10,000 Matching Annotations
  1. Jan 2025
    1. La source est une transcription d'une vidéo-conférence donnée par Laurent Lardeux, sociologue à l'INJEP, à l'INSPÉ de Lille.

      Lardeux explore l’engagement politique et citoyen des jeunes, en analysant notamment les notions complexes d'engagement, définissant ses multiples facettes et nuances.

      Il présente des résultats d'enquêtes, notamment l'enquête européenne sur les valeurs, révélant une adhésion importante au régime démocratique chez les jeunes, tout en soulignant une confiance plus limitée envers les institutions et une augmentation des formes de protestation.

      Enfin, il étudie l'engagement des jeunes activistes climatiques, en mettant l'accent sur leurs motivations, leurs méthodes (incluant la désobéissance civile), leur rapport aux institutions et aux réseaux sociaux, ainsi que les facteurs socio-économiques influençant leur participation.

      Voici un sommaire minuté de la transcription :

      • 0:00-1:22 : Introduction du conférencier, Laurent Lardeux, chargé d’études et de recherche à l’INJEP, et présentation du sujet de la conférence : le rapport à la politique, la participation citoyenne et l'engagement des jeunes.
      • 1:23-2:18 : Importance de définir l'engagement et ses différentes dimensions, y compris l'engagement citoyen, l'engagement professionnel, l'engagement militaire et l'engagement religieux.
      • 2:19-3:30 : Définition de l'engagement selon le Grand Robert et distinction entre mobilisation ponctuelle et engagement à long terme.
      • 3:31-5:25 : Comparaison avec la terminologie anglaise, qui offre plus de nuances pour distinguer les types d'engagement, et présentation des trois dimensions complémentaires de l'engagement selon l'INJEP : les valeurs, les dispositifs institutionnels et les pratiques effectives.
      • 5:26-7:27 : L'engagement en lien avec des valeurs, l'importance de l'enquête européenne sur les valeurs pour observer l'évolution de ces valeurs au fil du temps.
      • 7:28-8:38 : L'engagement lié aux dispositifs institutionnels, exemples de travaux menés par l'INJEP sur le Service National Universel et le Service Civique.
      • 8:39-9:33 : L'engagement à travers les pratiques effectives des citoyens, le rôle des jeunes dans la transformation des normes et des valeurs.
      • 9:34-11:25 : Exemple de travaux menés sur l'engagement des jeunes élus municipaux, constat d'une baisse constante de la part des jeunes maires depuis les années 1980.
      • 11:26-12:13 : Formes alternatives d'engagement moins institutionnalisées, comme les plateformes de participation citoyenne (Civic Tech) et les mouvements de protestation, exemple de l'engagement des jeunes pour le climat.
      • 12:14-13:46 : Contexte de l'engagement des jeunes : rapport à la démocratie, différences générationnelles, thèse de la fracture entre une jeunesse défiante et des générations plus âgées plus conformistes.
      • 13:47-14:48 : Thèse de la déconsolidation de la démocratie et ses symptômes : abstention, affaiblissement des allégeances partisanes, montée de la protestation politique et du populisme.
      • 14:49-16:07 : Vision plus optimiste : réenchantement démocratique à travers de nouvelles formes de participation, citoyenneté critique, importance des enquêtes longitudinales.
      • 16:08-17:38 : Résultats de l'enquête européenne sur les valeurs concernant le soutien aux différents régimes politiques (démocratique, autoritaire, militaire, experts). Plébiscite pour le régime démocratique par les jeunes, mais nuances à apporter.
      • 17:39-19:08 : Opinions positives des jeunes envers des régimes non démocratiques (experts, homme fort), intérêt pour le régime militaire plus marqué que chez les générations plus âgées.
      • 19:09-20:30 : Interprétations possibles de l'attrait pour le régime militaire, relation plus contrariée des jeunes avec la démocratie.
      • 20:31-23:58 : Comparaison des pratiques de citoyenneté (vote, manifestation) entre les classes d'âge. Les jeunes ne se distinguent pas des autres classes d'âge. L'effet générationnel est plus important que l'effet d'âge.
      • 24:00-28:25 : Typologie des participants à la vie politique : non-participants, électeurs, protestataires, poly-participants. Les non-participants sont plus nombreux chez les jeunes, et risquent de rester durablement hors de la participation politique.
      • 28:26-31:11 : L'engagement associatif des jeunes. Pas de baisse significative de l'adhésion associative, mais baisse tendancielle du bénévolat. Comparaison avec les pays européens.
      • 31:12-35:54 : Participation des jeunes aux instances associatives, notamment à la présidence. Faible proportion de jeunes dirigeants d'associations. Impact sur le sentiment de légitimité à participer à la vie politique.
      • 35:55-38:56 : Présentation d'une enquête sur l'engagement des jeunes activistes pour le climat, méthodologie et contexte (mouvement climat, diversité des modes opératoires, fonctionnement horizontal, durcissement des actions, attention médiatique).
      • 38:57-41:47 : Importance de la routine militante au-delà des actions spectaculaires, homogénéité sociale des jeunes engagés dans le mouvement climat.
      • 41:48-44:28 : Socialisation politique et premiers pas dans le mouvement, mécanismes d'entrée, coût symbolique, sentiment de compétence, inégale distribution des prédispositions.
      • 44:29-47:56 : Éléments déclencheurs de l'engagement : événements climatiques, publications scientifiques, éco-médiatique, sommets internationaux (COP 21, COY).
      • 47:57-50:08 : Socialisation politique au niveau intrafamilial : identification aux valeurs des parents, figures expérimentales, socialisation inversée.
      • 50:09-53:21 : Socialisation politique dans le domaine scolaire : environnement scolaire propice à l'engagement, démocratie scolaire, éco-délégués, grèves scolaires.
      • 53:22-56:42 : Articulation des niveaux macro et micro-sociaux, rôle des facilitateurs (réseaux sociaux, influenceurs, nouveaux leaders d'opinion).
      • 56:43-57:45 : Influence des influenceurs (Greta Thunberg, Camille Étienne, Salomé Saqué, Paloma Moritz, Hugo Decrypt) sur le sentiment de légitimité des jeunes activistes.
      • 57:46-1:01:06 : Rapport à la démocratie des jeunes activistes pour le climat. Discours revendicatifs sur les mesures politiques, l'organisation politique, la participation. Image d'éco-terroristes, de jeunes radicalisés. Relations avec les élus, les institutions, le vote.
      • 1:01:07-1:02:33 : Conclusion : parler des mouvements climat au pluriel, lignes de convergence et de divergence entre les collectifs, relations intergénérationnelles, convergence des luttes.
      • 1:02:34-1:07:48 : Séance de questions/réponses : désengagement et transformation de l'engagement, études sur les modalités d'engagement selon le milieu social, rôle des savoirs scolaires dans l'engagement, défiance des élus envers les citoyens.
    1. métalinguistique

      Tu peux voir Gombert sur ce point (Gombert, J.-E. (1990). Le développement métalinguistique. Paris: PUF) Mais il y a peut-être des réf plus récentes aussi. En lisant ce qui arrive ensuite, je pense qu'il faudrait mentionner cela plus tard.

    1. The seven principles of data feminism are as follows:

      El feminismo de datos, tal como se describe, ofrece una oportunidad para interconectar conceptos de corporalidades, traducción e inteligencia artificial, ya que estas tres áreas se entrelazan en las dinámicas de poder, representación y conocimiento. Esto se puede apreciar en tres dimensiones:

      Corporalidades y Feminismo de Datos

      Elevar la emoción y la corporalidad:

      Este principio resalta la importancia de reconocer a las personas como cuerpos vivos y sensibles. En el contexto de la Inteligencia Artificial, esto desafía la tendencia a despersonalizar los datos y tratar a los sujetos como abstracciones numéricas. Por ejemplo, al diseñar sistemas de reconocimiento facial, los cuerpos no normativos (como aquellos racializados o con diversidad funcional) son a menudo mal representados. Incorporar una perspectiva feminista exige cuestionar estas omisiones y visibilizar la experiencia corporal diversa.

      Repensar los binarismos y las jerarquías:

      El binarismo de género frecuentemente excluye corporalidades no conformes, tanto en los datos como en los algoritmos que los procesan. Esto tiene implicaciones tangibles, desde la falta de representación de personas no binarias en formularios digitales hasta los sesgos en modelos predictivos que perpetúan desigualdades. Integrar las corporalidades en la Inteligencia Artificial significa desestabilizar estas jerarquías y crear tecnologías más inclusivas.

      Traducción y Feminismo de Datos

      Adoptar el pluralismo:

      La traducción aquí no solo se refiere a lenguas, sino a la intermediación entre perspectivas diversas, como los saberes indígenas y los sistemas de datos occidentales. Por ejemplo, la traducción de indicadores de género en datos cuantitativos puede borrar o simplificar las experiencias locales si no se contextualiza adecuadamente. Un feminismo de datos traducido con cuidado prioriza estos conocimientos y los integra en el análisis tecnológico.

      Considerar el contexto:

      La traducción de datos a diferentes idiomas y culturas requiere sensibilidad para no neutralizar las relaciones de poder que los generan. Por ejemplo, una Inteligencia Artificial que analiza patrones de violencia de género debe ser consciente de cómo se interpreta este fenómeno en diferentes contextos culturales, lo que implica una traducción crítica de términos y categorías.

      Hacer visible el trabajo:

      La traducción es una labor colectiva que a menudo queda invisibilizada en los procesos de desarrollo tecnológico. Desde los equipos de localización hasta los traductores de interfaces, el feminismo de datos puede destacar estas contribuciones como parte esencial de la ciencia de datos.

      IA y Feminismo de Datos

      Examinar el poder y desafiarlo:

      La Inteligencia Artificial refleja las estructuras de poder subyacentes en los datos que utiliza. Por ejemplo, los algoritmos entrenados con datos sesgados perpetúan desigualdades sistémicas. Un enfoque feminista en la Inteligencia Artificial busca desmantelar estos sistemas cuestionando las fuentes de los datos, las metodologías empleadas y los objetivos finales de la tecnología.

      Repensar binarismos y jerarquías:

      En el diseño de la Inteligencia Artificial, los sistemas categóricos rígidos (hombre/mujer, blanco/no blanco) limitan la representación de la diversidad humana. El feminismo de datos propone un rediseño de los sistemas de clasificación, favoreciendo representaciones fluidas y menos jerárquicas que reconozcan las identidades interseccionales.

      Elevar la emoción y la corporalidad:

      La Inteligencia Artificial suele ignorar las dimensiones emocionales y corporales del conocimiento humano. Por ejemplo, las Inteligencias Artificiales están diseñadas para imitar respuestas humanas, pero carecen de la sensibilidad para responder adecuadamente a experiencias humanas complejas, como el dolor o el trauma. Incorporar un enfoque feminista podría llevar a tecnologías que reflejen estas realidades de manera más ética.

      Adoptar el pluralismo:

      La diversidad en el desarrollo de la Inteligencia Artificial, incluyendo voces marginadas y saberes locales, no solo enriquece la tecnología, sino que la hace más ética y eficaz. El feminismo de datos puede guiar estos procesos, garantizando que la Inteligencia Artificial no sea solo un reflejo de las agendas del Norte Global.

    1. strong critiques of AI from a feminist standpoint

      Las corporalidades y feminismos en la Inteligencia Artificial se podría ver reflejada en la invisibilidad del cuerpo en la tecnología.

      La Inteligencia Artificial, frecuentemente percibida como desprovista de corporalidad aunque goza de ensamblajes ya que son organizaciones de personas las que operan sobre datos que representan cuerpos humanos en la Inteligencia Artificial. Sin embargo, las brechas de datos de género reflejan cómo ciertas corporalidades (como las de mujeres, personas racializadas o no conformes con el género) son ignoradas o mal representadas. Esto afecta directamente la producción de sistemas de IA que perpetúan desigualdades corporales y sociales.

      La materialidad de los datos es la falta de datos sobre cuidados no remunerados o violencia de género que invisibiliza las experiencias corporales. Estos datos “faltantes” no solo son números, son ausencias que impactan cuerpos reales, reproduciendo desigualdades en políticas y decisiones tecnológicas.

      Las estrategias normativas y la performatividad del cambio se centran en las estrategias educativas para la transformación de normas (como entrenamientos en género y diversidad) que pueden incluir perspectivas corporales para abordar las maneras en que las tecnologías moldean las experiencias físicas, desde interfaces hasta el impacto del reconocimiento facial en personas racializadas.

      La traducción como herramienta feminista aplicaría a la traducción de conceptos complejos como “feminismo de datos” o “IA feminista” que requiere una mediación cultural y lingüística que haga accesibles estos temas en contextos diversos. Las herramientas normativas, como las guías educativas sobre Inteligencia Artificial, pueden ser traducidas y adaptadas para comunidades no angloparlantes, fomentando un cambio inclusivo.

      Los sesgos lingüísticos en la Inteligencia Artificial se manifiestan porque los algoritmos de procesamiento de lenguaje natural incorporan sesgos culturales que pueden reforzar estereotipos de género. Por ejemplo, traductores automáticos que perpetúan roles de género (“doctor” vs. “enfermera”) necesitan intervenciones basadas en datos de género de alta calidad para minimizar estas desigualdades.

      La traducción como puente disciplinar e intermediación lingüística. Dado que las estrategias para la IA feminista requieren la colaboración entre tecnólogos, activistas y teóricos, la traducción también puede entenderse como una práctica de mediación entre disciplinas, ayudando a alinear epistemologías divergentes.

      La IA feminista y el potencial transformador en los datos para cuerpos diversos se puede percibir para crear y usar datos sobre experiencias corporales diversas, como el impacto del diseño de ciudades en mujeres, personas en condición de discapacidad, o personas trans, es crucial para una IA feminista que considere a todas las corporalidades.

      La educación para la inclusión abarcaría las normativas que fomenten el uso de herramientas educativas, como guías sobre los riesgos de la Inteligencia Artificial, ya que son vitales para garantizar que las tecnodiversidades no reproduzcan exclusiones históricas.

      El diálogo interdisciplinar de la traducción entre datos (cuantitativos y cualitativos) y las narrativas sobre género puede ser el punto de partida para superar las barreras de autoridad que limitan los cambios en la Inteligencia Artificial. Esto incluye no solo traducir términos técnicos, sino también experiencias humanas.

    2. feminist AI should

      Las tecnologías de Inteligencia Artificial están mediada por las estructuras de poder que moldean qué datos se recopilan, cómo se interpretan y qué usos se les da. Esto es especialmente evidente en las brechas de datos de género, donde las experiencias y necesidades de ciertos cuerpos, particularmente los de mujeres, personas no binarias y otras corporalidades marginalizadas, son omitidas, invisibilizadas o mal representadas.

      Los ecosistemas diversos y el rol de los actores sociales consiste en que la producción de datos es un proceso profundamente social, influido por las decisiones de múltiples agendas del Norte Global. Para abordar las brechas de género en los datos, es esencial reconocer este ecosistema diverso (gobiernos, empresas tecnológicas, organizaciones de la sociedad civil, activistas y comunidades de base).

      Las corporalidades invisibilizadas en los datos pueden emerger a través de esfuerzos colaborativos entre sociedad civil y ministerios gubernamentales. Por ejemplo, iniciativas donde organizaciones feministas trabajan con gobiernos para construir políticas de datos con perspectiva de género.

      Estas colaboraciones no solo reducen las brechas de datos, sino que también desvirtúan estructuras de poder tradicionales al movilizar a las comunidades hacia el cambio.

      Las dinámicas de coerción interna y externa en la transformación tecnológica.

      Para construir una Inteligencia Artificial feminista, es necesario emplear estrategias que combinen herramientas internas (cambios dentro de las instituciones) y externas (presión desde movimientos sociales).

      Las estrategias internas incluyen la integración de equipos interdisciplinarios que combinen conocimientos técnicos y teóricos, como data scientists, activistas y académicas feministas, para diseñar sistemas que reflejen la diversidad de experiencias corporales.

      Las estrategias externas implican la presión de movimientos feministas para exigir transparencia y responsabilidad a las grandes empresas tecnológicas y gobiernos, promoviendo cambios en las políticas y normativas que rigen la tecnología.

      Investigación sobre ejemplos exitosos (“bright spots”): Para avanzar hacia una Inteligencia Artificial más inclusiva, es vital identificar casos donde actuantes feministas hayan logrado cerrar brechas de género o implementar sistemas tecnológicos más equitativos. Por ejemplo, proyectos que han utilizado datos de género para visibilizar el trabajo de cuidado no remunerado o reducir las desigualdades en salud materna pueden servir como modelos para futuras iniciativas.

      Estas experiencias también resaltan el papel de las comunidades locales en traducir las necesidades corporales específicas en soluciones tecnológicas efectivas y contextualizadas.

      la investigación interdisciplinaria y colaborativa podría abrir las brechas en los datos de género y el diseño de una IA feminista con enfoques que integren disciplinas que tradicionalmente no dialogan entre sí.

      La traducción de corporalidades a datos digitales puede ser abordada por equipos que combinen desarrolladores tecnológicos, expertas en teoría de género y organizadoras comunitarias, generando sistemas que reflejen tanto las dinámicas sociales como los contextos técnicos.

      Este enfoque también fomenta sistemas de Inteligencia Artificial que sean culturalmente sensibles y diseñados para promover equidad.

      La construcción de plataformas y prácticas feministas de Inteligencia Artificial requiere plataformas políticas y prácticas informales que incluyan múltiples niveles de acción, desde cambios individuales hasta transformaciones sistémicas.

      A nivel individual, esto incluye sensibilización sobre cómo las tecnologías reproducen desigualdades de género y su impacto en los cuerpos marginalizados.

      A nivel sistémico, implica movilizar políticas que aseguren la representatividad y la inclusión en la gobernanza de la tecnología, así como fomentar prácticas que desmantelen las jerarquías opresivas incrustadas en los sistemas algorítmicos.

      Utilizar herramientas interdisciplinarias, movilizar a diversos actuantes sociales y articular estrategias internas y externas que impulsen el cambio. De este modo, la Inteligencia Artificial feminista no sólo traduce las experiencias humanas a datos, sino que lo hace desde un lugar de justicia social, visibilizando y empoderando a las corporalidades históricamente excluidas.

    1. “Feminist principles can be a handy framework to understand and transform the impact of AI systems. Key principles include reflexivity, participation, intersectionality, and working towards structural change.”

      Las corporalidades, la traducción y la Inteligencia Artificial desde una posibilidad feminista puede articularse en torno a la idea de cómo las tecnologías emergentes interactúan con los cuerpos y las experiencias humanas, particularmente aquellas de grupos marginalizados, y cómo la traducción de esos datos corporales a sistemas digitales puede ser transformada para subvertir estructuras de poder.

      Las tecnodiversidades y en especial la Inteligencia Artificial, tiene el poder de traducir las experiencias humanas en datos cuantificables. No obstante, esta traducción está mediada por estructuras de poder que asignan mayor valor a ciertas corporalidades y vivencias mientras invisibilizan otras.

      La forma en que los datos relacionados con la salud o el trabajo de las mujeres suelen quedar subrepresentados o malinterpretados en los sistemas de Inteligencia Artificial debido a sesgos en las fuentes de datos desde las agendas del Norte Global.

      Estos sesgos son reflejo de desigualdades estructurales arraigadas en el patriarcado, el racismo y el capitalismo.

      Desde una posibilidad feminista, es importante aplicar principios como la reflexividad, la participación y la interseccionalidad al proceso de traducción de corporalidades a sistemas digitales.

      La reflexividad cuestiona cómo las relaciones de poder moldean tanto los datos recolectados como las decisiones tomadas durante el diseño de Inteligencia Artificial. Esto invita a pensar en cómo el diseño técnico puede reconocer y rediseñar las jerarquías sociales que privilegian ciertas experiencias corporales sobre otras.

      La participación asegura que las corporalidades más afectadas por los sistemas de Inteligencia Artificial tengan voz en su diseño y gobernanza. En el ámbito de la salud, esto podría significar incluir a pacientes, trabajadoras comunitarias y activistas en el diseño de sistemas de diagnóstico que reflejen sus experiencias vividas. Esta traducción participativa de las necesidades humanas a sistemas digitales puede mejorar la adopción de tecnodiversidades, y redistribuir el poder hacia las comunidades.

      La interseccionalidad destaca cómo las experiencias corporales son multidimensionales, determinadas por factores como género, raza, clase y condición de discapacidad.

      Si bien las tecnologías de Inteligencia Artificial tienden a homogeneizar y simplificar estas diferencias, la interseccionalidad exige diseñar sistemas que reconozcan y respeten estas complejidades. A modo de ejemplo, los sistemas que clasifiquen imágenes corporales deben evitar perpetuar estándares corporales eurocéntricos o normas de género binarias, asegurando que los datos reflejen la diversidad de experiencias humanas.

