Endocrinol. 2003;17(11):2211-27. doi: 10.1210/me.2003-0256. PMID: 12920237.
(3) He, K., Loesch, K., Cowan, J.W., Li, X., Deng, L., Wang, X., Jiang, J., Frank, S.J. Janus Kinase 2 Enhances the Stability of the Mature Growth Hormone Receptor, Endocrinology, Volume 146, Issue 11, 2005, Pages 4755–4765,https://doi.org/10.1210/en.2005-0514
(2) Except for some investigation of γ2A-JAK2 cells, most of the experiments in this study were conducted on a single breast cancer cell line. In terms of rigor and reproducibility, this is somewhat borderline. The CRISPR/Cas9 mutant T47D cells were not used for rescue experiments with the corresponding full-length receptors and the box1 mutants. A missed opportunity is the lack of an investigation correlating the number of receptors with physiological changes upon ligand stimulation (e.g., cellular clustering, proliferation, downstream signaling strength).
We appreciate the reviewer’s comments. While we are confident in the reproducibility of our findings, including those obtained in the T47D cell line, we acknowledge that testing in additional cell lines would have strengthened the generalizability of our results. We also recognize that performing a rescue experiment using our T47D hPRLR or hGHR KO cells would have been valuable. Furthermore, examining physiological changes, such as proliferation rates and downstream signaling responses, would have provided additional insights. Unfortunately, these experiments were not conducted at the time, and we currently lack the resources to carry them out.
(3) An obvious shortcoming of the study that was not discussed seems to be that the main methodology used in this study (super-resolution microscopy) does not distinguish the presence of various isoforms of the PRLR on the cell surface. Is it possible that the ligand stimulation changes the ratio between different isoforms? Which isoforms besides the long form may be involved in heteromers formation, presumably all that can bind JAK2?
This is a very good point. We fully agree with the reviewer that a discussion of the results in the light of different PRLR isoforms is appropriate. We have added information on PRLR isoforms to the Introduction (see revised manuscript, page 2) and Discussion sections (see revised manuscript, pages 23-24).
(4) Changes in the ligand-inducible activation of JAK2 and STAT5 were not investigated in the T47D knockout models for the PRL and GHR. It is also a missed opportunity to use super-resolution microscopy as a validation tool for the knockouts on the single cell level and how it might affect the distribution of the corresponding other receptor that is still expressed.
We thank the reviewer for his comment. We fully agree that such additional experiments could be very valuable. We are sorry but, as already mentioned above, this is not something we are able to address at this stage due to lack of personnel and funding. However, we do hope to address these and other proposed experiments in the future.
(5) Why does the binding of PRL not cause a similar decrease (internalization and downregulation) of the PRLR, and instead, an increase in cell surface localization? This seems to be contrary to previous observations in MCF-7 cells (J Biol Chem. 2005 October 7; 280(40): 33909-33916).
It has been recently reported for GHR that not only JAK2 but also LYN binds to the box1-box2 region, creating competition that results in divergent signaling cascades and affects GHR nanoclustering [1]. So, it is reasonable to assume that similar mechanisms may be at work that regulate PRLR cell surface availability. Differences in cells’ expression of such kinases could perhaps play a role in the perceived inconsistency. Also, Lu et al. [2] studied the downregulation of the long PRLR isoform in response to PRL. All other PRLR isoforms were not detectable in MCF-7 cells. So, differences between MCF-7 and T47D may lead to this perceived contradiction.
At this stage, we can only speculate about the actual reasons for these seemingly contradictory results. However, for full transparency, we are now mentioning this apparent contradiction in the Discussion section (see page 23) and have added the references below.
(1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.
https://www.cell.com/cell-reports/pdf/S2211-1247(23)00501-6.pdf
(2) Lu, J.C., Piazza, T.M., Schuler, L.A. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem. 2005 Oct 7;280(40):33909-16. doi: 10.1074/jbc.M508118200. PMID: 16103113; PMCID: PMC1976473.
(6) Some figures and illustrations are of poor quality and were put together without paying attention to detail. For example, in Fig 5A, the GHR was cut off, possibly to omit other nonspecific bands, the WB images look 'washed out'. 5B, 5D: the labels are not in one line over the bars, and what is the point of showing all individual data points when the bar graphs with all annotations and SD lines are disappearing? As done for the y2A cells, the illustrations in 5B-5E should indicate what cell lines were used. No loading controls in Fig 5F, is there any protein in the first lane? No loading controls in Fig 6B and 6H.
We thank the reviewer for pointing this out. We have amended Fig. 5A to now show larger crops of the two GHR and PRLR Western Blot images and thus a greater range of proteins present in the extracts. Please note that the bands in the WBs other than what is identified as GHR and PRLR are non-specific and reflect roughly equivalent loading of protein in each lane.
We also made some changes to Figures 5B-5E.
(7) The proximity ligation method was not described in the M&M section of the manuscript.
We thank the reviewer for pointing this out. We have added a description of the PL method to the Methods section.
Reviewer #1 (Recommendations for the Authors):
A final suggestion for future investigations: Instead of focusing on the heteromer formation of the GHR/PRLR which both signal all through the same downstream effectors (JAK2, STAT5), it would have been more cancer-relevant, and perhaps even more interesting, to look for heteromers between the PRLR and receptors of the IL-6 family since it had been shown that PRL can stimulate STAT3, which is a unique feature of cancer cells. If that is the case, this would require a different modality of the interaction between different JAK kinases.
We highly appreciate the reviewer’s recommendation and hope to follow up on it in the near future.
Reviewer #2 (Public Review):
(1) I could not fully evaluate some of the data, mainly because several details on acquisition and analysis are lacking. It would be useful to know what the background signal was in dSTORM and how the authors distinguished the specific signal from unspecific background fluorescence, which can be quite prominent in these experiments. Typically, one would evaluate the signal coming from antibodies randomly bound to a substrate around the cells to determine the switching properties of the dyes in their buffer and the average number of localisations representing one antibody. This would help evaluate if GHR or PRLR appeared as monomers or multimers in the plasma membrane before stimulation, which is currently a matter of debate. It would also provide better support for the model proposed in Figure 8.
We are grateful for the reviewer’s comment. In our experience, the background signal is more relevant in dSTORM when imaging proteins that are located at deeper depths (> 3 μm) above the coverslip surface. In our experiments, cells are attached to the coverslip surface and the proteins being imaged are on the cell membrane. In addition, we employed dSTORM’s TIRF (total internal reflection fluorescence) microscopy mode to image membrane receptor proteins. TIRFM exploits the unique properties of an induced evanescent field in a limited specimen region immediately adjacent to the interface between two media having different refractive indices. It thereby dramatically reduces background by rejecting fluorescence from out-of-focus areas in the detection path and illuminating only the area right near the surface.
Having said that, a few other sources such as auto-fluorescence, scattering, and non-bleached fluorescent molecules close to and distant from the focal plane can contribute to the background signal. We tried to reduce auto-fluorescence by ensuring that cells are grown in phenol-red-free media, imaging is performed in STORM buffer which reduces autofluorescence, and our immunostaining protocol includes a quenching step aside from using blocking buffer with different serum, in addition to BSA. Moreover, we employed extensive washing steps following antibody incubations to eliminate non-specifically bound antibodies. Ensuring that the TIRF illumination field is uniform helps reduce scatter. Additionally, an extended bleach step prior to the acquisition of frames to determine localizations helped further reduce the probability of non-bleached fluorescent molecules.
In short, due to the experimental design we do not expect much background. However, in the future, we will address this concern and estimate background in a subtype dependent manner. To this end we will distinguish two types of background noise: (A) background with a small change between subsequent frames, which mainly consists of auto-fluorescence and non-bleached out-of-focus fluorescent molecules; and (B) background that changes every imaging frame, which is mainly from non-bleached fluorescent molecules near the focal plane. For type (A) background, temporal filters must be used for background estimation [1]; for type (B) background, low-pass filters (e.g., wavelet transform) should be used for background estimation [2].
(1) Hoogendoorn, Crosby, Leyton-Puig, Breedijk, Jalink, Gadella, and Postma (2014). The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Scientific reports, 4, 3854. https://doi.org/10.1038/srep03854
(2) Patel, Williamson, Owen, and Cohen (2021). Blinking statistics and molecular counting in direct stochastic reconstruction microscopy (dSTORM). Bioinformatics, Volume 37, Issue 17, September 2021, Pages 2730–2737, https://doi.org/10.1093/bioinformatics/btab136
(2) Since many of the findings in this work come from the evaluation of localisation clusters, an image showing actual localisations would help support the main conclusions. I believe that the dSTORM images in Figures 1 and 2 are density maps, although this was not explicitly stated. Alexa 568 and Alexa 647 typically give a very different number of localisations, and this is also dependent on the concentration of BME. Did the authors take that into account when interpreting the results and creating the model in Figures 2 and 8?
I believe that including this information is important as findings in this paper heavily rely on the number of localisations detected under different conditions.
Including information on proximity labelling and CRISPR/Cas9 in the methods section would help with the reproducibility of these findings by other groups.
Figures 1 and 2 show Gaussian interpolations of actual localizations, not density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting. In other words, we show reconstructed images based on identifying true localizations using gaussian fitting and some strict parameters to identify true fluorophore blinking. This allowed us to identify true localizations with high confidence and generate a high-resolution image for membrane receptors.
Indeed, Alexa 568 and 647 give different numbers of localization. This is dependent on the intrinsic photo-physics of the fluorophores. Specifically, each fluorophore has a different duty cycle, switching cycle, and survival fraction. However, we note that we focused on capturing the relative changes in receptor numbers over time, before and after stimulation by ligands, not the absolute numbers of surface GHR and PRLR. We are not comparing the absolute numbers of localizations or drawing comparisons for localization numbers between 568 and 647. For all these different conditions/times, the photo-physics for a particular fluorophore remains the same. This allows us to make relative comparisons.
As far as the effect of BME is concerned, the concentration of mercaptoethanol needs to be carefully optimized, as too high a concentration can potentially quench the fluorescence or affect the overall stability of the sample. However, we are using an optimized concentration which has been previously validated across multiple STORM experiments. This makes the concerns relating to the concentration of BME irrelevant to the current experimental design. Besides, the concentration of BME is maintained across all experimental conditions.
We have added information regarding PL and CRISPR/Cas9 for generating hGHR KO and hPRLR KO cells in two new subsections to the Methods section.
Reviewer #2 (Recommendations for the authors):
In the methods please include:<br /> (1) A section with details on proximity ligation assays.
We have added a description of the PL method to the Methods section.
(2) A section on CRISPR/Cas9 technology.
We have added two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR or hPRLR knockout” to the Methods section.
(3) List the precise composition of the buffer or cite the paper that you followed.
We used the buffer recipe described in this protocol [1] and have added the components with concentrations as well as the following reference to the manuscript.
(1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325
(4) Exposure time used for image acquisition to put 40 000 frames in the context of total imaging time and clarify why you decided to take 40 000 images per channel.
Our Nikon Ti2 N-STORM microscope is equipped with an iXon DU-897 Ultra EMCCD camera from Andor (Oxford Instruments). According to the camera’s manufacturer, this camera platform uses a back-illuminated 512 x 512 frame transfer sensor and overclocks readout to 17 MHz, pushing speed performance to 56 fps (in full frame mode). We note that we always tried to acquire STORM images at the maximal frame rate. As for the exposure time, according to the manufacturer it can be as short as 17.8 ms. We would like to emphasize that we did not specify/alter the exposure time.
The decision to take 40,000 images per frame was based on our intention to identify the true population of the molecules of interest that are localized and accurately represented in the final reconstruction image. The total number of frames depends on the sample complexity, density of sample labeling and desired resolution. We tested a range of frames between 20,000 and 60,000 and found for our experimental design and output requirements that 40,000 frames provided the best balance between achieving maximal resolution and desired localizations to make consistent and accurate localization estimates across different stimulation conditions compared to basal controls.
(5) The lasers used to switch Alexa 568 and Alexa 647. Were you alternating between the lasers for switching and imaging of dyes? Intermittent and continuous illumination will produce very different unspecific background fluorescence.
Yes, we used an alternating approach for the lasers exciting Alexa 647 and Alexa 568, for both switching and imaging of the dyes.
(6) A paragraph with a detailed description of methods used to differentiate the background fluorescence from the signal.
We have addressed the background fluorescence under Point 1 (Public Review). We have added a paragraph in the Methods section on this issue.
(7) Minor corrections to the text:
It appears as though there is a large difference in the expression level of GHR and PRLR in basal conditions in Figure 1. This can be due to the switching properties of the dyes, which is related to the amount of BME in the buffer, or it can be because there is indeed more PRL. Would the authors be able to comment on this?
We thank the reviewer for this suggestions. According to expression data available online there is indeed more PRLR than GHR in T47D cells. According to CellMiner [1], T47D cells have an RNA-Seq gene expression level log2(FPKM + 1) of 6.814 for PRLR, and 3.587 for GHR, strongly suggesting that there is more PRLR than GHR in basal conditions, matching the reviewer’s interpretation of our images in Fig. 1 (basal). However, we would advise against using STORM images for direct comparisons of receptor expression. First, with TIRF images, we are only looking at the membrane fraction (~150 nm close to the coverslip membrane interface) that is attached to the coverslip. Secondly, as discussed above, our data represent relative cell surface receptor levels that allow for comparison of different conditions (basal vs. stimulation) and does not represent absolute quantifications. Everything is relative and in comparison to controls.
Also, BME is not going to change the level of expression. The differences in growth factor expression as estimated by relative comparison can be attributed to the actual changes in growth factors and is not an artifact of the amount of BME in the buffer or the properties of dyes. These factors are maintained across all experimental conditions and do not influence the final outcome.
(1) https://discover.nci.nih.gov/cellminer/
(8) I would encourage the authors to use unspecific binding to characterize the signal coming from single antibodies bound to the substrate. This would provide a mean number of localizations that a single antibody generates. With this information, one can evaluate how many receptors there are per cluster, which would strengthen the findings and potentially provide additional support for the model presented in Figure 8. It would also explain why the distributions of localisations per cluster in Fig. 3B look very different for hGHR and hPRLR. As the authors point out in the discussion, the results on predimerization of these receptors in basal conditions are conflicting and therefore it is important to shed more light on this topic.
We thank the reviewer for this suggestions. While we are unable to perform this experiment at this stage, we will keep it in mind for future experiments.
(9) Minor corrections to the figures:
Figure 1:
In the legend, please say what representation was used. Are these density maps or another representation? Please provide examples of actual localisations (either as dots or crosses representing the peaks of the Gaussians). Most findings of this work rely on the characterisation of the clusters of localisations and therefore it is of essence to show what the clusters look like. This could potentially go to the supplemental info to minimise additional work. It's very hard to see the puncta in this figure.
If the authors created zoomed regions in each of the images (as in Figure 3), it would be much easier to evaluate the expression level and the extent of colocalisation. Halfway through GHR 3 min green pixels become grey, but this may be the issue with the document that was created. Please check. Either increase the font on the scale bars in this figure or delete it.
As described above, Figure 1 does not show density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting and smoothing.
We have generated zoomed regions. In our files (original as well as pdf) we do not see pixels become grey. We increased the font size above one of the scale bars and removed all others.
Figure 3:
In A, the GHR clusters are colour coded but PRLR are not. Are both DBSCN images? Explain the meaning of colour coding or show it as black and white. Was brightness also increased in the PRLR image? The font on the scale bars is too small. In B, right panels, the font on the axes is too small. In the figure legend explain the meaning of 33.3 and 16.7
In our document, both GHR and PRLR are color coded but the hGHR clusters are certainly bigger and therefore appear brighter than the hPRLR clusters. Both are DBSCAN images. The color coding allows to distinguish different clusters (there is no other meaning). We have kept the color-coding but have added a sentence to the caption addressing this. Brightness was increased in both images of Panel B equally. 33.3 and 16.7 are the median cluster sizes. We have added a sentence to the caption explaining this. We have increased the font on the axes in B (right panels).
Figure 4:
I struggled to see any colocalization in the 2nd and the 3rd image. Please show zoomed-in sections. In the panels B and C, the data are presented as fractions. Is this per cell? My interpretation is that ~80% of PRL clusters also contain GHR.
Is this in agreement with Figures 1 and 2? In Figure 1, PRL 3 min, Merge, colocalization seems much smaller. Could the authors give the total numbers of GHR and PRLR from which the fractions were calculated at least in basal conditions?
We have provided zoom-in views. As for panels B and C, fractions are number of clusters containing both receptors divided by the total number of clusters. We used the same strategy that we had used for calculating the localization changes: We randomly selected 4 ROIs (regions of interest) per cell to calculate fractions and then calculated the average of three different cells from independently repeated experiments. We did not calculate total numbers of GHR/PRLR. The numbers are fractions of cluster numbers.
Moreover, the reviewer interprets results in panels B and C that ~80% of PRLR clusters also contain GHR. We assume the reviewer refers to Basal state. Now, the reviewer’s interpretation is not correct for the following reason: ~80% of clusters have both receptors. How many of the remaining (~20%) clusters have only PRLR or only GHR is not revealed in the panels. Only if 100% of clusters have PRLR, we can conclude that 80% of PRLR clusters also contain GHR.
Also, while Figures 1 and 2 show localization based on dSTORM images, Figure 3 indicates and quantifies co-localization based on proximity ligation assays following DBSCAN analysis using Clus-DoC. We do not think that the results are directly comparable.
Reviewer #3 (Public Review):
(1) The manuscript suffers from a lack of detail, which in places makes it difficult to evaluate the data and would make it very difficult for the results to be replicated by others. In addition, the manuscript would very much benefit from a full discussion of the limitations of the study. For example, the manuscript is written as if there is only one form of the PRLR while the anti-PRLR antibody used for dSTORM would also recognize the intermediate form and short forms 1a and 1b on the T47D cells. Given the very different roles of these other PRLR forms in breast cancer (Dufau, Vonderhaar, Clevenger, Walker and other labs), this limitation should at the very least be discussed. Similarly, the manuscript is written as if Jak2 essentially only signals through STAT5 but Jak2 is involved in multiple other signaling pathways from the multiple PRLRs, including the long form. Also, while there are papers suggesting that PRL can be protective in breast cancer, the majority of publications in this area find that PRL promotes breast cancer. How then would the authors interpret the effect of PRL on GHR in light of all those non-protective results? [Check papers by Hallgeir Rui]
We thank the reviewer for such thoughtful comments. We have added a paragraph in the Discussion section on the limitations of our study, including sole focus on T47D and γ2A-JAK2 cells and lack of PRLR isoform-specific data. Also, we are now mentioning that these isoforms play different roles in breast cancer, citing papers by Dufau, Vonderhaar, Clevenger, and Walker labs.
We did not mean to imply that JAK2 signals only via STAT5 or by only binding the long form. We have made this point clear in the Introduction as well as in our revised Discussion section. Moreover, we have added information and references on JAK2 signaling and PRLR isoform specific signaling.
In our Discussions section we are also mentioning the findings that PRL is promoting breast cancer. We would like to point out that it is well perceivable that PRL is protective in BC by reducing surface hGHR availability but that this effect may depend on JAK2 levels as well as on expression levels of other kinases that competitively bind Box1 and/or Box2 [1]. Besides, could it not be that PRL’s effect is BC stage dependent? In any case, we have emphasized the speculative nature of our statement.
(1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.
Reviewer #3 (Recommendations for the authors):
Points for improvement of the manuscript:
(1) Method details -
a) "we utilized CRISPR/Cas9 to generate hPRLR knockout T47D cells ......" Exactly how? Nothing is said under methods. Can we be sure that you knocked out the whole gene?
We have addressed this point by adding two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR or hPRLR knockout” to the Methods section.
b) Some of the Western blots are missing mol wt markers. How specific are the various antibodies used for Westerns? For example, the previous publications are quoted as providing characterization of the antibodies also seem to use just band cutouts and do not show the full molecular weight range of whole cell extracts blotted. Anti-PRLR antibodies are notoriously bad and so this is important.
There is an antibody referred to in Figure 5 that is not listed under "antibodies" in the methods.
We have modified Figure 5a, showing the entire gel as well as molecular weight markers. As for specificity of our antibodies, we used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48, which have been previously tested and used. In addition, we did our own control experiments to ensure specificity. We have added some of our many control results as Supplementary Figures S2 and S3.
We thank the reviewer for noticing the missing antibody in the Methods section. We have now added information about this antibody.
c) There is no description of the proximity ligation assay.
We have addressed this by adding a paragraph on PLA in the Methods section.
d) What is the level of expression of GHR, PRLR, and Jak2 in the gamma2A-JAK2 cells compared to the T47D cells? Artifacts of overexpression are always a worry.
γ2A-JAK2 cell series are over-expressing the receptors. That’s the reason we did not only rely on the observation in γ2A-JAK2 cell lines but also did the experiment in T47D cell lines.
e) There are no concentrations given for components of the dSTORM imaging buffer. On line 380, I think the authors mean alternating lasers not alternatively.
Thank you. Indeed, we meant alternating lasers. We are referring to [1] (the protocol we followed) for information on the imaging buffer.
(1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325
f) In general, a read-through to determine whether there is enough detail for others to replicate is required. 4% PFA in what? Do you mean PBS or should it be Dulbecco's PBS etc., etc.?