      Cuando la Inteligencia Artificial se apropia desde principios feministas, se convierte en una herramienta para cuestionar y reconfigurar la traducción de cuerpos humanos a sistemas algorítmicos. Esto implica resistir los usos autoritarios de la Inteligencia Artificial como la vigilancia y la exclusión y crear sistemas alternativos que desafíen la desigualdad y promuevan una práctica tecnológica inclusiva y transformadora. Por ejemplo, proyectos que buscan erradicar el discurso de odio en línea pueden considerarse feministas en tanto protegen a grupos históricamente marginados, aunque no aborden explícitamente la violencia de género.

      Incorporar principios feministas en la Inteligencia Artificial significa diseñar tecnodiversidades que no solo traduzcan datos corporales con precisión, sino que también reconozcan y valoren las relaciones sociales que los producen. A través de sistemas inclusivos, participativos y reflexivos, se puede trabajar hacia una tecnología que desafíe las estructuras de dominación, promoviendo corporalidades libres, dignas y diversas.

    1. qu’elle revienne à un référent clairement identifiable.

      Première lecture - Je lis autrement la citation de Hope : il me semble qu'il évoque notre moment historique où "le référent" est supposément "clairement identifiable" (c'est ce que socialement, médiatiquement on nous dit : TINA). Dans ce moment idéologique-là, on attendrait de la littérature qu'elle fasse retour au réel, qu'elle "renonce au réel". Mais j'en conclue que Hope défend précisément l'inverse : (i) le référent n'est jamais clairement identifiable, (ii) la littérature n'a pas à renoncer à la fiction. Bref, je lis de manière ironique la citation de Hope : peut-être que je me trompe, et que ma lecture est faussée par la manière dont la citation est donnée (élargir la citation ? préciser le contexte ?)

      Deuxième lecture - mon embarras quant à ce que dit Hope perdure : ironique ? pas ironique ? A mon sens, cet embarras est l'indice qu'il y a un problème dans le découpage de la citation et/ou dans la reformulation que tu en proposes.

    2. Entre les murs, des voix

      Question peut-être naïve : pour un lectorat francophone de France, le titre fait signe vers le livre de François Bégaudeau, Entre les murs (2006, Ed. Verticales), qui a eu un grand succès critique et public. Est-ce qu'il y a un lien avec l'ouvrage de Chiasson Dulude ? (le rapprochement me paraît non fortuit, Bégaudeau faisant aussi le choix d'une "écriture du réel" pour le dire vite)

    3. nvers les irresponsables qui continuent de rêvasser alors que l’impérieuse nécessité se fait sentir dans chaque nouvelle catastrophe qui se présente à nos yeux blasés par le train d’enfer auquel elles s’accumulent dorénavant.

      Peut-être que la phrase est ici trop longue (la force de la charge polémique y perd un peu son énergie)

    4. confisque aux mots leur puissance, leur potentialités

      Toute la lecture faite de l'interprétation de Chklovski par Wittig est remarquable : il y a vraiment une plus-value à en passer par Wittig pour saisir ce que la thèse chklovkienne a d'actualité et de pertinence pour saisir ce qui est en jeu dans notre moment présent. Super !

    1. from math import cos,sin,pifrom kandinsky import *from ion import *from random import random,randint#menudef menu(): global vitesse,Vraquette draw_string("Mode",140,20,'orange') draw_string("1 joueur 2 joueurs",60,40,'orange') mode=1 while not (keydown(KEY_OK) or keydown(KEY_EXE)): draw_string("[",40+120*mode,40,'blue') draw_string("]",150+130*mode,40,'blue') if keydown(KEY_LEFT) or keydown(KEY_RIGHT): mode=1-mode draw_string(" ",40+120*(1-mode),40) draw_string(" ",150+130*(1-mode),40) while keydown(KEY_LEFT) or keydown(KEY_RIGHT):True while keydown(KEY_OK) or keydown(KEY_EXE):True draw_string("Vitesse du jeu",90,70,'orange') draw_string("lent moyen rapide",60,90,'orange') vitesse=2 while not (keydown(KEY_OK) or keydown(KEY_EXE)): draw_string("[",-30+70*vitesse+10*(vitesse//3),90,'blue') draw_string("]",30+80*vitesse+10*(vitesse//3),90,'blue') dv=keydown(KEY_RIGHT)-keydown(KEY_LEFT) if (keydown(KEY_RIGHT) or keydown(KEY_LEFT)) and dv != 0: draw_string(" ",-30+70*vitesse+10*(vitesse//3),90) draw_string(" ",30+80*vitesse+10*(vitesse//3),90) vitesse=(vitesse+dv-1)%3+1 while keydown(KEY_RIGHT) or keydown(KEY_LEFT):True while keydown(KEY_OK) or keydown(KEY_EXE):True draw_string("Déplacement des raquettes",55,120,'orange') draw_string("lent moyen rapide",60,140,'orange') Vraquette=2 while not (keydown(KEY_OK) or keydown(KEY_EXE)): draw_string("[",-30+70*Vraquette+10*(Vraquette//3),140,'blue') draw_string("]",30+80*Vraquette+10*(Vraquette//3),140,'blue') dr=keydown(KEY_RIGHT)-keydown(KEY_LEFT) if (keydown(KEY_RIGHT) or keydown(KEY_LEFT)) and dr != 0: draw_string(" ",-30+70*Vraquette+10*(Vraquette//3),140) draw_string(" ",30+80*Vraquette+10*(Vraquette//3),140) Vraquette=(Vraquette+dr-1)%3+1 while keydown(KEY_RIGHT) or keydown(KEY_LEFT):True # ajouter mode de rebond : angle relatif ou absolu return modemode=menu()fill_rect(0,18,320,1,'purple')fill_rect(0,204,320,1,'purple')#raquette 1x1=5y1=111#raquette 2x2=315y2=111#ballex=160y=111def balle(x,y,couleur): fill_rect(x-2,y-2,5,5,couleur)def raquette(x,y,couleur): fill_rect(x-1,y-10,3,21,couleur)score=[0,0]angle=(pi/6-pi/18)*random()+pi/18horiz=2*randint(0,1)-1verti=1clr1,clr2=(96,44,120),(104,44,128)while 1: fill_rect(0,19,320,185,'white') x,y=160,111 x1,y1=5,111 x2,y2=315,111 #vitesse=2 V=vitesse while 1: d1 = (keydown(48)-keydown(30)) y1 = max(min(193,y1+(vitesse+Vraquette-1)*d1),29) # y1 +=3*d1 if mode: d2 = (keydown(52)-keydown(34)) else: d2 = min(vitesse+Vraquette-1,abs(int(y2-y)))*(2*(y>y2)-1) y2 = max(min(193,y2+d2*(1+(vitesse+Vraquette-1-1)*mode)),29)#y2 += d2 #3*(2*randint(0,3)-3 #draw_string("|",x1,y1,['green','red'][(y1-y)**2>100]) raquette(x1,y1,['green','red'][(y1-y)**2>169]) if d1 != 0:fill_rect(x1-1,y1-2-13*d1,5,5,'white') raquette(x2,y2,['blue','red'][(y2-y)**2>169]) if d2 != 0: if mode: fill_rect(x2-1,y2-2-13*d2,5,5,'white') else: fill_rect(x2-1,y2-2-13*(2*(y>y2)-1),5,5,'white') vx=x vy=y x+=V*cos(angle)*horiz y+=V*sin(angle)*verti clr1,clr2=clr2,clr1 balle(int(x),int(y),clr1) for i in range(5): for j in range(5): if get_pixel(int(vx)-2+i,int(vy)-2+j)==clr2: set_pixel(int(vx)-2+i,int(vy)-2+j,'white') if x>311: horiz = -1 if (y-y2)**2>169: draw_string("Joueur1 a gagné",85,110) score[0]+=1 break else: #angle=min(2*pi/5,angle+(y-y2)*pi/180) angle=abs(6*(y-y2)*pi/180) verti = 2*(y>y2)-1 V *= 1.1 draw_string("Vitesse : "+str(V)[:4]+" ",15,205,'blue') draw_string("Angle : "+str(int(abs(angle*180/pi)))+"° ",180,205,'green') if x<9: horiz = 1 if (y-y1)**2>169: draw_string("Joueur2 a gagné",85,110) score[1]+=1 break else: #angle=min(2*pi/5,angle+(y-y1)*pi/180) angle=abs(6*(y-y1)*pi/180) verti = 2*(y>y1)-1 V *= 1.1 draw_string("Vitesse : "+str(V)[:4]+" ",15,205,'blue') draw_string("Angle : "+str(int(abs(angle*180/pi)))+"° ",180,205,'green') if y>200 or y<22: verti *= -1 #angle *= -1 fill_rect(0,204,320,1,'purple') fill_rect(0,18,320,1,'purple') while not keydown(KEY_OK): draw_string("Score : "+str(score[0])+" - "+str(score[1]),60,0,'red') draw_string("OK",145,131,'purple','cyan')

      Il y a que moi pour qui ça me met "name 'pi' isn't def" sur ma calculette svp?

    1. AI as a Software

      Las corporalidades, la traducción y la inteligencia artificial son creados para interpretar y operar, amplifican y perpetúan los sesgos sociales que definen tanto la representación como la interacción de los cuerpos en el ámbito tecnológico. Se entretejen las nociones de traducción como la adaptación o interpretación de las corporalidades humanas al lenguaje de los datos, y la ética de la Inteligencia Artificial, en la que se abordan los sesgos en la sociedad.

      La traducción con Inteligencia Artificial “traduce” las corporalidades humanas a datos estructurados mediante procesos de entrenamiento que dependen de patrones en los datasets. Sin embargo, esta traducción es imperfecta y limitada.

      Las corporalidades humanas, con sus matices de diversidad cultural, étnica, de género y funcionalidad, son codificadas en un espacio de datos reducido, lo que deja fuera muchas experiencias humanas.

      La Inteligencia Artificial no sólo traduce, sino que también amplifica los sesgos presentes en los datos. Un sistema entrenado con imágenes que asocian género con profesiones perpetuará estos estereotipos, traduciéndolos como “verdades” tecnológicas.

      La Inteligencia Artificial, al comportarse como un software “inteligente”, plantea desafíos únicos que afectan cómo las corporalidades son representadas, a diferencia de un software tradicional, los resultados de la Inteligencia Artificial cambian con el tiempo y el contexto, lo que dificulta crear métricas fijas para medir su sesgo. Esto afecta directamente cómo los cuerpos son clasificados o reconocidos.

      En lugar de reconocer la fluidez de las identidades humanas, los sistemas de Inteligencia Artificial suelen fijar a las corporalidades en etiquetas binarias (“hombre” o “mujer”), dejando fuera identidades LGBTQ+.

      La comprensión y mitigación de sesgos en la Inteligencia Artificial requiere un enfoque interdisciplinario que reconozca las complejidades sociales y culturales de las corporalidades.

      Las ciencias sociales pueden aportar conceptos de sesgo y equidad que guíen la creación de métricas en la Inteligencia Artificial. Redefinir cómo los sistemas interpretan y categorizan las corporalidades más allá de los parámetros normativos.

      La introducción de herramientas como REVISE y datasets como el Pilot Parliament Benchmark marcan un paso hacia la evaluación de sesgos, pero aún no abordan la diversidad completa de las corporalidades.

      La Inteligencia Artificial puede entenderse como una traducción cultural que convierte dinámicas humanas en procesos computacionales, la traducción de las corporalidades al ámbito de la Inteligencia Artificial no es neutral, ya que refleja los valores y prejuicios de quienes crean los sistemas y los datasets. Este proceso requiere una revisión ética que considere cómo las decisiones de diseño afectan a las poblaciones marginalizadas.

      Resolver estos desafíos exige la colaboración entre disciplinas (ciencias sociales, legales, matemáticas, etc.) y geografías como las cartografías, reconociendo que las corporalidades humanas son interpretadas de maneras distintas según el contexto cultural.

      La interacción entre la Inteligencia Artificial y las corporalidades tiene consecuencias profundas que van más allá de los sesgos técnicos, si los sesgos en la Inteligencia Artificial no se mitigan, las tecnodiversidades podrían institucionalizar discriminaciones sociales, afectando cómo ciertos cuerpos son vistos, valorados o incluso controlados.

      En un mundo donde la Inteligencia Artificial tiene un impacto cada vez mayor, es esencial que todos los sectores de la sociedad trabajen juntos para garantizar que las tecnologías no perpetúen ni amplifiquen las desigualdades existentes.

    2. we shall see how AI algorithms, when trained on these datasets, pick up these biases and amplify them, leading to biased AI systems.

      La Inteligencia Artificial y las corporalidades no solo tiene implicaciones técnicas, sino que también expone dinámicas culturales y sociales que determinan cómo los cuerpos son interpretados y clasificados.

      El predominio de rostros blancos en datasets como Rostros Etiquetados en la Naturaleza (LFW por su sigla en inglés) crea modelos que reconocen con precisión a personas blancas, pero fallan al identificar a personas de otras razas. Esto marginaliza a cuerpos no blancos, reduciendo su visibilidad tecnológica y reproduciendo jerarquías raciales.

      La tendencia de los modelos a asociar características específicas con ciertos grupos (como mujeres en la cocina u hombres en el garaje) refleja cómo las corporalidades son codificadas de manera sesgada en los datos y amplificadas por la Inteligencia Artificial.

      El proceso de entrenamiento de la Inteligencia Artificial puede considerarse una forma de traducción algorítmica, donde las corporalidades son reducidas a patrones y etiquetas.

      Los modelos tienden a generalizar patrones, lo que significa que las corporalidades que no se ajustan a los estándares dominantes (por ejemplo, caras racializadas o cuerpos fuera de las normas hegemónicas) son malinterpretadas o invisibilizadas.

      Durante el entrenamiento, los modelos reciben “recompensas” por predecir correctamente según el dataset. Si el dataset es sesgado, las predicciones correctas refuerzan esas generalizaciones erróneas, consolidando una visión limitada y parcial de las corporalidades.

      El uso de métricas como la precisión para evaluar modelos sesgados resalta una desconexión entre la eficiencia técnica y la justicia social, un modelo que alcanza un 85% de precisión al reconocer rostros blancos en un dataset dominado por estas imágenes no es verdaderamente eficiente; simplemente está optimizado para perpetuar el sesgo del dataset.

      La creación de datasets verdaderamente diversos y la reformulación de cómo los modelos interactúan con las corporalidades son pasos esenciales para evitar la amplificación de sesgos.

      Un dataset diverso no solo debe incluir representaciones equilibradas de diferentes razas y géneros, sino también considerar otras dimensiones de la identidad, como la edad, si tiene alguna condición de discapacidad y los culturemas.

      La Inteligencia Artificial debe integrar mecanismos que detecten y mitiguen sesgos inherentes, evitando la reproducción de inequidades.

      Incorporar perspectivas interseccionales permite a la Inteligencia Artificial considerar cómo múltiples formas de identidad se cruzan y afectan la representación de las corporalidades.

    3. Deep learning models require huge amounts of data for training

      Las corporalidades, la traducción y la Inteligencia Artificial se encuentra en el análisis de cómo los datos utilizados para entrenar modelos de aprendizaje profundo reproducen y amplifican las construcciones sociales y culturales relacionadas con los cuerpos humanos.

      Los datasets visuales como ImageNet o OpenImages, usados para entrenar modelos de visión por computadora, refuerzan nociones específicas de las corporalidades.

      La mayoría de las imágenes están sesgadas hacia cuerpos blancos, lo que genera problemas de reconocimiento en cuerpos racializados. Los sistemas de reconocimiento facial identifican incorrectamente rostros negros cinco veces más que blancos, lo que evidencia una invisibilización sistémica de las corporalidades no occidentales.

      Las imágenes etiquetadas tienden a asociar ciertos objetos o contextos con corporalidades específicas. Los cosméticos o las flores están sobrerrepresentados con mujeres, mientras que herramientas e instrumentos suelen estar vinculados con hombres. Esto reproduce constructos culturales que refuerzan la pasividad femenina y la agencia masculina.

      La traducción, como intermediación cultural, es fundamental en la creación de datasets. Sin embargo, este proceso está mediado por quienes etiquetan los datos.

      La mayoría de los etiquetadores (Amazon Mechanical Turk) provienen de países occidentales, lo que lleva a una interpretación culturalmente limitada de las imágenes. Esto impacta cómo se codifican corporalidades de otras culturas, generando traducciones parciales o erróneas.

      La falta de diversidad en los datasets traduce las experiencias corporales en un marco único, al homogeneizar las diferencias culturales, raciales y de género. Esto no solo afecta la precisión técnica de la traducción, sino que también tiene consecuencias éticas y sociales.

      La Inteligencia Artificial traduce las corporalidades en patrones que pueden perpetuar desigualdades como en el caso de las imágenes etiquetadas, las mujeres son frecuentemente observadoras pasivas, mientras que los hombres interactúan con objetos o son asociados con roles de liderazgo. Esto reproduce construcciones culturales que vinculan el poder con la masculinidad.

      Los intentos de capturar la diversidad en datasets como Pilot Parliament Benchmark o Fair Face son limitados porque intentan traducir muchas experiencias corporales a un marco normativo preexistente.

      Incluir comunidades subrepresentadas en el diseño, etiquetado y curación de los datos.

      Adoptar herramientas para detectar y corregir sesgos en las etiquetas, asegurando que las corporalidades no sean traducidas desde marcos reductivos.

      Incorporar múltiples dimensiones de identidad (género, raza, clase, etc.) para evitar simplificaciones excesivas.

      La relación entre las corporalidades, la IA y la traducción no solo implica reconocer los sesgos inherentes a los datos, sino también repensar cómo las tecnologías representan y traducen las experiencias humanas.

    4. The Origin of Bias: Our Society

      Las Redes Neuronales Artificiales (ANNs por su sigla en inglés) y su entrenamiento en datos provenientes de internet refleja cómo las corporalidades, la traducción y la inteligencia artificial se entrelazan. Esta intersección permite explorar cómo los sesgos sociales presentes en la sociedad son perpetuados y amplificados en las tecnodiversidades.

      Las corporalidades, entendidas como la representación de cuerpos y sus atributos asociados (género, raza, clase, etc.), tienen distorsiones significativas cuando se integran en la Inteligencia Artificial entrenados en datos sesgados.

      Las búsquedas de imágenes para “CEO” o “soldado” versus “enfermera” o “maestra” refuerzan narrativas limitadas sobre quiénes ocupan determinados roles en la sociedad.

      Las Redes Neuronales Artificiales (ANNs por su sigla en inglés) no sólo reproducen, sino que expanden la invisibilidad o la hipervisibilidad de ciertos cuerpos, como mujeres reducidas a estereotipos de sexualidad y familia, o personas racializadas asociadas a profesiones de bajo estatus. Esto crea un “ecosistema algorítmico” que define qué cuerpos son considerados valiosos o normativos en función de los datos disponibles.

      La traducción, bien sea literal, técnica, especializada o metafórica, juega un papel clave en cómo la Inteligencia Artificial procesan el lenguaje y las imágenes.

      La prevalencia de términos como “bello” o “romántico” para mujeres y “ofensivo” o “diplomático” para hombres en análisis basados en Wikipedia ilustra cómo las construcciones culturales de género se filtran en sistemas de Procesamiento del Lenguaje Natural (NLP por su sigla en inglés).

      Tecnodiversidades de reconocimiento de imágenes etiquetan a hombres como “hombres de negocios” y a mujeres con términos relacionados con características físicas (“sonrisa”, “peinado”), evidenciando un filtro cultural que traduce cuerpos femeninos en bases de datos terminológicas relacionadas con la apariencia y cuerpos masculinos en en bases de datos terminológicas relacionadas con el poder.

      Las Inteligencias Artificiales al ser entrenadas con datos masivos provenientes de fuentes como Reddit, Wikipedia y Google, inevitablemente reflejan los prejuicios sociales de origen.

      Los textos generados por GPT-2, los patrones de lenguaje recogidos de Reddit, como la asociación de mujeres con la prostitución y hombres con posiciones de poder, refuerzan un ciclo de perpetuación de sesgos, donde los estereotipos sociales se convierten en reglas operativas dentro de los sistemas.

      Etiquetado de imágenes, los sesgos de género y raza en los conjuntos de datos visuales llevan a etiquetados que marginan a ciertas identidades y privilegian otras, al reproducir jerarquías sociales en los sistemas de IA.

      La masificación de estos sesgos tiene implicaciones críticas para las corporalidades. Si el sesgo en los datos ya marginaliza ciertas identidades, la integración de estos sesgos en sistemas que toman decisiones, como asistentes virtuales, sistemas de reconocimiento facial y plataformas de contratación, amplifica estas exclusiones.

      Las desigualdades algorítmicas por la forma en que la Inteligencia Artificial aprende, refuerza no solo estereotipos individuales, sino sistemas de poder más amplios, donde ciertos cuerpos (blancos, masculinos, etc.) tienen mayores probabilidades de ser asociados con profesionalismo, éxito y capacidad de liderazgo.

      Para interrumpir estos ciclos de sesgo y redefinir el rol de las corporalidades en la Inteligencia Artificial, es crucial adoptar un enfoque transformador.

      Los conjuntos de datos deben ser diseñados deliberadamente para incluir la diversidad de cuerpos, culturas y experiencias humanas, al evitar la reproducción de sesgos sistémicos.

      Incorporar Inteligencia Artificial feminista y crítica que analice cómo las categorías sociales interactúan en la creación de desigualdades.

      Evaluar los tecnodiversidades en todas las etapas, desde la selección de datos hasta su despliegue, para identificar y corregir sesgos antes de que se amplifiquen.

      Reconocer que los datos y la tecnología no son neutrales, sino productos sociales, y promover un diseño ético que valore la equidad y la justicia.

      La Inteligencia Artificial tiene el potencial de ser una herramienta emancipadora si se diseñan sistemas que respeten y celebren la diversidad de las corporalidades humanas. Al abordar los sesgos en los datos y los algoritmos, se podrían construir tecnologías que no solo reflejen el mundo tal como es, sino que muestren y materialicen un futuro más justo, inclusivo y equitativo.

    5. Why is AI biased?

      Las corporalidades, traducción e Inteligencia Artificial sus sesgos y su propagación en las tecnodiversidades revela cómo estos procesos son inseparables de las estructuras sociales que les dan origen.

      Las representaciones corporales, la intermediación lingüística y los algoritmos interactúan para reproducir o desafiar desigualdades.

      La Inteligencia Artificial, como los redes neuronales profundas (DNNs por su sigla en inglés), reflejan las estructuras sociales porque su entrenamiento depende de datos generados en contextos históricamente sesgados.

      Los datos utilizados para entrenar sistemas de visión computacional reproducen la representación desigual de las corporalidades. Esto ocurre cuando términos como “enfermera” producen mayoritariamente imágenes de mujeres, mientras que “CEO” genera imágenes de hombres. Estas representaciones no son neutrales; perpetúan narrativas que asignan roles específicos a cuerpos según género, raza o clase.

      Grupos marginalizados (personas trans, no binarias o en condición de discapacidad) suelen quedar fuera de los conjuntos de datos, lo que los hace prácticamente inexistentes en las tecnodiversidades. Esto crea una brecha de representación y un ciclo de exclusión en un contexto digital.

      El vínculo entre traducción e Inteligencia Artificial pone en evidencia cómo las tecnodiversidades lingüísticas integran y amplifican sesgos de género, raza y clase.

      Cuando se traducen textos de idiomas sin marcadores de género como el turco al inglés, los algoritmos asignan géneros basados en sesgos estadísticos. Por ejemplo, “él es ingeniero” frente a “ella es enfermera”. Este proceso refuerza roles sociales tradicionales y limita las posibilidades de imaginar corporalidades fuera de esos moldes.

      Las traducciones tienden a priorizar lenguajes dominantes, al relegar las lenguas indígenas y locales, lo que invisibiliza culturas y corporalidades. Esto perpetúa un sistema global jerárquico donde ciertos cuerpos y lenguajes son más “validados” que otros.

      La metáfora del “niño recién nacido” aplicado a una red neuronal resalta cómo los sesgos en los datos impactan el comportamiento de la Inteligencia Artificial.

      Las Inteligencias Artificiales que reconocen rostros, suelen tener tasas de error más altas con personas racializadas debido a conjuntos de datos predominantemente blancos. Esto refuerza una noción algorítmica de corporalidades normativas, donde los cuerpos fuera de ese estándar son tratados como “otros”.

      Cada etapa del desarrollo de la Inteligencia Artificial, desde la recopilación de datos hasta el despliegue, permite la acumulación de prejuicios, reproduciendo estructuras de poder. Esta acumulación se traduce en decisiones algorítmicas que afectan directamente la vida de las personas, desde la contratación laboral hasta la vigilancia policial.

      Es necesario recopilar y usar datos que reflejen la diversidad humana en todas sus dimensiones (género, raza, orientación sexual, capacidad, etc.), al reconocer y visibilizar las corporalidades marginadas.

      Incorporar la Inteligencia Artificial feminista y crítica desde la selección de datos hasta la validación de modelos que sirvan en el Sur Global.

      Crear mecanismos transparentes para auditar los sistemas de Inteligencia Artificial, al identificar y corregir sesgos antes de que estos se amplifiquen en el mundo real.

      Los sesgos no son inevitables, pero corregirlos requiere un cambio radical en cómo diseñamos y pensamos estas tecnodiversidades. Reconocer el impacto en los cuerpos reales y su capacidad para amplificar desigualdades es el primer paso hacia la transformación. Al situar las corporalidades en el centro del diseño, podemos construir sistemas que no solo reflejen, sino que desafíen las estructuras opresivas, avanzando hacia un futuro más equitativo y justo.

    1. Google Translate

      Frente a este tema, Olson (2018) citado en Kraft-Buchman (2021) afirmaron que "cuando Google Translate traducía artículos de noticias escritos en español al inglés, las frases que se referían a mujeres profesionales, como las profesoras, a menudo se convertían en “él dijo” o “él escribió”. En el idioma turco, donde no hay “él” ni “ella”, Google Translate creó combinaciones de género donde el idioma turco no las tiene, y los resultados son sorprendentemente impactantes: “ella es cocinera”, “él es ingeniero”, “él es médico”, “ella es enfermera”, “él es muy trabajador”, “ella es perezosa”" (párr. 20).

      Olson, Parmy. ‘The Algorithm That Helped Google Translate Become Sexist’. Forbes, sec. Tech. Ingresó el 16 marzo de 2021. https://www.forbes.com/sites/parmyolson/2018/02/15/the-algorithm-that-helped-google-translate-become-sexist/.

      Kraft-Buchman, C. (2021). Chapter 1. We shape our tools, and thereafter our tools shape us. From bias to feminist Ai. A+ Alliance. Tomado de https://feministai.pubpub.org/pub/we-shape-our-tools/release/3?readingCollection=c218d365

    2. In 2017 a group of researchers found that two prominent research-image collections, including one supported by Microsoft and Facebook, display a predictable gender bias in their depiction of activities such as cooking and sports. For example, images of shopping and washing are linked to women, while coaching and shooting are linked to men. Similarly, kitchen objects such as spoons and forks are strongly associated with women, while outdoor sporting equipment such as snowboards and tennis rackets are strongly associated with men.

      Frente a este tema, Kraft-Buchman (2021) afirma que "en 2017, un grupo de investigadores descubrió que dos importantes colecciones de imágenes de investigación, incluida una respaldada por Microsoft y Facebook, muestran un sesgo de género predecible en su representación de actividades como cocinar y deportes. Por ejemplo, las imágenes de compras y lavado están vinculadas a las mujeres, mientras que las de entrenamiento y tiro están vinculadas a los hombres. De manera similar, los objetos de cocina, como cucharas y tenedores, están fuertemente asociados con las mujeres, mientras que el equipo deportivo para exteriores, como tablas de snowboard y raquetas de tenis, están fuertemente asociados con los hombres" (párr. 16).

    3. women and girls can and do serve as a proxy

      Las mujeres y las niñas funcionan como símbolos o proxies de grupos históricamente invisibilizados y marginados por los sistemas sociales, lo que tiene una relación directa con el concepto de corporalidades.

      Las corporalidades hacen referencia a las maneras en que son construidos, percibidos y tratados socialmente. Este enfoque explica sobre cómo los cuerpos, particularmente aquellos que son racializados, feminizados o clasificados por categorías de género, clase y otras identidades interseccionales, experimentan las desigualdades estructurales de manera material y simbólica.

      La Inteligencia Artificial feminista, se entrelaza con la interseccionalidad para abordar sistemas de opresión interdependientes. Implica directamente las corporalidades porque estas categorías de opresión no existen en abstracto, sino que están encarnadas: los cuerpos de mujeres, personas racializadas o de clases marginadas son el terreno donde se manifiestan estas discriminaciones.

      Es en estos cuerpos donde se cruza el peso de los sistemas de exclusión, como el patriarcado, el racismo o el clasismo.

      El acceso desigual a la tecnología, los sesgos en los sistemas de reconocimiento facial o los algoritmos que reproducen estereotipos son evidencias de cómo las corporalidades son mediadas y discriminadas a través de estas categorías sociales.

      Al plantear que el feminismo y la interseccionalidad son inseparables, se reafirma la necesidad de comprender que las discriminaciones no son simplemente abstractas, sino vividas, percibidas y sufridas por cuerpos específicos.

      En este sentido, cualquier esfuerzo hacia una Inteligencia Artificial feminista no solo debería desafiar los sistemas de discriminación, sino también ser profundamente consciente de cómo sus prácticas afectan las corporalidades concretas, considerando sus múltiples capas de significado e intersección.

    4. Machine learning

      Los cuerpos de mujeres, niñas y otros grupos marginalizados son borrados o distorsionados dentro de los sistemas de aprendizaje automático (machine learning).

      Estos sistemas reproducen y amplifican desigualdades al hacer explícita, a través del código, la invisibilidad y los sesgos presentes en los datos de origen.

      La corporalidad es fundamental porque los sesgos en los datos no solo afectan a las identidades, sino que tienen consecuencias concretas en las vidas corporales y materiales de las personas, tales como:

      La ausencia de datos sobre cuerpos femeninos en estudios médicos y algoritmos puede llevar a diagnósticos imprecisos o tratamientos menos efectivos.

      Los sesgos en sistemas de vigilancia o justicia criminal pueden reforzar estereotipos raciales y de género, poniendo en mayor riesgo a los cuerpos ya vulnerabilizados.

      Las decisiones algorítmicas que excluyen o marginan refuerzan la idea de que ciertos cuerpos son menos importantes o incluso inexistentes, al perpetuar dinámicas excluyentes.

      Cuando estas dinámicas se codifican en sistemas de inteligencia artificial, los estereotipos y normas patriarcales, raciales y de clase que ya afectan a los cuerpos en el mundo analógico se transforman en reglas explícitas que refuerzan estas jerarquías.

      La corporalidad podría ser el terreno donde estas desigualdades se viven de manera tangible: desde quién es vigilado y criminalizado hasta quién es ignorado en los espacios laborales o en las decisiones de políticas públicas.

      La “Patriarquía 2.0” radica en su capacidad de solidificar desigualdades de manera más eficiente y difícil de desmantelar.

      Las relaciones entre género, raza y clase ya no serían solo normas sociales implícitas, sino códigos que regulan y automatizan exclusiones, al afectar directamente cómo los cuerpos se posicionan y sobreviven en el mundo.

      Sería importante repensar la creación de datos, asegurando que incluyan las experiencias y necesidades de cuerpos históricamente marginados para evitar que el futuro tecnológico perpetúe desigualdades del pasado.

    5. As Marshall McLuhan is famously quoted, “We shape our tools, and thereafter our tools shape us”

      Nosotros le damos forma a nuestras herramientas y por ende nuestras herramientas nos dan forma a nosotros.

      Kraft-Buchman, C. (2021). Chapter 1. We shape our tools, and thereafter our tools shape us. From bias to feminist Ai. A+ Alliance. Tomado de https://feministai.pubpub.org/pub/we-shape-our-tools/release/3?readingCollection=c218d365

    6. “We shape our tools, and thereafter our tools shape us”

      Las posibilidades críticas en las corporalidades y la traducción en tiempos de Inteligencia Artificial permite repensar cómo estas tecnodiversidades interactúan con cuerpos e identidades diversas, y cómo pueden ser transformadas en herramientas de resistencia contra las desigualdades históricas.

      Los sesgos de género, racismo, estereotipos y otras formas de discriminación, profundamente incrustados en las tecnodiversidades, afectan a las corporalidades y cómo una posibilidad feminista puede abrir caminos para un cambio transformador.

      Casos como la aplicación DeepNude y los bots deepfake en Telegram exponen cómo los cuerpos femeninos son desproporcionadamente vulnerables a formas de explotación y violencia digital. Estas tecnodiversidades convierten a las corporalidades en objetos de vigilancia, control y deshumanización, reforzando dinámicas de poder que han existido históricamente.

      Los sistemas de autocompletado que representan a los hombres en trajes y a las mujeres en bikinis son un ejemplo claro de cómo los algoritmos perpetúan estereotipos de género. Estas representaciones no solo reflejan los sesgos sociales, sino que activamente los amplifican, definiendo cómo las corporalidades son vistas y entendidas en el espacio digital.

      La Inteligencia Artificial, entrenada con datos históricos, hereda y codifica desigualdades sociales, afectando a las corporalidades en múltiples dimensiones (género, raza, orientación sexual, edad, etc.). Sin una intervención crítica, estas tecnologías corren el riesgo de cristalizar estas desigualdades en las agendas del Norte Globla para la toma de decisiones.

      Los anuncios de spyware dirigidos a hombres para espiar a mujeres refuerzan la narrativa de que las corporalidades feminizadas deben ser controladas y vigiladas, lo cual perpetúa dinámicas de poder patriarcales en el ámbito digital.

      Las corporalidades no son sólo receptores pasivos de las tecnodiversidades, sino también el terreno donde se materializan las desigualdades y las posibilidades de transformación. Una posibilidad crítica feminista implica entender cómo estas tecnodiversidades afectan a las personas en su materialidad y subjetividad.

      El texto subraya la necesidad de movilizar equipos interdisciplinarios que incluyan perspectivas feministas, antirracistas para diseñar Inteligencias Artificiales que no solo mitiguen los sesgos, sino que avancen hacia sistemas que promuevan la equidad. Esto requiere integrar voces históricamente marginadas, especialmente de mujeres y niñas del Sur Global.

      La frase “Nosotros le damos forma a nuestras herramientas y por ende, nuestras herramientas nos dan forma a nosotros” destaca la urgencia de diseñar Inteligencias Artificiales que reflejen los valores de igualdad, justicia y derechos humanos. Esto implica establecer estándares éticos y normativos para la creación de tecnologías que no perpetúen dinámicas de explotación.

      Una Inteligencia Artificial feminista debe imaginar nuevas formas de interacción tecnológica que empoderen a las corporalidades históricamente marginadas. Esto incluye a la traducción con Inteligencia Artificial y generación de lenguaje que respeten y representen la diversidad de experiencias humanas, evitando la imposición de estereotipos.

    7. when Google Translate converted news articles written in Spanish into English

      Las posibilidades críticas de las corporalidades y la traducción en tiempos de Inteligencia Artificial devela cómo estas tecnologías perpetúan y amplifican dinámicas de poder, desigualdades estructurales y estereotipos históricos.

      La IA no opera en un vacío, sino que reproduce los sesgos en las agendas que diseñan y entrenan en el Norte Global.

      Las corporalidades juegan un papel crucial, pues los sistemas algorítmicos afectan directamente a cómo las personas son representadas, entendidas y tratadas en los entornos digitales.

      Cuando Google Translate introduce sesgos de género en idiomas sin pronombres específicos, como el turco, o asignan estereotipos de género (“ella es cocinera”, “él es ingeniero”), están reconfigurando las representaciones de las corporalidades en una forma que refuerza estructuras de opresión.

      Esto refleja cómo las tecnologías lingüísticas no son neutrales, sino que privilegian corporalidades asociadas al poder (masculino, blanco, occidental) y desvalorizan otras.

      La elección de voces femeninas por defecto en Alexa, Siri y Google Home, junto con su incapacidad superior para reconocer voces femeninas, subraya cómo las tecnologías perpetúan una visión servicial y subordinada de las corporalidades femeninas.

      Esto refuerza estereotipos que asocian a las mujeres con roles de cuidado y servicio, mientras priorizan y optimizan las experiencias de los hombres en la interacción con estas máquinas.

      Ejemplos como el uso de autocompletados de Google para reforzar estereotipos sexistas (“las mujeres no deberían tener derechos”) son formas de violencia simbólica que afectan las corporalidades al crear entornos digitales hostiles para ciertos grupos.

      Estas manifestaciones tecnológicas no solo reflejan la discriminación existente, sino que la normalizan y amplifican, impactando cómo las corporalidades son percibidas en lo social.

      Los modelos de OpenAI, muestran cómo las desigualdades históricas y los estereotipos se entrelazan en las estructuras de datos, reproduciendo narrativas que deshumanizan o limitan las posibilidades de ciertos cuerpos. En este sentido, el texto generado por modelos como GPT-2 no solo refleja sesgos, sino que los materializa al influir en cómo se entienden y representan las corporalidades en el ámbito público.

      Al desviar la representación de ciertas identidades hacia patrones dominantes, las tecnologías lingüísticas marginan corporalidades que no se ajustan al modelo hegemónico. En lugar de ser herramientas de inclusión, estas tecnologías refuerzan las jerarquías.

      Los sesgos de género en la traducción o generación de texto no afectan a las mujeres de manera uniforme; mujeres racializadas, personas no binarias y otros cuerpos vulnerabilizados enfrentan formas más profundas de exclusión en estas tecnologías.

      Las tecnologías lingüísticas deberían ser entrenadas con datos que reflejen la diversidad de las experiencias humanas y representen positivamente todas las corporalidades.

      Es crucial que las agendas del Norte Global sean responsables al auditar sus modelos para identificar y corregir sesgos que afectan corporalidades específicas.

      Incorporar voces diversas en el diseño y desarrollo de estas herramientas, especialmente de grupos históricamente excluidos, para garantizar que las tecnologías no perpetúen opresiones.

    8. Selection bias and stereotypes

      Los algoritmos, lejos de ser neutrales, reproducen y amplifican las dinámicas históricas de exclusión y estereotipación que afectan a cuerpos específicos, en particular aquellos asociados con el género, la raza y la edad.

      La segmentación de anuncios según patrones algorítmicos perpetúa la exclusión de ciertas corporalidades en industrias específicas. Por ejemplo, los anuncios de trabajos en la industria maderera dirigidos predominantemente a hombres blancos refuerzan una asociación histórica de estos cuerpos con el trabajo físico y bien remunerado, mientras que las mujeres son redirigidas hacia roles tradicionalmente feminizados y de menor estatus, como cajeras.

      Esto no solo limita las opciones laborales, sino que también reproduce narrativas corporales sobre quién “pertenece” en ciertos espacios laborales.

      Los algoritmos no solo reflejan los sesgos históricos, sino que los incorporan como patrones normativos. Por ejemplo, el hecho de que más hombres hayan estado históricamente en industrias como la maderera lleva a que el algoritmo excluya automáticamente a las mujeres de esas oportunidades, asociando sus corporalidades con intereses y capacidades predeterminadas. Esto cristaliza estereotipos de género y perpetúa las barreras sociales que restringen la movilidad de ciertos cuerpos en sectores laborales.

      Aunque Facebook eliminó la capacidad de segmentar explícitamente por género, raza o edad, el algoritmo utiliza otras características como proxies de estas categorías.

      Esto significa que las corporalidades racializadas, feminizadas o envejecidas siguen siendo excluidas de manera indirecta, manteniéndolas invisibles en oportunidades laborales de alto estatus y mejores ingresos.

      Las prácticas algorítmicas que refuerzan estereotipos no son solo técnicas; tienen un impacto directo en las corporalidades que ya enfrentan discriminación sistémica. Negarles acceso a ciertos anuncios laborales no solo limita sus opciones económicas, sino que también reafirma su exclusión de espacios de poder, estabilidad financiera y autonomía.

      Los cuerpos afectados por estas prácticas como mujeres, personas racializadas, o personas mayores, son el espacio donde estas exclusiones toman forma y donde deben combatirse.

      La eliminación de la segmentación explícita es un paso, pero la persistencia del sesgo en los resultados muestra que las soluciones técnicas son insuficientes si no se abordan las raíces estructurales de la discriminación.

    9. Inherent bias in hiring

      El algoritmo se autoenseñó a penalizar cualquier currículum que incluyera la palabra “mujeres”, como “capitana del club de ajedrez femenino” en el texto, y degradó los currículums de mujeres que asistieron a dos “universidades para mujeres”.

      Esto se debe a que los datos de entrenamiento que contienen sesgo humano o discriminación histórica crean un bucle de profecía autocumplida donde el aprendizaje automático absorbe el sesgo humano y lo replica, lo incorpora a decisiones futuras y convierte el sesgo implícito en una realidad explícita.