We prepared a 4% PFA in PBS solution. We mean Dulbecco's PBS.
(2) There are no controls shown or described for the dSTORM. For example, non-specific primary antibody and second antibodies alone for non-specific sticking. Do the second antibodies cross-react with the other primary antibody? Is there only one band when blotting whole cell extracts with the GHR antibody so we can be sure of specificity?
We used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48 (but also tested several other antibodies). While these antibodies have been previously tested and used, we performed additional control experiments to ensure specificity of our primary antibodies and absence of non-specific binding of our secondary antibodies. We have added some of our many control results as Supplementary Figures S2 and S3.
(3) Writing/figures-
a) As discussed in the public review regarding different forms of the PRLR and the presence of other Jak2-dependent signaling
We have added paragraphs on PRLR isoforms and other JAK2-dependent signaling pathways to the Introduction. Also, we have added a paragraph on PRLR isoforms (in the context of our findings) to the Discussion section.
b) What are the units for figure 3c and d?
The figures show numbers of localizations (obtained from fluorophore blinking events). In the figure caption to 3C and 3D, we have specified the unit (i.e. counts).
c) The wheat germ agglutinin stains more than the plasma membrane and so this sentence needs some adjustment.
We thank the reviewer for this comment. We have rephrased this sentence (see caption to Fig. 4).
d) It might be better not to use the term "downregulation" since this is usually associated with expression and not internalization.
While we understand the reviewer’s discomfort with the use of the word “downregulation”, we still think that it best describes the observed effect. Moreover, we would like to note that in the field of receptorology “downregulation” is a specific term for trafficking of cell surface receptors in response to ligands. That said, to address the reviewer’s comment, we are now using the terms “cell surface downregulation” or “downregulation of cell surface [..] receptor” throughout the manuscript in order to explicitly distinguish it from gene downregulation.
e) Line 420 talks about "previous work", a term that usually indicates work from the same lab. My apologies if I am wrong, but the reference doesn't seem to be associated with the authors.
At the end of the sentence containing the phrase “previous work”, we are referring to reference [57], which has Dr. Stuart Frank as senior and corresponding author. Dr. Frank is also a co-corresponding author on this manuscript. While in our opinion, “previous work” does not imply some sort of ownership, we are happy to confirm that one of us was responsible for the work we are referencing.
Reviewing Editor's recommendations:
The reviewers have all provided a very constructive assessment of the work and offered many useful suggestions to improve the manuscript. I'd advise thinking carefully about how many of these can be reasonably addressed. Most will not require further experiments. I consider it essential to improve the methods to ensure others could repeat the work. This includes adding methods for the PLA and including detail about the controls for the dSTORM. The reviewers have offered suggestions about types of controls to include if these have not already been done.
We thank the editor for their recommendations. We have revised the methods section, which now includes a paragraph on PLA as well as on CRISPR/Cas9-based generation of mutant cell lines. We have also added information on the dSTORM buffer to the manuscript. Data of controls indicating antibody specificity (using confocal microscopy) have been added to the manuscript’s supplementary material (see Fig. S2 and S3).
I agree with the reviewers that the different isoforms of the prolactin receptor need to be considered. I think this could be done as an acknowledgment and point of discussion.
We have revised the discussions section and have added a paragraph on the different PRLR isoforms, among others.
For Figure 2E, make it clear in the figure (or at least in legend) that the middle line is the basal condition.
We thank the editor for their comment. We have made changes to Fig 2E and have added a sentence to the legend making it clear that the middle depicts the basal condition.
My biggest concern overall was the fact that this is all largely conducted in a single cell line. This was echoed by at least one of the reviewers. I wonder if you have replicated this in other breast cancer cell lines or mammary epithelial cells? I don't think this is necessary for the current manuscript but would increase confidence if available.
We thank the editor for their comment and fully agree with their assessment. Unfortunately, we have not replicated these experiments in other BC cell lines nor mammary epithelial cells but would certainly want to do so in the near future.
En el universo de procesos definido previamente,TerrAI identificó que los 612 terceros vinculadoscomo personas jurídicas, dan cuenta de unarelación de 238 empresas que están relacionadasen algunos casos a más de un proceso, biencomo opositores en sentido estricto o comosimples terceros intervinientes. De este listado,aquellas personas jurídicas comerciales queaparecen relacionadas en más procesos son:Anglogold Ashanti Colombia S.A. (98); BancoDavivienda S.A. (34); Gran Tierra Energy INC.(30); Drummond LTD. (15); Drummond EnergyINC (13) y CISA - Central de Inversiones S.A. (12).
Briefing Document : Analyse des Thèmes Clés de l'Entretien avec Philippe Meirieu Source : Excerpts de l'entretien "Echange avec...Philippe Meirieu"
Date : 2025
Introduction :
Cet entretien avec Philippe Meirieu, figure importante de la pédagogie en France, offre une analyse critique du système éducatif actuel et propose des pistes de réflexion pour son amélioration.
En s'appuyant sur son expérience personnelle d'enseignant et de chercheur, Meirieu aborde des thèmes fondamentaux tels que le sens de l'école, la formation des enseignants, la place de la culture, le rapport au savoir, les enjeux démocratiques, la question de la norme, le recrutement des enseignants et la nécessité d'un continuum éducatif.
Ce document synthétise les principaux thèmes et idées exprimés, en incluant des citations significatives de l'entretien.
Thèmes et Idées Principales :
1. La Genèse d'une Réflexion Pédagogique à Partir des Difficultés du Terrain :
Meirieu ancre sa réflexion dans ses expériences शुरुआती d'enseignant, confronté aux résistances des élèves et à la complexité de la transmission du savoir.
Cette confrontation l'a conduit à une démarche de "enseignant chercheur" :
"moi si j'avais à à décrire mon histoire je partirai de mes premières expériences de d'enseignant de professeur moi j'ai commencé comme professeur de philo ensuite j'ai été untite ensuite j'étais prof de collège et chaque fois je me suis trouvé face à un certain nombre de difficultés je me suis trouvé face à des élèves qui résistaient face à des élèves qui avaient pas nécessairement envie d'apprendre ce que je leur enseignais au moment où je leur enseignais et et je me suis construit au sens propre du terme comme un enseignant chercheur c'est-à-dire comme quelqu'un qui va chercher de quoi résoudre les questions qui se posent à lui dans la pratique voilà"
Il souligne l'importance de considérer la résistance des élèves comme un moteur de compréhension et d'amélioration de l'enseignement, à l'image de la résistance électrique qui produit de la lumière.
"investiguer la résistance des autres à mon enseignement moi je dis toujours c'est une image un peu facile peut-être mais que la résistance il faut prendre ce terme au sens quasiment de l'ampoule électrique dans l'ampoule électrique il y a une résistance cette résistance empêche de passer le courant mais aussiel est clair et moi ce qui m'a aidé à travailler à chercher c'est mes difficultés c'est mes difficultés quotidiennes et c'est à partir de mes difficultés que j'ai construit mon travail"
2. La Perte de Cap et de Finalités dans le Système Éducatif Actuel :
Meirieu déplore un manque de vision claire et de finalités politiques fortes pour l'école, comparant les réformes actuelles à une réparation constante de la "machine" sans se soucier de sa destination. Il cite Jean Zay et Alain Savary comme des ministres ayant su impulser des perspectives globales.
"ce que je trouve de dommage aujourd'hui c'est que on répare en permanence la machine comme on dirions-nous on est en permanence à à raccorder des tuyaux on est dans dans la cale du paquebo à à regarder si on peut pas améliorer la rentabilité de tel ou tel système sans se demander où va le paquebo [...] il semble que les grands ministres de l'éducation sont ceux qui ont su certes rentrer dans la machine mais aussi donner des perspectives donner des axes fort ce qu'a fait Jané ce qu'a fait ensuite quelqu'un comme Alain Savari"
Il insiste sur la nécessité pour les dirigeants de définir clairement les fondements et les finalités du système éducatif.
3. La Pauvreté du Débat Public sur l'Éducation :
Meirieu critique la superficialité du débat actuel, souvent réduit à des slogans et à des mesures ponctuelles (uniforme, résultats PISA, restauration de l'autorité) sans aborder les questions de fond.
Il regrette l'absence de débat intelligent sur les enjeux éducatifs, illustrée par le traitement réducteur de la question du numérique et des écrans.
"moi d'abord je suis frappé par l'extrême pauvreté du débat sur l'éducation en France une pauvreté qui est absolument indigne d'un pays comme la France qui a une histoire sur le plan éducatif qui est une histoire fantastique formidable [...] et je trouve que au regard de cette histoire on parle un peu de l'uniforme de temps en temps comme ça sous forme d'une bouffée médiatique on parle parfois des résultats de PISA on parle un peu de la restauration de l'autorité mais tout ça me semble relever plutôt de l'écume des slogans et et ne pas réellement mettre en débat en débat public en débat intelligent ces questions de l'éducation"
Il propose d'organiser une convention citoyenne pour relancer un débat de fond et souligne la nécessité d'intégrer l'histoire de la pensée éducative dans la formation des enseignants.
"je crois qu'une convention citoyenne serait bien adaptée à condition que évidemment on tienne compte de ce qu'elle dit on tient compte de ses de ses préconisations oui bien sûr je je suis convaincu que dans la formation initiale et continue des enseignants il faudrait introduire toute une histoire et une acculturation au débat sur l'école et sur l'éducation"
4. Les Nouveaux Défis Éducatifs Face aux Évolutions Sociétales :
Meirieu met en lumière les défis inédits auxquels l'éducation est confrontée, tels que la menace sur la démocratie, la remise en cause de la notion de vérité (fake news), et la nécessité de travailler sur le collectif face à la montée de l'individualisme et du communautarisme.
Il appelle à repenser le rôle de l'éducation à la lumière de la philosophie politique.
"il me semble que que chaque génération et celle la nottre en particulier se trouve en face de défi éducatif nouveau il se trouve que la démocratie aujourd'hui on le voit bien est menacée alors qu'on considérait depuis longtemps que c'était un régime solidement établie on voit que la notion de vérité elle-même est remise en cause à travers euh les fake news les réseaux sociaux on voit que la notion de collectif doit être travaillée on assiste aujourd'hui à une monté quand même à la fois de l'individuali sme et puis de du communautarisme toutes ces questions-là il faut les les repenser à la lumière de la philosophie politique et les repenser en se posant la question de ce que l'éducation peut faire par rapport à ça"
5. La Distinction Fondamentale entre les "Fondations" et les "Fondements" de l'École :
Meirieu reprend la distinction de Ferdinand Buisson entre les savoirs techniques de base ("lire, écrire, compter" - les fondations) et le sens et les finalités de l'éducation (les fondements).
Il critique une focalisation excessive sur les fondations au détriment des fondements, privant les apprentissages de leur dimension émancipatrice.
"déjà Ferdinand Buisson qui est le le grand penseur de de l'école républicaine à l'époque de Jul ferie distingué dans les fondamentaux ce qu'il appelait les les fondations et les fondements hein une maison ça a besoin de fondation il faut des fondations faut que dans la terre il y ait un peu de béton qu'on creuse qu'on stabilise ça ce sont les fondations c'est technique ça c'est le lire écrire compté mais les fondations sont pas le fondement une maison son fondement c'est ce qu'on va en faire c'est qui va l'habiter à quoi elle va servir et ça réellement on ne se le pose pas comme question"
Il illustre cela avec l'enseignement de la lecture et de l'écriture, souvent réduit à l'acquisition de techniques sans explorer leur pouvoir de libération.
6. La Nécessité d'un "Idéal d'École" Sans Tomber dans l'"École Idéale" Utopique :
Meirieu emprunte une distinction à la psychanalyse pour distinguer le "moi idéal" de l'"idéal du moi".
Il transpose cette idée à l'école, plaidant pour un "idéal d'école" qui motive l'action et le progrès, sans chercher à créer des "écoles idéales" marginales et coupées de la réalité du système global.
"on peut soit rêver à l'école idéale et à ce moment-là on va construire des établissements marginaux et on va éventuellement créer une école hor contrat où on va entre nous réaliser les pratiques qui sont des pratique parfaite en se cooptant et en a ayant que des élèves qui sont à la fois volontaires et mobilisés ça c'est l'école idéale et moi je crois pas à l'école idéale mais je crois qu'il faut avoir un idéal d'école c'est-à-dire il faut être mu par un idéal d'école il faut pas euh aller chercher à à créer des écoles idéales"
7. La Question de la Culture à l'École : Porte d'Entrée vs. Arrivée :
Meirieu aborde la tension entre la culture académique traditionnelle et la culture des jeunes. Il propose une approche pragmatique, considérant la culture des élèves comme une possible "porte d'entrée" vers des apprentissages plus approfondis, à condition de ne pas s'y limiter et de maintenir l'exigence intellectuelle.
"moi j'ai toujours été très partagé là-dessus je pense qu'il y a des situations où il est extrêmement difficile d'imposer la culture académique traditionnelle à des jeunes pour qui cette culture est totalement étrangère et que donc on peut dans ces situationsl partir de la culture qui est la l'heure mais partir ne veut pas dire y rester voilà pour moi [...] je dirais ne confondons pas la porte d'entrée et l'arrivée"
Il insiste sur la nécessité de placer l'exigence, l'approfondissement et le dépassement au cœur des pratiques pédagogiques.
8. La Redéfinition des "Savoirs Fondamentaux" :
Meirieu remet en cause l'idée que "lire, écrire, compter" constituent les seuls savoirs fondamentaux.
Il met l'accent sur des compétences transversales essentielles telles que la réflexivité, la capacité à ne pas se laisser influencer, la disponibilité à l'altérité et un certain rapport au savoir.
"d'abord moi je remets réellement en cause l'idée que compter sont des savoirs fondamentaux ce sont des savoirsfaire nécessaires mais ce qui est fondamental c'est pas ça ce qui est fondamental c'est le surc à l'acte et la réflexivité ce qui est fondamental c'est de ne pas se laisser embarquer et mettre sous emprise ce qui est fondamental c'est d'être disponible à l'altérité et capable d'entendre l'autre dans ce qu'il a à me dire et pas simplement de le détruire s'il me contredit"
Il insiste sur l'importance de transmettre à travers les savoirs une exigence de recherche, d'investigation et de vérité, soulignant que si l'enseignement se réduisait à la transmission d'informations, l'intelligence artificielle surpasserait rapidement les enseignants.
9. L'"Entrée dans l'Écrit" plutôt que le Simple "Lire-Écrire" :
Meirieu préfère parler d'"entrer dans l'écrit" pour souligner la découverte par l'enfant de ce que l'écrit apporte en termes d'émancipation (mémoire, espace, temps), plutôt que de se limiter à l'apprentissage technique du lire et de l'écrire.
"moi je crois que il faut parler d'entrer dans l'écrit pas de lire écrire parce que d'abord la simple distinction lire écrire est une e distinction qui peut être discutée on peut parfaitement dire à juste titre d'ailleurs que pour lire il faut que des gens aent écrit avant et donc l'écrit précède le lire et en fait on sait que pour chaque enfant aussi l'écrit précède le lire c'estàdire le fait de construire du sens à travers des signes précède le décryptage c'est pour ça que je parle moi d'entrer dans l'écrit c'est-à-dire de découverte de ce que l'écrit apporte à l'humain en terme d'émancipation"
10. L'Importance d'Intégrer l'Épistémologie et l'Anthropologie dans l'Enseignement :
Meirieu plaide pour une intégration de l'épistémologie (histoire et fondements des savoirs) et de l'anthropologie (sens pour l'humain) dans l'enseignement de chaque discipline.
Il propose d'enseigner chaque discipline "comme histoire", à la fois la grande histoire de sa construction et comme un récit (narrativité) pour faciliter l'entrée des élèves dans la connaissance.
"on peut penser un enseignement qui intègre l'épistémologie moi j'ai eu l'occasion de de travailler quand j'étais au Conseil supérieur des programmes un peu d'une autre manière plutôt que que de d'enseigner de l'épistémologie et d'en faire une sorte de discipline supplémentaire intégrer la dimension historique et anthropologique de chaque discipline dans l'enseignement de cette discipline j'avais même dit à un moment enseigner toute discipline comme histoire"
Il illustre cela avec l'exemple de l'EPS et de la question du rapport au corps, ou encore avec l'histoire des sciences.
11. La Nécessité de Prendre en Compte l'Élève dans sa Globalité (Corps et Esprit) :
Meirieu critique l'"idéalisme" de l'enseignement français qui tend à considérer l'élève comme un pur esprit, ignorant son histoire, sa corporéité et son environnement. Il souligne l'importance du rapport à l'espace, des rituels et des "dispositifs attentionnels" pour favoriser la posture mentale nécessaire à l'apprentissage.
"je crois que l'enseignement français un de ces principaux défauts c'est son idéalisme c'est-à-dire l'idée que un élève est un pur esprit et que finalement on s'adresse à lui simplement à la partie de lui qui est entre les sourcils et et les cheveux à son cerveau indépendamment et encore un cerveau très idéalisé qui est plutôt le cerveau épistémique tel que le décrit piagé on s'adresse à lui indépend endamment de toute son histoire de toute sa corporéité et de tout son environnement à mon avis ça c'est une erreur fondamentale"
Il insiste sur la nécessité pour l'ensemble de l'école de travailler sur le corps, les postures et la manière d'entrer dans l'espace d'apprentissage.
12. La Distinction entre Normalisation et Normativité :
Concernant la question de l'uniforme et plus généralement des normes, Meirieu rappelle la distinction de Georges Canguilhem entre la normalisation (uniformisation, potentiellement arbitraire et mortifère) et la normativité (ce qui est construit par un collectif pour assurer son fonctionnement). Il plaide pour une école qui fasse découvrir la normativité plutôt que d'imposer une normalisation.
"moi quand on me parle de la question de la norme norme vestimentaire norme comportemental normes cognitiv j'interroge toujours comme le faisait georgees kanguilem pour savoir s'il s'agit de la normalisation ou de la normativité et ça c'est une distinction qui me paraît absolument fondamentale la norm la normalisation dit Quang guilem c'est tout le monde pareil et Quang guilem qui était philosophe mais aussi biologiste dit la normalisation c'est toutes les cellules identiques c'est le cancer je ne veux voir qu'une tête tout le monde est pareil et c'est arbitraire la normativité dit quand qu'il aime c'est ce qui est construit par un collectif pour assurer la des personnes ensemble c'est-à-dire ce qui est nécessaire pour que les individus en commun puissent effectuer le travail qu'ils ont à faire"
13. La Crise du Recrutement des Enseignants et la Perte de Sens du Métier :
Meirieu exprime sa vive préoccupation face aux difficultés de recrutement, soulignant que la question salariale n'est pas la seule en cause. Il évoque le manque de clarté des finalités, la transformation de l'institution en un "service" avec des parents "clients", la technocratisation du métier et le sentiment pour les enseignants d'être des exécutants plutôt que des concepteurs.
"oui moi je suis extrêmement préoccupé par les difficultés de recrutement aujourd'hui du corp enseignant euh une société qui n'est pas capable de mobiliser sa jeunesse sur l'avenir sur les jeunes générations est une société qui doit quand même s'interroger mais je ne crois pas que la question salariale soit la seule elle est importante hein la France a pris un très gros retard sur la reconnaissance salariale des enseignants mais c'est pas la seule je pense qu'il y a d'autres d'autres dimensions qui jouent en particulier euh le manque de clarté des finalités"
Il décrit un climat de "dépression" inédit au sein de la profession, lié à une perte de sens et à une dévalorisation symbolique du rôle de l'éducation dans la société.
14. La Complexité de la Transmission du Savoir et la Nécessité de la Formation Continue :
Meirieu insiste sur la différence entre la passion pour une discipline et la passion pour son enseignement, soulignant que la formation doit aider les enseignants à opérer ce basculement et à comprendre les résistances des élèves. Il propose des initiatives de formation croisée entre disciplines pour favoriser cette prise de conscience.
"c'est compliqué un enseignant de mathématique en collège ou au lycée c'est quelqu'un qui va devoir assumer un passage déterminant il va devoir passer de la passion des mathématiques à la passion de l'enseignement des mathématiques c'e st un basculement et c'est un basculement que parfois certains collègues ne parviennent pas à faire et s'ils ne parviennent pas à faire ce basculement ils ne rentrent pas dans l'enseignement des maths ils sont figés sur l'idée que ceux qui ne réussissent pas sont des incapables des feignants ils ne comprennent pas qu'on ne comprennent pas ils ne comprennent pas qu'on ne s'intéresse pas ils ne sont pas capables d'examiner les résistances à leur propre enseignement sous l'angle positif hein pour améliorer cet enseignement"
15. Plaidoyer pour une "École du Commun" avec des Transitions Douces entre les Cycles :
Meirieu appelle à penser l'école de la scolarité obligatoire (3-16 ans) comme une "école du commun", axée sur l'apprentissage de ce qui est essentiel à tous, et organisée avec des transitions progressives plutôt que des ruptures brutales, notamment entre le CM2 et la 6ème.