    10. Amazon

      Los sistemas algorítmicos, al ser entrenados con datos que reflejan desigualdades históricas y sesgos humanos, reproducen dinámicas opresivas y las proyectan en relación con las corporalidades.

      Los cuerpos de las mujeres, específicamente aquellos identificados por marcadores de género como “women’s chess club” o la asistencia a “women’s colleges”, fueron desvalorizados en el proceso algorítmico.

      Esto demuestra cómo los algoritmos no operan en un vacío abstracto, sino que tienen efectos tangibles sobre cuerpos concretos, excluyendo a mujeres de procesos laborales que moldean sus trayectorias de vida.

      La decisión del algoritmo de penalizar referencias asociadas al género femenino refuerza la idea de que los cuerpos masculinos (y sus experiencias) son el estándar de valor y éxito, mientras que los cuerpos femeninos son vistos como una desviación de la norma.

      Esta jerarquización de corporalidades, basada en datos históricos sesgados, solidifica desigualdades estructurales en espacios laborales.

      Al absorber y amplificar los sesgos históricos, el algoritmo no solo afectó a las corporalidades que estaban representadas en los datos, sino que también condicionó qué tipos de cuerpos e identidades serían visibles, aceptables y valiosas en el futuro.

      Este mecanismo tiene implicaciones profundas, pues define quién puede ocupar ciertos espacios de poder y autoridad.

      Aunque el sesgo identificado fue de género, este caso subraya cómo las tecnologías algorítmicas pueden replicar múltiples formas de discriminación (de raza, clase, género, orientación sexual, discapacidad, etc.), que afectan a los cuerpos.

      Las corporalidades no son homogéneas, y un sistema que discrimina en función de un aspecto frecuentemente reproduce desigualdades en otras dimensiones.

      El hecho de que Amazon no pudiera corregir el sesgo a pesar de múltiples intentos indica cómo la opresión de ciertas corporalidades no es un accidente técnico, sino un reflejo de sistemas históricos de exclusión profundamente enraizados.

      Los cuerpos que se quedaron fuera del proceso laboral son una evidencia de cómo la tecnología puede perpetuar desigualdades en lugar de eliminarlas.

    11. COVID-19 pandemic

      Los cuerpos de mujeres, niñas y otros grupos marginados del Sur Global son doblemente afectados por las dinámicas de exclusión tecnológica.

      La rápida implementación de la Inteligencia Artificial en el Norte Global, agravada por las desigualdades intensificadas por la pandemia, tiene consecuencias tangibles en los cuerpos del Sur Global: desde la falta de acceso a tecnologías relevantes hasta la imposición de sistemas diseñados para contextos ajenos, que ignoran sus necesidades y realidades vividas.

      La ausencia de investigación y diseño inclusivo para abordar los problemas únicos del Sur Global perpetúa una violencia estructural que se manifiesta en cuerpos precarizados: sistemas de salud que no consideran diferencias de género y etnicidad, tecnologías laborales que refuerzan inequidades de clase y género, y un acceso limitado a soluciones que podrían mejorar sus condiciones materiales.

      Actuar con rapidez es vital para evitar que estas exclusiones se solidifiquen, ampliando aún más el abismo entre los cuerpos del Norte y del Sur Global.

      Incorporar posibilidades críticas y éticas a las corporales feministas del Sur Global en la investigación y diseño de Inteligencia Artificial posiblemente hará las tecnologías más inclusivas, y garantizará que respondan a las realidades vividas de quienes han sido históricamente marginados, generando un futuro tecnológico más equitativo y diverso.

    12. particular danger to women and girls of the Global South

      La corporalidad (experiencia vivida a través del cuerpo), tiene una relación directa con la problemática.

      Las mujeres y niñas del Sur Global, históricamente marginalizadas y excluidas de las esferas de poder y toma de decisiones, viven estas dinámicas opresivas de manera tangible en sus cuerpos.

      Estas exclusiones limitan su acceso a la tecnología y a la creación de soluciones para los problemas sociales, y refuerzan desigualdades que se manifiestan físicamente en la precarización de sus vidas, en la explotación laboral y en la violencia de género.

      Se acentúa al considerar las posibilidades críticas y éticas de la Inteligencia Artificial y Toma de Decisiones Algorítmica (ADM), que replican y amplifican patrones discriminatorios preexistentes.

      Los algoritmos aprenden de datos históricos que reflejan desigualdades sociales, muchas de las cuales están profundamente entrelazadas con la corporalidad. Por ejemplo, sistemas de reconocimiento facial que tienen tasas de error más altas para personas racializadas o algoritmos de contratación que perpetúan sesgos de género impactan directamente en cómo los cuerpos de las mujeres y niñas del Sur Global son valorados y tratados en diferentes contextos.

      La corporalidad es un punto de partida para entender cómo estas exclusiones se viven, y es una herramienta clave para imaginar resistencias y alternativas.

      A través de sus cuerpos, sus experiencias y sus luchas, las mujeres y niñas pueden desafiar estas estructuras opresivas y reclamar su lugar en la construcción de un futuro tecnológico más equitativo y justo.

  2. biblioteca.clacso.edu.ar biblioteca.clacso.edu.ar
    1. ¿qué debe hacerse para que hayacondiciones mejores para una felicidad mayor de cada uno de nosotros? Esto es, lapregunta por las condiciones de lo social viene desde siempre o, al menos, desde quela civilización occidental existe. Y desde el principio, la pregunta tuvo, por así de-cirlo, un sentido utilitario. Se trata de una reflexión sobre nuestra convivencia, paramejorarla, para perfeccionarla

      Sobre la felicidad humana

    1. Cette thèse de Pauline Proboeuf explore les choix parentaux concernant l'instruction alternative en France, notamment l'instruction à domicile et les écoles privées hors contrat.

      L'étude analyse les motivations des parents, mettant en lumière des facteurs idéologiques et sociologiques, ainsi que l'impact de ces choix sur la vie familiale et les relations avec l'institution scolaire.

      Le document cite de nombreux parents ayant choisi l’IEF ou des pédagogies alternatives pour leurs enfants.

      Chaque famille a son histoire, ses motivations et ses difficultés, mais certains profils et arguments reviennent régulièrement:

      • Parents déçus par le système scolaire traditionnel:

      Ils critiquent le manque d’adaptation aux besoins individuels des enfants, la rigidité du système, la pression scolaire et la compétition. * * Parents en quête de sens et d’épanouissement pour leurs enfants:

      Ils valorisent l’autonomie, l’esprit critique, la créativité, la bienveillance et la connexion à la nature. * * Parents soucieux de protéger leurs enfants:

      Ils cherchent à les préserver de la violence, du harcèlement et de la pression sociale qu’ils perçoivent à l’école.

      • Mères souvent plus investies dans les choix éducatifs:

      Elles prennent en charge la majorité des décisions et des aspects pratiques de l’IEF, même si les pères sont généralement d’accord avec le principe. * * Différents niveaux de ressources et d’implication:

      Les familles IEF interrogées appartiennent à des milieux sociaux divers.

      Certaines ont des moyens financiers et culturels importants, d’autres doivent faire face à des difficultés économiques.

      La recherche s'appuie sur une méthodologie mixte, combinant des données quantitatives et qualitatives issues d'entretiens, d'observations et de questionnaires en ligne.

      L'auteure examine les ressources et les capitaux mobilisés par les familles, ainsi que l'influence des réseaux sociaux et des groupes de soutien.

      Enfin, elle explore les dynamiques familiales et conjugales liées à ces choix scolaires non conventionnels.

      Aux frontières de l'école : analyse des motivations et pratiques des familles qui choisissent des alternatives à l'école traditionnelle

      Ce document synthétise les principaux thèmes et idées du travail de Pauline Proboeuf, "Aux frontières de l'école", une thèse de sociologie présentée à l'IEP de Paris en 2021.

      L'étude se penche sur les motivations et pratiques des familles qui optent pour des alternatives à l'école traditionnelle, en s'appuyant sur des entretiens approfondis et une observation participante auprès de familles pratiquant l'instruction en famille (IEF) et scolarisant leurs enfants dans des écoles alternatives (Montessori, Steiner, Démocratiques).

      Thèmes principaux:

      Critique de l'école traditionnelle:

      Un point commun entre les familles interrogées est une critique du système éducatif traditionnel, jugé inadapté aux besoins spécifiques de leurs enfants et incapable de favoriser leur épanouissement.

      "Tous les jours c’était : ʺvotre fille fait que ce qu’elle veut, si elle ne veut pas suivre la consigne… elle fait n’importe quoiʺ… Bref, depuis la petite section, j’avais toujours le même discours : ʺelle rêve, elle ne tient pas en place, ne veut pas appliquer les consignesʺ… Du coup un jour j’ai dit stop, on arrête là, on essaye la fin de l’année à la maison" (Justine, mère au foyer).

      Recherche d'une éducation personnalisée:

      Les familles interrogées privilégient une approche éducative centrée sur l'enfant, respectueuse de son rythme et de ses centres d'intérêt.

      L'objectif est de développer son autonomie, son esprit critique et sa confiance en soi, en favorisant l'apprentissage par l'expérience et la découverte.

      "L’enfant n’a pas de mauvaise intention. Un enfant tout ce qu’il veut c’est faire plaisir à ceux qui prennent soin de lui, à ses parents, à ses profs, s’il ne le fait pas c’est qu’il y a quelque chose." (Amaya, conseillère conjugale et familiale).

      Importance du réseau familial et amical:

      L'entourage joue un rôle crucial dans la décision de choisir une alternative à l'école traditionnelle.

      Le soutien des proches, la mise en place d'un réseau de partage de savoirs et d'expériences, et la recherche de modèles éducatifs cohérents entre la famille et l'école sont des éléments importants pour ces familles.

      "Papa m'a dit une très jolie phrase le jour où j'ai dit 'on déscolarise' : 'Ben on est une équipe alors on continuera'." (Solenne, cadre dans le médico-social). Motivations des parents:

      L'auteure s'appuie sur le modèle d'analyse d'Agnès van Zanten pour distinguer les visées individuelles des parents:

      Instrumentalisme:

      Certaines familles, notamment celles issues des classes supérieures, voient l'éducation comme un investissement pour l'avenir professionnel de leurs enfants.

      Elles recherchent des alternatives qui leur permettront d'acquérir des compétences et des connaissances valorisées sur le marché du travail.

      Expressivité:

      D'autres familles, souvent issues des classes moyennes, privilégient l'épanouissement personnel et le bien-être de leurs enfants.

      Elles cherchent des alternatives qui leur permettront de développer leur créativité, leur sensibilité et leur curiosité.

      Réflexivité:

      Certaines familles, notamment celles issues des classes moyennes supérieures, adoptent une approche réflexive de l'éducation, en questionnant les normes et les valeurs de l'école traditionnelle et en cherchant à construire un projet éducatif personnalisé et cohérent avec leurs convictions.

      Aspects socio-économiques:

      L'étude met en lumière les inégalités socio-économiques qui influencent les choix d'instruction.

      L'IEF et les écoles alternatives sont plus accessibles aux familles disposant de ressources financières et culturelles importantes.

      "Je pense que ce n’est pas facile cette école parce que dans l'état actuel des choses on n'a pas de subventions donc on est obligés de payer, donc y'a déjà cette exclusion financière qu'est énorme" (Romane, mère au foyer).

      Rôle des mères:

      La thèse souligne le rôle central des mères dans la décision de choisir une alternative à l'école traditionnelle et dans la mise en œuvre de ces projets éducatifs.

      Les mères sont souvent à l'initiative de ces changements et investissent un temps et une énergie considérables pour accompagner leurs enfants.

      "J'avoue que l'initiative de l'IEF vient de moi, comme à peu près tout ce qui a trait aux enfants.

      Mon conjoint est très peu présent car il travaille à l'étranger" (Romane, mère au foyer). Conclusion:

      L'étude de Pauline Proboeuf offre une analyse approfondie et nuancée des motivations et des pratiques des familles qui choisissent des alternatives à l'école traditionnelle.

      Elle montre que ces choix sont motivés par une variété de facteurs, individuels, sociaux et économiques, et qu'ils soulèvent des questions importantes sur l'évolution du système éducatif et de la place des familles dans l'éducation de leurs enfants.

    1. found the two groups ag r ee d on personal goals in old age: having indepen-dence, social adaptabi lit y, adequa te personal resources, and the ability tocope with ext ernal threats of changes; maintaining significant and mean-ingful goals; and ha\ ing ability to cope with changes in self. Where the twogroups differed ,.,,as in how they thought they would achieve those goals.

      Two groups suffering from late-life mental health problems explained that the participants had goals of gaining independence, social adaptability, adequate personal resources and the ability to cope with external threats of change. The two groups differed in how they would achieve those goals.

    2. Perhaps the average ninety -year-old isn'tdesigning the latest technolog y, but neither is the average twenty- or forty- orsixty-year-old. Most people aren't in tech, even if they regularly use it , whichb h . . . . f l t of us are irrelevant.means y t e prevailing tech1e logic o re evance, mos

      You can't segregate people based on age and all people are irrelevant because for people designing the latest technology aren't averagely in the ages of 20, 40, or 60.

    Annotators

    1. Compte-rendu de la table ronde sur l'école inclusive: Bilan et perspectives 20 ans après la loi du 11 février 2005

      Introduction:

      Ce document présente les principaux thèmes et idées abordés lors de la table ronde sur l'école inclusive, organisée à l'occasion du 20e anniversaire de la loi du 11 février 2005. La discussion s'est articulée autour du bilan de la mise en œuvre de cette loi et des perspectives d'évolution pour l'avenir.

      Participants:

      • Mme Caroline Pascal, Directrice Générale de l'Enseignement Scolaire
      • Mme Isabelle Sor, Déléguée interministérielle à l'accessibilité
      • M. Thierry Bour, Conseiller pour l'école inclusive et l'enseignement supérieur
      • M. Jérémy Borroi, Délégué interministériel aux troubles du neurodéveloppement

      Thèmes principaux:

      1. Bilan de la loi de 2005:

      • Avancées: La loi de 2005 a permis des avancées significatives en matière de scolarisation des élèves en situation de handicap.
      • "beaucoup de choses est quand même été faites en tout cas dans dans notre dans notre domaine" (Mme Arcos, Sénatrice)
      • Défis: Des défis persistent, notamment en matière d'accessibilité physique et numérique, de formation des enseignants et de coordination entre l'Éducation nationale et le secteur médico-social.
      • "le compte n'y est pas sur tout le territoire" (M. Bour) concernant l'accessibilité des établissements scolaires.

      2. L'accessibilité, un prérequis indispensable:

      • L'accessibilité physique et numérique des établissements scolaires reste un enjeu majeur pour garantir l'inclusion de tous les élèves.
      • "on peut parler d'accès à l'école si les écoles elles-mêmes école collège lycée ne sont pas accessibles ne sont pas norm il n'y a pas d'accès à l'école" (M. Bour)
      • La nécessité d'une programmation rigoureuse des travaux d'accessibilité et d'une meilleure coordination entre les différents acteurs impliqués (collectivités territoriales, Éducation nationale, etc.) est soulignée.
      • "nous pensons qu'il faut programmer les choses quitte à recourir à la loi pour conforter cette programmation dans le temps mais on ne peut plus reporter dans tê tout cette tout cet enjeu de de formation" (M. Bour)

      3. La formation des enseignants, un levier essentiel:

      • La formation initiale et continue des enseignants est cruciale pour les préparer à l'accueil et à l'accompagnement des élèves en situation de handicap.
      • "le sujet qui est devant nous je m'inscris là dans le cadre d'une évolution plus globale de la formation initiale des enseignants" (Mme Pascal)
      • Il est nécessaire d'intégrer la dimension de l'inclusion dans les référentiels de formation et de développer des modules spécifiques sur les besoins éducatifs particuliers des élèves.
      • "l'idée d'augmenter notamment le volume horaire consacré à la question du handicap et à l'école inclusive dans le cadre de la formation initiale" (Mme Pascal)

      4. Le rôle des pôles d'appui à la scolarité (PASS):

      • Les PASS, structures novatrices expérimentées depuis la rentrée scolaire, visent à renforcer la coordination entre l'école et le secteur médico-social.
      • "ces pôles sont des structures novatrices elles permettent d'apporter une elle vise à renforcer la" (Mme Pascal)
      • Un bilan de cette première année d'expérimentation est nécessaire pour identifier les points forts et les axes d'amélioration.
      • "nous allons faire un bilan de cette première année ça ne fait que 4 mois hein que que" (Mme Pascal)

      5. Le statut des accompagnants d'élèves en situation de handicap (AESH):

      • La précarité du statut des AESH (temps partiel, faible rémunération) est pointée du doigt.
      • "on sait très bien que la plupart sont des gens qui sont touchés eux-mêmes déjà par des gens euh atteint de handicap dans leur famille mais ça n'est toujours pas toujours pas des métiers entre guillemets attractif" (Mme Arcos)
      • Des solutions sont proposées pour améliorer leur situation, notamment la CDIsation après 3 ans d'exercice et l'accès à la formation.
      • "on a proposé et mis en place la cédisation à partir de 3 ans euh d'exercice du métier d'aesh" (Mme Pascal)

      6. La question des transports:

      • Les difficultés liées aux transports des élèves en situation de handicap vers les établissements scolaires sont évoquées.
      • "on a des des parfois des enfants qui font 50 km pour aller euh dans leur établissement" (Mme Billon, Sénatrice)
      • Il est impératif de trouver des solutions pour limiter ces déplacements et garantir un accès équitable à l'éducation pour tous.

      • L'école inclusive à l'étranger:

      • La mise en place de l'école inclusive dans le réseau de l'AEFE (Agence pour l'enseignement français à l'étranger) pose des défis spécifiques, notamment en ce qui concerne le statut des AESH.

      • "notamment sur le statut des des aesh il y a aussi beauou beaucoup de choses qui doivent être développées dans ce réseau puisque les aesh lorsqu'elles sont à l'étranger sont en général de droit local" (Mme Olivier, Sénatrice)

      Conclusion:

      • Vingt ans après la loi du 11 février 2005, l'école inclusive reste un chantier en construction. Si des progrès importants ont été réalisés, il reste encore beaucoup à faire pour garantir une scolarisation de qualité et un accès équitable à l'éducation pour tous les élèves, quel que soit leur handicap.

      Propositions:

      • Programmation législative pour encadrer l'accessibilité des bâtiments et des ressources numériques.
      • Renforcer la formation initiale et continue des enseignants sur les besoins éducatifs particuliers.
      • Généraliser les pôles d'appui à la scolarité sur l'ensemble du territoire.
      • Améliorer le statut des AESH pour garantir la qualité de l'accompagnement des élèves.
      • Développer des solutions pour simplifier les transports des élèves en situation de handicap.
      • Adapter la politique d'inclusion scolaire aux spécificités du réseau de l'AEFE.
    1. Great hatchets they cast, Y 165and axes weighing three talents apiece.

      Talent is ancient unit of measure in Mesopotamia, each weighing 30-33 kilograms. Here the weapons of Gilgamesh and Enkidu weighed almost 90-100 kilograms apiece, which emphasizes the physical strength and gigantic stature of these characters. Epics like Gilgamesh often use hyperbola to exaggerate capabilities of heroes in comparison to ordinary humans. For example, Manas lifted a heavy sword as featherlight as a toy of a child.

    1. Briefing : Les enfants à la rue en France - Un constat alarmant et des solutions urgentes

      Ce briefing s'appuie sur les interventions de quatre experts lors d'une table ronde au Sénat français :

      • Julie Lignon, chargée de plaidoyer à l'UNICEF France.
      • Raphaël Vullier, porte-parole du collectif "Jamais sans toi" à Lyon.
      • Ana Maria Suaru, porte-parole du collectif "École pour tous".
      • Anina Tchouchou, avocate et marraine du collectif "École pour tous".

      Thèmes principaux:

      • L'ampleur du phénomène des enfants sans domicile en France.
      • Les conséquences dramatiques du sans-abrisme sur le développement, la santé et la scolarisation des enfants.
      • L'insuffisance des politiques publiques et la nécessité d'une action urgente et coordonnée.
      • Les initiatives citoyennes et associatives pour pallier aux manquements de l'État.
      • La nécessité d'une trêve scolaire républicaine et la systématisation du contrat jeune majeur jusqu'à 21 ans.