"oui je crois qu'on aurait tout intérêt à à penser en terme d'école fondamental d'école de la scolarité obligatoire dans l'instruction obligatoire l'école de 3 à 16 ans et et la pensée comme étant alors non pas l'école unique qui a fait l'objet d'un d'un gros travail historique mais l'école du commun l'école où on apprend ce qui va faire à tous et et la pensée avec des transitions et non pas des ruptures"
Il propose de limiter le nombre d'enseignants par élève en 6ème et 5ème et de favoriser la création d'"unités pédagogiques fonctionnelles". Il suggère également de s'appuyer sur les professeurs volontaires pour la bivalence.
16. La Nécessité d'un Continuum Éducatif et du Rôle des Tiers-Lieux :
Meirieu insiste sur le fait que l'école ne peut pas être la seule instance éducative et plaide pour un continuum éducatif plus large intégrant la famille et les "tiers-lieux" (éducation populaire, associations, etc.). Il rappelle l'importance de l'éducation familiale et du secteur des loisirs (aujourd'hui trop marchandisé) dans le développement de l'enfant et de l'adolescent.
"moi je crois que l'école est évidemment un lieu fondateur fondateur de la République et de la démocratie puisque c'est le lieu où des enfants avec des trajectoires différentes avec des des histoires différentes avec des cultures différentes et singulières viennent partager les mêmes savoirs et ce ce cette espèce de mouvement ou des singularités se confrontent pour partager des savoirs communs est fondateur de notre faire ensemble de notre faire ensemble société et je pense qu'à cet égard l'école ne peut pas être la seule à faire cela et un des enjeu me semble-t-il aujourd'hui c'est de resituer l'école dans un continuum éducatif plus large"
17. Le Rôle Ambivalent des Syndicats et la Nécessité d'Alliances avec les Parents :
Meirieu reconnaît la tension au sein des syndicats entre la défense des intérêts corporatistes et celle du bien commun de l'éducation. Il appelle à une réflexion sur l'avenir de l'école intégrant tous les partenaires (syndicats, confédérations, parents d'élèves, élus locaux). Il insiste particulièrement sur la nécessité pour les enseignants de construire une alliance avec les parents face aux politiques qui tendent à les opposer.
"oui je crois que les syndicats sont partagés tous les syndicats plus ou moins et de manière très différenciée sont partagés entre une forme de défense des intérêts corporatistes et une forme de défense du bien commun de l'avenir de l'institution éducative et de l'avenir de l'éducation au sens le plus global du terme [...] moi je dis depuis déjà plusieurs années au sindicat à quel point il faut construire une alliance avec les parents parce que les politiques depuis presque 30 ans jouent les parents contre les profs"
18. Agir sur Plusieurs Segments pour une Éducation Émancipatrice, Égalitaire et Solidaire :
Pour Meirieu, améliorer l'éducation nécessite d'agir simultanément sur plusieurs fronts : ce qui se passe avant l'école (langage, éducation familiale), une véritable refondation de l'éducation prioritaire, une amélioration de la formation des enseignants et une qualité du débat public sur l'éducation.
"je pense que travailler à l'avenir d'une éducation à la fois émancipatrice égalitaire et solidaire nécessite de s'intéresser simultanément à à plusieurs segments d'abord il faut s'intéresser à ce qui se passe avant l'école on sait qu'un élève qui entre en en petite section peut posséder 600 mots ou 5000 mots [...] il faut s'intéresser à l'éducation familiale aussi on n pas en France de recherches suffisantes dans ce domaine [...] je pense qu'il faut aussi travailler sur une vraie reondme de l'éducation dite prioritaire [...] le troisème aspect bien sûr c'est la formation des enseignants"
Il insiste sur le rôle essentiel de l'éducation populaire et la nécessité de la soustraire à la seule sphère marchande.
19. Suggestions de Lectures Essentielles :
En conclusion, Meirieu partage une liste de lectures qui ont marqué son parcours et qu'il recommande aux enseignants et éducateurs :
Lettre à une maîtresse d'école des enfants de Barbiana (rééditée sous le titre Lettre à une institutrice) Textes de Célestin Freinet (notamment les Invariants pédagogiques) Comment aimer un enfant de Janusz Korczak Ouvrages d'Olivier Reboul sur la philosophie de l'éducation Ouvrages de Daniel Hameline Littérature en général, notamment américaine (Russell Banks)
Conclusion :
L'entretien avec Philippe Meirieu offre une perspective riche et nuancée sur les défis et les enjeux de l'éducation en France.
Son analyse, ancrée dans l'expérience et nourrie par une profonde réflexion philosophique et pédagogique, met en lumière la nécessité d'une vision renouvelée, d'un débat public de qualité et d'une action concertée sur de multiples fronts pour construire une école véritablement émancipatrice, égalitaire et solidaire.
Ses recommandations insistent sur l'importance de redonner du sens au métier d'enseignant, de prendre en compte l'élève dans sa globalité, de dépasser les approches technicistes et de réintégrer l'école dans un continuum éducatif plus vaste.
Addgene #22729
DOI: 10.1016/j.cels.2025.101205
Resource: RRID:Addgene_22729
Curator: @areedewitt04
SciCrunch record: RRID:Addgene_22729
Even function flip over Y axis. go in same direction Odd function flip over X axis. go in opposite
Briefing Document : **"Management éducatif : un collectif pour réhumaniser le système" ** Source : Excerpts from "Management éducatif : un collectif pour réhumaniser le système" (Transcription d'un entretien avec Dominique Bucheton, chercheuse en didactique du français et professeure honoraire des universités).
Date : Non spécifiée dans l'extrait.
Thèmes Principaux:
Idées et Faits Importants :
Inspirations Finales de Dominique Bucheton :
Réhumaniser l'école en construisant des collectifs qui travaillent ensemble, s'écoutent et partagent.
Rendre l'école joyeuse, inventive, vivante, créative et respectueuse des talents et des différences de chacun.
Ce briefing met en lumière la complexité des défis auxquels est confronté le système éducatif et souligne l'urgence de repenser les pratiques managériales et pédagogiques pour favoriser un environnement plus collaboratif, humain et porteur de sens pour tous les acteurs.
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
We thank the reviewers for their comments and have included substantial new data to strengthen the work by specifically addressing questions regarding the molecular mechanisms driving the proteomic and phenotypic changes observed in these disease models. We have generated a new ganglioside disease model (GM1 gangliosidosis) and demonstrated that the lysosomal exocytosis mechanism identified for GM2 gangliosidosis is a conserved mechanism that alters the PM proteome (see new Figure 5).
We have also carried out substantial additional experimental work to address the question of whether specific protein-lipid interactions drive some of these changes. We have preliminary data supporting this (included below) but we are not confident that these data are robust enough for inclusion in this manuscript. This work required substantial in vitro experiments including the expression and purification of several proteins for use in liposome binding assays. Although these data are promising, they have been challenging to reproduce and we would prefer to develop this work further for inclusion in a subsequent paper.
Although not requested by any reviewers we have also included substantial additional multielectrode array (MEA) data in Figure 4 to further support the phenotypic changes to electrical signalling seen in the Tay Sachs disease model.
We would like to note that even without these new data the reviewers highlighted that the “high-quality data presented significantly advance the field” and that the work “exposes key conceptual novelties” using “new insight” and “new tools” that shed “light on the complex pathophysiology that links lipid accumulation to neuronal dysfunction”. And that this highlights “an underappreciated dimension of these diseases” allowing them to be “understood better thanks to this study”. More generally the reviewers state that the work is of interest to both “clinicians and basic researchers” and is relevant to “broader fields in cellular and neurodegenerative biology”.
Reviewer 1
Confirmation of Neuronal Differentiation: To confirm neuronal differentiation in their i3N cell model, the authors show qPCR results indicating the expression of mature neuronal markers and the downregulation of stem cell markers by day 14. However, single-cell RNA sequencing (scRNA-seq) could provide a more detailed evaluation of the differentiation process, addressing the fine-grained cell-type composition within the cell population. Depending on the results, the authors might more precisely interpret functional data and assess the possible influence of increased GM2 levels on cell fate decisions.
The accumulation of GM2 may not be identical across all neurons and so it is possible that, although the neuronal populations as a whole display mature differentiation, individual cells may respond differently to the amount of lipid debris. However, there are several technical reasons why obtaining samples for scRNAseq is extremely challenging. By 14 dpi the separation of individual neurons from each other is very difficult as they are in a densely grown and highly attached and interconnected network. Furthermore, the individual neurons have a highly polarized differentiated morphology with long delicate axonal and dendritic projections, that are readily cleaved and lysed in the process of harvesting and dissociation to obtain single cell suspensions for FACS sorting. In neurons, mRNAs are also abundantly localised along the length of their neuritic projections [1], thus these damaged preparations would provide unreliably meaningful data. Alternatively, sufficiently isolated individual neurons show poor survival and do not mature. If these technical difficulties could be overcome, in order to monitor altered differentiation, it would be necessary to determine which timepoint was most relevant to capture differences between day 0 stem cells and day 28 when they are synchronously firing glutamatergic neuron cultures. For this analysis to be robust it would require sample preparation and analysis of multiple stages of the differentiation process. For all the reasons above we cannot address this reviewer’s request.
Mechanistic Links Between Lipid Accumulation and Proteomic Changes: The authors report specific proteome changes upon HEXA/B KO. What are the mechanistic links between lipid accumulation and proteomic changes? Is the overall degradative performance of lysosomes compromised? The authors note that certain proteins, such as TSPANs, can bind directly to GSL headgroups. Clarifying whether the observed proteomic changes result from specific, direct lipid-protein interactions versus indirect effects could strengthen the argument for targeted lipid-mediated proteomic shifts.
In response to these questions, we have carried out substantial additional experimental work testing the lipid interactions of some of the proteins that are most altered in their abundance at the PM. We focussed on the top non-lysosomal proteins as we are proposing that the lysosomal ones are primarily changed due to lysosomal exocytosis, suggesting the non-lysosomal are the best candidates for direct GSL-binding. To robustly identify specific lipid-protein interactions is highly challenging but something we have demonstrated previously [2].
In vitro lipid-binding assays require expression and purification of the proteins of interest to then be used in liposome pulldown experiments using liposomes of defined composition. As we are most interested in the specificity of the headgroup interaction we focussed on producing the extracellular portions of these proteins that would be predicted to bind these headgroups (again this is a strategy we have successfully used previously [2]). We expressed and purified the extracellular domains of three top non-lysosomal hits: CNTNAP4, CNTN5 and NTRK2 (Fig. R1A, provided in attached response document). These purified proteins were used in liposome-binding assays using liposomes composed of different sphingolipids and gangliosides (Fig. R1B). These data demonstrate that the GPI-anchored protein CNTN5 and its potential binding partner CNTNAP4 bind promiscuously to different headgroups. This may be consistent with their being incorporated into GSL-rich membrane microdomains via the GPI-anchor. Interestingly, in this assay NTRK2 demonstrates specific and substantial binding to GM2, with some weaker binding to GD3.
These data support that the increased abundance of NTRK2 at the PM could be driven by direct interactions with the same lipid that is accumulating at the PM. As exciting and compelling as these data are, we have subsequently been unable to repeat this observation for NTRK2. We are unsure why and have tried several different strategies to test this interaction, but at this stage with only an N=1 for this observation we do not feel confident to include these data in the manuscript.
We intend to pursue this further using a range of alternative techniques and protein constructs but this will take substantial additional time and effort that we feel go beyond the scope of this current manuscript.
Additionally, does this phenomenon extend to other sphingolipidoses (e.g., Gaucher disease)? Comparing the proteomes of i3N cells across different sphingolipidoses could reveal whether the accumulation of distinct GSLs produces unique or shared proteomic profiles, highlighting similarities or specificities across lysosomal storage disorders.
We agree with the reviewer that this is an interesting and important question and had intended to do this as follow-up work in a future publication. However, in the interests of addressing this point here, we are including additional data we have generated from a new i3N model of GM1 gangliosidosis. As for the GM2 gangliosidosis models, we used CRISPRi to knockdown GLB1 and have confirmed this KD by q-PCR. We have also profiled the GSL composition and quantified the increased GM1 abundance. We have followed this up with both whole-cell and PM proteomics. We have presented comparative proteomics of the two models and demonstrated that they both result in significant accumulation of lysosomal proteins both in cells and at the PM. This shared proteomic profile is consistent with lysosomal exocytosis being a conserved mechanism driving altered PM composition in these diseases. We have included this work as an additional results section and an additional figure (Figure 5) as well as expanding the discussion. For this analysis we collected mass spec data at 28 dpi based on our observations in the paper that electrical signalling was synchronised at this point (Fig 4). In the text we discuss additional changes in these new WCP data such as the appearance of other trafficking molecules such as Arl8a that further support a lysosomal exocytosis mechanism.
In terms of the unique proteomic profiles of these diseases, the read depth of the PMP data in this case was not sufficient to confidently identify differences between the two gangliosidosis models and therefore we intend to pursue this work with additional LSDs in future studies to be included in a follow-up paper.
In terms of mechanistic links between lipid accumulation and proteome changes, we feel these new data provide substantial additional support that the appearance of lysosomal proteins at the PM is driven by lysosomal exocytosis and have preliminary data supporting that some non-lysosomal protein changes may be driven by altered protein-lipid interactions.
Impact of Increased PM GM2 Levels on Endocytic Pathways: Along similar lines, the authors show differences in the PM proteome and in the representation of specific PM lipid domain-associated proteins. As some of these proteins are turned over by mechanisms involving lipid domain-dependent endocytosis, the authors might want to examine the effect of increased PM GM2 levels on various endocytic pathways.
We thank the reviewer for this suggestion and have attempted assays monitoring endocytosis using several approaches including the uptake of fluorescently labelled bovine serum albumin (DQ-BSA) [3–5]. These endocytosis assays are well established in standard cell lines such as HeLa cells. Despite several attempts by us to get this working in neurons using multiple alternative readouts (microscopy and plate-based fluorescence) we have been unable to measure changes in endocytosis. Exploration of alternative methods to probe Clathrin-independent/dynamin-independent endocytosis (CLIC/GEEC) suggests these pathways are difficult to observe by fluorescence microscopy as there is minimal concentration of cargo proteins during the formation of carriers before endocytosis [6]. As an alternative strategy to probe changes in lipid-domain dependent endocytosis we have analysed the proteomics data for changes in galectins but no changes were identified in the data. We also explored available tools for modulating lysosomal exocytosis and monitoring lysosomal movement including activating TRPML1 to trigger exocytosis and activating ABCA3 to drive more lipid accumulation [7–10]. Similarly to the endocytosis assays above, these were not translatable to neurons in our hands due to a range of challenges including increased toxicity of these drugs on this cell type. We have made a substantial effort to try and address these questions and have conferred with colleagues who have also reported difficulties in establishing these assays in neurons. We are keen to continue to pursue this question but due to the technical challenges we feel this work lies beyond the scope of the current manuscript.
Multifaceted Nature of Gangliosidoses as PM Disorders: The manuscript presents an important perspective by reframing gangliosidoses as multifaceted PM disorders that disrupt neuronal function and membrane composition. By further elaborating on the connection between membrane lipid alterations, neuronal excitability, and synaptic composition, and by exploring the interplay with lysosomal dysfunction, the authors could provide a richer understanding of gangliosidoses and GSL function in general.
We appreciate that the reviewer agrees with us that reframing gangliosidoses as more complex multifaceted diseases is important. We are not sure if there is a request here for more elaboration in the text but based on the new data included in the paper, we have expanded some of the discussion around these points. We are very enthusiastic to continue to probe the connections and interplay as described by the reviewer and this is the focus of our ongoing studies.
Reviewer 2
- T-tests and one-way ANOVAs were used, but it is not clear if datasets were tested for normality and equal standard deviations. Please add these details. If data are not normal or standard deviations are unequal, other tests will have to be used.
All graphs were checked for normality and variance in standard deviation and for figure 1F, where the data was not normally distributed, a Kruskal-Wallace test was used in place of a one-way ANOVA. All significantly different results are now labelled on graphs and the relevant tests described in the figure legends. This has also all been updated in the Supplementary data.
- It needs to be clearly explained how many data points were used for statistical analyses and what the data points were. E.g., N=3 independent experiments on 3 different days, each done in n=3 different wells, total n=9. Each well can be considered a biological replicate, but it's of lesser value than the "big Ns" done on different days. The authors can choose different ways of defining their N/n numbers, but it has to be transparent. The bar graphs would ideally display the data points.
All figure legends now clearly explain N and n numbers used in experiments. Individual data points are displayed on qPCR graphs where N and n are mixed, with shapes denoting the biological repeat (N). In addition to clarification in figure legends, N and n numbers are described in the methods sections where appropriate.
For completeness we also include here details of these N/n numbers.
- There should be a comment on how statistical power was calculated upfront and if not: how N/n numbers were chosen ("based on similar expts in the past").
N/n numbers, as detailed above, were chosen based on previous experiments by ourselves and others, as well as recommended practice [2,11–15]. Typically, these papers do not describe the statistical power upfront. We have added statements to this effect and relevant references to the methods section of the manuscript.
- "This suggests that some of the proteins that are accumulating in these diseases are specifically products of lipid accumulation rather than a product of general lysosomal dysfunction. In further support of this, several lysosomal proteins including V-type ATPases (ATP6 family), mannose-6-phosphate receptor (M6PR) and biogenesis of lysosomal organelle complex subunits (BLOC1) are quantified in the WCP but are not increased in abundance." This part is confusing. It seems like the authors observe an accumulation of endolysosomes in general (page 6), but then only certain endolysosomal proteins accumulate - and the authors speculate that this is due to decreased degradation or enhanced translation (mRNA levels are unaffected). This question should be addressed better, ideally experimentally: are endolysosomes accumulating in general or not? And what defines the endolysosomal proteins that accumulate vs. those that don't? How is that regulated?
Recently published work has identified that late endosomes/lysosomes do not possess one composition; they are dynamically remodelled and there is substantial heterogeneity in the composition of different lysosomes [16,17]. While some components, such as LAMP1 and Cathepsin D, are common across all lysosomal compartments there is considerable heterogeneity in the composition of these organelles. These studies also demonstrate that in disease-relevant conditions or upon drug treatment, lysosomes change their protein composition. For example, in a LIPL-4 KO mouse model they observe an increased abundance of Ragulator complex components, similarly to the increase in LAMTOR3 seen in our new 28 dpi WCP data for GM1 and GM2 gangliosidoses. Interestingly, in this study they demonstrate that lysosomal lipolysis leads to bigger changes in lysosomal protein composition than other pro-longevity mechanisms [17]. Another recent paper looking at a different lysosomal storage disease in microglia with accumulating GSLs and cholesterol has also identified abundance changes in a subset of lysosomal proteins including several we observe here including TTYH3, NPC1, PSAP and TSPAN7 [18]. Beyond proteomic analyses, the experimental tools for identifying these different populations are currently very limited, but these published studies support that it is possible to have accumulation of what we define as lysosomes by IF (using LAMP1 or lysotracker) but for the proteomic analysis to identify increased abundance of only a subset of lysosomal proteins.
These papers do not identify or speculate on how these differences are regulated. Analysis of the changes in our WCP as well as the new data for GM1 gangliosidoses support that the proteins that are most changed in response to GSL accumulation are membrane proteins involved in lipid and cholesterol binding and transport (New Fig 2D and 5E and see response below). This specific enrichment suggests that the changes are directly linked to the lipid changes, thus our suggestion that these accumulate due to a need for the cell to process these lipids but also that they may get “trapped” in the membrane whorls such that they are not efficiently degraded.
We have included the references above and a more detailed description of lysosomal heterogeneity into the main text to help address the reviewer’s questions.
- Fig. 1D: The GO terms are confusing. Why are there more proteins in the category lysosomal membrane than lysosome as a whole? Other categories seem to be overlapping as well.
We apologize for the confusion; this graph does not display protein counts it is the adjusted P values for the enrichment of the term. To make this clearer, the DAVID analysis graphs are now presented in a new format. We present in this new graph the false discovery rate (FDR) (adjusted P value) which is a measure of the significance of whether that GO term is specifically enriched in the dataset. We have also expanded the GO term analysis to include molecular function and biological process descriptors in addition to the cellular component originally described. For full clarity, to the right of each term we include the number of significant hits that have this term, that being the number of proteins that are contributing to this GO term enrichment.
- Fig. 2C/3A: It'd be good to also show the hits that don't match the expectation/pathways of interest.
We provide a full list in the Supplementary Information of all hits that are considered significant allowing the reader to access this information without having to download the datasets from PRIDE. We did not label all hits in these panels to avoid cluttering the image. In the main text we have focused on those that clearly fall within related categories or pathways as we feel that several “hits” in the same area represents a more compelling and confident assessment of the data. Several of the additional hits not mentioned in the main text do still match the expectations/pathways. For example, one of the top hits not labelled in the WCP is GPR155 (a cholesterol binding protein at the lysosomal membrane) and one of the top unlabelled hits in the PMP data is OPCML (a GPI-anchored protein that clusters in GSL-rich microdomains). There are some, such as KITLG (up in the PMP data), that we don’t currently have a hypothesis for why/how they change, but we are reluctant to describe and speculate upon additional isolated/orphan hits in the main text when these have not been further validated.
- Fig. 3: It is not intuitive that synaptic proteins in particular would accumulate at the plasma membrane due to the lipid storage defect. Are they mis-trafficked or are they at synaptic membranes? That could, e.g, be addressed by isolating synaptosomes. And why this selectivity for synaptic proteins? Neurons should have more plasma membrane that is not synaptic. And, e.g, the release of lysosomal material should not happen at synapses (and lysosomes should not deliver synaptic proteins to the PM, unless there is a failure to degrade them).
We agree that synapses represent a relatively small proportion of the entire PM of neurons, but synapses are particularly enriched with glycosphingolipids where they affect synaptogenesis and synaptic transmission [19–22]. For these reasons we think that some synaptic proteins are particularly sensitive to these lipid changes as they are localised in GSL-rich membrane microdomains. We have now clarified this point in the text. We have also further clarified that we were not proposing that lysosomal proteins are present at the synapses. We observed that lysosomal proteins are enriched at the PM and this may be more generally across the whole PM, while the changes to synaptic proteins may or may not be localised at the synapse. We apologise for the confusion and have modified the text at the end of the PM proteomics results section to make this clearer.
To try and address experimentally the question of whether these proteins are at synapses, we have attempted synaptosome enrichment. However, lysosomal compartments co-sedimented with synaptosomes during the preparation – LAMP1 staining was enriched in the synaptosome preparations of all samples including SCRM controls. Therefore, we cannot distinguish these compartments which is particularly problematic in this disease model.
(7. Continued) Or is there an effect on synaptic vesicles? Are there more? Do they deliver their cargo more readily? Or is there a failure to do endocytosis of synaptic proteins, and that's why the accumulate? What is the connection between SVs and endolysosomes? More clarity would be good here.
We do think that there is an effect on synaptic vesicles particularly as the SV proteins SYT1 and SV2b are significantly increased in abundance at the PM suggesting they are not being internalized normally. Furthermore, the new WCP data going out to 28 dpi for both GM1 and GM2 gangliosidoses have identified a significant increase in Arl8a which plays a shared role in lysosomal and SV anterograde trafficking [23,24]. Whilst previously thought of as discrete pathways, evidence now suggests that endolysosomal and SV recycling pathways form a continuum with several shared proteins involved in the fusion, trafficking and sorting in both pathways [25]. Arl8a provides a good example of an adaptor protein that functions in both pathways and also when overexpressed results in enhanced neurotransmission consistent with our studies [26]. We have adjusted the discussion text to include a description of the links between SVs and endolysosomal trafficking and the potential shared role Arl8a may be playing in both pathways.
Regarding the question of whether there are more SVs or not, this is hard to determine directly as they are particularly small (~50 nm) and difficult to visualise or specifically stain for using microscopy. Not all SV-associated proteins are increased in the PMP data, for example SNAP25 and several other synaptotagmins are not changed in the 28 dpi data for both gangliosidosis models. We hope in the future to address SV changes more directly with higher resolution imaging such as electron microscopy or cryo-tomography but cannot currently confidently answer these specific questions.
- Fig. 4: The assumption that there is more synaptic activity because there are more synaptic proteins at the membrane seems to be plausible, but also speculative at this point.
We have modified the text at the end of this results section to highlight that this is a speculative link.
- The possible contribution of glial cells should at least be discussed.
We mention potential deleterious effects on bystander cells including other neurons, astrocytes and microglia in the second last paragraph of the discussion. In response to this request we have expanded and modified this text.
Minor: there are some typos etc.
Although no specific examples were listed, we have endeavored to find and correct typos, we have also checked for English spelling (not American) throughout.
Reviewer 3
- Results section, 1st paragraph- to develop disease models- -- Please add cellular models as we already have KO mouse models.
This has been added to the text.
- It was not clear what was the percentage of mutation success with their CRISPR technique.
The CRISPR method employed here was CRISPRi so there is no mutation of the genome. Instead, inactive/dead-Cas9 is targeted to the promotor/early exon of the HEXA or HEXB gene to inhibit mRNA production. We have included qPCR data to demonstrate the extent of the KD for two different guides to each of these genes in Fig 1.
- Will the anti-GM2 antibody be available for other researchers? The researcher details needs to be clarified.
The anti-GM2 antibody is not commercial available and was generated by one of the co-authors. We invite scientists with an interest in this antibody to contact the corresponding author for details.
- Hex activity assay was shown in 1C, but it was not clear that it is MUG or MUGS.
We apologise for this and have relabelled these activity assay graphs and expanded the legend text to clarify how these two substrates were used to distinguish the two different KD lines. We also corrected a small mistake in the methods section.
- Is there a significance in Figure 2 B, 4A, 4B,4C and 4E?
Based on additional requests from reviewer 2 we have added significance indicators and details of significance tests for several panels in Figures 1-5 including 2B and 4B. For 4A we do not state a significant difference, we use these data to select a timepoint (28 dpi) where all cell lines have synchronous (correlated) signal. The data in Figure 4C and D have been substantially updated and expanded. Analysis of the data in 4C is plotted in 4D where we show significance. For 4E we are stating that the applied stimulation (white triangles) stimulates the HEXA cells every time but the SCRM do not respond to each stimulation. It is not clear how we would quantify this difference and there is no precedent for doing this in the MEA literature or by the Axion company who provided the instrument. We have also included additional references for best practice when analysing MEA data.
REFERENCES
toda norma 0 maxima de toda acd6n,de toda organizacion 0 de toda instituci6n (micro 0 macro), detodo ejercicio delegado del poder obediencial, tengan siemprepor prop6sito la producciim, mantenimiento y aumento de La vida inmediata de los ciudadanos de la comunidad politica, en ultimo termino de toda la humanidad, siendo responsables tam bien de esoso~ietivos en el mediano y largo plazo (los proximos milenios)
Máxima del principio material. propósito: producción, mantenimiento y aumento de la vida, de la vida humana, de la humanidad, siendo responsables a mediano y largo plazo. (En todas las esferas)
De 10 que se trata en politica es de crear las condiciones parala posibilidad de la vida de la comunidad (y de cada miembro) ypara su acrecentamiento: una vida posible; una vida cualitativamente mejor.
¿Qué vida? Una vida posible, una vida cualitativamente mejor. "Que todos dispongan de los medios suficientes para subsistir"
Se intenta aquf superar estas posiciones reductivas.
Crítica a las visiones: marxista, liberal formal-democrática y cínica. Mutua y compleja codeterminación sin "última instancia"
AI menos los principios normativos de la politica, los esendales, son tres. EI principio material (1\;1) obliga acerca de la vida delos ciudadanos; el principio Jormal (L) democratico determina eldeber de actuar siempre cumpliendo con los procedimientos propios de la legitimidad democratica; el principio de Jactibilidad (J!
Principios normativos de la política:1. Material: vida de los ciudadanos; 2. Formal: democráticos, procedimientos; 3. Factibilidad: operar lo posible. Principios interdependientes, condicionante y condicionada del otro
El fetichismo del poder[-+5.1] (que es el no cumplimiento de la normatividad polftica)es autodestructivo. Aisla el poder delegado (fJOtestas) de la fuentedel poder (potentia).[9.2] Los tres principios "implicitos"[9.21] Los principios politicos imperan implicitamente, como lasreglas gramaticales que una madre enseila a su hijo, aunque nosepa nada de gramatica, cuando Ie corrige exclamando: "iNo sedice casa colorado, sino colorada!" -la madre sabe implicitamentelas reglas de la concordancia de los generos del sustantivo y de los
Noción de fetichismo del poder, expresión del no cumplimiento de los principios normativos de la política, no solo un hecho subjetivo injusto sino que carcome el poder y las instituciones a través de las que se pretende gobernar, aislando el poder delegado de la fuente del poder.
Los principios politicos son, por otra parte, principiosintrinsecos y constitutivos de la potentia [-+ 2] (el poder de la comunidad) y tam bien de la potestas [-+ 3] (del ejercicio delegadodel poder), ya que cada determinacion del poder es fruto de unaobligacion politica
Principios políticos = a principios intrínsecos y constitutivos de dos elementos: a) Potentia (poder de la comunidad o soberano) y potestas (ejercicio delegado del poder: mandando), como fruto de una obligación política. Visible, ¿en dónde? en sus actos y cumplimiento de su función en las instituciones.
Encierta manera la polftica pierde toda normatividad y sus reglas sonpuramente procedimentales 0 "maquiaveIicas"
Primera manera: supuesta no relación entre ética y política.
astles in gothic titles, it makes sense. The x of y? Here seman-tics helps; if we look at the x in the formula, we find that romance appearsin 7 percent of the cases (The Romance of the Pyrenees), a cluster of genreindicators like mysteries, horrors, secrets, adventures in 13 percent (TheHorrors of Oakendale Abbey), personal nouns in 34 percent (Emmeline, orthe Orphan of the Castle), and space nouns in 41 percent of the total (fig.20): from The Castle of Otranto in 1764 to The Mines of Wielitzka and TheRock of Glotzden a half century later. So, in three fourths of the cases the xof y specifies an x that is either a person or a space. And when we movefrom the subject of the formula to its predicate—from the x to the y—whatwe find is so striking that I don’t even need a graph to point it out: TheRomance of the Pyrenees, The Horrors of Oakendale Abbey, The Orphan ofthe Castle, The Castle of Otranto, The Mines of Wielitzka, The Rock of Glotz-den . . . in 82 percent of the cases, the y is a space: a person defined by aspace, or, most frequent of all, a space defined by another space. The Castleof Otranto: a spatial noun specified by a place name.There are many intriguing traits to gothic titles—this
This is a very interesting way (at least to me) to approach period and genre: creating a formula and applying it to literature, in this case, the titles of the books. I wonder if this could be applied to another period.
y1v1; P{y[+t7.7] v[+t1.8] = TRiP.HMS00040} attP2/TM3, Sb
DOI: 10.3389/fnmol.2018.00182
Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)
Curator: @bdscstockkeepers
SciCrunch record: RRID:SCR_006457
y1,w67c23; P{w+mC]y+mDint2=EPgy2}EY07065/TM3, Sb1,Ser1
DOI: 10.1242/dev.165985
Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)
Curator: @bdscstockkeepers
SciCrunch record: RRID:SCR_006457
P{w+mC]y+mDint2=EPgy2}EY07065/TM3, Sb1,Ser1
DOI: 10.1242/dev.165985
Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)
Curator: @bdscstockkeepers
SciCrunch record: RRID:SCR_006457
BL #8807
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_8807
Curator: @bdscstockkeepers
SciCrunch record: RRID:BDSC_8807
BL #458
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_458
Curator: @bdscstockkeepers
SciCrunch record: RRID:BDSC_458
BL #1767
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_1767
Curator: @bdscstockkeepers
SciCrunch record: RRID:BDSC_1767
BL #4414
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_4414
Curator: @bdscstockkeepers
SciCrunch record: RRID:BDSC_4414
BL #8860
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_8860
Curator: @scibot
SciCrunch record: RRID:BDSC_8860
BL #6870
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_6870
Curator: @scibot
SciCrunch record: RRID:BDSC_6870
BL #5138
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_5138
Curator: @scibot
SciCrunch record: RRID:BDSC_5138
BL #27390
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_27390
Curator: @scibot
SciCrunch record: RRID:BDSC_27390
Addgene_49410
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:Addgene_49410
Curator: @scibot
SciCrunch record: RRID:Addgene_49410
BL #2555
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_2555
Curator: @scibot
SciCrunch record: RRID:BDSC_2555
Addgene_49330
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:Addgene_49330
Curator: @scibot
SciCrunch record: RRID:Addgene_49330
Bloomington #54591
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_54591
Curator: @scibot
SciCrunch record: RRID:BDSC_54591
BL#35523
DOI: 10.1038/s41598-018-27076-y
Resource: RRID:BDSC_35523
Curator: @scibot
SciCrunch record: RRID:BDSC_35523
RRID:CVCL_0182
DOI: 10.1186/s12993-025-00269-y
Resource: (KCB Cat# KCB 200770YJ, RRID:CVCL_0182)
Curator: @scibot
SciCrunch record: RRID:CVCL_0182
RRID:IMSR_JAX:004936
DOI: 10.1053/j.gastro.2025.01.252
Resource: (IMSR Cat# JAX_004936,RRID:IMSR_JAX:004936)
Curator: @scibot
SciCrunch record: RRID:IMSR_JAX:004936
that a lot of people had
We have a spreadsheet of historical efforts here: https://docs.google.com/spreadsheets/d/1f86L7vgHUW9wSLNNSunhjmtxtg6KlCOVpHGKbqUzW-Y/edit?gid=0#gid=0
Art. 896-B
Nessa linha, vide a Instrução Normativa n° 40, de 15 de março de 2016 retificada, a qual aproximou a sistemática de admissibilidade recursal do RR à do REsp e RE.
A Instrução Normativa nº 39, 10 de março de 2016, por sua vez, regula as compatibilidades e incompatibilidades existentes entre o CPC e a CLT.
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
[…] Overall, this is an important paper that demonstrates that one model for transgenerational inheritance in C. elegans is not reproducible. This is important because it is not clear how many of the reported models of transgenerational inheritance reported in C. elegans are reproducible. The authors do demonstrate a memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.
We would like to correct the statement made in the second to last sentence. The demonstration of an F1 response to PA14 was first reported by Moore et al., (2019) and then by Pereira et al., (2020) using a different behavioral assay. We merely confirmed these results in our hands, and confirmed the observation, first reported by Kaletsky et al., (2020), that sid-1 and sid-2 are required for this F1 response; although we did find that sid-1 and sid-2 are not required for the PA14-induced increase in daf-7p::gfp expression in ASI neurons in the F1 progeny of trained adults, which had not been addressed in the published work.
Yes, the intergenerational F1 response could be a maternal effect, but the in utero F1 embryos and their precursor germ cells were directly exposed to PA14 metabolites and toxins (non-maternal effect) as well as any parental response, whether mediated by small RNAs, prions, hormones, or other unknown information carriers. While the F1 aversion response does require sid-1 and sid-2, we would not presume that the substrate is therefore an RNA molecule, particularly because the systemic RNAi response supported by sid-1 and sid-2 is via long double-stranded RNA. To date, no evidence suggests that either protein transports small RNAs, particularly single-stranded RNAs.
Strengths:
The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to the memory of PA14 avoidance, speaking to an intergenerational phenotype.
The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that single copy daf-7::GFP is not elevated in F1 progeny of sid mutants. Because the Murphy group reported that daf-7 mutation abolishes avoidance for F1 progeny, this means that the sid genes function downstream of daf-7 or in parallel, rather than upstream as previously suggested.
The published report (Moore et al., 2019) shows only multicopy daf-7p::gfp results and does not address the daf-7p::gfp response in sid-1 or sid-2 mutants. Thus, our discovery that systemic RNAi, exogenous RNAi, and heritable RNAi mutants don’t disrupt elevated daf-7p::gfp in ASI neurons in the F1 progeny of PA14 trained P0’s is only unexpected with respect to the published models (Moore et al., 2019, Kaletsky et al., 2020).
The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. Importantly, the authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, is unlikely to affect maco-1 expression by generating sRNAs that target maco-1 in C. elegans. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. The Murphy group might wish to consider following up on these genes and their possible relationship with P11.
Weaknesses:
This very thorough and interesting manuscript is at times pugnacious.
We reiterate that we never claimed that Moore et al., (2019) did not obtain their reported results. We simply stated that we could not replicate their results using the published methods and then failed in our search to identify variable(s) that might account for our results. In revising the manuscript, we have striven to make clear, unmuddied statements of facts and state that future investigations may provide independent evidence that supports the original claims and explains our divergent results.
Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.
We added the standard recipes and the following explanations in the methods section to the revised text.
“NG plates minimally support OP50 growth, resulting in a thin lawn that facilitates visualization of larvae and embryos. HG plates (8X more peptone) support much higher OP50 growth, resulting in a thick bacterial lawn that supports larger worm populations.”
We have also included the following text in our presentation and discussion of the effects of growth conditions on worm choice in PA14 vs OP50 choice assays.
“Furthermore, because OP50 pathogenicity is enhanced by increased E. coli nutritive conditions (Garsin et al., 2003, Shi et al., 2006), the growth of F1-F4 progeny on High Growth (HG) plates (Moore et al., 2019; 2021b), which contain 8X more peptone than NG plates and therefore support much higher OP50 growth levels, immediately prior to the F1-F4 choice assays may further contribute to OP50 aversion among the control animals.”
We don’t know enough to claim that HG or NG media is better than the other for intergenerational assays, but they are different. Thus, switching between the two in a multigenerational experiment likely introduces unknown variability.
Reviewer #2 (Public Review):
This paper examines the reproducibility of results reported by the Murphy lab regarding transgenerational inheritance of a learned avoidance behavior in C. elegans. It has been well established by multiple labs that worms can learn to avoid the pathogen pseudomonas aeruginosa (PA14) after a single exposure. The Murphy lab has reported that learned avoidance is transmittable to 4 generations and dependent on a small RNA expressed by PA14 that elicits the transgenerational silencing of a gene in C. elegans. The Hunter lab now reports that although they can reproduce inheritance of the learned behavior by the first generation (F1), they cannot reproduce inheritance in subsequent generations.
This is an important study that will be useful for the community. Although they fail to identify a "smoking gun", the study examines several possible sources for the discrepancy, and their findings will be useful to others interested in using these assays. The preference assay appears to work in their hands in as much as they are able to detect the learned behavior in the P0 and F1 generations, suggesting that the failure to reproduce the transgenerational effect is not due to trivial mistakes in the protocol. An obvious reason, however, to account for the differing results is that the culture conditions used by the authors are not permissive for the expression of the small RNA by PA14 that the MUrphy lab identified as required for transgenerational inheritance. It would seem prudent for the authors to determine whether this small RNA is present in their cultures, or at least acknowledge this possibility.
We thank the reviewer for raising this issue and have added the following statement to this effect in the revised manuscript.
“We note that previous bacterial RNA sequence analysis identified a small non-coding RNA called P11 whose expression correlates with bacterial growth conditions that induce heritable avoidance (Kaletsky et al., 2020). Critically, C. elegans trained on a PA14 ΔP11 strain (which lacks this small RNA) still learn to avoid PA14, but their F1 and F2-F4 progeny fail to show an intergenerational or transgenerational response (Figure 3L in Kaletsky et al., 2020). The fact that we observed an intergenerational (F1) avoidance response is evidence that our PA14 growth conditions induce P11 expression.”
We believe that this addresses the concern raised here.
The authors should also note that their protocol was significantly different from the Murphy protocol (see comments below) and therefore it remains possible that protocol differences cumulatively account for the different results.
As suggested below, we have added to the supplemental documents the protocol we followed for the aversion assay. In our view, this document shows that our adjustments to the core protocol were minor. Furthermore, where possible, these adjustments were explicitly tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and presented in the manuscript.
To discover the source(s) of discrepancy between our results and the published results we subsequently introduced variations to this core protocol to exclude likely variables (worm and bacteria growth temperatures, assay conditions, worm handling methods, bacterial culture and storage conditions, and some minor developmental timing issues). Again, where possible, the effect of variations was tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and were presented in or have now been added to the manuscript.
It remains possible that we misunderstood the published Murphy lab protocols, but we were highly motivated to replicate the results so we could use these assays to investigate the reported RNAi-pathway dependent steps, thus we read every published version with extreme care.
Reviewer #3 (Public Review):
[…] Strengths:
(1) The authors provide a thorough description of their methods, and a marked-up version of a published protocol that describes how they adapted the protocol to their lab conditions. It should be easy to replicate the experiments.
As noted above in response to a suggestion by reviewer #2, we have replaced the annotated published protocol with the protocol that we followed. This will aid other groups' attempts to replicate our experimental conditions.
(2) The authors test the source of bacteria, growth temperature (of both C. elegans and bacteria), and light/dark husbandry conditions. They also supply all their raw data, so that the sample size for each testing plate can be easily seen (in the supplementary data). None of these variations appears to have a measurable effect on pathogen avoidance in the F2 generation, with all but one of the experiments failing to exhibit learned pathogen avoidance.
We note that the parallel analysis of daf-7p::gfp expression in ASI neurons was also tested for several of these conditions and also failed to replicate the published findings.
(3) The small RNA seq and mRNA seq analysis is well performed and extends the results shown in the original paper. The original paper did not give many details of the small RNA analysis, which was an oversight. Although not a major focus of this paper, it is a worthwhile extension of the previous work.
(4) It is rare that negative results such as these are accessible. Although the authors were unable to determine the reason that their results differ from those previously published, it is important to document these attempts in detail, as has been done here. Behavioral assays are notoriously difficult to perform and public discourse around these attempts may give clarity to the difficulties faced by a controversial field.
Thank you for your support. Choosing to pursue publication of these negative results was not an easy decision, and we thank members of the community for their support and encouragement.
Weaknesses:
(1) Although the "standard" conditions have been tested over multiple biological replicates, many of the potential confounders that may have altered the results have been tested only once or twice. For example, changing the incubation temperature to 25{degree sign}C was tested in only two biological replicates (Exp 5.1 and 5.2) - and one of these experiments actually resulted in apparent pathogen avoidance inheritance in the F2 generation (but not in the F1). An alternative pathogen source was tested in only one biological replicate (Exp 3). Given the variability observed in the F2 generation, increasing biological replicates would have added to the strengths of the report.