      Constats clés:

      • Des chiffres alarmants: Près de 3 000 enfants dorment chaque nuit dans la rue en France. Selon le baromètre de l'UNICEF, le nombre d'enfants en demande non pourvue au 115 a augmenté de 40% en un mois seulement en 2023. Parmi les familles en demande non pourvue, 35% sont des femmes seules avec enfants.
      • Des conséquences dramatiques: Vivre à la rue est une violence extrême pour les enfants. Ils sont deux fois plus touchés par les troubles psychiques que la population générale. L'absence de logement prive les enfants d'un environnement stable et sécurisant, indispensable à leur développement.
      • Des politiques publiques insuffisantes: Malgré les efforts consentis, les moyens actuels ne permettent pas de répondre aux besoins. L'engagement du gouvernement de ne plus avoir aucun enfant à la rue n'a pas été tenu.
      • Des initiatives citoyennes pour pallier aux manquements de l'État: Des collectifs comme "Jamais sans toi" occupent des écoles la nuit pour mettre des enfants à l'abri. Ces actions illégales mais tolérées témoignent de l'urgence de la situation.
      • Des solutions urgentes: Les experts appellent à la création de 10 000 places d'hébergement d'urgence et à une politique pluriannuelle de l'hébergement et du logement. Ils insistent sur la nécessité d'un accompagnement global des enfants et des familles.

      Recommandations:

      • Instaurer une trêve scolaire républicaine : Suspendre les expulsions habitatives durant l'année scolaire pour garantir la continuité de la scolarité des enfants en situation de précarité.
      • Systématiser le contrat jeune majeur jusqu'à 21 ans : Assurer un accompagnement aux jeunes majeurs sortant de l'aide sociale à l'enfance pour leur permettre de poursuivre leurs études et éviter la rue.
      • Renforcer les connaissances sur les enfants sans domicile: Mieux documenter le phénomène et ses conséquences pour adapter les politiques publiques.
      • Favoriser l'accès au logement: Mettre en œuvre une politique ambitieuse de production de logements abordables.
      • Renforcer l'accompagnement global des enfants et des familles: Inscrire les enfants comme bénéficiaires directs de l'accompagnement et mobiliser l'ensemble des politiques publiques concernées.

      Citations:

      • "Chaque nuit en France, près de 3 000 enfants dorment dans la rue sous une tente ou dans un abri de fortune." - Introduction de la table ronde.
      • "Manifestement, l'engagement [de ne plus avoir aucun enfant à la rue] n'a pas été tenu et la situation se dégrade." - Julie Lignon.
      • "L'école c'est aussi un sanctuaire, c'est un lieu qui protège les enfants, y compris les plus faibles." - Raphaël Vullier.
      • "Lorsque cette protection [de l'Aide Sociale à l'Enfance] se termine à l'âge de 18 ans, qu'est-ce qui se passe après pour pouvoir continuer l'école ?" - Anina Tchouchou.
      • "On a l'impression qu'on a tous admis que l'Aide Sociale à l'Enfance ne s'occupe pas des enfants à la rue, n'accompagne pas les familles, et qu'on ne s'en étonne plus. Or c'est son rôle." - Laurence Rossignol.

      Conclusion:

      La situation des enfants à la rue en France est une urgence nationale.

      L'État doit prendre ses responsabilités en mobilisant les moyens nécessaires pour garantir le droit fondamental de ces enfants à une vie digne et à l'éducation.

      Les initiatives citoyennes et associatives, aussi admirables soient-elles, ne peuvent se substituer à l'action publique.

      Il est temps d'agir pour que plus aucun enfant ne dorme dans la rue en France.

    2. Chronologie des événements

      Avant 2010: Le sans-abrisme des enfants devient une réalité préoccupante dans les écoles.

      Début des années 2010: Début des occupations d'écoles par des collectifs citoyens pour mettre à l'abri des familles sans domicile.

      2013: Adoption de la loi d'orientation et de refondation de l'école, qui élargit la mission de l'école à l'accueil des enfants dans leur globalité.

      Automne 2014: Création du collectif "Jamais sans toi" à Lyon pour mettre à l'abri des enfants sans domicile dans des écoles.

      Juillet 2017: Arrivée d'Ana Maria Stoparou et sa famille en France, confrontés au refus d'inscription scolaire et à la vie en bidonville.

      2018:

      • Fondation du collectif "École pour tous", regroupant des jeunes ayant vécu des difficultés d'accès et de réussite scolaire en raison de la précarité.
      • Lancement d'un plaidoyer pour la trêve scolaire républicaine, visant à suspendre les expulsions habitatives pendant l'année scolaire.

      2019: La Défenseure des enfants, Geneviève Avenard, estime à 100 000 le nombre d'enfants privés du droit à l'éducation en France.

      2020:

      • La crise sanitaire met en lumière la nécessité de loger tout le monde, y compris les populations les plus vulnérables.
      • La Métropole de Lyon demande au collectif "Jamais sans toi" la liste des personnes à la rue pour les mettre à l'abri.
      • La ministre Emmanuelle Wargon prolonge la mise à l'abri des familles jusqu'en 2022.

      Juillet 2020: Publication du décret précisant les pièces justificatives nécessaires pour l'inscription scolaire, rendant illégales les demandes abusives de justificatif de domicile.

      Septembre 2021: Mise en place d'un dispositif expérimental de médiation scolaire pour accompagner les enfants en situation de précarité vers l'école.

      Février 2022:

      • Lancement d'un appel à la création d'un réseau national pour lutter contre le sans-abrisme des enfants, soutenu par l'UNICEF, la Fédération des acteurs de la solidarité et la Fondation Abbé Pierre.
      • Publication du "Toitoriel", guide pratique pour aider les enseignants et les parents d'élèves à soutenir les enfants sans domicile.

      7 février 2022: Adoption de la loi "Adrien Taquet" interdisant les sorties sèches de l'Aide Sociale à l'Enfance.

      Rentrée 2022:

      • Lancement du réseau national de collectifs citoyens contre le sans-abrisme des enfants.
      • Publication du baromètre de l'UNICEF révélant le chiffre de 3 000 enfants à la rue, interpellant la Première ministre sur la question.
      • Demande de création de 10 000 places d'hébergement d'urgence, soutenue par plusieurs associations.

      Octobre 2022: Publication du rapport conjoint de l'UNICEF et du Samu Social de Paris documentant les conséquences de l'absence de domicile sur la santé mentale des enfants.

      Janvier 2023: Le ministre du Logement Patrice Vergrie annonce le déblocage de 120 millions d'euros pour créer 10 000 places d'hébergement d'urgence.

      Mars 2023: Expulsion du bidonville où vivait Ana Maria Stoparou à Antony, entraînant la déscolarisation de nombreux enfants.

      Mai 2023: Lancement de l'Observatoire du sans-abrisme par le ministre du Logement.

      Juin 2023: Publication des observations du Comité des droits de l'enfant de l'ONU, recommandant la mise en œuvre d'une politique pluriannuelle de l'hébergement et du logement avec une attention spécifique aux enfants et aux familles.

      Août 2023: Le baromètre "Enfants à la rue" de la Fédération des acteurs de la solidarité recense 1990 enfants en demande non pourvue au 115, soit 20% de plus qu'en 2022.

      Septembre 2023: Mise en place du Pacte des solidarités, incluant des mesures pour l'accompagnement des enfants et des familles en difficulté.

      Octobre 2023: Le nombre d'enfants en demande non pourvue au 115 atteint 2082, soit une augmentation de 40% en un mois.

      Mai 2024: La Fédération des acteurs de la solidarité recense 1942 enfants en demande non pourvue au 115.

      Événements récents:

      • Expulsion d'un gymnase à Lyon où se réfugiaient des femmes avec enfants du collectif "Solidarité entre femmes à la rue".
      • Recensement hebdomadaire du collectif "Jamais sans toi" à Lyon estimant à 328 le nombre d'enfants sans abri dans l'agglomération.
      • Augmentation du nombre de familles sans abri hébergées dans les écoles occupées par le collectif "Jamais sans toi" à Lyon.
      • Multiplication des expulsions de bidonvilles à Saint-Denis en vue des Jeux olympiques, laissant des dizaines d'enfants scolarisés sans solution de relogement.
      • Personnages principaux
      • Ana Maria Stoparou: Porte-parole du collectif "École pour tous", jeune femme d'origine rom arrivée en France en 2017, ayant vécu en bidonville et confrontée au refus d'inscription scolaire et aux expulsions. Son témoignage met en lumière les difficultés rencontrées par les enfants sans domicile pour accéder à l'école et la nécessité de la trêve scolaire républicaine.

      • Anina Tchouchou: Avocate et marraine du collectif "École pour tous", issue de l'immigration rom, ayant elle-même vécu l'extrême précarité et la privation d'école en France. Elle plaide pour la trêve scolaire républicaine, la systématisation du contrat jeune majeur jusqu'à 21 ans et le développement du dispositif de médiation scolaire.

      • Julie Lignon: Chargée de plaidoyer sur les questions de lutte contre la pauvreté infantile à UNICEF France. Elle alerte sur l'explosion du nombre d'enfants sans abri et les conséquences néfastes de l'absence de logement sur leur développement et leur santé. Elle préconise le renforcement du parc d'hébergement, la mise en œuvre d'une politique pluriannuelle de l'hébergement et du logement, et un accompagnement global des enfants et des familles.
      • Raphaël Vullier: Porte-parole du collectif "Jamais sans toi" à Lyon. Il dénonce l'explosion du nombre d'enfants sans abri dans l'agglomération lyonnaise et la multiplication des remises à la rue après la crise sanitaire. Il appelle à la création de places d'hébergement d'urgence et au respect des principes d'inconditionnalité et de continuité de l'hébergement.
      • Patrice Vergrie: Ancien ministre du Logement ayant annoncé le déblocage de 120 millions d'euros pour la création de 10 000 places d'hébergement d'urgence.
      • Geneviève Avenard: Défenseure des enfants en 2019, ayant estimé à 100 000 le nombre d'enfants privés du droit à l'éducation en France.
      • Emmanuelle Wargon: Ancienne ministre du Logement ayant prolongé la mise à l'abri des familles sans domicile pendant la crise sanitaire.
      • Adrien Taquet: Ancien secrétaire d'État à l'Enfance et aux Familles, à l'origine de la loi interdisant les sorties sèches de l'Aide Sociale à l'Enfance.
      • Olivier Klein: Ancien ministre du Logement ayant pris l'engagement, non tenu, de ne plus avoir aucun enfant à la rue.
      • Gérard Collomb: Ancien maire de Lyon, dont le mandat a été marqué par une politique conflictuelle envers les occupations d'écoles par le collectif "Jamais sans toi".
      • Grégory Doucet: Actuel maire de Lyon, ayant pris des engagements pour lutter contre le sans-abrisme mais critiqué pour l'expulsion de familles d'un gymnase.
      • Institutions et organisations

      • UNICEF France: Organisation non gouvernementale (ONG) luttant pour les droits des enfants, publiant des rapports et des baromètres sur la situation des enfants sans abri et menant des actions de plaidoyer auprès des pouvoirs publics.

      • Fédération des acteurs de la solidarité: Regroupement d'associations luttant contre l'exclusion sociale, publiant le baromètre annuel "Enfants à la rue" et plaidant pour le respect des droits des personnes sans domicile.
      • Fondation Abbé Pierre: Fondation reconnue d'utilité publique luttant contre le mal-logement, publiant des rapports sur la situation des familles mal-logées et plaidant pour une politique du logement d'abord.
      • Samu Social de Paris: Association venant à l'aide aux personnes sans domicile fixe, collaborant avec l'UNICEF pour documenter les conséquences de l'absence de domicile sur les enfants.
      • Collectif "Jamais sans toi": Collectif citoyen de Lyon occupant des écoles pour mettre à l'abri des enfants sans domicile et alertant les pouvoirs publics sur la situation.
      • Collectif "École pour tous": Collectif regroupant des jeunes ayant vécu des difficultés d'accès et de réussite scolaire en raison de la précarité, plaidant pour la trêve scolaire républicaine et la systématisation du contrat jeune majeur.
      • Association "L'école au présent": Association de Marseille menant un travail de médiation scolaire et ayant démontré les effets positifs de la trêve scolaire sur la scolarisation des enfants.
      • Collectif "Solidarité entre femmes à la rue": Collectif de femmes sans domicile à Lyon, organisant des actions pour alerter sur leur situation et se mettre à l'abri.
      • Collectif "Mort de la rue": Collectif recensant les décès de personnes sans domicile et dénonçant l'inaction des pouvoirs publics.
      • Délégation interministérielle au logement à l'habitat (DIAL): Organisme chargé de coordonner la politique du logement, soutenant le développement du dispositif de médiation scolaire.
      • Observatoire des expulsions des lieux de vie informels: Organisme documentant les expulsions de bidonvilles et leurs conséquences, notamment sur les enfants.
      • Comité des droits de l'enfant de l'ONU: Organisme international veillant au respect de la Convention internationale des droits de l'enfant, ayant formulé des recommandations à la France sur la prise en compte des enfants dans la politique du logement.
      • Cour des comptes: Institution indépendante chargée de contrôler la gestion des finances publiques, ayant plaidé pour une politique du logement d'abord.
      • Assemblée nationale: Chambre basse du Parlement français, ayant voté des amendements pour la création de places d'hébergement d'urgence et la trêve scolaire républicaine, balayés par le gouvernement.
      • Sénat: Chambre haute du Parlement français, ayant voté des amendements pour la création de places d'hébergement d'urgence et s'intéressant à la situation des enfants sans domicile.

      Thèmes principaux

      • Droit à l'éducation: L'accès à l'école est un droit fondamental pour tous les enfants, pourtant les enfants sans domicile rencontrent de nombreux obstacles pour s'inscrire et poursuivre leur scolarité.

      Les expulsions, les changements d'établissement, le manque de matériel scolaire et les difficultés de concentration liées à la précarité contribuent au décrochage scolaire et à la marginalisation de ces enfants. * * Protection de l'enfance: L'aide sociale à l'enfance (ASE) devrait accompagner les enfants en danger, y compris ceux vivant dans la précarité. Or, les témoignages recueillis dénoncent des placements discriminatoires et abusifs, notamment envers les familles roms, et un manque d'accompagnement global des familles en difficulté. Le placement en foyer n'est pas toujours la solution, et peut même s'avérer traumatisant pour les enfants. * * Hébergement d'urgence: La saturation du parc d'hébergement d'urgence, le manque de places adaptées aux familles et aux enfants, et la non-application des principes d'inconditionnalité et de continuité de l'hébergement laissent des milliers d'enfants à la rue. Les expulsions de bidonvilles et de squats, souvent sans proposition de relogement, aggravent la situation. * * Logement: L'accès à un logement stable est une condition essentielle pour permettre aux enfants de vivre dans un environnement sécurisé et propice à leur développement.

      La pénurie de logements sociaux, les exigences de titres de séjour et les discriminations à l'encontre des familles les plus précaires rendent l'accès au logement extrêmement difficile. * * Solidarité nationale: L'orientation des familles sans domicile d'Île-de-France vers les régions doit se faire dans le respect de leur choix et de leur ancrage territorial, avec un accompagnement adapté et la garantie de places d'hébergement disponibles.

      Les disparités territoriales en matière de prise en charge et de moyens alloués à l'hébergement et à la protection de l'enfance doivent être corrigées. * * Mobilisation citoyenne: Le rôle des collectifs citoyens et des associations est crucial pour alerter sur la situation des enfants sans domicile, les mettre à l'abri, les accompagner vers l'école et plaidoyer pour leurs droits.

      Cependant, la générosité citoyenne ne doit pas se substituer à l'action des pouvoirs publics, qui ont la responsabilité de garantir les droits fondamentaux de tous les enfants. * * Préconisations: La trêve scolaire républicaine, la systématisation du contrat jeune majeur jusqu'à 21 ans, le développement du dispositif de médiation scolaire, la création de places d'hébergement d'urgence adaptées aux familles, la mise en œuvre d'une politique du logement d'abord et la lutte contre les discriminations sont autant de solutions pour lutter contre le sans-abrisme des enfants.

      L'investissement dans la prévention et l'accompagnement des familles est essentiel pour éviter le décrochage scolaire et la marginalisation de ces enfants.

      L'intérêt supérieur de l'enfant doit être au cœur de toutes les politiques publiques.

    1. Briefing Doc: L’orientation, source de souffrances internes et relationnelles

      Source: Extrait de l'interview d'Emmanuelle Piquet, thérapeute formée à la thérapie brève stratégique, fondatrice des centres à 180 degrés, dans l'épisode 129 du podcast "Parentalité et adolescence".

      Thème principal: L'orientation scolaire et professionnelle comme source de souffrance pour les adolescents et leurs parents.

      Points importants:

      Souffrance partagée: L'orientation est un moment charnière, source de stress et d'inquiétude pour les adolescents et leurs parents.

      Les parents souffrent souvent de la pression sociale et de l'idée que la réussite de leur enfant est un reflet de leur propre compétence parentale:

      "l'équation c'est vraiment s'ils n'ont pas réussi dans toutes ces facettes de leur vie c'est qu'on n'a pas été bons parents."

      Cette anxiété parentale peut se transmettre à l'adolescent et créer des tensions dans la relation.

      Conflit entre désir et raison: Les adolescents peuvent ressentir une souffrance face à l'incompréhension de leurs parents et au manque de prise en compte de leurs aspirations profondes.

      Les parents, guidés par des critères rationnels (employabilité, sécurité financière), peuvent pousser leurs enfants vers des voies qui ne correspondent pas à leurs désirs profonds:

      "ça peut générer lorsque c'est en opposition en fait avec l'intime plaisir l'intime désir dans l'adolescence ça peut créer les frottements qui génère évidemment des souffrances de part et d'autre."

      La "dictature du métier passion": L'injonction de trouver un métier passion est une source de pression supplémentaire pour les adolescents.

      Cette quête du bonheur absolu dans le travail peut être paralysante et générer de l'angoisse:

      "il y a quand même encore des ados qui se disent il faut vraiment que je trouve un métier qui me plaise et qui essayent plusieurs métiers mais pas exactement jusqu'au bout qui réfléchissent à différents métiers et qui sont encore une fois que dans leur cerveau et pas dans le corps."

      Il est important de déconstruire cette idée et de rappeler que le travail peut être source de satisfaction sans nécessairement être une passion dévorante.

      L'impact des diagnostics: Les diagnostics (dyslexie, TDAH, HPI…) peuvent limiter la perception des adolescents et les enfermer dans une identité qui restreint leurs choix d'orientation.

      Il est important de rappeler aux adolescents qu'ils ne sont pas réductibles à leur diagnostic et qu'ils ont un potentiel qui dépasse les étiquettes.

      Le rôle des parents :

      Accompagner sans imposer: les parents doivent accompagner leurs enfants dans leur réflexion, sans chercher à leur imposer leurs propres choix.

      Encourager l'exploration : il faut encourager les adolescents à explorer différentes pistes, à faire des stages, à rencontrer des professionnels.

      Faire confiance et laisser la place aux "chemins de traverse": accepter que le parcours de leur enfant puisse être différent de celui qu'ils avaient imaginé.

      "je crois qu'il faut pas avoir peur des chemins de traverse c'est-à-dire que pour moi la rigidité la plus génératrice de souffrance de parents et je le redis je les comprends parfaitement c'est de vouloir absolument que l'enfant prenne le taureau c'est l'autoroute qui est hyper sécurisé qui est très clair qui est où tout est bien indiqué"

      Se décentrer : ne pas faire de l'orientation de leur enfant le sujet principal de leurs conversations.

      Message principal: L'orientation est un processus complexe qui doit être abordé avec bienveillance et sans pression excessive.

      Il est important de laisser la place aux désirs de l'adolescent, de l'accompagner dans ses explorations et de lui faire confiance dans sa capacité à trouver sa voie, même si elle est différente de celle que l'on avait imaginée.

    2. Cette transcription d'une vidéo YouTube de la chaîne « Parentalité et Adolescence » présente une interview d'Emmanuelle Piquet, thérapeute spécialisée dans les souffrances scolaires.

      L'entretien porte sur les difficultés relationnelles et internes liées à l'orientation scolaire des adolescents.

      Piquet identifie deux principales sources de souffrance :

      les conflits entre les désirs de l’adolescent et les attentes des parents, et la pression liée à l’idéal du « métier passion ».

      Elle propose une approche thérapeutique axée sur l'apaisement des relations et l'acceptation des « chemins de traverse », encourageant les parents à soutenir leurs enfants plutôt qu’à les contrôler.

      Enfin, elle souligne l'importance de ne pas surdiagnostiquer les difficultés des adolescents.