We agree that our study was not exhaustive in our exploration of variables that might be interfering with our ability to detect F2 avoidance. We also note that some of these variables also failed (with many more independent experiments) to induce elevated daf-7p::gfp expression in ASI neurons in F2 progeny. Our goal was not to show that variation in some growth or assay condition would generate reproducible negative results, but the exploration was designed to tweak conditions to enable detection of a robust F2 response. Given the strength of the data presented in Moore et al., (2019) we expected that adjustment of the problematic variable would produce positive results apparent in a single replicate, which could then be followed up. If we had succeeded, then we would have documented the conditions that enabled robust F2 inheritance and would have explored molecular mechanisms that support this important but mysterious process.
(2) A key difference between the methods used here and those published previously, is an increase in the age of the animals used for training - from mostly L4 to mostly young adults. I was unable to find a clear example of an experiment when these two conditions were compared, although the authors state that it made no difference to their results.
We can state firmly that the apparent time delay did not affect P0 learned avoidance (new Figure S1) or, as documented in Table S1, daf-7p::gfp expression in ASI neurons. In our experience, training mostly L4’s on PA14 frequently failed to produce sufficient F1 embryos for both F1 avoidance assays or daf-7p::gfp measurements in ASI neurons and collection of F2 progeny. Indeed, in early attempts to detect heritable PA14 aversion, trained P0 and F1 progeny were not assayed in order to obtain sufficient F2’s for a choice assay. These animals failed to display aversion, but without evidence of successful P0 training or an F1 intergenerational response this was deemed a non-fruitful trouble-shooting approach. We have added supplemental Figure S1 which presents P0 choice assay results from experiments using younger trained animals that failed to produce sufficient F1’s to continue the inheritance experiments.
The different timing at the start of training between the two protocols may reflect the age of the recovered bleached P0 embryos. It is reasonable to assume that bleaching day 1 adults vs day 2 or 3 adults from the P-1 population could shift the average age of recovered P0 embryos by several hours. The Murphy protocol only states that P0 embryos were obtained by bleaching healthy adults. Regardless, if the hypothesis entertained here is true, that a several hour difference in larval/adult age during 24 hours of training affects F2 inheritance of learned aversion but does not affect P0 learned avoidance, then we would argue that this paradigm for heritable learned avoidance, as described in Moore et al., (2019, 2021), is not sufficiently robust for mechanistic investigations.
(3) The original paper reports a transgenerational avoidance effect up to the F5 generation. Although in this work the authors failed to see avoidance in the F2 generation, it would have been prudent to extend their tests for more generations in at least a couple of their experiments to ensure that the F2 generation was not an aberration (although this reviewer acknowledges that this seems unlikely to be the case).
We would point out that we also failed to robustly replicate the F2 response in the daf-7p::gfp expression assays. An F2-specific aberration that affects two different assays seems quite unlikely, and it remains unclear how we would interpret a positive result in F3 and F4 generations without a positive result in the F2 generation. Were we to further extend these investigations, we believe that exploration of additional culture conditions would warrant higher priority than extension of our results to the F3 and F4 generations.
Reviewing Editor Comments:
The reviewers' suggestions for improving the manuscript were mostly minor, to change the wording in some places and to add some more explanation regarding the methods.
What should be highlighted in the section on OP50 growth conditions is that the initial preference for PA14 in the Murphy lab has also been observed by multiple other labs (Bargmann, Kim, Zhang, Abbalay). The fact that this preference was not observed by the Hunter lab is one of several indicators of subtle differences in the environment that might add up to explain the differences in results.
We agree that subtle known and unknown differences in OP50 and PA14 culture conditions can have measurable effects on the detection of PA14 attraction/aversion relative to OP50 attraction/aversion that could obscure or create the appearance of heritable effects between generations. We have added (see below) to the text a fuller description of the variability in the initial or naive preference observed in different laboratories using similar or variant 2-choice assays and culture conditions. It is worth emphasizing that direct comparison of the OP50 growth conditions specified in Moore et al., (2021) frequently revealed a much larger effect on the naïve choice index than is reported between labs (Figure 4).
“Naïve (OP50 grown) worms often show a bias towards PA14 in choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al., 2020; Lalsiamthara and Aballay, 2022). This response, rather than representing an innate attraction to PA14, likely reflects the context of the worm's recent growth on OP50, a mild C. elegans pathogen (Garigan et al., 2002; Garsin et al., 2003; Shi et al., 2006). Thus, the naïve worms presented with a choice between a recently experienced mild pathogen (OP50) and a novel food choice (PA14) initially choose the novel food instead of the known mild pathogen (OP50 aversion).
In line with our results, some other groups have also reported higher naïve choice index scores (Lee et al., 2017). This variability in naïve choice may reflect differences in growth conditions of either the OP50 or PA14 bacteria. In addition, we note that among the studies that show naïve worm attraction to Pseudomonas (OP50 aversion) there are extensive methodological differences from the methods in Moore et al., (2019; 2021b), including differences in bacterial growth temperature, incubation time, whether the bacteria is diluted or concentrated prior to placement on the choice plates, the concentration of peptone in the choice plates, the length of the choice assay, and the inclusion of sodium azide in the choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al 2020; Lalsiamthara and Aballay, 2022). Thus, the cause of the variability across published reports is not clear.”
Overall, an emphasis on the absence of robustness of the reported results, rather than failure to reproduce them (which can always have many reasons), is appropriate.
We agree that an emphasis on robustness is appropriate and have modified the text throughout the manuscript to shift the emphasis to absence of robustness. This includes a change to the manuscript title, which is now, “Reported transgenerational responses to Pseudomonas aeruginosa in C. elegans are not robust”
A significant experimental addition would be some attempts to determine whether the bacterial PA14 pathogen in the authors' lab produces the P11 small RNA, which has been proposed to have a causal role in initiating the previously reported transgenerational inheritance.
We acknowledge in the revised manuscript that a subsequent publication (Kaletsky et al., 2020) identified a correlation between PA14 training conditions that induced transgenerational memory and the expression of P11, a P. aeruginosa small non-coding RNA (see our response above to Reviewer #2’s similar query). While testing for the presence of P11 in Harvard culture conditions would be an important assay in any study whose purpose was to investigate the proposed P11-mediated mechanism underlying the transgenerational responses reported by the Murphy Lab, our goal was rather to replicate the robust transgenerational (F2) responses to PA14 training and then to investigate in more detail how sid-1 and sid-2 contribute to transgenerational epigenetic inheritance. Neither sid-1 nor sid-2 are predicted to transport small RNAs or single-stranded RNAs, thus testing for the presence of P11 is less relevant to our goals. Regardless, we note that Figure 3L in Kaletsky et al., (2020) showed that PA14 ΔP11 bacteria failed to induce an F1 avoidance response. Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression.
Reviewer #1 (Recommendations For The Authors):
The abstract could be more positive by concluding that 'We conclude that this example of transgenerational inheritance lacks robustness but instead reflects an example of small RNA-mediated intergenerational inheritance.'
As recommended, we have added additional clarifying information to the abstract and moderated the conclusion sentence.
“We did confirm that the dsRNA transport proteins SID-1 and SID-2 are required for the intergenerational (F1) inheritance of pathogen avoidance, but not for the F1 inheritance of elevated daf-7 expression. Furthermore, our reanalysis of RNA seq data provides additional evidence that this intergenerational inherited PA14 response may be mediated by small RNAs.”
“We conclude that this example of transgenerational inheritance lacks robustness, confirm that the intergenerational avoidance response, but not the elevated daf-7p::gfp expression in F1 progeny, requires sid-1 and sid-2, and identify candidate siRNAs and target genes that may mediate this intergenerational response.”
Differential expression of sRNAs or mRNAs might be better understood quantitatively by presenting data in scatterplots (Reed and Montgomery 2020) rather than in volcano plots.
We agree and have modified Figure 6A and 6B.
This statement in the main text might be unnecessary, as it affects the tenor of the conclusion of this significant manuscript. 'We note that none of the raw data for the published figures and unpublished replicate experiments . . . this hampered our ability to fully compare'.
We have rewritten this paragraph to focus on our goal: to identify the source of the discrepancy between our results and the published results. We considered discarding this statement but ultimately decided that our inability to directly compare our data to that of previously published work is a shortcoming of our study that deserves to be acknowledged and explained.
“Ideally, we would have compared our results with the published results (Moore et al., 2019), to possibly identify additional experimental parameters for further investigation; for example, a quantitative comparison of naïve choice in the P0 and F1 generations could help to determine the role of bacterial growth in the choice assay response. However, none of the raw data for the published figures and unpublished replicate experiments (Moore et al., 2019) were available on the publisher’s website or provided upon request to the corresponding author. In the absence of a quantitative comparison, it remains possible that an explanation for the discrepancies between our results and those of Moore et al., (2019) has been overlooked.”
The final sentence of the Discussion could be tempered and more positive by stating 'Thus independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be conducted within the C. elegans community'.
Thank you. The suggested sentence nicely captures our intention. We now use it, almost verbatim, as our final sentence.
“Thus, independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be presented within the C. elegans community.”
Reviewer #2 (Recommendations For The Authors):
Specific comments:
(1) Protocol: It is difficult to assess from the Methods the exact protocol used by the authors to assay food preference. The annotated Murphy protocol is not sufficient. The authors should provide their own protocol - a detailed lab-ready protocol where every step is outlined, and any steps that deviate from the Murphy lab protocol are called out.
Thank you for this excellent suggestion. We now include a protocol that documents the precise steps, timings, and controls that we followed (S1_aversion_protocol). We also include footnotes to both explain the reasons behind particular steps and to document known differences to the published protocol. Given the thoroughness of this suggested approach, we have thus removed the annotated version of Moore et al., (2021) from the revised submission.
(2) The authors imply in the methods that, unlike the Murphy lab, they did NOT use azide in the assay, and instead used 4oC to "freeze" the worms in place - It is not clear whether this method was used throughout all their assays and whether this could be a source of the difference. This change is NOT indicated in the annotated Murphy lab STAR Protocol they provide in the supplement.
We apologize for the lack of clarity. Concerned that azide may be interfering with our ability to detect heritable silencing we tested and then used cold-induced rigor to preserve worm choice in some choice assay results. This was not a change to the core protocol, but a variation used in some assays to determine whether azide could reduce our ability to detect heritable behavioral responses to PA14 exposure. As Moore et al., (2021) show, too much azide can affect measurement of worm choice. Too little or ineffective azide also can affect measurement of worm choice. Azide also affects bacteria (both OP50 and PA14), which could affect the production of molecules that attract or repel worms, much like performing the assay in light vs dark conditions can influence the measured choice index.
In our hands, cold-induced rigor worked well and within biological replicates was indistinguishable from azide (Figure S10). Thus, we include those results in our analysis and now indicate in Tables 2 and S2 and in Figures 1 and 3 which experiments used which method. As suggested, we now provide a detailed protocol that includes a note describing our precise method for cold-induced rigor.
Also, the number of worms used in each assay needs to be specified (same or different from Murphy protocol?), and whether any worms were "censored" as in the Murphy protocol, and if so on what basis.
While we published the exact number of worms scored in each assay (on each plate) it is unknown how this might compare to the results published in Moore et al., (2019), as the number of animals in the presented choice assays (either per plate or per choice) were not reported. Details on censoring, when to exclude data, and additional criteria to abandon an in-progress experiment are now detailed in the protocol (S1_aversion_protocol)
(3) Several instances in the text cite changes in the protocol as producing "no meaningful differences" without referring to a specific experiment that supports that statement (for example, line 399 regarding azide).
We now include data and methods comparing azide and cold-induced rigor (Supplemental document S1_aversion_protocol, Supplemental Figure S10), and data showing the P0 choice index for 48-52 hour post-bleach L4/young adults (Supplemental Figure S1), in addition to the previously noted absence of effects due to differences in embryo bleaching protocols (Figures 2, 3 and Tables 1, 2, S1, and S2).
(4) If the authors want to claim the irreproducibility of the Murphy lab results, they should use the exact protocol used by the Murphy lab in its entirety. It is not sufficient to show that individual changes do not affect the outcome, since the protocol they use appears to include SEVERAL changes which could cumulatively affect the results. If the authors do not want to do this, they should at least acknowledge and summarize in their discussion ALL their protocol changes.
We acknowledge these minor differences between the protocols we followed and the published methods but disagree that they invalidate our results. We transparently present the effect of known minimal protocol changes. We also present analysis of possible invalidating variations (number of animals in a choice assay). We emphasize that in our hands both measures of TEI, the choice assay and measurement of daf-7p::gfp in ASI neurons, failed to replicate the published transgenerational results.
If the protocol is sensitive to how animals are counted, whether bleached embryos are mixed gently or vigorously or a few hours difference in age at training, then in our view this TEI paradigm is not robust.
See also our response to reviewer #3’s public reviews above.
(5) The authors acknowledge that "non-obvious growth culture differences" could account for the different results. In this respect, the Murphy lab has proposed that the transgenerational effect requires a small RNA expressed in PA14. The authors should check that this RNA is expressed in the cultures they grow in their lab and use for their experiments. This could potentially identify where the two protocols diverge.
The bacterial culture conditions and worm training procedures described in Moore et al., (2019) successfully produced trained P0 animals that transmitted a PA14 aversion response to their F1 progeny. In a subsequent publication (Kaletsky et al., 2020), the Murphy lab showed a correlation between the culture conditions that induce heritable avoidance and the expression of P11, a P. aeruginosa small non-coding RNA. As mentioned above in response to Reviewer #2’s public review and the Reviewing Editor’s comments to authors, the Murphy lab showed that PA14 ΔP11 bacteria fail to induce an F1 avoidance response (Figure 3L in Kaletsky et al., (2020)). Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression. We believe that this addresses the concern raised here. Furthermore, if P11 is not reliably expressed in pathogenic PA14, then the published model is unlikely to be relevant in a natural environment. Again, we thank the reviewer for raising this issue and have added this information to the revised manuscript (see above response to Reviewer #2’s Public Reviews).
(6) Legend to Figure 1: please clarify which experiments were done with which PA14 isolates especially for A-C. What is the origin of the N2 strain used here?
These details from Tables 2 and S2 have been added to Figure 1 panels A-C and Figure 3. Bristol N2, obtained from the CGC (reference 257), was used for aversion experiments.
(7) Growth conditions: "These young adults produced comparable P0 and F1 results (Figure 1, Figure 2, and Figure 3)." It is not clear from the text what specific figure panels need to be compared to examine the effect of the variables described in the text. Please indicate which figure panels should be compared (lines 70-95).
The information for the daf-7p::gfp expression experiments displayed in Figure 1 and Figure 2 is presented in Table 1 and Table S1. The data for P0 aversion training using younger animals is now presented in Figure S1.
Reviewer #3 (Recommendations For The Authors):
While overall I found this easy to follow and well-written, I think the clarity of the figures could be improved by incorporating some of the information from S2 into Figure 3. Besides the figure label listing the experiment (Exp1, Exp2, etc) it would be helpful to add pertinent information about the experiment. For example Exp 1.1 (light, 20{degree sign}C), Exp1.2 (dark, 20{degree sign}C), Exp 5 (25{degree sign}C, light), etc.
Thank you for the suggestion. These details from Tables 2 and S2 have been added to Figures 1 A-C, and 3.
Citations
Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 Argonaute and TGF-beta Mediate Transgenerational Learned Pathogenic Avoidance. Cell 177, 1827-1841 e1812.
Moore, R.S., Kaletsky, R., and Murphy, C.T. (2021). Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR Protoc 2, 100384.
Kaletsky, R., Moore, R.S., Vrla, G.D., Parsons, L.R., Gitai, Z., and Murphy, C.T. (2020). C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445-451.
Pereira, A.G., Gracida, X., Kagias, K., and Zhang, Y. (2020). C. elegans aversive olfactory learning generates diverse intergenerational effects. J Neurogenet 34, 378-388.
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Chen and colleagues investigated ZC3H11A as a potential cause of high myopia (HM) in humans through the analysis of exome sequencing in 1,015 adolescents and experiments involving Zc3h11a knock-out mice. The authors showed four possibly pathogenic missense variants in four adolescents with HM. After that, the authors presented the phenotypic features of Zc3h11a knock-out mice, the result of RNA-sequencing, and a comparison of mRNA and protein levels of the functional candidates between wild-type and Zc3h11a knock-out mice. Based on their observations, the authors concluded that ZC3H11A protein contributes to the early onset of myopia.
The strengths of this manuscript include: (1) successful identification of characteristic ophthalmic phenotypes in Zc3h11a knock-out mice, (2) demonstration of biological features related to myopia, such as PI3K-AKT and NF-kB pathways, and (3) inclusion of supporting human genetic data in individuals with HM. On the other hand, the weaknesses of this paper appear to be: (1) the lack of robust evidence from their genomic analysis, and (2) insufficient evidence to support phenotypic similarity between humans with ZC3H11A mutations and Zc3h11a knock-out mice. Given that the biological mechanisms of high myopia are not fully understood, the identification of a novel gene is valuable. As described in the manuscript, it is worth noting that the previous study using myopic mouse model has implicated the role of ZC3H11A in the etiology of myopia (Fan et al. Plos Genet 2012).
Thank you very much for your valuable suggestions.
Specific comments:
(1) I am concerned about the certainty of similarity in phenotypes between individuals with ZC3H11A mutation and Zc3h11a knock-out mice. A crucial point would be that there are no statistical differences in axial lengths (ALs) between wild-type and Zc3h11a knock-out mice at 8W and 10W, even though ALs in the individuals with ZC3H11A mutation were long. I would also like to note that the phenotypic information of these individuals is not available in the manuscript, although the authors indicated the suppressed b-wave amplitude in Zc3h11a knock-out mice. Considering that the authors described that "Detailed ophthalmic examinations were performed (lines: 321-323)", the detailed clinical features of these individuals should be included in the manuscript.
Thank you for your valuable comments. The axial length in Zc3h11a Het-KO mice were found to be significantly greater than in WT littermates at weeks 4 and 6 (Independent samples t-test, p<0.05; Figure 2A and B). Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.
Reference
(1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).
(2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).
(3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).
(4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).
Additionally, regarding the “detailed ophthalmic examinations”, due to our patients were selected from a myopia screening cohort of over one million (children and adolescents myopia survey [CAMS] program), and ophthalmic examination only includes semi-annual refractive error measurements (a total of 5 times, with refractive error being the average of the three maximum values) and only one axial length measurement. The inappropriate description of “Detailed clinical features” has been removed.
(2) The term "pathogenic variant" should be used cautiously. Please clarify the pathogenicity of the reported variants in accordance with the ACMG guideline.
Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.
(3) The genetic analysis does not fully support the claim that ZC3H11A is causative for HM. While the authors showed the rare allele frequencies and high CADD scores (> 20) of the identified variants, these were insufficient to establish causality. A helpful way to assess the causality would be performing a segregation analysis. An alternative approach is to show significant association by performing a gene-level association test. Assessing the pathogenicity of the variants using various prediction software, such as SIFT, PolyPhen2, and REVEL may also provide additional supportive evidence.
Thank you for your valuable comments. We have addad the pathogenicity of the variants using various prediction software, such as SIFT, PolyPhen2, CADD, and the population variation databases, such as Genome Aggregation Database (gnomAD_AF) and ClinVar. Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3).
(4) As shown in Figure 2, significant differences in refraction were observed from 4 weeks to 10 weeks. Nevertheless, no differences were observed in AL, anterior/vitreous chamber depth, and lens depth. The author should experimentally clarify what factors contribute to the observed difference in refraction.
Thank you for your valuable comments. The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.
Reference
(1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).
(2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).
(3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).
(4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).
(5) The gene names should be italicized throughout the manuscript.
Thank you for your valuable comments. The gene names have been italicized throughout the manuscript.
(6) Table 1: providing chromosomal positions and rs numbers (if available) would be helpful for readers.
Thank you for your valuable comments. We have provided the chromosome positions and rs number (if available) of each mutation in Table 1.
(7) Figure 5b, c, and d: the results of pathway analysis and GO enrichment analysis are difficult to interpret due to the small font size. It would be preferable to present these results in tables. Moreover, the authors should set a significant threshold in the enrichment analyses.
Thank you for your valuable comments. We have adjusted the font size of the image. In the retina transcriptome analysis, we have set Fold change (FC) of at least two and a P value < 0.05 as thresholds to analyze differentially expressed genes (DEGs). The GO terms and KEGG pathways enrichment analysis selected the top 20 with the most significant differences or the highest number of enriched genes for display.
Reviewer #2 (Public Review):
Summary: Chong Chen and colleagues reported that mutations were identified in the ZC3H11A gene in four adolescents from 1015 high myopia subjects in their myopia cohort. They further generated Zc3h11a knockout mice utilizing the CRISPR/Cas9 technology. They analyzed the heterozygotes knockout mice compared to control littermates and found refractive error changes, electrophysiological differences, and retinal inflammation-related gene expression differences. They concluded that ZC3H11A may play a role in the early onset of myopia by regulating inflammatory responses.
Strengths:
Data were shown from both clinical cohort and animal models.