      Bien sûr, voici un sommaire minuté de la vidéo "L’orientation crée des souffrances internes et relationnelles - Emmanuelle Piquet - Ep.129" :

      0:00-1:55 : Introduction * Présentation de l'épisode et du sujet: l'orientation et les souffrances qu'elle peut engendrer. * Introduction d'Emmanuelle Piquet, thérapeute spécialisée dans les souffrances scolaires et fondatrice des centres à 180 degrés.

      1:55-5:10 : L’orientation, source de souffrance * Explication du concept de "souffrance globale" liée à l'orientation, un moment charnière et de rupture. * Mise en avant de la souffrance des parents d'élèves, souvent plus importante que celle des adolescents. * Identification de deux types de souffrance parentale : * La pression exercée sur l'adolescent pour qu'il choisisse une voie qui ne lui correspond pas forcément, basée sur des critères rationnels d'employabilité et de réussite. * L'injonction implicite à la réussite académique, issue d'un environnement familial performant, qui pèse sur l'adolescent et crée une pression supplémentaire.

      5:10-8:40 : Les souffrances des adolescents * Description de la souffrance des adolescents confrontés à un choix d'orientation qui ne correspond pas à leurs aspirations. * Mise en avant du concept de "dictature du métier passion", une injonction moderne qui pousse les adolescents à trouver un métier source d'épanouissement permanent. * Explication des conséquences négatives de cette injonction: blocage, peur de l'échec, et sentiment d'une vie ratée si le métier passion n'est pas trouvé.

      8:40-11:00 : L'impact du diagnostic sur l'orientation * Discussion sur l'impact des diagnostics (dyslexie, TDAH, HPI...) sur la perception des adolescents de leurs capacités et de leurs choix d'orientation. * Risque d'essentialisation et de limitation des possibles pour les adolescents diagnostiqués.

      11:00-15:30 : Conseils pour accompagner son adolescent * Importance de l'accompagnement et de la confiance pour aider l'adolescent dans son orientation. * Encourager les "chemins de traverse" plutôt que la voie toute tracée, permettant une exploration plus riche et des rencontres plus diversifiées. * Déconstruire l'équation "réussite académique = bonheur professionnel", en montrant des exemples de parcours différents. * Adopter une posture d'accompagnement bienveillante, en étant "à côté" de l'adolescent plutôt qu'"entre lui et le monde".

      15:30-18:45 : Gérer le désintérêt de l'adolescent * Fréquence du désintérêt des adolescents pour leur avenir et explication du lien avec la prise en charge excessive des parents. * Injonction paradoxale "soit motivé", qui renforce le manque de motivation de l'adolescent. * Importance de responsabiliser l'adolescent en lui laissant la liberté de s'intéresser ou non à son orientation, tout en restant disponible pour l'accompagner s'il en fait la demande.

      18:45-21:30 : Métaphore du jardinier et message aux auditeurs * Métaphore du jardinier pour illustrer l'importance de laisser l'adolescent s'épanouir à son rythme et de ne pas le surprotéger. * Message aux auditeurs: l'enfant deviendra un adulte magnifique quel que soit son chemin, et il a les ressources nécessaires pour y parvenir.

      21:30-22:40 : Conclusion * Invitation à suivre Emmanuelle Piquet sur les réseaux sociaux et à visiter le site web de son centre à 180 degrés. * Remerciements et conclusion de l'épisode.

    1. Briefing Doc: L'IA Générative au service de la recherche de financements

      Source: Webinaire Solidatech - "L'IA Générative au service de votre recherche de financements", 17 janvier 2025. Intervenants: Solidatech, Latitudes (programme IA for Good), Wavestone.

      Lien: https://www.youtube.com/watch?v=ZP4BMjrXESI

      Thèmes Principaux:

      Introduction à l'IA générative et ses applications pour les associations.

      Présentation d'un cas pratique: la génération automatisée de dossiers de demandes de financement.

      Démonstration de l'utilisation d'un agent conversationnel (chatbot) personnalisé avec Custom GPT d'OpenAI.

      Bonnes pratiques et conseils pour une utilisation responsable et efficace de l'IA.

      Points Clés:

      L’IA générative, un outil puissant pour les associations: L'IA générative peut aider les associations dans divers domaines:

      Marketing et communication : Génération de contenu pour les réseaux sociaux, création de supports de communication.

      Gestion de projet: Synthèse de documents, rédaction de comptes rendus.

      Tâches administratives : Automatisation de tâches répétitives, aide à la rédaction de documents complexes.

      Cas pratique : Génération de dossiers de demande de financement: Le webinaire se concentre sur l'utilisation de Custom GPT pour automatiser la rédaction de dossiers de financement.

      Custom GPT : Un service d'OpenAI permettant de créer des agents conversationnels personnalisés en intégrant des documents spécifiques.

      Avantages : Réponses plus précises et fiables, gain de temps.

      Fonctionnement : L'utilisateur fournit des documents à l'agent (informations sur l'association, le projet, le formulaire du bailleur) qui les utilise pour répondre aux questions.

      Démonstration : Les intervenants montrent comment configurer l'agent, lui fournir des documents et interagir avec lui pour obtenir un dossier de financement complet.

      Bonnes pratiques pour une utilisation responsable: Confidentialité des données:Anonymisation:

      Il est important de supprimer ou de masquer les données personnelles sensibles avant de les fournir à l'agent.

      Politique de OpenAI: OpenAI affirme ne pas utiliser les données fournies pour entraîner ses modèles, mais il est important de rester vigilant.

      Impact environnemental: L'utilisation de l'IA a un impact environnemental.

      Il est important de l'utiliser de manière raisonnée en minimisant le nombre de requêtes.

      Rôle de l'humain: L'IA doit être utilisée comme un assistant et non comme un remplaçant.

      Il est crucial de relire, corriger et valider le contenu généré par l'IA.

      Citations:

      "L’intelligence artificielle ça va être finalement tous les systèmes qui sont capables de prédire des situations ou de générer des nouveaux contenus en s’appuyant sur des données passées."

      "On a utilisé un algorithme chat GPT mais c’est un service qui est un peu un chat GPT amélioré à savoir le service custom GPT."

      "Pour les personnes qui sont frileuses [face à l'IA] c’est aussi fait pour qu’on puisse vous expliquer comment l’utiliser de manière responsable et sécurisée."

      "L’idée c’est de pouvoir personnaliser un besoin [avec Custom GPT], chose que chat GPT pourrait avoir des limites."

      "L’important sur les documents, il faut comprendre que l’IA se base sur les données. Sans données on peut rien faire."

      "Dès qu’il y a des informations par rapport aux données personnelles, par rapport à ce que vous jugez sensible, vous pouvez les masquer."

      Ressources:

      Articles de Solidatech :

      L'intelligence artificielle : de quoi parle-t-on et quel est l'intérêt pour votre association ?

      L'automatisation des tâches.

      Programme IA for Good de Latitudes: Newsletter, webinaires, sessions de conseil avec des spécialistes.

      Contact : Sandrine (Solidatech) - [adresse email] - pour un accompagnement personnalisé sur la recherche de financements.

      Conclusion:

      L'IA générative représente un outil puissant pour les associations, notamment pour les aider dans leur recherche de financements.

      Cependant, il est important de l'utiliser de manière responsable et éthique en gardant à l'esprit les questions de confidentialité des données, d'impact environnemental et du rôle de l'humain.

      Le programme IA for Good et les ressources de Solidatech peuvent accompagner les associations dans la découverte et l'utilisation de ces technologies.

    1. Briefing Doc: Karim Douieb et ses micro-projets de datavisualisation

      Ce document résume les idées principales et les thèmes abordés par Karim Douieb, cofondateur de jetpack.AI, dans une présentation sur ses projets personnels de datavisualisation.

      Thèmes principaux:

      Importance des micro-projets: Douieb souligne l'importance des micro-projets pour l'apprentissage, l'exploration de nouvelles techniques, la liberté créative et la prise de risques. Il les voit comme un "terrain de jeu pour l'innovation" et un moyen de développer de nouvelles idées et perspectives.

      Pouvoir de la visualisation: Douieb, se décrivant comme une personne visuelle, met en avant le pouvoir de la datavisualisation pour rendre les données compréhensibles et percutantes. Il cite l'exemple de son

      CV graphique et de sa visualisation du vote populaire aux élections américaines, qui a connu un succès viral. Exploration de techniques innovantes: Douieb explore des techniques de visualisation non conventionnelles, notamment la 3D, la datasonification, les cartogrammes, les systèmes de particules et les polices variables. Il n'hésite pas à sortir des sentiers battus, quitte à produire des "flops" qui nourrissent son apprentissage.

      Engagement citoyen et données bruxelloises: Douieb utilise fréquemment des données bruxelloises pour ses projets, s'engageant ainsi dans des questions citoyennes comme la diversité, l'inégalité et la pollution sonore. Ses visualisations servent à sensibiliser le public et à mettre en lumière des réalités souvent ignorées.

      Inspiration et collaboration: Douieb s'inspire d'artistes et de designers qui repoussent les limites de la datavisualisation, notamment Giorgia Lupi, Stefanie Posavec et Mona Chalabi. Il encourage la collaboration avec des personnes ayant des compétences différentes pour enrichir la créativité et l'impact des projets. Idées et faits importants:

      Identité bruxelloise: Douieb décrit Bruxelles comme un "melting pot" et utilise la datavisualisation pour déconstruire les préjugés sur l'immigration dans la ville. Sa visualisation "Brussel lovely pot" met en évidence la forte proportion d'immigrants européens à Bruxelles (70%).

      Critique des représentations trompeuses: Douieb critique les visualisations qui induisent le public en erreur, comme la carte électorale américaine utilisée par Donald Trump. Il propose des alternatives plus précises et objectives, comme l'utilisation de cartogrammes.

      Sensibilisation à la pollution sonore: Douieb utilise la datasonification pour créer une carte interactive du bruit à Bruxelles, permettant aux citoyens de prendre conscience de la pollution sonore dans leur quartier.

      Importance de l'expérimentation et du partage: Douieb encourage l'expérimentation et le partage des projets, même imparfaits, pour obtenir des retours et stimuler la créativité. Il voit les "flops" comme des opportunités d'apprentissage.

      Accessibilité de la datavisualisation: Douieb souligne que la datavisualisation est accessible à tous, même sans compétences en programmation.

      Il cite l'exemple de Dear Data, un projet de cartes postales dessinées à la main qui explore des données personnelles. Citations:

      "Pour moi, c'est essentiellement un moyen de rendre les données compréhensibles en fait avant tout."

      "Une image peut avoir un impact aussi fort... cette faculté qu'a un visuel de percuter dans l'esprit et directement s'accrocher dans la rétine."

      "L'idée c'est de commencer petit... et vous arriverez probablement à faire des choses comme ça un jour ou l'autre." "Faut vous lâcher... faut pas avoir honte de présenter et de le montrer... il y aura des flops c'est clair... mais vous aurez du feedback."

      "Si vous savez pas coder... les meilleurs designers en datav que je connaisse c'est des gens qui savent pas coder."

      Conclusion:

      La présentation de Karim Douieb offre un aperçu inspirant de son approche créative et engagée de la datavisualisation.

      Ses micro-projets, mêlant exploration technique et engagement citoyen, démontrent le potentiel de la visualisation pour éclairer, questionner et captiver l'attention du public.

    1. Juana: ¡Hola! Me llamo Juana. Y tú, ¿cómo te llamas? Sarita: Me llamo Sarita. Juana: Mucho gusto. (typically shaking hands) Sarita: Igualmente.

      Hello! My name is Juana. And you, what's your name? My name is Sarita. Nice to meet you. (typically shaking hands) Likewise.

    2. Juana: ¡Hola! Me llamo Juana. Y tú, ¿cómo te llamas? Sarita: Me llamo Sarita. Juana: Encantada. (typically shaking hands) Sarita: El gusto es mío.

      Hello! My name is Juana. And you, what's your name? My name is Sarita. Juana: Delighted. (typically shaking hands) The pleasure is mine.

    1. Author response:

      eLife Assessment

      This study addresses a novel and interesting question about how the rise of the Qinghai-Tibet Plateau influenced patterns of bird migration, employing a multi-faceted approach that combines species distribution data with environmental modeling. The findings are valuable for understanding avian migration within a subfield, but the strength of evidence is incomplete due to critical methodological assumptions about historical species-environment correlations, limited tracking data, and insufficient clarity in species selection criteria. Addressing these weaknesses would significantly enhance the reliability and interpretability of the results.

      We would like to thank you and two anonymous reviewers for your careful, thoughtful, and constructive feedback on our manuscript. These reviews made us revisit a lot of our assumptions and we believe the paper will be much improved as a result. In addition to minor points, we will make three main changes to our manuscript in response to the reviews. First, we will address the concerns on the assumptions of historical species-environment correlations from perspectives of both theoretical and empirical evidence. Second, we will discuss the benefits and limitations of using tracking data in our study and demonstrate how the findings of our study are consolidated with results of previous studies. Third, we will clarify our criteria for selecting species in terms of both eBird and tracking data.

      Below, we respond to each comment in turn. Once again, we thank you all for your feedback.

      Reviewer #1 (Public review):

      Strengths:

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The methods are detailed and well described and written in such a fashion that they are transparent and repeatable.

      We appreciate the reviewer’s careful reading of our manuscript, encouraging comments and constructive suggestions.

      Weaknesses:

      I only have one major issue, which is possibly a product of the structure requirements of the paper/journal. This relates to the Results and Discussion, line 91 onwards. I understand the structure of the paper necessitates delving immediately into the results, but it is quite hard to follow due to a lack of background information. In comparison to the Methods, which are incredibly detailed, the Results in the main section reads as quite superficial. They provide broad overviews of broad findings but I found it very hard to actually get a picture of the main results in its current form. For example, how the different species factor in, etc.

      Yes, it is the journal request to format in this way (Methods follows the Results and Discussion) for the article type of short reports. As suggested, in the revision we will elaborate on details of our findings, especially the species-specific responses, in terms of (i) shifts of distribution of avian breeding and wintering areas under the influence of the uplift of the Qinghai-Tibetan Plateau, and (ii) major factors that shape current migration patterns of birds in the Plateau. We will also better reference the approaches we used in the study.

      Reviewer #2 (Public review):

      Summary:

      The study tries to assess how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites. They do so by correlating the present distribution of the species with a set of environmental variables. The data on species distributions come from eBird. The main issue lies in the problematic assumption that species correlations between their current distribution and environment were about the same before the rise of the Plateau. There is no ground truthing and the study relies on Movebank data of only 7 species which are not even listed in the study. Similarly, the study does not outline the boundaries of breeding sites NE of the Plateau. Thus it is absolutely unclear potentially which breeding populations it covers.

      We are very grateful for the careful review and helpful suggestions. We will revise the manuscript carefully in response to the reviewer’s comments and believe that it will be much improved as a result. Below are our point-by-point replies to the comments.

      Strengths:

      I like the approach for how you combined various environmental datasets for the modelling part.

      We appreciate the reviewer’s encouragement.

      Weaknesses:

      The major weakness of the study lies in the assumption that species correlations between their current distribution and environments found today are back-projected to the far past before the rise of the Q-T Plateau. This would mean that species responses to the environmental cues do not evolve which is clearly not true. Thus, your study is a very nice intellectual exercise of too many ifs.

      This is a valid concern. We will address this from both the perspectives of the theoretical design of our study and empirical evidence.

      First, we agree with the reviewer that species responses to environmental cues might vary over time. Nonetheless, the simulated environments before the uplift of the plateau serve as a counterfactual state in our study. Counterfactual is an important concept to support causation claims by comparing what happened to what would have happened in a hypothetical situation: “If event X had not occurred, event Y would not have occurred” (Lewis 1973). Recent years have seen an increasing application of the counterfactual approach to detect biodiversity change, i.e., comparing diversity between the counterfactual state and real estimates to attribute the factors causing such changes (e.g., Gonzalez et al. 2023). Whilst we do not aim to provide causal inferences for avian distributional change, using the counterfactual approach, we are able to estimate the influence of the plateau uplift by detecting the changes of avian distributions, i.e., by comparing where the birds would have distributed without the plateau to where they currently distributed. We regard the counterfactual environments as a powerful tool for eliminating, to the extent possible, vagueness, as opposed to simply description of current distributions of birds. Therefore, we assume species’ responses to environments are conservative and their evolution should not discount our findings. We will clarify this in both the Introduction and Methods.

      Second, we used species distribution modelling to contrast the distributions of birds before and after the uplift of the plateau under the assumption that species tend to keep their ancestral ecological traits over time (i.e., niche conservatism). This indicates a high probability for species to distribute in similar environments wherever suitable. Particularly, considering birds are more likely to be influenced by food resources (Martins et al. 2024), and the distribution of available food before the uplift (Jia et al. 2020), we believe the findings can provide valuable insights into the influence of the plateau on avian migratory patterns. Having said that, we acknowledge other factors, e.g., carbon dioxide concentrations (Zhang et al. 2022), can influence the simulations of environments and our prediction of avian distribution. We will clarify the assumptions and evidence we have for the modelling in Methods. We will further point out the direction for future studies in the Discussion.

      The second major drawback lies in the way you estimate the migratory routes of particular birds. No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites. Some might overwinter in India, some populations in Africa and you will never know the teleconnections between breeding and wintering sites of particular species. The few available tracking studies (seven!) are too coarse and with limited aspects of migratory connectivity to give answer on the target questions of your study.

      We agree with the reviewer that establishing interconnections for birds is important for estimating the migration patterns of birds. We employed a dynamic model to assess their weekly distributions. Thus, we can track the movement of species every week, and capture the breeding and wintering areas for specific populations. That being said, we acknowledge that our approach can be subjected to the patchy sampling of eBird data. We will better demonstrate this in the main text.  

      Tracking data can provide valuable insights into the movement patterns of species but are limited to small numbers of species due to the considerable costs and time needed. We aimed to adopt the tracking data to examine the influence of focal factors on avian migration patterns, but only seven species, to the best of our ability, were acquired. Moreover, similar results were found in studies that used tracking data to estimate the distribution of breeding and wintering areas of birds in the plateau (e.g., Prosser et al. 2011, Zhang et al. 2011, Zhang et al. 2014, Liu et al. 2018, Kumar et al. 2020, Wang et al. 2020, Pu and Guo 2023, Yu et al. 2024, Zhao et al. 2024). We believe the conclusions based on seven species are rigour, but their implications could be restricted by the number of tracking species we obtained. We will demonstrate how our findings on breeding and wintering areas of birds are reinforced by other studies reporting the locations of those areas. We will also add a separate caveat section to discuss the limitations stated above.

      Your set of species is unclear, selection criteria for the 50 species are unknown and variability in their migratory strategies is likely to affect the direction of the effects.

      We will clarify the selection criteria for the 50 species). We first obtained a full list of birds in the plateau from Prins and Namgail (2017). We then extracted species identified as full migrants in Birdlife International (https://datazone.birdlife.org/species/spcdistPOS) from the full list.

      In addition, the position of the breeding sites relative to the Q-T plate will affect the azimuths and resulting migratory flyways. So in fact, we have no idea what your estimates mean in Figure 2.

      We calculated the azimuths not only by the angles between breeding sites and wintering sites but also based on the angles between the stopovers of birds. Therefore, the azimuths are influenced by the relative positions of breeding, wintering and stopover sites. We will better explain this both in the Methods and legend of Figure 2.

      There is no way one can assess the performance of your statistical exercises, e.g. performances of the models.

      As suggested, we will add the AUC values to assess the performances of the models.

      References

      Gonzalez, A., J. M. Chase, and M. I. O'Connor. 2023. A framework for the detection and attribution of biodiversity change. Philosophical Transactions of the Royal Society B: Biological Sciences 378: 20220182.

      Jia, Y., H. Wu, S. Zhu, Q. Li, C. Zhang, Y. Yu, and A. Sun. 2020. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 557:109907.

      Kumar, N., U. Gupta, Y. V. Jhala, Q. Qureshi, A. G. Gosler, and F. Sergio. 2020. GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: implications for definition of a “Central Asian Flyway”. Scientific Reports 10:15988.

      Lewis, D. 1973. Counterfactuals. Oxford: Blackwell.

      Liu, D., G. Zhang, H. Jiang, and J. Lu. 2018. Detours in long-distance migration across the Qinghai-Tibetan Plateau: individual consistency and habitat associations. PeerJ 6:e4304.

      Martins, L. P., D. B. Stouffer, P. G. Blendinger, K. Böhning-Gaese, J. M. Costa, D. M. Dehling, C. I. Donatti, C. Emer, M. Galetti, R. Heleno, Í. Menezes, J. C. Morante-Filho, M. C. Muñoz, E. L. Neuschulz, M. A. Pizo, M. Quitián, R. A. Ruggera, F. Saavedra, V. Santillán, M. Schleuning, L. P. da Silva, F. Ribeiro da Silva, J. A. Tobias, A. Traveset, M. G. R. Vollstädt, and J. M. Tylianakis. 2024. Birds optimize fruit size consumed near their geographic range limits. Science 385:331-336.

      Prins, H. H. T., and T. Namgail. 2017. Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers. Cambridge University Press, Cambridge.

      Prosser, D. J., P. Cui, J. Y. Takekawa, M. Tang, Y. Hou, B. M. Collins, B. Yan, N. J. Hill, T. Li, Y. Li, F. Lei, S. Guo, Z. Xing, Y. He, Y. Zhou, D. C. Douglas, W. M. Perry, and S. H. Newman. 2011. Wild bird migration across the Qinghai-Tibetan Plateau: a transmission route for highly pathogenic H5N1. PloS One 6:e17622.

      Pu, Z., and Y. Guo. 2023. Autumn migration of black-necked crane (Grus nigricollis) on the Qinghai-Tibetan and Yunnan-Guizhou plateaus. Ecology and Evolution 13:e10492.

      Wang, Y., C. Mi, and Y. Guo. 2020. Satellite tracking reveals a new migration route of black-necked cranes (Grus nigricollis) in Qinghai-Tibet Plateau. PeerJ 8:e9715.

      Yu, X., G. Song, H. Wang, Q. Wei, C. Jia, and F. Lei. 2024. Migratory flyways and connectivity of brown headed gulls (Chroicocephalus brunnicephalus) revealed by GPS tracking. Global Ecology and Conservation 56:e03340.

      Zhang, G.G., D.P. Liu, Y.Q. Hou, H.X. Jiang, M. Dai, F.W. Qian, J. Lu, T. Ma, L.X. Chen, and Z. Xing. 2014. Migration routes and stopover sites of Pallas’s gulls Larus ichthyaetus breeding at Qinghai Lake, China, determined by satellite tracking. Forktail 30:104-108.

      Zhang, G.G., D.P. Liu, Y.Q. Hou, H.X. Jiang, M. Dai, F.W. Qian, J. Lu, Z. Xing, and F.S. Li. 2011. Migration routes and stop-over sites determined with satellite tracking of bar-headed geese (Anser indicus) breeding at Qinghai Lake, China. Waterbirds 34:112-116, 115.

      Zhang, R., D. Jiang, C. Zhang, and Z. Zhang. 2022. Distinct effects of Tibetan Plateau growth and global cooling on the eastern and central Asian climates during the Cenozoic. Global and Planetary Change 218:103969.

      Zhao, T., W. Heim, R. Nussbaumer, M. van Toor, G. Zhang, A. Andersson, J. Bäckman, Z. Liu, G. Song, M. Hellström, J. Roved, Y. Liu, S. Bensch, B. Wertheim, F. Lei, and B. Helm. 2024. Seasonal migration patterns of Siberian Rubythroat (Calliope calliope) facing the Qinghai–Tibet Plateau. Movement Ecology 12:54.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      (1) As VRMate (a component of behaviorMate) is written using Unity, what is the main advantage of using behaviorMate/VRMate compared to using Unity alone paired with Arduinos (e.g. Campbell et al. 2018), or compared to using an existing toolbox to interface with Unity (e.g. Alsbury-Nealy et al. 2022, DOI: 10.3758/s13428-021-01664-9)? For instance, one disadvantage of using Unity alone is that it requires programming in C# to code the task logic. It was not entirely clear whether VRMate circumvents this disadvantage somehow -- does it allow customization of task logic and scenery in the GUI? Does VRMate add other features and/or usability compared to Unity alone? It would be helpful if the authors could expand on this topic briefly.

      We have updated the manuscript (lines 412-422) to clarify the benefits of separating the VR system as an isolated program and a UI that can be run independently. We argue that “…the recommended behaviorMate architecture has several important advantages. Firstly, by rendering each viewing angle of a scene on a dedicated device, performance is improved by splitting the computational costs across several inexpensive devices rather than requiring specialized or expensive graphics cards in order to run…, the overall system becomes more modular and easier to debug [and] implementing task logic in Unity would require understanding Object-Oriented Programming and C# … which is not always accessible to researchers that are typically more familiar with scripting in Python and Matlab.”

      VRMate receives detailed configuration info from behaviorMate at runtime as to which VR objects to display and receives position updates during experiments. Any other necessary information about triggering rewards or presenting non-VR cues is still handled by the UI so no editing of Unity is necessary. Scene configuration information is in the same JSON format as the settings files for behaviorMate, additionally there are Unity Editor scripts which are provided in the VRmate repository which permit customizing scenes through a “drag and drop” interface and then writing the scene configuration files programmatically. Users interested in these features should see our github page to find example scene.vr files and download the VRMate repository (including the editor scripts).  We provided 4 vr contexts, as well as a settings file that uses one of them which can be found on the behaviorMate github page (https://github.com/losonczylab/behaviorMate) in the “vr_contexts” and “example_settigs_files” directories. These examples are provided to assist VRMate users in getting set up and could provide a more detailed example of how VRMate and behaviorMate interact.

      (2) The section on "context lists", lines 163-186, seemed to describe an important component of the system, but this section was challenging to follow and readers may find the terminology confusing. Perhaps this section could benefit from an accompanying figure or flow chart, if these terms are important to understand.

      We maintain the use of the term context and context list in order to maintain a degree of parity with the java code. However, we have updated lines 173-175 to define the term context for the behaviorMate system: “... a context is grouping of one or more stimuli that get activated concurrently. For many experiments it is desirable to have multiple contexts that are triggered at various locations and times in order to construct distinct or novel environments.”

      a. Relatedly, "context" is used to refer to both when the animal enters a particular state in the task like a reward zone ("reward context", line 447) and also to describe a set of characteristics of an environment (Figure 3G), akin to how "context" is often used in the navigation literature. To avoid confusion, one possibility would be to use "environment" instead of "context" in Figure 3G, and/or consider using a word like "state" instead of "context" when referring to the activation of different stimuli.

      Thank you for the suggestion. We have updated Figure 3G to say “Environment” in order to avoid confusion.

      (3) Given the authors' goal of providing a system that is easily synchronizable with neural data acquisition, especially with 2-photon imaging, I wonder if they could expand on the following features:

      a. The authors mention that behaviorMate can send a TTL to trigger scanning on the 2P scope (line 202), which is a very useful feature. Can it also easily generate a TTL for each frame of the VR display and/or each sample of the animal's movement? Such TTLs can be critical for synchronizing the imaging with behavior and accounting for variability in the VR frame rate or sampling rate.

      Different experimental demands require varying levels of precision in this kind of synchronization signals. For this reason, we have opted against a “one-size fits all” for synchronization with physiology data in behaviorMate. Importantly this keeps the individual rig costs low which can be useful when constructing setups specifically for use when training animals. behaviorMate will log TTL pulses sent to GPIO pins setup as sensors, and can be configured to generate TTL pulses at regular intervals. Additionally all UDP packets received by the UI are time stamped and logged. We also include the output of the arduino millis() function in all UDP packets which can be used for further investigation of clock drift between system components. Importantly, since the system is event driven there cannot be accumulating drift across running experiments between the behaviorMate UI and networked components such as the VR system.

      For these reasons, we have not needed to implement a VR frame synchronization TTL for any of our experiments, however, one could extend VRMate to send "sync" packets back to behaviorMate to log when each frame was displayed precisely or TTL pulses (if using the same ODROID hardware we recommend in the standard setup for rendering scenes). This would be useful if it is important to account for slight changes in the frame rate at which the scenes are displayed. However, splitting rendering of large scenes between several devices results in fast update times and our testing and benchmarks indicate that display updates are smooth and continuous enough to appear coupled to movement updates from the behavioral apparatus and sufficient for engaging navigational circuits in the brain.

      b. Is there a limit to the number of I/O ports on the system? This might be worth explicitly mentioning.

      We have updated lines 219-220 in the manuscript to provide this information: Sensors and actuators can be connected to the controller using one of the 13 digital or 5 analog input/output connectors.

      c. In the VR version, if each display is run by a separate Android computer, is there any risk of clock drift between displays? Or is this circumvented by centralized control of the rendering onset via the "real-time computer"?

      This risk is mitigated by the real-time computer/UI sending position updates to the VR displays. The maximum amount scenes can be out of sync is limited because they will all recalibrate on every position update – which occurs multiple times per second as the animal is moving. Moreover, because position updates are constantly being sent by behaviorMate to VRMate and VRMate is immediately updating the scene according to this position, the most the scene can become out of sync with the mouse's position is proportional to the maximum latency multiplied by the running speed of the mouse. For experiments focusing on eliciting an experience of navigation, such a degree of asynchrony is almost always negligible. For other experimental demands it could be possible to incorporate more precise frame timing information but this was not necessary for our use case and likely for most other use cases. Additionally, refer to the response to comment 3a.

      Reviewer #2 (Public review):

      (1) The central controlling logic is coupled with GUI and an event loop, without a documented plugin system. It's not clear whether arbitrary code can be executed together with the GUI, hence it's not clear how much the functionality of the GUI can be easily extended without substantial change to the source code of the GUI. For example, if the user wants to perform custom real-time analysis on the behavior data (potentially for closed-loop stimulation), it's not clear how to easily incorporate the analysis into the main GUI/control program.

      Without any edits to the existing source code behaviorMate is highly customizable through the settings files, which allow users to combine the existing contexts and decorators in arbitrary combinations. Therefore, users have been able to perform a wide variety of 1D navigation tasks, well beyond our anticipated use cases by generating novel settings files. The typical method for providing closed-loop stimulation would be to set up a context which is triggered by animal behavior using decorators (e.g. based on position, lap number and time) and then trigger the stimulation with a TTL pulse. Rarely, if users require a behavioral condition not currently implemented or composable out of existing decorators, it would require generating custom code in Java to extend the UI. Performing such edits requires only knowledge of basic object-oriented programming in Java and generating a single subclass of either the BasicContextList or ContextListDecorator classes. In addition, the JavaFX (under development) version of behaviorMate incorporates a plugin which doesn't require recompiling the code in order to make these changes. However, since the JavaFX software is currently under development, documentation does not yet exist. All software is open-sourced and available on github.com for users interested in generating plugins or altering the source code.

      We have added the additional caveat to the manuscript in order to clarify this point (Line 197-202): “However, if the available set of decorators is not enough to implement the required task logic, some modifications to the source code may be necessary. These modifications, in most cases, would be very simple and only a basic understanding of object-oriented programming is required. A case where this might be needed would be performing novel customized real-time analysis on behavior data and activating a stimulus based on the result”

      (2) The JSON messaging protocol lacks API documentation. It's not clear what the exact syntax is, supported key/value pairs, and expected response/behavior of the JSON messages. Hence, it's not clear how to develop new hardware that can communicate with the behaviorMate system.

      The most common approach for adding novel hardware is to use TTL pulses (or accept an emitted TTL pulse to read sensor states). This type of hardware addition  is possible through the existing GPIO without the need to interact with the software or JSON API. Users looking to take advantage of the ability to set up and configure novel behavioral paradigms without the need to write any software would be limited to adding hardware which could be triggered with and report to the UI with a TTL pulse (however fairly complex actions could be triggered this way).

      For users looking to develop more customized hardware solutions that interact closely with the UI or GPIO board, additional documentation on the JSON messaging protocol has been added to the behaviormate-utils repository (https://github.com/losonczylab/behaviormate_utils). Additionally, we have added a link to this repository in the Supplemental Materials section (line 971) and referenced this in the manuscript (line 217) to make it easier for readers to find this information.

      Furthermore, developers looking to add completely novel components to the UI  can implement the interface described by Context.java in order to exchange custom messages with hardware. (described  in the JavaDoc: https://www.losonczylab.org/behaviorMate-1.0.0/)  These messages would be defined within the custom context and interact with the custom hardware (meaning the interested developer would make a novel addition to the messaging API). Additionally, it should be noted that without editing any software, any UDP packets sent to behaviorMate from an IP address specified in the settings will get time stamped and logged in the stored behavioral data file meaning that are a large variety of hardware implementation solutions using both standard UDP messaging and through TTL pulses that can work with behaviorMate with minimal effort. Finally, see response to R2.1 for a discussion of the JavaFX version of the behaviorMatee UI including plugin support.

      (3) It seems the existing control hardware and the JSON messaging only support GPIO/TTL types of input/output, which limits the applicability of the system to more complicated sensor/controller hardware. The authors mentioned that hardware like Arduino natively supports serial protocols like I2C or SPI, but it's not clear how they are handled and translated to JSON messages.

      We provide an implementation for an I2C-based capacitance lick detector which interested developers may wish to copy if support for novel I2C or SPI. Users with less development experience wishing to expand the hardware capabilities of  behaviorMatecould also develop adapters which can be triggered  on a TTL input/output. Additionally, more information about the JSON API and how messages are transmitted to the PC by the arduino is described in point (2) and the expanded online documentation.

      a. Additionally, because it's unclear how easy to incorporate arbitrary hardware with behaviorMate, the "Intranet of things" approach seems to lose attraction. Since currently, the manuscript focuses mainly on a specific set of hardware designed for a specific type of experiment, it's not clear what are the advantages of implementing communication over a local network as opposed to the typical connections using USB.

      As opposed to serial communication protocols as typical with USB, networking protocols seamlessly function based on asynchronous message passing. Messages may be routed internally (e.g. to a PCs localhost address, i.e. 0.0.0..0) or to a variety of external hardware (e.g. using IP addresses such as those in the range 192.168.1.2 - 192.168.1.254). Furthermore, network-based communication allows modules, such as VR, to be added easily. behavoirMate systems can be easily expanded using low-cost Ethernet switches and consume only a single network adapter on the PC (e.g. not limited by the number of physical USB ports). Furthermore, UDP message passing is implemented in almost all modern programming languages in a platform independent manner (meaning that the same software can run on OSX, Windows, and Linux). Lastly, as we have pointed out (Line 117) a variety of tools exist for inspecting network packets and debugging; meaning that it is possible to run behaviorMate with simulated hardware for testing and debugging.

      The IOT nature of behaviorMate means there is no requirement for novel hardware to be implemented  using an arduino,  since any system capable of  UDP communication can  be configured. For example, VRMate is usually run on Odroid C4s, however one could easily create a system using Raspberry Pis or even additional PCs. behaviorMate is agnostic to the format of the UDP messages, but packaging any data in the JSON format for consistency would be encouraged. If a new hardware is a sensor that has input requiring it to be time stamped and logged then all that is needed is to add the IP address and port information to the ‘controllers’ list in a behaviorMate settings file. If more complex interactions are needed with novel hardware than a custom implementation of ContextList.java may be required (see response to R2.2). However, the provided UdpComms.java class could be used to easily send/receive messages from custom Context.java subclasses.

      Solutions for highly customized hardware do require basic familiarity with object-oriented programming using the Java programming language. However, in our experience most behavioral experiments do not require these kinds of modifications. The majority of 1D navigation tasks, which behaviorMate is currently best suited to control, require touch/motion sensors, LEDs, speakers, or solenoid valves,  which are easily controlled by the existing GPIO implementation. It is unlikely that custom subclasses would even be needed.

      Reviewer #3 (Public review):

      (1) While using UDP for data transmission can enhance speed, it is thought that it lacks reliability. Are there error-checking mechanisms in place to ensure reliable communication, given its criticality alongside speed?

      The provided GPIO/behavior controller implementation sends acknowledgement packets in response to all incoming messages as well as start and stop messages for contexts and “valves”. In this way the UI can update to reflect both requested state changes as well as when they actually happen (although there is rarely a perceptible gap between these two states unless something is unplugged or not functioning). See Line 85 in the revised manuscript “acknowledgement packets are used to ensure reliable message delivery to and from connected hardware”.

      (2) Considering this year's price policy changes in Unity, could this impact the system's operations?

      VRMate is not affected by the recent changes in pricing structure of the Unity project.

      The existing compiled VRMate software does not need to be regenerated to update VR scenes, or implement new task logic (since this is handled by the behaviorMate GUI). Therefore, the VRMate program is robust to any future pricing changes or other restructuring of the Unity program and does not rely on continued support of Unity. Additionally, while the solution presented in VRMate has many benefits, a developer could easily adapt any open-source VR Maze project to receive the UDP-based position updates from behaviorMate or develop their own novel VR solutions.

      (3) Also, does the Arduino offer sufficient precision for ephys recording, particularly with a 10ms check?

      Electrophysiology recording hardware typically has additional I/O channels which can provide assistance with tracking behavior/synchronization at a high resolution. While behaviorMate could still be used to trigger reward valves, either the ephys hardware or some additional high-speed DAQ would be recommended to maintain accurately with high-speed physiology data. behaviorMate could still be set up as normal to provide closed and open-loop task control at behaviorally relevant timescales alongside a DAQ circuit recording events at a consistent temporal resolution. While this would increase the relative cost of the individual recording setup, identical rigs for training animals could still be configured without the DAQ circuit avoiding unnecessary cost and complexity.

      (4) Could you clarify the purpose of the Sync Pulse? In line 291, it suggests additional cues (potentially represented by the Sync Pulse) are needed to align the treadmill screens, which appear to be directed towards the Real-Time computer. Given that event alignment occurs in the GPIO, the connection of the Sync Pulse to the Real-Time Controller in Figure 1 seems confusing.

      A number of methods exist for synchronizing recording devices like microscopes or electrophysiology recordings with behaviorMate’s time-stamped logs of actuators and sensors. For example, the GPIO circuit can be configured to send sync triggers, or receive timing signals as input. Alternatively a dedicated circuit could record frame start signals and relay them to the PC to be logged independently of the GPIO (enabling a high-resolution post-hoc alignment of the time stamps). The optimal method to use varies based on the needs of the experiment. Our setups have a dedicated BNC output and specification in the settings file that sends a TTL pulse at the start of an experiment in order to trigger 2p imaging setups (see line 224, specifically that this is a detail of “our” 2p imaging setup). We provide this information as it might be useful suggesting how to have both behavior and physiology data start recording at the same time. We do not intend this to be the only solution for alignment. Figure 1 indicates an “optional” circuit for capturing a high speed sync pulse and providing time stamps back to the real time PC. This is another option that might be useful for certain setups (or especially for establishing benchmarks between behavior and physiology recordings). In our setup event alignment does not exclusively occur on the GPIO.

      a. Additionally, why is there a separate circuit for the treadmill that connects to the UI computer instead of the GPIO? It might be beneficial to elaborate on the rationale behind this decision in line 260.

      Event alignment does not occur on the GPIO, separating concerns between position tracking and more general input/output features which improves performance and simplifies debugging.  In this sense we maintain a single event loop on the Arduino, avoiding the need to either run multithreaded operations or rely extensively on interrupts which can cause unpredictable code execution (e.g. when multiple interrupts occur at the same time). Our position tracking circuit is therefore coupled to a separate,low-cost arduino mini which has the singular responsibility of position-tracking.

      b. Moreover, should scenarios involving pupil and body camera recordings connect to the Analog input in the PCB or the real-time computer for optimal data handling and processing?

      Pupil and body camera recordings would be independent data streams which can be recorded separately from behaviorMate. Aligning these forms of full motion video could require frame triggers which could be configured on the GPIO board using single TTL like outputs or by configuring a valve to be “pulsed” which is a provided type customization.

      We also note that a more advanced developer could easily leverage camera signals to provide closed loop control by writing an independent module that sends UDP packets to behavoirMate. For example a separate computer vision based position tracking module could be written in any preferred language and use UDP messaging to send body tracking updates to the UI without editing any of the behaviorMate source code (and even used for updating 1D location).

      (5) Given that all references, as far as I can see, come from the same lab, are there other labs capable of implementing this system at a similar optimal level?

      To date two additional labs have published using behaviorMate, the Soltez and Henn labs (see revised lines 341-342). Since behaviorMate has only recently been published and made available open source, only external collaborators of the Losonczy lab have had access to the software and design files needed to do this. These collaborators did, however, set up their own behavioral setups in separate locations with minimal direct support from the authors–similar to what would be available to anyone seeking to set a behaviorMate system would find online on our github page or by posting to the message board.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (4) To provide additional context for the significance of this work, additional citations would be helpful to demonstrate a ubiquitous need for a system like behaviorMate. This was most needed in the paragraph from lines 46-65, specifically for each sentence after line 55, where the authors discuss existing variants on head-fixed behavioral paradigms. For instance, for the clause "but olfactory and auditory stimuli have also been utilized at regular virtual distance intervals to enrich the experience with more salient cues", suggested citations include Radvansky & Dombeck 2018 (DOI: 10.1038/s41467-018-03262-4), Fischler-Ruiz et al. 2021 (DOI: 10.1016/j.neuron.2021.09.055).