Weaknesses:
Their findings are interesting and important, however; they need to resolve several points to make the current conclusion.
(1) They described the ZC3H11A gene as a pathogenic variant for high myopia. It should be classified as pathogenic according to the guidelines of the American College of Medical Genetics and Genomics (Richards et al., Genet Med 17(5):405-24, 2015). The modes of inheritance for the families need to be shown. They also described identifying the gene as a "new" candidate. It should be checked in databases such as gnomAD and ClinVar, and any previous publications and be declared as a novel variant.
Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.
Unfortunately, our patients are part of the MAGIC project (aged 15 years or older), a cohort consists of thousands of individuals with HM (patients from the children and adolescents myopia survey [CAMS] program) who have undergone WES, and their parents' relevant information was not collected for performing a segregation analysis.
(2) The phenotypes of the heterozygote mice are weak overall. The het mice showed mild to moderate myopic refractive shifts from 4 to 10 weeks of age. However, this cannot be explained by other ocular biometrics such as anterior chamber depth or lens thickness. Some differences are found between het and WT littermates in axial length and vitreous chamber depth but disappear after 8 weeks old. Furthermore, the early differences are not enough to explain the refractive error changes. They mentioned that they did not use homozygotes because of the embryonic lethality. I would strongly suggest employing conditional knockout systems to analyze homozygotes. This will also be able to identify the causative tissues/cells because they assume bipolar cells are functional. The cells in the retinal pigment epithelium and choroid are also important to contribute to myopia development.
Thank you for your valuable comments. The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.
Reference
(1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).
(2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).
(3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).
(4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).
The drawback is that, we did not conduct relevant research on homozygous knockout mice. The first reason is that our patient's mutation pattern is heterozygous mutation (Heterozygous knockout mice can better simulate human phenotypes). The second reason is that homozygous knockout mice are lethal, and we did not use the conditional knockout mouse model for further research. At the same time, we limited the pathway of myopia to the recognized and classical retina-sclera pathway, and did not study other pathways such as retinal pigment epithelium and choroid.
(3) Their hypothesis regarding inflammatory gene changes and myopic development is not logical. Are the inflammatory responses evoked from bipolar cells? Did the mice show an accumulation of inflammatory cells in the inner retina? Visible retinal inflammation is not generally seen in either early-onset or high-myopia human subjects. Can this be seen in the actual subjects in the cohort? To me, this is difficult to adapt the retina-to-sclera signaling they mentioned in the discussion so far. Egr-1 may be examined as described.
Thank you for your valuable comments. We have removed the hypothesis regarding inflammatory gene changes and myopic development. At present, the explanation is based solely on the correlation of signal pathways, the theoretical basis comes from the reference literature:
“Lin et al., Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 2016 Aug:10:269-81, Figure 7.”
Reviewer #3 (Public Review):
Chen et al have identified a new candidate gene for high myopia, ZC3H11A, and using a knock-out mouse model, have attempted to validate it as a myopia gene and explain a potential mechanism. They identified 4 heterozygous missense variants in highly myopic teenagers. These variants are in conserved regions of the protein, but the authors provide no evidence that these specific variants affect protein function. They then created a knock-out mouse. Heterozygotes show myopia at all ages examined but increased axial length only at very early ages. Unfortunately, the authors do not address this point or examine corneal structure in these animals. They show that the mice have decreased B-wave amplitude on electroretinogram (a sign of retinal dysfunction associated with bipolar cells), and decreased expression of a bipolar cell marker, PKCa. They do not address, however, whether there are fewer bipolar cells, or simply decreased expression of the marker protein. On electron microscopy, there are morphologic differences in the outer nuclear layer (where bipolar, amacrine, and horizontal cell bodies reside). Transcriptome analysis identified over 700 differentially expressed genes. The authors chose to focus on the PI3K-AKT and NF-kB signaling pathways and show changes in the expression of genes and proteins in those pathways, including PI3K, AKT, IkBa, NF-kB, TGF-b1, MMP-2, and IL-6, although there is very high variability between animals. They propose that myopia may develop in these animals either as a result of visual abnormality (decreased bipolar cell function in the retina) or by alteration of NF-kB signaling. These data provide an interesting new candidate variant for the development of high myopia, and provide additional data that MMP2 and IL6 have a role in myopia development, but do not support the claim of the title that myopia is caused by an inflammatory reaction.
Thank you for your valuable comments. Four missense mutations in the ZC3H11A gene (c.412G>A, p.V138I; c.128G>A, p.G43E; c.461C>T, p.P154L; and c.2239T>A, p.S747T) were identified in the 1015 HM patients aged from 15 to 18 years. All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). Four mutations resulted in a higher degree of conformational flexibility and altered the negative charge at the corresponding sites (Figure 1D and E). Meanwhile, through transfection of overexpression mutant plasmids, it was found that compared to the wild-type, the mRNA expression levels of IκBα in the nucleus of all four mutant types (ZC3H11A<sup>V138I</sup>, ZC3H11A<sup>G43E</sup>, ZC3H11A<sup>P154L</sup> and ZC3H11A<sup>S747T</sup>) were significantly reduced (Supplement Figure 3). According to the ACMG guidelines, the above mutations can be classified as “Pathogenic Moderate”.
The existing data show significant differences in refraction between 4 and 10 weeks, with the AL and vitreous cavity depth of Het mice being longer than those of WT mice at 4 and 6 weeks. Although no significant differences were observed at other time points, there was still some degree of increase in these parameters. We continued to measure corneal curvature and found no significant differences between the two groups. Therefore, the difference in refraction may be due to the small size of the mouse eye. A 1 D change in refraction corresponds to only a 5-6 μm change in AL(1). However, the SD-OCT resolution used in this study is relatively low (theoretical resolution of 6 μm)(2, 3), so the small changes measured in vitreous cavity depth and AL may not be statistically significant. Additionally, some studies have shown that axial lengths reported in frozen sections are longer than those measured in vivo for age-matched mice(1, 4). Another possible explanation is that the curvature and refractive power of the lens have changed. These hypotheses provide a reasonable explanation for the mismatch between changes in refraction and ocular length parameters.
To evaluate the change in the number of a specific type of retinal cells, the most commonly used experimental method involves staining with antibodies specific to the target cell type, followed by fluorescence microscopy. The fluorescence intensity or the number of cells can be analyzed semi-quantitatively to assess the changes in the specific cell type in the retina. For example, in retinal degenerative models, rhodopsin-specific staining is used to identify the loss of rod cells. In our study, we selected PCK-α as a marker protein for bipolar cells to assess their number. Additionally, transmission electron microscopy (TEM) was used to observe damage to the cell morphology in the inner nuclear layer (INL) of Het mice, where bipolar cell bodies are located. Based on both sets of data, we conclude that bipolar cells have indeed undergone structural damage and a reduction in number.
Reference
(1) Schmucker C, Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision research 44, 1857-1867 (2004).
(2) Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye & contact lens 38, 102-108 (2012).
(3) Shen M, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surgery, Lasers and Imaging Retina 41, S65-S69 (2010).
(4) Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision research 44, 2445-2456 (2004).
We have removed the hypothesis regarding inflammatory gene changes and myopic development. At present, the explanation is based solely on the correlation of signal pathways, the theoretical basis comes from the reference literature:
“Lin et al., Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 2016 Aug:10:269-81, Figure 7.”
Note de synthèse : Violence à l'école - Crise de sens et réponses politiques Ce document de synthèse examine les principaux thèmes et idées développés dans les extraits fournis de l'article "Violence scolaire : crise de sens et réponse politique." et du livre "Zéro pointé ? Une histoire politique de la violence à l’école" d'Éric Debarbieux.
Thème 1 : Évolution et perception de la violence à l'école
Contrairement à une perception courante d'une augmentation générale de la violence subie par les élèves, les enquêtes du ministère indiquent une stabilité de cette violence, y compris entre élèves.
Cependant, une évolution significative et récente est l'augmentation de la "violence idéologique portée par les élèves eux-mêmes", touchant au "racisme, à la xénophobie ou au LGBTphobies et en particulier la transphobie".
Selon l'interview, cette augmentation est "très récente mesurée par le ministère" et peut être liée à "l’ambiance idéologique générale de la société au niveau mondial".
Éric Debarbieux, fort de 40 ans de recherche sur le sujet, corrobore l'absence d'une augmentation générale de la violence subie.
Il exprime sa lassitude face aux questions récurrentes suggérant une aggravation ("Alors, « ça » monte ? C’est mieux ailleurs ? C’était mieux avant ?") et aux solutions simplistes souvent proposées ("faut les punir, y a qu’à les exclure, des internats, des militaires, la restauration de l’autorité").
Il critique également la tendance à attribuer des "causes" uniques et superficielles à la violence ("Mai 68, le laxisme, la famille, l’immigration, le wokisme, la culture de l’excuse, la théorie du genre, la monoparentalité, le manque de re-pères, l’ensauvagement").
Thème 2 : Réponses politiques à la violence à l'école
L'analyse historique des réponses politiques révèle une prise de conscience tardive de la réalité de la violence scolaire, principalement à partir des années 1990, notamment sous l'impulsion d'alertes comme celles de Jacques Pain.
Les années 90 ont vu une "conjonction entre une prise de conscience sociétale et médiatique de la violence à l’école à partir de grandes manifestations lycéens et une logique politique avec un plan ministériel contre la violence à l’école".
Depuis, une caractéristique marquante est la prolifération de "plans" ministériels, souvent déclenchés par la pression médiatique. Jusqu'en 2010-2011, on compte environ une douzaine de plans, souvent "plus ciblés sur le lien police et justice qu’Éducation nationale".
Cette approche est critiquée comme un "traitement externalisé", basé sur une "vision fausse de la violence comme intrusive, comme étant une intrusion de l’extérieur".
Debarbieux souligne également la "permanence dans les réponses publiques" et la domination de la "logique du plan ministériel dans une verticalité continue… et inefficace".
Il note que malgré les bonnes intentions initiales de certains ministres, comme Jean-Michel Blanquer affirmant ne pas vouloir d'une "réforme Blanquer" et privilégiant les "solutions de terrain", la réalité a souvent été une "véritable frénésie d’injonctions" et une approche "top down" que "le terrain n’en peut plus".
Thème 3 : Harcèlement et cyberharcèlement
Le harcèlement et le cyberharcèlement sont devenus des sujets centraux dans la perception et la discussion de la violence à l'école.
Les "progrès techniques avec le web 2.0 voire 3.0 ont amené de nouveaux outils à disposition du harcèlement".
Cependant, le phénomène n'est pas entièrement nouveau, ayant déjà été discuté lors des Assises nationales de 2011.
Le harcèlement en milieu scolaire se manifeste souvent par la constitution de groupes désignant un "bouc émissaire", ciblant des aspects tels que "le racisme, à la xénophobie, la transphobie, la grossophobie ou encore le trop bon élève".
Ce processus est décrit comme la manière dont un "nous" se monte contre un "autre" et est "précipitée par un climat politique diffusé ad nauseam par différents médias, des médias sociaux ou des médias télévisuels".
L'interview met en cause le rôle de la "presse Bolloré" dans les cours de récréation.
Debarbieux rappelle avoir joué un rôle important dans la "découverte politique et médiatique du harcèlement en milieu scolaire", mais insiste sur le fait qu'il n'en a pas été "l’inventeur".
Il critique la prétention de ceux qui se disent "briseurs de tabous" en ignorant le travail antérieur.
Thème 4 : Crise de sens et rôle des acteurs
Les sources convergent sur l'idée que la violence à l'école est profondément liée à une "crise de sens". L'interview affirme qu'"il y a longtemps que l’on sait que la violence est une crise de sens !
Où est le sens de tout ça quand ce sont les ministres eux-mêmes et une grande partie de la classe politique qui en rajoutent sur le rejet de l’autre ?
Et méprisent finalement la jeunesse dans le jurassique stéréotype de l’enfant sauvage, pour ne pas dire de sauvages."
Debarbieux insiste sur l'importance de ne pas penser à court terme et de ne pas réagir de manière démagogique à chaque fait divers.
Il critique la "gouvernance top down" et la surabondance de "textes et circulaires" qui se sont "accélérés d’une manière incroyable depuis une quinzaine d’années".
Il souligne également le fossé qui s'est creusé entre l'école et le monde politique, ainsi qu'entre l'école et certains parents, avec un "sentiment de déclassement et de mépris".
Certains personnels expriment un désir d'"éloigner les familles" perçues comme perturbatrices.
Thème 5 : Rôle de la recherche et des experts
Debarbieux relate son parcours de chercheur et ses interactions avec différents ministères, soulignant les difficultés et les enjeux de faire entendre les résultats de la recherche dans les décisions politiques.
Il critique l'instrumentalisation de la recherche à des fins de communication plutôt que pour éclairer réellement les problèmes.
L'exemple de sa brève rencontre avec François Bayrou illustre cette préoccupation : "Ce qui intéresse le ministre est manifestement plus la communication que le sujet lui-même.
Ce qui l'intéresse est bien sûr son image."
Il décrit également les tentatives de l'administration de mesurer la violence, notamment à travers le logiciel Signa (puis Sivis), et les limites de ces recensements administratifs, qui peuvent être sujets à sous-déclaration par crainte d'une mauvaise réputation.
Il relate son implication dans la création d'un observatoire de la victimation en milieu scolaire et les obstacles rencontrés, y compris la suppression de l'Observatoire national de la délinquance et des réponses pénales.
Debarbieux défend une définition large de la violence, incluant les "microviolences" et le harcèlement, car une définition restreinte est "en réalité méprisante pour les victimes".
Il souligne que l'histoire de la violence est celle d'une "lente découverte des victimes" et de la reconnaissance de leur parole.
Il met en garde contre la tentation de la "tolérance zéro précoce" et la vision simpliste d'un passage inéluctable de l'"incivilité" à la délinquance.
Il insiste sur l'importance de considérer l'accumulation des désordres et la nécessité d'une justice sociale pour combattre l'oppression quotidienne.
Thème 6 : Exemples de politiques et de leurs limites
Le livre "Zéro pointé ?" offre une histoire politique des différentes approches adoptées pour lutter contre la violence à l'école. Plusieurs exemples illustrent les limites et les échecs de certaines politiques :
Plans ministériels successifs : Souvent réactifs à la pression médiatique, ils manquent de continuité et d'efficacité à long terme.
Coopération École-Police-Justice : Répétée mais pas toujours effective sur le terrain, notamment en raison du manque de connaissance mutuelle et de l'instabilité des personnels.
"Sanctuarisation" de l'école : Basée sur une vision de la violence comme intrusion externe, elle néglige les dynamiques internes et les causes profondes.
Recours à l'armée et à la discipline militaire : L'expérience des camps JET et les propositions de "camps de redressement" sont présentées comme inefficaces pour la réinsertion des jeunes délinquants.
Création de personnels précaires (APS) : Malgré un investissement initial et des espoirs, le manque de pérennisation et de reconnaissance a conduit au désenchantement et à la perte d'une partie de l'investissement.
Réformes et circulaires incessantes : L'inflation de textes administratifs nuit à la clarté de l'action et n'atteint pas le cœur du métier des enseignants.
"ABCD de l'égalité" : L'abandon de cette expérimentation face aux pressions idéologiques illustre les difficultés de mener des politiques transversales sur des sujets sensibles. Conclusion
Si une augmentation générale de la violence subie n'est pas avérée, l'émergence d'une violence idéologique et la persistance du harcèlement, notamment en ligne, constituent des défis majeurs.
L'histoire des politiques publiques est marquée par une succession de plans souvent réactifs et externalisés, une verticalité excessive et un manque de continuité.
La recherche a contribué à une meilleure compréhension du phénomène et à la reconnaissance des victimes, mais son influence sur les décisions politiques reste limitée.
Les exemples analysés soulignent les difficultés de mise en œuvre de politiques efficaces et pérennes, souvent entravées par des logiques administratives rigides, des pressions idéologiques et un manque de vision à long terme.
La "crise de sens" au sein de l'école et de la société apparaît comme un élément fondamental à adresser pour une approche véritablement efficace de la violence scolaire.
Complete this step, since the upcoming examples will rely on this dataframe.
Creo que es mas natural hacerlo al final de explicar todos los selects, y dices que te quedas con las variables que vas a usar en los siguientes ejemplos. Además, haría el select con los nombres de las variables en vez de la posición después
Bienvenue chez nous Ébacher Électrique Contactez-nous @ info@ebacherelectrique.com /*! elementor - v3.21.0 - 26-05-2024 */ .elementor-widget-image{text-align:center}.elementor-widget-image a{display:inline-block}.elementor-widget-image a img[src$=".svg"]{width:48px}.elementor-widget-image img{vertical-align:middle;display:inline-block} Obtenez de l'aide ! +1 450-917-3474 Notre adresse QC J0K 2R0, Canada Obtenir un devis
Modifier l'entête. Ou il y a le fond blanc, doit être transparent. Pas de barre de menu en dessous pour les pages. Mettre les pages à la place de OBTENEZ DE L'AIDE et de NOTRE ADRESSE. Mettre ces deux options en bas de page ou pied de page. Le moins d'effet de ''bouton'' possible visuellement.
Author response:
Public Reviews:
Reviewer #1 (Public review):
This paper describes technically-impressive measurements of calcium signals near synaptic ribbons in goldfish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. Important gaps in the data presented mean that the evidence for the main conclusions is currently inadequate.
Strengths
(1) The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high-speed line scans to resolve changes with a spatial resolution of ~250 nm and a temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements.
(2) The use of calcium indicators with very different affinities and different intracellular calcium buffers helps provide confirmation of key results.
Thank you very much for this positive evaluation of our work.
Weaknesses
(1) Multiple key points of the paper lack statistical tests or summary data from populations of cells. For example, the text states that the proximal and distal calcium kinetics in Figure 2A differ. This is not clear from the inset to Figure 2A - where the traces look like scaled versions of each other. Values for time to half-maximal peak fluorescence are given for one example cell but no statistics or summary are provided. Figure 8 shows examples from one cell with no summary data. This issue comes up in other places as well.
Thank you for this feedback. We will address this in our revised manuscript.
(2) Figure 5 is confusing. The figure caption describes red, green, and blue traces, but the figure itself has only two traces in each panel and none are red, green, or blue. It's not possible currently to evaluate this figure.
Thank you for pointing out this oversight. The figure indeed only shows the proximal and distal calcium signals, but not the cytoplasmic ones. The figure will be corrected in our revised manuscript.
(3) The rise time measurements in Figure 2 are very different for low and high-affinity indicators, but no explanation is given for this difference. Similarly, the measurements of peak calcium concentration in Figure 4 are very different from the two indicators. That might suggest that the high-affinity indicator is strongly saturated, which raises concerns about whether that is impacting the kinetic measurements.
As we had mentioned in the text, we do believe that the high-affinity version is partially saturated. This will be a problem for strong depolarizations and signals near the membrane. The higher affinity indicators are more useful for reporting calcium levels on the ribbon after the depolarization when the signal from the low affinity indicators is small. We will address this in the discussion of the revision.
Reviewer #2 (Public review):
Summary:
The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.
Strengths:
The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.
Thank you very much for this appreciation.
Weaknesses:
Heterogeneity in the spatiotemporal dynamics of Ca2+ influx was not convincingly related to ribbon size, nor was the functional relevance of Ca2+ dynamics to rod bipolars demonstrated (e.g., exocytosis to different postsynaptic targets). In addition, the study would benefit from the inclusion of the Ca2+ currents that were recorded in parallel with the Ca2+ imaging.
Thank you for this critique. We agree that the relationship between size and Ca2+ signal is not established by our recordings. By analogy to the hair cell literature, we believe that it is a reasonable hypothesis, but more studies will be necessary to definitively determine whether the signal relates to the ribbon size or synaptic signaling. This will be addressed in future experiments.
We will include the Ca<sup>2+</sup> currents in the revision.
Reviewer #3 (Public review):
Summary:
In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons, and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites.
Strengths:
The study is in principle technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging.
Thank you very much for this appreciation.
Weaknesses:
Peptides may not be entirely specific, and the genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. I also feel that "Nano-physiology" is overselling, because the measured Ca is most likely the local average surrounding synaptic ribbons. With this approach, nobody knows about the real release site Ca or the Ca relevant for synaptic vesicle replenishment. It is rather "microdomain physiology" which measures the local Ca near synaptic ribbons, relatively large structures responsible for fusion, replenishment, and recycling of synaptic vesicles.
The peptide approach has been used fairly extensively in the ribbon synapse field and the evidence that it efficiently labels the ribbon is well established, however, we do acknowledge that the peptide is in equilibrium with a cytoplasmic pool. Thus, some of the signal arises from this cytoplasmic pool. The alternative of a genetically encoded Ca-indicator concatenated to a ribbon protein would not have this problem, but would be more limited in flexibility in changing calcium indicators. We believe both approaches have their merits, each with separate advantages and disadvantages.
As for the nano vs. micro argument, we certainly do not want to suggest that we are measuring the same nano-domains, in the 10s of nanometers, that drive neurotransmitter release, but we do believe we are in the sub-micrometer--100s of nm—range. We chose the term based on the usage by other authors to describe similar measurements (Neef et al., 2018; https://doi.org/10.1038/s41467-017-02612-y), but we see the reviewer’s point. To avoid confusion, we will change the title in the revision.
Bien sûr. Voici un sommaire des principaux points abordés dans la vidéo "Y a-t-il un nombre de personnes idéal pour une réunion ?". Veuillez noter que le transcript ne contient pas d'indications de timestamps.
Briefing Document : Les Pièges de l'Objectivation Excessive et des KPI Source : Excerpts from "Et si vos objectifs... vous empêchaient de réussir ? | Psycho-Boulot"
Date : (Date de publication non spécifiée dans l'extrait)
Thèmes Principaux :
La prolifération des KPIs (Key Performance Indicators) : Leur omniprésence dans divers secteurs et l'intention de mesurer objectivement la performance, le rendement, et les interactions.
La Loi de Goodhart : Le danger de transformer une mesure en cible, ce qui la rend inefficace et peut entraîner des comportements contre-productifs. La Loi de Campbell : Les difficultés et les conséquences négatives de vouloir objectiver quantitativement des aspects qualitatifs.
La dégradation de la qualité et des processus : Comment la focalisation excessive sur les KPIs peut nuire à la qualité du service, aux relations et à l'atteinte des objectifs réels.
L'importance du qualitatif et de la subjectivité : La nécessité de compléter les mesures quantitatives par des approches qualitatives et de reconnaître la valeur du jugement subjectif.
Analogie avec le système éducatif : Comment l'obsession de la note peut nuire à l'apprentissage réel. Idées et Faits Importants :
Définition et omniprésence des KPIs : Les KPIs sont présentés comme des mesures destinées à quantifier la performance et divers aspects au sein des entreprises et organisations, touchant des secteurs variés comme la restauration, les hôpitaux et les ressources humaines. L'objectif initial est d'améliorer l'efficience et l'efficacité, et potentiellement de récompenser ou punir en fonction des résultats.
"est-ce que vous connaissez les KPI les KPI les key performance indicator si vous connaissez pas c'est pas grave je connaissais pas non plus je viens de chercher sur google c'est quoi KPI mais c'est quelque chose qu'on a vu apparaître dans plein d'entreprises dans plein de secteurs [...] c'est des sortes de mesures pour mesurer des choses dans une entreprise la performance combien est-ce que les gens s'entendent entre eux le rendement les pertes tout est mesuré tout est objectivé tout est calculé pour essayer de maximiser l'efficience l'efficacité et pouvoir récompenser ceux qui ont de bons KPI et potentiellement punir ceux qui en ont de mauvais"
La Loi de Goodhart : Quand la mesure devient la cible, elle cesse d'être une bonne mesure. L'auteur introduit cette loi fondamentale pour expliquer pourquoi l'objectivation à outrance peut être contre-productive. "la loi de goodhart qui dit que quand une mesure devient la cible elle arrête d'être une bonne mesure"
Exemple concret dans un café : Pour illustrer la Loi de Goodhart, l'auteur prend l'exemple d'un café où les employés sont récompensés pour la rapidité du service. Cette mesure, initialement destinée à améliorer l'efficacité, conduit à une dégradation de la qualité du service (erreurs, café moins bien infusé, manque d'amabilité) car l'objectif devient de maximiser le score de rapidité plutôt que de fournir un bon service.
"problème c'est que automatiquement la loi de goodhart est venu se meler à cette histoire et il y a eu une sorte de course non pas à avoir un bon service avec les clients mais une course à servir aussi vite que possible pour avoir le meilleur score pour être compenser à la fin du mois et de manière quasi mécanique si moi je suis en train de servir aussi vite que possible je vais faire plus d'erreur je vais peut-être laisser le café infuser un peu moins de temps nettoyer la machine un peu moins bien passer un peu moins de temps à être souriant parce que je veux juste passer à la personne d'après et le simple fait d'avoir implémenté ces mesures de KPI dans ce dans cette cafette ou dans ce café a fait que le service s'est dégradé"
Exemple de la pandémie et des tests COVID : L'auteur cite l'exemple du gouvernement britannique fixant un objectif de 100 000 tests COVID par jour. Bien que l'objectif ait été atteint en termes de nombre, la qualité des tests a pu être compromise, rendant la mesure moins fiable pour évaluer la situation réelle.
"par exemple un exemple qui est maintenant souvent cité sur la loi de goodhart c'est pendant la pandémie le gouvernement britannique avait annoncé de vouloir faire 100000 tests covid par jour pour essayer de faire une sorte de diagnosticque généralisé c'était ça la cible et là aussi dès qu'on met une mesure c'est la mesure qui devient la cible et non pas la tâche qu'on veut mesurer et dans ce cas-là beaucoup de tests étaient fait à l'arrache à la va vite sans vraiment bien les faire et donc on avait des fut positifs des fois négatifs même si le gouvernement était très fier de dire on a atteint notre cible en fait en réalité c'était pas les 100000 tests qui étaient bien faits"
La Loi de Campbell : Objectiver le qualitatif mène à la détérioration. Cette loi complémentaire met en lumière les difficultés et les conséquences négatives de vouloir mesurer de manière quantitative des aspects intrinsèquement qualitatifs comme le bonheur au travail ou la relation client.
"la loi de Campbell dit que quand on veut objectiver de manière quantitative des problématiques qualitatives et ben les deux se détériore quand vous voulez évaluer le bonheur au travail et vous voulez essayer de l'objectiver quand vous voulez évaluer votre relation client et voulez l'objectiver c'est des mesures qui ne sont pas aussi simples à capturer en statistique brut et vous exposer à dégrader aussi bien vos processus que les relations que vous avez avec ces personnes"
Recommandations : Privilégier le qualitatif et la prudence dans la mesure. L'auteur ne préconise pas l'abandon total de la mesure, mais insiste sur la nécessité d'être prudent et de ne pas être obsédé par les chiffres. Il suggère de renforcer les approches qualitatives et de solliciter le feedback direct des personnes concernées.
"la première chose que vous pouvez faire au lieu d'être obsédé un peu par les chiffres par les States en sachant que les States peuvent mentir aussi très bien c'est de faire plus de qualitatif au lieu de vouloir tout le temps faire du quantitatif de demander aux gens comment est-ce que ça va pas tout doit être mesuré cette cette obsession de la mesure n'est pas nécessairement une bonne chose et c'est pas parce que vous avez des données que vous allez pouvoir mieux décider"
Analogie avec l'éducation : La note comme cible au détriment de l'apprentissage. L'auteur établit un parallèle avec le système éducatif où la note devient souvent l'objectif principal, encourageant des comportements comme le bachotage au détriment d'un apprentissage profond et durable. Cela explique potentiellement pourquoi beaucoup de connaissances acquises à l'école sont rapidement oubliées.
"on retrouve la loi de goodhart d'ailleurs même dans notre enfance on a tous été étudiant à un moment ou un autre de notre vie et un des gros problèmes de l'école c'est qu'au lieu de récompenser l'apprentissage on veut récompenser les notes et donc qu'est-ce qui se passe j'ai l'examen d'histoire géo qui arrive dans dans 2 jours je suis pas vraiment à jour dans mon histoire géo c'est pas je suis pas à jour dans mon apprentissage de l'histoire géo parce que je veux l'apprendre si je suis pas à jour dans l'ingurgitation des chapitres pour pouvoir avoir une bonne note et donc je vais faire du bachotage je vais aller regarder les examens de l'année passée et me dire ah le prof a mis la guerre de 14 18 l'année passée donc si ça se trouve cette année ça va être la deuxième guerre mondiale donc je peux ne pas étudier ça parce que c'est la mesure qui devient l'objet le but c'est d'avoir une bonne note indépendamment de si j'ai appris ou pas"
Conclusion : Éviter d'infantiliser et reconnaître la valeur de la subjectivité. L'auteur encourage à traiter les collaborateurs comme des professionnels et à ne pas les réduire à de simples scores. Il plaide pour une reconnaissance de la valeur du jugement subjectif et pour un éloignement de la volonté de tout objectiver.
"essayez de ne pas infantiliser les gens avec qui vous travaillez de ne pas les traiter un peu comme des écoliers à l'école qui doivent juste avoir une bonne note parce que dans le monde réel c'est pas la note qui compte mais c'est le travail qu'on fait et donc éloignez-vous un peu de cette volonté de vouloir tout objectiver et dites-vous que peut-être un monde subjectif n'est pas si mauvais que ça" Implications et Points de Vigilance :
Lors de la mise en place de systèmes de mesure de la performance (KPIs), il est crucial de réfléchir aux comportements induits et de s'assurer que la mesure ne devienne pas l'objectif au détriment de la qualité et des objectifs réels.
L'objectivation excessive des aspects qualitatifs peut entraîner une perte de sens et une dégradation des relations humaines et des processus.
Une approche équilibrée, combinant des données quantitatives et des informations qualitatives (feedback, observations), est essentielle pour une évaluation plus juste et efficace.
Il est important de communiquer clairement les objectifs et les valeurs de l'organisation pour éviter que les individus ne se concentrent uniquement sur l'atteinte des KPIs au détriment d'autres aspects importants.
S'inspirer de l'analogie avec l'éducation rappelle l'importance de favoriser un apprentissage et un engagement réels plutôt qu'une simple course aux "bonnes notes" ou aux bons scores.
Briefing Document : Analyse des Enjeux et Réformes de l'Éducation Nationale Française Sources : Excerpts de "Éducation nationale : peut-on encore sauver l'école publique ?" (Public Sénat)
Date : 1er février 2024
Introduction :
Ce document présente une analyse des principaux thèmes et idées saillantes qui ressortent du débat sur l'état actuel de l'éducation nationale en France, tel qu'il a été abordé dans l'émission "Sens Public" de Public Sénat.
Le débat s'articule autour du bilan des années Macron en matière d'éducation, des défis persistants tels que le manque d'enseignants et les inégalités, et des perspectives de réforme sous la nouvelle ministre, Élisabeth Borne.
I. Bilan des Années Macron (2017-2024) : Un "En Même Temps" aux Résultats Mitigés
Le débat s'ouvre sur un bilan contrasté des réformes entreprises sous la présidence d'Emmanuel Macron. Plusieurs mesures phares sont évoquées :
Priorité au Primaire et Dédoublement des Classes : Dès 2017, l'accent est mis sur l'école primaire avec l'obligation scolaire dès 3 ans et le dédoublement des classes de CP et CE1 en zones prioritaires (REP et REP+).
Le sénateur Olivier Pacot (LR) qualifie cette mesure de "l'une des plus utiles du bilan du chef de l'État" et reconnaît qu'elle a objectivement donné "plutôt de bons résultats". Cependant, il regrette l'absence d'évaluation approfondie de cette réforme.
Si Parcoursup visait à remplacer le tirage au sort par une sélection basée sur le contrôle continu, elle est jugée "toujours très inégalitaire" par la gauche.
Sophie Vénétit (SNES-FSU) souligne que "parcours sup sélectionne sur la base des notes du contrôle continu de la première et un petit peu de la terminale il y a plus de bac c'est fini ça tout le monde a compris que le bac ne sert ne sert plus à rien or c'était le le seul diplôme national et totalement confidentiel c'est-à-dire qu'on ne sélectionnait pas les lycéens en fonction leur origine sociale parce que le lycée d'origine ça dévoile les les origines sociales donc là il y a un énorme biais qui n'a pas été corrigé ce qui fait que parcours sup reste fondamentalement un outil très inégalitaire."
Élévation de l'Éducation au Rang de Cause Nationale (2022) et Réformes Ponctuelles : La réélection d'Emmanuel Macron en 2022 s'accompagne d'une volonté affichée de faire de l'éducation une cause nationale. Des réformes des lycées professionnels, dotés de moyens supplémentaires (1 milliard d'euros par an), sont annoncées. Cependant, Marie Estelpèche (Marianne) note que les réformes pédagogiques lancées par Gabriel Attal ont été en grande partie "annuler les unes après les autres en tout cas de les alléger fortement au point qu'on peut se demander s'il va en rester quelque chose" par la ministre actuelle.
Instabilité Ministérielle : Un point critique soulevé est la valse des ministres de l'Éducation nationale.
Max Brisson (sénateur LR) déplore un "zigzag permanent" et un "condensé du en même temps" sans véritable vision d'ensemble. Il souligne le chiffre de "5 ministres en une année" comme un record préjudiciable à la conduite des dossiers de fond. Sophie Vénétit abonde en ce sens, expliquant que cette instabilité a empêché de mener à bien des chantiers essentiels comme la revalorisation du métier enseignant et l'attractivité. "Ces dossiers n'ont jamais pu être portés n'ont jamais pu aller jusqu'au bout parfois n'ont jamais même pu commencer."
II. Défis Persistants : Pénurie d'Enseignants, Inégalités et Efficience du Budget
Malgré les efforts budgétaires (augmentation de 14 milliards d'euros depuis 2017, dont 8 milliards depuis 2022, pour un budget total de 64,4 milliards en 2025), l'école publique française est confrontée à des défis majeurs :
Sophie Vénétit rapporte qu'une enquête de rentrée a montré qu'il manquait "au moins un professeur dans près de 56 % des collèges et des lycées".
Des témoignages font état d'élèves n'ayant pas eu cours dans certaines disciplines depuis le début de l'année. Cette pénurie touche également le primaire, avec des difficultés de remplacement fréquentes et prolongées.
Inefficience du Budget : Max Brisson souligne un paradoxe : "beaucoup d'argent dépensé et puis il y a toujours un service public défaillant". Il interroge l'efficience des dépenses engagées face à des résultats qui continuent de montrer un "recul de l'école" dans les évaluations. Il plaide pour des réformes de structure plutôt que de simples "replâtrages".
Classements PISA : La France continue de figurer parmi les mauvais élèves des classements PISA, ce qui interroge sur l'efficacité du système scolaire.
Classes Chargées : Malgré une baisse démographique globale du nombre d'élèves, la France reste l'un des pays de l'Union Européenne avec les classes les plus chargées, particulièrement au collège (26 élèves en moyenne).
Crise d'Attractivité du Métier Enseignant : La revalorisation du métier stagne, et la démission d'enseignants a fortement augmenté en 15 ans (de 364 en 2008 à 2836 en 2021).
Les difficultés de recrutement sont particulièrement marquées dans certaines disciplines (mathématiques, lettres classiques, physique-chimie) et certaines académies (Versailles, Créteil, Paris).
III. Propositions et Débats : Centralisation vs. Autonomie, Rémunération et Gestion des Ressources Humaines
Le débat met en lumière des divergences sur les solutions à apporter aux difficultés de l'éducation nationale :
Il estime que les réformes décidées depuis Paris ne peuvent qu'échouer dans une société numérique et horizontale. Sophie Vénétit se montre plus sceptique face à une autonomie accrue, insistant sur la nécessité de discussions et d'une adhésion des personnels aux réformes.
Elle souligne que les dernières réformes ont souvent été menées "contre les personnels ou sans les personnels".
Max Brisson reconnaît que les professeurs sont "moins bien payés que des cadres de la fonction publique équivalent". Il évoque la nécessité d'une revalorisation indiciaire et potentiellement d'autres formes de rémunération, ainsi qu'une gestion des ressources humaines différenciée en fonction des besoins des territoires.
Sophie Vénétit insiste sur le fait que les augmentations budgétaires ont été en partie absorbées par l'inflation et que les milieux et fins de carrière ont été les grands oubliés. Elle rappelle des situations préoccupantes de contractuels non payés et de coupes budgétaires impactant les projets pédagogiques.
Max Brisson propose une gestion plus individualisée, reconnaissant l'engagement des professeurs dans les zones difficiles et leur offrant des perspectives de mobilité.
Sophie Vénétit reconnaît des problèmes de réponse administrative mais met en garde contre une vision qui prônerait moins d'administration, rappelant un rapport soulignant une sous-administration de l'éducation nationale.
IV. Arrivée d'Élisabeth Borne au Ministère de l'Éducation Nationale : Espoirs et Défis
L'arrivée d'Élisabeth Borne à la tête du ministère est perçue avec un mélange d'attente et d'interrogation.
Profil et Potentiel : Sophie Dravinel souligne que, contrairement à certains ministres précédents, Élisabeth Borne n'est pas une spécialiste de l'éducation, mais que cela n'est pas nécessairement un désavantage. Sa capacité à "peser sur les arbitrages" budgétaires est présentée comme une qualité essentielle.
Premiers Pas et Signaux : Marie Estelpèche relève une entrée en matière potentiellement "brouillonne", notamment avec l'évocation de la réduction des vacances d'été, un sujet sensible et complexe.
Cependant, Sophie Vénétit note des signaux positifs récents, comme l'annulation des suppressions de postes, fruit d'une écoute et d'un potentiel poids politique de la ministre.
Défis à Venir : Le principal défi pour Élisabeth Borne sera de traduire les annulations de suppressions de postes en recrutements effectifs et de s'attaquer à la question cruciale des salaires pour améliorer l'attractivité du métier.
Confiance et Valorisation : Max Brisson exprime sa volonté de faire confiance à la nouvelle ministre et l'encourage à valoriser les initiatives positives qui existent déjà dans les établissements plutôt que de se focaliser uniquement sur de grandes réformes.
Conclusion :
**Le débat met en évidence une situation complexe et préoccupante pour l'éducation nationale française.
Malgré des moyens importants, les réformes entreprises n'ont pas permis de résoudre les problèmes structurels tels que le manque d'enseignants, les inégalités persistantes et un sentiment général de difficulté au sein de la profession.
L'arrivée d'Élisabeth Borne ouvre une nouvelle phase, où sa capacité à peser politiquement et à engager un dialogue constructif avec les acteurs du secteur sera déterminante pour l'avenir de l'école publique.
La question de savoir si l'école publique peut encore être "sauvée" reste ouverte, mais la nécessité d'une action concertée et d'une vision claire semble plus impérative que jamais.**
Voici un sommaire de la discussion avec des indications temporelles approximatives basées sur le déroulement du débat :
[Début] Introduction du débat : La situation inquiétante de l'éducation nationale est posée avec la question de savoir si l'école publique peut encore être sauvée. Le bilan des années Macron en matière d'éducation est introduit, avec un focus sur la priorité donnée au primaire et les réformes entreprises.
[0:01 - 0:05 approx.] Bilan des années Macron (2017-2022) :
[0:05 - 0:10 approx.] Instabilité ministérielle et manque de vision : Max Brisson (sénateur LR) critique le "en même temps" et les "zigzags considérables" des politiques éducatives, menant à un retour "quasiment à la case départ". Il déplore l'absence de "ligne dorsale" et de "vision de l'école". La valse des ministres (cinq en un an) est pointée comme ayant fait "beaucoup de mal" à l'école, empêchant les dossiers de fond comme la revalorisation des enseignants d'aboutir. Le manque de professeurs dans certaines disciplines dès le début de l'année scolaire est constaté.
[0:10 - 0:15 approx.] Pénurie d'enseignants et réformes marquantes :
[0:15 - 0:20 approx.] Inefficacité des dépenses et centralisation excessive :
[0:20 - 0:25 approx.] Attractivité du métier d'enseignant et rigidités administratives :
[0:25 - 0:30 approx.] Gestion des ressources humaines et spécificités du recrutement :
[0:30 - 0:35 approx.] Lourdeurs administratives et sous-administration :
[0:35 - 0:40 approx.] Impact du manque de remplaçants dans le primaire :
[0:40 - 0:45 approx.] Conséquences du manque de remplaçants et solutions partielles :
[0:45 - 0:50 approx.] Rendre le métier d'enseignant plus attractif :
[0:50 - 0:55 approx.] Contraintes budgétaires et situation des AESH :
[0:55 - 1:00 approx.] Témoignage sur le manque d'AESH et analyse d'Élisabeth Borne :
[1:00 - 1:05 approx.] Premiers pas d'Élisabeth Borne et question des vacances scolaires :
[1:05 - 1:10 approx.] Arguments pour un raccourcissement des vacances et poids politique d'Élisabeth Borne :
[1:10 - Fin] Conclusion et perspectives :
Briefing Document : "Et si on levait les yeux ? Une classe face aux écrans" Date : 8 mai 2024
Source : Excerpts from "Et si on levait les yeux ? Une classe face aux écrans"
Public Cible : Toute personne intéressée par l'impact des écrans sur les enfants et la société, notamment les parents, les éducateurs et les décideurs politiques.
Résumé Exécutif : Ce document présente les principaux thèmes et idées clés tirés d'extraits de l'ouvrage "Et si on levait les yeux ?
Une classe face aux écrans". Le texte explore l'omniprésence des écrans dans la vie des enfants de la "génération alpha" et ses conséquences négatives sur leur attention, leur langage, leur capacité à l'effort et leurs relations sociales.
Il met en lumière le rôle addictif des écrans, alimenté par la dopamine, et l'influence des algorithmes de l'économie de l'attention.
Le document souligne l'importance de la prise de conscience, de l'éducation aux médias, de la fixation de limites et de la proposition d'alternatives pour aider les enfants à reprendre le contrôle et à développer des relations et des intérêts dans le monde réel.
L'expérience d'une classe de CM2 menée par leur instituteur est présentée comme un exemple d'initiative visant à sensibiliser les enfants et à les reconnecter avec la nature et les interactions humaines.
Thèmes Principaux et Idées Clés :
1. L'omniprésence et l'impact des écrans sur la "génération alpha" :
2. L'attention et la concentration mises à mal :
3. L'addiction aux écrans et le rôle de la dopamine :
4. L'économie de l'attention et la manipulation des algorithmes :
5. L'impact sur les relations sociales et le langage :
6. Le rôle des parents et de l'éducation :
7. La nécessité de se reconnecter au réel et de trouver des alternatives :
8. La technologie n'est pas neutre et nécessite un usage conscient :
Conclusion :
Les extraits de "Et si on levait les yeux ?" dressent un portrait préoccupant de l'impact des écrans sur la jeune génération. Ils soulignent l'urgence d'une prise de conscience collective et d'actions éducatives pour aider les enfants à développer un rapport plus sain et équilibré avec le monde numérique.
L'expérience de la classe présentée dans le livre offre un exemple concret de démarche positive pour reconnecter les enfants au monde réel, à la nature et aux relations humaines, tout en développant leur esprit critique face aux sirènes des écrans.
L'enjeu est de former des "têtes bien faites" capables d'utiliser les outils numériques avec discernement et de cultiver des richesses intérieures et relationnelles durables.
Figure 4 describes what functions were expressed in the active microbial community enriched in the plume, with a focus on hydrocarbon degradation genes based on metatranscriptome sequencing results. The finding suggest the alkane monooxygenase were highly expressed for alkane and specifically for cyclohexane degradation. The alkane degradation was the major hydrocarbon degradation pathway. X-axis Blue bars denote the distal station metatranscriptome and red bars denote the proximal station metatranscriptome with reference to relative abundance of the genes Y-axis Denotes the names of the genes also p-vales for the confidence intervals with authenticate the bioinformatics and statistics analysis
Voici un sommaire de la vidéo "Le cyberharcèlement au périscope" avec des indications temporelles approximatives basées sur le déroulement de l'émission :
[0:00 - 4:20] Introduction et définition du cyberharcèlement et de ses enjeux : Présentation des intervenants. Fabrice Poli donne une définition simple du cyberharcèlement comme un acte malveillant répétitif commis électroniquement dans le but de nuire à une personne ayant du mal à se défendre. Il cite différentes formes de cyberharcèlement : intimidations, insultes, moqueries, menaces, propagation de rumeurs, usurpation d'identité, focalisation groupée, transmission de photos ou vidéos dévalorisantes ou intimes. Il mentionne la prise en charge du cyberharcèlement par l'Éducation nationale, notamment via le programme PHARE axé sur l'éducation, la prévention, la formation d'une communauté protectrice, l'intervention et l'association des parents.
[4:20 - 9:30] Contexte du monde adolescent et distinction entre agressivité, violence et harcèlement : Séraphin Alava évoque le contexte du monde adolescent, immergé dans la culture numérique avec ses bons et mauvais usages. Il souligne l'importance de la perception et de la présentation de soi pour les adolescents dans leur "peau numérique". Il distingue l'agressivité naturelle, la violence ciblée et l'harcèlement caractérisé par une cible et une malveillance. Il mentionne que 20% des jeunes disent avoir été témoins de propos dangereux, tandis que les formes de harcèlement violent concernent environ 5 pour 1000. Il aborde les formes de violence dans le cyberharcèlement : discriminations (racisme, grossophobie), violences de genre et violences liées au refus du vivre ensemble. Fabrice Poli souligne qu'on ne peut pas cloisonner harcèlement et cyberharcèlement, car ils sont souvent liés.
[9:30 - 15:30] Cadre juridique du harcèlement et du cyberharcèlement : Présentation de la "minute juris" par Raphaël Mata du Vigot. Il rappelle que le harcèlement n'est pas nouveau mais a pris une dimension numérique. Le cyberharcèlement relève de la catégorie juridique générale du harcèlement, défini dans le code pénal comme le fait de subir des propos ou comportements négatifs ou violents, fondé sur le rejet de la différence. Le harcèlement peut être moral, physique ou sexuel et entraîne une dégradation des conditions de vie de la victime. Contrairement aux idées reçues, la répétition n'est pas obligatoire pour constituer du harcèlement. Le cyberharcèlement s'exerce via les technologies numériques et porte atteinte à la dignité de la victime, créant une situation intimidante ou hostile. Il cite différentes formes de cyberharcèlement (messages humiliants, diffusion de contenus intimes sans consentement, publication d'insultes, divulgation d'informations personnelles). Il mentionne les lois de 2016 et 2018 renforçant la lutte contre le "revenge porn" et le harcèlement en ligne. Il aborde ensuite le harcèlement scolaire, introduit dans le code de l'éducation, et la loi de 2022 visant spécifiquement à combattre le harcèlement scolaire. Le cyberharcèlement est constitutif d'une faute pénale dans le cadre scolaire, avec des sanctions pouvant aller jusqu'à 10 ans d'emprisonnement en cas de suicide de la victime. Des mesures répressives complémentaires existent (bannissement des réseaux sociaux, confiscation de matériel, stages de sensibilisation). Les chefs d'établissement ont l'obligation d'engager une action disciplinaire en cas de harcèlement, et les personnels ont l'obligation de signaler ces faits. Le cyberharcèlement est une forme du harcèlement scolaire et est puni par la loi.
[15:30 - 22:50] Témoignages et leviers pour lutter contre le cyberharcèlement : Anne Philipson (Canopé) partage la vision des intervenants et souligne le rôle de la formation des personnels éducatifs. Elle insiste sur la nécessité de rester en veille face à l'évolution du cyberharcèlement et à l'impact de l'IA et des "fake news". Elle rappelle le slogan "liker c'est harceler" et l'importance d'éduquer les jeunes à leurs gestes en ligne. Frédéric Vedren (chef d'établissement) insiste sur la nécessité de réagir vite face aux signalements des parents et de mettre en place des process (programme PHARE). Il souligne l'importance de la formation et de l'information de tous les personnels, y compris la vie scolaire. Il évoque les acteurs pouvant intervenir dans la lutte contre le cyberharcèlement : formateurs, Clémi, collectivités, personnels du périscolaire. Il détaille les acteurs au sein de l'établissement (enseignants, direction, vie scolaire, assistants sociaux, infirmières) et les partenaires externes (collectivités, centres sociaux, forces de l'ordre, associations, cellules de prévention du harcèlement). Fabrice Poli met en avant le travail de prévention et d'éducation de l'Éducation nationale, notamment les séances d'empathie dès le premier degré, les 10 heures annuelles dédiées à la lutte contre le harcèlement dans le programme PHARE et l'enseignement moral et civique intégrant l'éducation aux médias et à l'information (ÉMI). Il souligne l'importance du collège comme lieu de détection et le besoin d'appartenance des adolescents aux groupes en ligne. Séraphin Alava confirme la progression du cyberharcèlement dès l'école primaire avec l'accès plus précoce aux téléphones portables. Il insiste sur l'alliance nécessaire entre parents et enseignants, soulignant les principes d'action de l'Éducation nationale (protéger, instruire, éduquer) et le temps nécessaire à la résolution des situations, souvent en dehors de l'établissement. Il évoque un dispositif étranger intégrant des adultes dans les groupes de messagerie des élèves à des fins de prévention. Frédéric Vedren revient sur les stratégies d'abord du cyberharcèlement dans les établissements, insistant sur l'éducation des élèves et des parents plutôt que la simple sanction. Il met en avant le rôle du CESCE et la pédagogie pour apprendre aux élèves à reconnaître les situations de harcèlement et le rôle des témoins. Il détaille les types de sanctions et l'importance de l'acceptabilité par les élèves. Il souligne l'adaptation des actions de prévention aux différents niveaux (6e, 5e, 4e, 3e) et aux problématiques spécifiques (égalité filles-garçons, consentement, réputation en ligne). Il cite des exemples d'intervenants externes (BPDJ, associations) et de partenaires locaux (centres sociaux) pour la sensibilisation et la responsabilisation. Il insiste sur la formation de tous les personnels pour repérer les signaux faibles de mal-être pouvant être liés au harcèlement. Séraphin Alava met en lumière la spécificité des actes de cyberharcèlement avec la production et la diffusion de fausses vidéos et images, amplifiées par l'IA, et le fait que les enseignants en sont aussi victimes. Il nuance l'idée d'une réduction de l'impact du cyberharcèlement avec l'augmentation des contenus, car les victimes sont souvent dans une phase sensible de leur vie. Anne Philipson plaide pour le développement d'une citoyenneté juvénile et numérique, basée sur les valeurs de l'école et de la République, et l'importance d'aider les jeunes à maîtriser leur image et leur empreinte sociale. Elle évoque les passeports numériques et la nécessité de se pencher sur les enjeux de l'IA. Fabrice Poli précise le temps consacré à l'éducation numérique et à la lutte contre le cyberharcèlement : 10 heures annuelles dans le cadre du programme PHARE, de la maternelle à la terminale, intégrées à l'enseignement moral et civique et à l'éducation aux médias et à l'information. Il souligne que ces interventions sont accompagnées de ressources pédagogiques. Il met en garde contre le fait qu'un élève harcelé peut devenir harceleur et inversement, et que l'harcèlement peut être le symptôme de problèmes familiaux. Il insiste sur l'importance de la compréhension et de la responsabilisation de l'agresseur. Il attire l'attention sur la vulnérabilité des élèves en situation de handicap face au harcèlement. Frédéric Vedren rappelle que chaque heure de présence dans l'établissement peut être un moment pour travailler sur le harcèlement. Il évoque les résistances des enseignants (crainte de s'éparpiller, manque de compétences perçu) et l'importance de les accompagner et de les rassurer. Séraphin Alava identifie trois inquiétudes subjectives des enseignants : la gestion de la relation aux parents, le sentiment d'incompétence à la décision et l'inquiétude face au retour de l'agresseur dans l'établissement. Anne Philipson conclut sur l'importance de la communauté éducative, du dialogue entre adultes et de la reconnaissance des besoins en formation. Elle rappelle que le cyberharcèlement est transversal aux disciplines (ÉMI, EMC, égalité filles-garçons, éducation affective et sexuelle). Fabrice Poli synthétise en soulignant la nature polymorphe du cyberharcèlement, touchant à différents aspects de la personne, et l'importance de l'éducation pour distinguer la moquerie de l'harcèlement et faire prendre conscience aux élèves de leurs actes.
[29:30 - 32:30] Minute bibliographique : Présentation de ressources sur le cyberharcèlement : site Eduscol et kit d'accompagnement pédagogique sur l'empathie, site education.gouv.fr et guide sur la prévention de la cyberviolence, site Réseau Canopé et ressources bibliographiques ainsi qu'un parcours de formation "Cyberharcèlement" sur Magister, site du Clémi et les aventures de la famille Tout Écran, site Internet sans crainte et les fiches conseils de Vin et Lou, ouvrage "Cyber harcèlement sortir de la violence à l'école et sur les écrans" de Béranger Stassin et son blog, jeu sérieux "Le quartier des légendes" de Séraphin Alava et l'association militant des savoirs.
Briefing Doc : Prévention et gestion des conflits au périscope
Source : Excerpts de l'émission "Prévenir et gérer les conflits au périscope" (Transcription textuelle)
Date de diffusion (implicite) : Avant février 2025
Thématique principale : La prévention et la gestion des conflits dans divers environnements, notamment l'éducation nationale et le secteur de la santé.
Participants :
Structure de l'émission :
I. Enjeux de la prévention et de la gestion des conflits (Introduction)
II. Gestion des conflits : Aspects juridiques (Minute Juris)
III. Débat : Prévention et gestion des conflits (Points clés)
IV. Point Ressources (Minute Biblie)
Conclusion (implicite) :
L'émission met en lumière la complexité et la diversité des approches pour prévenir et gérer les conflits.
Que ce soit par la mise en place d'un cadre relationnel basé sur le respect et la communication (dans les établissements scolaires), par l'utilisation d'outils structurés comme la médiation (dans les secteurs de la santé et de l'éducation), par une analyse managériale des enjeux de pouvoir et de statut, ou par le recours à des dispositifs juridiques alternatifs, la gestion des conflits nécessite une compréhension des dynamiques humaines et organisationnelles, ainsi qu'une adaptation des méthodes au contexte spécifique.
La valorisation du dialogue, de l'écoute, et de la recherche de solutions mutuellement acceptables apparaît comme essentielle pour construire des environnements de travail plus sereins et productifs.
Voici un sommaire de la vidéo "Prévenir et gérer les conflits au périscope" avec une indication approximative des moments clés abordés par les intervenants :
[Début - environ 1:00] Introduction de l'émission par l'animateur, présentation du thème de la prévention et de la gestion des conflits, et des quatre invités : Laticia Chardavoine, Michel Keré, Stéphane Maré (en présentiel) et Jean Pralon (à distance).
[Environ 1:00 - 7:00] Introduction et enjeux de la thématique :
[Environ 7:00 - 10:00] La minute juris présentée par Raphaël Mata du Vigot, qui traite de la gestion juridique des conflits, évoquant l'évolution du duel judiciaire vers des règlements plus procéduraux. Il présente les modes alternatifs extrajudictionnels de règlement des différends (recours administratifs, conciliation, arbitrage, médiation) encouragés par les pouvoirs publics. Il se concentre sur la médiation administrative dans l'éducation nationale et l'enseignement supérieur, en présentant le rôle du médiateur national et des médiateurs académiques, leur mission, les types de réclamations et la procédure de saisine. Il aborde également la médiation préalable obligatoire pour certains recours contentieux des agents publics de l'éducation nationale suite aux lois de 2016 et 2021. Il conclut sur la nécessité de développer l'éducation aux modes alternatifs de règlement des différends.
[Environ 10:00 - 14:30] Prévention des conflits :
[Environ 14:30 - 17:30] Analogies entre secteurs (santé et éducation) et approfondissement sur la prévention :
[Environ 17:30 - 23:00] Gestion des conflits : prisme de la médiation :
[Environ 20:30 - 23:00] Gestion des conflits : prisme du chef d'établissement :
[Environ 23:30 - 25:00] Gestion des conflits : perspective de l'Inspection Générale :
[Environ 25:00 - 27:30] Gestion des conflits : prisme de la recherche en management :
[Environ 27:30 - 28:30] Conclusion partielle et transition vers les ressources :
[Environ 28:30 - 30:30] Point ressources : la minute biblie présentée par Sylvine Paul, qui propose une sélection de ressources sur la médiation et la gestion des conflits. Elle présente le rôle du médiateur de l'éducation nationale et de l'enseignement supérieur, des actes de colloque, des rapports annuels, et des ouvrages de référence sur les modes alternatifs de règlement des conflits, la médiation, la définition du conflit en sociologie, la communication non violente et la résolution de problèmes complexes.
[Environ 30:30 - Fin] Remerciements et conclusion de l'émission par l'animateur, remerciant les quatre intervenants et annonçant le prochain numéro.
Briefing Document : Analyse des enjeux et perspectives de l'école inclusive en France
Ce document de briefing synthétise les principaux thèmes, idées et faits saillants issus de l'émission "L'école inclusive au périscope".
L'émission a exploré l'évolution, les enjeux, les défis et les perspectives de l'école inclusive en France, en s'appuyant sur l'expertise d'acteurs clés du secteur.
Thèmes Principaux et Idées Clés :
1. Évolution Historique de l'École Inclusive en France : Un Long Cheminement
2. L'École Inclusive dans un Cadre International : Un Mouvement Global
3. Bilan et Points de Blocage Depuis 2005 : Entre Avancées et Défis Persistants
4. Engagements Internationaux et Réalités Nationales : Un Décalage Persistant
5. La Minute Juris : Cadre Législatif et Évolutions du Droit
6. Témoignages de Terrain : Mise en Œuvre et Défis Concrets (Académie de Nantes)
7. Conclusion et Perspectives
Understanding NCLB legislation. The students had all heard about NCLB from the media, but were not aware of any specific policies. After read-ing about NCLB, several of them searched the MPS website on their own to find the percentage of highly qualified teachers in other Metropolis schools and districts. As they learned more about NCLB, they began to feel excluded from the process of developing education policy because they realized that students’ voices had not been considered, which was evident in NCLB’s academic focus and inattention to other criteria that matter to students.Reviewing education literature. In addition to information on NCLB, the students read education literature that discussed teacher quality and ad-dressed issues of race, culture, language, pedagogy, and student–teacher relationships. It was important for them to analyze how their own experi-ences had been affected by these other factors. One article the students read was called “Getting to the Heart of Quality Teaching,” which appeared in the Rethinking Schools Special Edition entitled “Improving Teacher Qual-ity”(Winter 2005–2006).The students were particularly drawn to the ele-ments of quality teaching that the authors, Au et al., defined as “grounded in the lives of our students; critical; multicultural, antiracist, pro-justice; participator y, experiential; hopeful, visionar y; activist; academically rigor-ous; and culturally and linguistically sensitive” (2005–2006, p. 7). The stu-dents discussed with one another whether these factors mattered to them in what they considered a highly qualified teacher. They shared stories of their own relationships with teachers or those of their peers. They all felt that teaching should be grounded in students’ lives but had different ideas of what that would look like in practice. Analyzing their learning experiences. The students had to describe powerful moments or experiences when they really learned something, positive or negative, from someone else
Garcia explains how SLA students developed their notion of a highly competent teacher by examining educational literature, analyzing NCLB, and reflecting on their own learning experiences. Students appreciate instructors who push them intellectually, respect their identities, and cultivate deep connections, according to this research procedure. They show how standardized approaches can ignore the realities of teaching and learning by criticizing NCLB's exclusive emphasis on credentials. The students make a strong case for reconsidering teacher qualifications by firmly establishing their viewpoints in both academic research and personal experience. Their observations emphasize how crucial it is to have student input in educational change.
104493
DOI: 10.1186/s13041-025-01185-y
Resource: RRID:Addgene_104493
Curator: @olekpark
SciCrunch record: RRID:Addgene_104493
105553
DOI: 10.1186/s13041-025-01185-y
Resource: RRID:Addgene_105553
Curator: @olekpark
SciCrunch record: RRID:Addgene_105553
50459
DOI: 10.1186/s13041-025-01185-y
Resource: RRID:Addgene_50459
Curator: @olekpark
SciCrunch record: RRID:Addgene_50459
59171
DOI: 10.1186/s13041-025-01185-y
Resource: RRID:Addgene_59171
Curator: @olekpark
SciCrunch record: RRID:Addgene_59171
50457
DOI: 10.1186/s13041-025-01185-y
Resource: RRID:Addgene_50457
Curator: @olekpark
SciCrunch record: RRID:Addgene_50457
190012
DOI: 10.1186/s12951-025-03100-y
Resource: None
Curator: @olekpark
SciCrunch record: RRID:Addgene_190012
172320
DOI: 10.1186/s12951-025-03100-y
Resource: RRID:Addgene_172320
Curator: @olekpark
SciCrunch record: RRID:Addgene_172320
44965
DOI: 10.1186/s12951-025-03100-y
Resource: RRID:Addgene_44965
Curator: @olekpark
SciCrunch record: RRID:Addgene_44965
20,066
DOI: 10.1186/s12951-025-03100-y
Resource: RRID:Addgene_20066
Curator: @olekpark
SciCrunch record: RRID:Addgene_20066
29,520
DOI: 10.1186/s12951-025-03100-y
Resource: RRID:Addgene_29520
Curator: @olekpark
SciCrunch record: RRID:Addgene_29520
145163
DOI: 10.1186/s12951-025-03100-y
Resource: RRID:Addgene_145163
Curator: @olekpark
SciCrunch record: RRID:Addgene_145163
38831
DOI: 10.1101/2024.09.17.613365
Resource: None
Curator: @olekpark
SciCrunch record: RRID:Addgene_38831
105535
DOI: 10.1038/s44318-025-00362-y
Resource: RRID:Addgene_105535
Curator: @olekpark
SciCrunch record: RRID:Addgene_105535
112864
DOI: 10.1038/s44318-025-00362-y
Resource: RRID:Addgene_112864
Curator: @olekpark
SciCrunch record: RRID:Addgene_112864
61593
DOI: 10.1038/s44318-025-00362-y
Resource: RRID:Addgene_61593
Curator: @olekpark
SciCrunch record: RRID:Addgene_61593
112867
DOI: 10.1038/s44318-025-00362-y
Resource: RRID:Addgene_112867
Curator: @olekpark
SciCrunch record: RRID:Addgene_112867
45946
DOI: 10.1038/s42003-025-07829-y
Resource: RRID:Addgene_45946
Curator: @olekpark
SciCrunch record: RRID:Addgene_45946
AAVrg-hSyn-Cre-WPRE-hGH
DOI: 10.1038/s41467-025-57347-y
Resource: RRID:Addgene_105553
Curator: @olekpark
SciCrunch record: RRID:Addgene_105553
AAVrg-hSyn1-GCaMP6s-P2A-nls-dTomato
DOI: 10.1038/s41467-025-57347-y
Resource: RRID:Addgene_51084
Curator: @olekpark
SciCrunch record: RRID:Addgene_51084
AAVrg-CAG-GFP
DOI: 10.1038/s41467-025-57347-y
Resource: RRID:Addgene_37825
Curator: @olekpark
SciCrunch record: RRID:Addgene_37825