      We thank the reviewer for the suggested missing citations and have updated the manuscript accordingly (see line 58).

      (5) In addition, it would also be helpful to clarify behaviorMate's implementation in other laboratories. On line 304 the authors mention "other labs" but the following list of citations is almost exclusively from the Losonczy lab. Perhaps the citations just need to be split across the sentence for clarity? E.g. "has been validated by our experimental paradigms" (citation set 1) "and successfully implemented in other labs as well" (citation set 2).

      We have split the citation set as suggested (see lines 338-342).

      Minor Comments:

      (6) In the paragraph starting line 153 and in Fig. 2, please clarify what is meant by "trial" vs. "experiment". In many navigational tasks, "trial" refers to an individual lap in the environment, but here "trial" seems to refer to the whole behavioral session (i.e. synonymous with "experiment"?).

      In our software implementation we had originally used “trial” to refer to an imaging session rather than experiment (and have made updates to start moving to the more conventional lexicon). To avoid confusion we have remove this use of “trial” throughout the manuscript and replaced with “experiment” whenever possible

      (7) This is very minor, but in Figure 3 and 4, I don't believe the gavage needle is actually shown in the image. This is likely to avoid clutter but might be confusing to some readers, so it may be helpful to have a small inset diagram showing how the needle would be mounted.

      We assessed the image both with and without the gavage needle and found the version in the original (without) to be easier to read and less cluttered and therefore maintained that version in the manuscript.

      (8) In Figure 5 legend, please list n for mice and cells.

      We have updated the Figure 5 legend to indicate that for panels C-G, n=6 mice (all mice were recorded in both VR and TM systems), 3253 cells in VR classified as significantly tuned place cells VR, and 6101 tuned cells in TM,

      (9) Line 414: It is not necessary to tilt the entire animal and running wheel as long as the head-bar clamp and objective can rotate to align the imaging window with the objective's plane of focus. Perhaps the authors can just clarify the availability of this option if users have a microscope with a rotatable objective/scan head.

      We have added the suggested caveat to the manuscript in order to clarify when the goniometers might be useful (see lines 281-288).

      (10) Figure S1 and S2 could be referenced explicitly in the main text with their related main figures.

      We have added explicit references to figures S1 and S2 in the relevant sections (see lines 443, 460  and 570)

      (11) On line 532-533, is there a citation for "proximal visual cues and tactile cues (which are speculated to be more salient than visual cues)"?

      We have added citations to both Knierim & Rao 2003 and Renaudineau et al. 2007 which discuss the differential impact of proximal vs distal cues during navigation as well as Sofroniew et al. 2014 which describe how mice navigate more naturally in a tactile VR setup as opposed to purely visual ones.

      (12) There is a typo at the end of the Figure 2 legend, where it should say "Arduino Mini."

      This typo has been fixed.

      Reviewer #2 (Recommendations For The Authors):

      (4) As mentioned in the public review: what is the major advantage of taking the IoT approaches as opposed to USB connections to the host computer, especially when behaviorMate relies on a central master computer regardless? The authors mentioned the readability of the JSON messages, making the system easier to debug. However, the flip side of that is the efficiency of data transmission. Although the bandwidth/latency is usually more than enough for transmitting data and commands for behavior devices, the efficiency may become a problem when neural recording devices (imaging or electrophysiology) need to be included in the system.

      behaviorMate is not intended to do everything, and is limited to mainly controlling behavior and providing some synchronizing TTL style triggers. In this way the system can easily and inexpensively be replicated across multiple recording setups; particularly this is useful for constructing additional animal training setups. The system is very much sufficient for capturing behavioral inputs at relevant timescales (see the benchmarks in Figures 3 and 4 as well as the position correlated neural activity in Figures 5 and 6 for demonstration of this). Additional hardware might be needed to align the behaviorMate output with neural data for example a high-speed DAQ or input channels on electrophysiology recording setups could be utilized (if provided). As all recording setups are different the ideal solution would depend on details which are hard to anticipate. We do not mean to convey that the full neural data would be transmitted to the behaviorMate system (especially using the JSON/UDP communications that behaviorMate relies on).

      (5) The author mentioned labView. A popular open-source alternative is bonsai (https://github.com/bonsai-rx/bonsai). Both include a graphical-based programming interface that allows the users to easily reconfigure the hardware system, which behaviorMate seems to lack. Additionally, autopilot (https://github.com/auto-pi-lot/autopilot) is a very relevant project that utilizes a local network for multiple behavior devices but focuses more on P2P communication and rigorously defines the API/schema/communication protocols for devices to be compatible. I think it's important to include a discussion on how behaviorMate compares to previous works like these, especially what new features behaviorMate introduces.

      We believe that behaviorMate provides a more opinionated and complete solution than the projects mentioned. A wide variety of 1D navigational paradigms can be constructed in behaviorMate without the need to write any novel software. For example, bonsai is a “visual programming language” and would require experimenters to construct a custom implementation of each of their experiments. We have opted to use Java for the UI with distributed computations across modules in various languages. Given the IOT methodology it would be possible to use any number of programming languages or APIs; a large number of design decisions were made  when building the project and we have opted to not include this level of detail in the manuscript in order to maintain readability. We strongly believe in using non-proprietary and open source projects, when possible, which is why the comparison with LabView based solutions was included in the introduction. Also, we have added a reference to the autopilot reference to the section of the introduction where this is discussed.

      (6) One of the reasons labView/bonsai are popular is they are inherently parallel and can simultaneously respond to events from different hardware sources. While the JSON events in behaviorMate are asynchronous in nature, the handling of those events seems to happen only in a main event loop coupled with GUI, which is sequential by nature. Is there any multi-threading/multi-processing capability of behaviorMate? If so it's an important feature to highlight. If not I think it's important to discuss the potential limitation of the current implementation.

      IOT solutions are inherently concurrent since the computation is distributed. Additional parallelism could be added by further distributing concerns between additional independent modules running on independent hardware. The UI has an eventloop which aggregates inputs and then updates contexts based on the current state of those inputs sequentially. This sort of a “snapshot” of the current state is necessary to reason about when the start certain contexts based on their settings and applied decorators. While the behaviorMate UI uses multithreading libraries in Java to be more performant in certain cases, the degree to which this represents true vs “virtual” concurrency would depend on the individual PC architecture it is run on and how the operating system allocates resources. For this reason, we have argued in the manuscript that behaviorMate is sufficient for controlling experiments at behaviorally relevant timescales, and have presented both benchmarks and discussed different synchronization approaches and permit users to determine if this is sufficient for their needs.

      (7) The context list is an interesting and innovative approach to abstract behavior contingencies into a data structure, but it's not currently discussed in depth. I think it's worth highlighting how the context list can be used to cover a wide range of common behavior experimental contingencies with detailed examples (line 185 might be a good example to give). It's also important to discuss the limitation, as currently the context lists seem to only support contingencies based purely on space and time, without support for more complicated behavior metrics (e.g. deliver reward only after X% correct).

      To access more complex behavior metrics during runtime, custom context list decorators would need to be implemented. While this is less common in the sort of 1D navigational behaviors the project was originally designed to control, adding novel decorators is a simple process that only requires basic object oriented programming knowledge. As discussed we are also implementing a plugin-architecture in the JavaFX update to streamline these types of additions.

      Minor Comments:

      (8) In line 202, the author suggests that a single TTL pulse is sent to mark the start of a recording session, and this is used to synchronize behavior data with imaging data later. In other words, there are no synchronization signals for every single sample/frame. This approach either assumes the behavior recording and imaging are running on the same clock or assumes evenly distributed recording samples over the whole recording period. Is this the case? If so, please include a discussion on limitations and alternative approaches supported by behaviorMate. If not, please clarify how exactly synchronization is done with one TTL pulse.

      While the TTL pulse triggers the start of neural data in our setups, various options exist for controlling for the described clock drift across experiments and the appropriate one depends on the type of recordings made, frame rate duration of recording etc. Therefore behaviorMate leaves open many options for synchronization at different time scales (e.g. the adding a frame-sync circuit as shown in Figure 1 or sending TTL pulses to the same DAQ recording electrophysiology data).  Expanded consideration of different synchronization methods has been included in the manuscript (see lines 224-238).

      (9) Is the computer vision-based calibration included as part of the GUI functionality? Please clarify. If it is part of the GUI, it's worth highlighting as a very useful feature.

      The computer vision-based benchmarking is not included in the GUI. It is in the form of a script made specifically for this paper. However for treadmill-based experiments behaviorMate has other calibration tools built into it (see line 301-303).

      (10) I went through the source code of the Arduino firmware, and it seems most "open X for Y duration" functions are implemented using the delay function. If this is indeed the case, it's generally a bad idea since delay completely pauses the execution and any events happening during the delay period may be missed. As an alternative, please consider approaches comparing timestamps or using interrupts.

      We have avoided the use of interrupts on the GPIO due to the potential for unpredictable code execution. There is a delay which is only just executed if the duration is 10 ms or less as we cannot guarantee precision of the arduino eventloop cycling faster than this. Durations longer than 10 ms would be time stamped and non-blocking. We have adjusted this MAX_WAIT to be specified as a macro so it can be more easily adjusted (or set to 0).

      (11) Figure 3 B, C, D, and Figure 4 D, E suffer from noticeable low resolution.

      We have converted Figure 3B, C, D and 4C, D, E to vector graphics in order to improve the resolution.

      (12) Figure 4C is missing, which is an important figure.

      This figure appeared when we rendered and submitted the manuscript. We apologize if the figure was generated such that it did not load properly in all pdf viewers. The panel appears correctly in the online eLife version of the manuscript. Additionally, we have checked the revision in Preview on Mac OS as well as Adobe Acrobat and the built-in viewer in Chrome and all figure panels appear in each so we hope this issue has been resolved.

      (13) There are thin white grid lines on all heatmaps. I don't think they are necessary.

      The grid lines have been removed from the heatmaps  as suggested.

      (14) Line 562 "sometimes devices directly communicate with each other for performance reasons", I didn't find any elaboration on the P2P communication in the main text. This is potentially worth highlighting as it's one of the advantages of taking the IoT approaches.

      In our implementation it was not necessary to rely on P2P communication beyond what is indicated in Figure 1. The direct communication referred to in line 562 is meant only to refer to the examples expanded on in the rest of the paragraph i.e. the behavior controller may signal the microscope directly using a TTL signal without looping back to the UI. As necessary users could implement UDP message passing between devices, but this is outside the scope of what we present in the manuscript.

      (15) Line 147 "Notably, due to the systems modular architecture, different UIs could be implemented in any programming language and swapped in without impacting the rest of the system.", this claim feels unsupported without a detailed discussion of how new code can be incorporated in the GUI (plugin system).

      This comment refers to the idea of implementing “different UIs”. This would entail users desiring to take advantage of the JSON messaging API and the proposed electronics while fully implementing their own interface. In order to facilitate this option we have improved documentation of the messaging API posted in the README file accompanying the arduino source code. We have added reference to the supplemental materials where readers can find a link to the JSON API implementation to clarify this point.

      Additionally, while a plugin system is available in the JavaFX version of behaviorMate, this project is currently under development and will update the online documentation as this project matures, but is unrelated to the intended claim about completely swapping out the UI.

      Reviewer #3 (Recommendations For The Authors):

      (6) Figure 1 - the terminology for each item is slightly different in the text and the figure. I think making the exact match can make it easier for the reader.

      - Real-time computer (figure) vs real-time controller (ln88).

      The manuscript was adjusted to match figure terminology.

      - The position controller (ln565) - position tracking (Figure).

      We have updated Figure 1 to highlight that the position controller does the position tracking.

      - Maybe add a Behavior Controller next to the GPIO box in Figure 1.

      We updated Figure 1 to highlight that the Behavior Controller performs the GPIO responsibility such that "Behavior Controller" and "GPIO circuit" may be used interchangeably.

      - Position tracking (fig) and position controller (subtitle - ln209).

      We updated Figure 1 to highlight that the position controller does the position tracking.

      - Sync Pulse is not explained in the text.

      The caption for Figure 1 has been updated to better explain the Sync pulse and additional systems boxes

      (7) For Figure 3B/C: What is the number of data points? It would be nice to see the real population, possibly using a swarm plot instead of box plots. How likely are these outliers to occur?

      In order to better characterize the distributions presented in our benchmarking data we have added mean and standard deviation information the plots 3 and 4. For Figure 3B: 0.0025 +/- 0.1128, Figure 3C: 12.9749 +/- 7.6581, Figure 4C: 66.0500 +/- 15.6994, Figure 4E: 4.1258 +/- 3.2558.

    1. Notice in the list above, the rules are not numerous, they are stated in positive terms (“Do X…” rather than negative terms “Do not do Y…”), and each covers a collection of more specific behaviors.

      This statement stood out to me because I remember a lot of the rules when I was growing up were numerical and were largely negative. I like the idea of giving students clear expectations laid out in a way that does not come across as aggressive.

    1. . En la actualidad, esta tecnología permite combinar genes de organismos tan diferentes como bacterias y plantas incompatibles desde el punto de vista genético; no obstante, se puede insertar el gen de una bacteria (modificando la región promotora) en el genoma de una planta para que se exprese como lo hace en l

      APLICABLE PARA LA SESIÓN DEL JUEVES

    1. Travail original et podcast bien monté. L'idée de faire discuter Debunk Bot et Chat-GPT est bonne, mais n'est les deux étant basé sur le modèle d'open ai, il y a peu de chance qu'ils se contredisent. Vous auriez pu comparer les résultats avec les rasultats d'une conversation machine/humain.

      Il me manque une analyse, explicitation du modèle de la discussion idéal "implémenté" dans Debunk Bot. A quoi se réfère les auteurs ? Au modèle habermassien ? En quoi ce modèle est problématique?

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The work analyzes how centrosomes mature before cell division. A critical aspect is the accumulation of pericentriolar material (PCM) around the centrioles to build competent centrosomes that can organize the mitotic spindle. The present work builds on the idea that the accumulation of PCM is catalyzed either by the centrioles themselves (leading to a constant accumulation rate) or by enzymes activated by the PCM itself (leading to autocatalytic accumulation). These ideas are captured by a previous model derived for PCM accumulation in C. elegans (ref. 8) and are succinctly summarized by Eq. 1. The main addition of the present work is to allow the activated enzymes to diffuse in the cell, so they can also catalyze the accumulation of PCM in other centrosomes (captured by Eqs. 2-4). The authors claim that this helps centrosomes to reach the same size, independent of potential initial mismatches.

      A strength of the paper is the simplicity of the equations, which are reduced to the bare minimum and thus allow a detailed inspection of the physical mechanism. One shortcoming of this approach is that all equations assume that the diffusion of molecules is much faster than any of the reactive time scales, although there is no experimental evidence for this.

      We appreciate the reviewer’s recognition of the strengths of our work. Indeed, the centrosome growth model incorporates multiple timescales corresponding to various reactions, and existing experimental data do not directly provide diffusion constants for the cytosolic proteins. However, we can estimate these diffusion constants using protein mass, based on the Stokes-Einstein relation, and compare the diffusion timescales with the reaction timescales obtained from FRAP analysis. For example, we estimate that the diffusion timescale for centrosomes separated by 5-10 micrometers is much smaller than the reaction timescales deduced from the FRAP experiments. Specifically, for SPD-5, a scaffold protein with a mass of ~150 kDa, the estimated diffusion constant is ~17 µm<sup>2</sup>/s, using the Stokes-Einstein relation and a reference diffusion constant of ~30 µm<sup>2</sup>/s for a 30 kDa GFP protein (reference: Bionumbers book). This results in a diffusion timescale of ~1 second for centrosomes 10 µm apart. In contrast, FRAP recovery timescales for SPD-5 in C. elegans embryos are on the order of several minutes, suggesting that scaffold protein binding reactions are much slower than diffusion. Therefore, a reaction-limited model is appropriate for studying PCM self-assembly during centrosome maturation. We have revised the manuscript to clarify this point and to include a discussion of the diffusion and reaction timescales.

      Spatially extended model with diffusion

      Both the reviewers have pointed out the importance of considering diffusion effects in centrosome size dynamics, and we agree that this is important to explore. We have developed a spatially extended 3D version of the centrosome growth model, incorporating stochastic reactions and diffusion (see Appendix 4). In this model, the system is divided into small reaction volumes (voxels), where reactions depend on local density, and diffusion is modeled as the transport of monomers/building blocks between voxels.

      We find that diffusion can alter the timescales of growth, particularly when the diffusion timescale is comparable to or slower than the reaction timescale, potentially mitigating size inequality by slowing down autocatalysis. However, the main conclusions of the catalytic growth model remain unchanged, showing robust size regulation independent of diffusion constant or centrosome separation (Figure 2—figure supplement 3). Hence, we focused on the effect of subunit diffusion on the autocatalytic growth model. We find that in the presence of diffusion, the size inequality reduces with increasing diffusion timescale, i.e., increasing distance between centrosomes and decreasing diffusion constant (Figure 2—figure supplement 4). However, the lack of robustness in size control in the autocatalyic growth model remains, i.e., the final size difference increases with increasing initial size difference. Notably, in the diffusion-limited regime (very small diffusion or large distances), the growth curve loses its sigmoidal shape, resembling the behavior in the non-autocatalytic limit (Figure 2). These findings are discussed in the revised manuscript.

      Another shortcoming of the paper is that it is not clear what species the authors are investigating and how general the model is. There are huge differences in centrosome maturation and the involved proteins between species. However, this is not mentioned in the abstract or introduction. Moreover, in the main body of the paper, the authors mention C. elegans on pages 2 and 3, but refer to Drosophila on page 4, switching back to C. elegans on page 5, and discuss Drosophila on page 6. This is confusing and looks as if they are cherry-picking elements from various species. The original model in ref. 8 was constructed for C. elegans and it is not clear whether the autocatalytic model is more general than that. In any case, a more thorough discussion of experimental evidence would be helpful.

      We believe one strength of our approach is its applicability across organisms. Our goal in comparing the theoretical model with experimental data from C. elegans and D.

      melanogaster is to demonstrate that the apparent qualitative differences in centrosome growth across species (see e.g., the extent of size scaling discussed in the section “Cytoplasmic pool depletion regulates centrosome size scaling with cell size”) may arise from the same underlying mechanisms in the theoretical model, albeit with different parameter values. We acknowledge differences in regulatory molecules between species, but the core pathways remain conserved see e.g. Raff, Trends in Cell Biology 2019, section: “Molecular Components of the Mitotic Centrosome Scaffold Appear to Have Been Conserved in Evolution from Worms to Humans”. In the revised manuscript, we have expanded the introduction to clarify this point and explain how our theory applies across species. We have also provided a clearer discussion of the experimental systems used throughout the manuscript and the available experimental evidence.

      The authors show convincingly that their model compensates for initial size differences in centrosomes and leads to more similar final sizes. These conclusions rely on numerical simulations, but it is not clear how the parameters listed in Table 1 were chosen and whether they are representative of the real situation. Since all presented models have many parameters, a detailed discussion on how the values were picked is indispensable. Without such a discussion, it is not clear how realistic the drawn conclusions are. Some of this could have been alleviated using a linear stability analysis of the ordinary differential equations from which one could have gotten insight into how the physical parameters affect the tendency to produce equal-sized centrosomes.

      Following the suggestion of the reviewer, we have revised the manuscript to add references and discussions justifying the choice of the parameter values used for the numerical simulations. These references and parameter choices can be found in Table 1 and Table 2, and are also discussed in relevant figure captions and within the manuscript text.

      We thank the reviewer for the excellent suggestion of including linear stability analysis of the ODE models of centrosome growth. We included linear stability analyses of the catalytic and autocatalytic growth models in Appendix 3. Analysis of the catalytic growth model reaffirms the robustness of size equality and the analysis of autocatalytic growth provides an approximate condition of size inequality. We have modified the revised manuscript to discuss these results.

      The authors use the fact that their model stabilizes centrosome size to argue that their model is superior to the previously published one, but I think that this conclusion is not necessarily justified by the presented data. The authors claim that "[...] none of the existing quantitative models can account for robustness in centrosome size equality in the presence of positive feedback." (page 1; similar sentence on page 2). This is not shown convincingly. In fact, ref 8. already addresses this problem (see Fig. 5 in ref. 8) to some extent.

      The linear stability analysis shown in Fig 5 in ref 8 (Zwicker et al, PNAS, 2014) shows that the solutions are stable around the fixed point and it was inferred from this result that Ostwald ripening can be suppressed by the catalytic activity of the centriole, therefore stabilizing the centrosomes (droplets) against coarsening by Ostwald ripening. But, if size discrepancy arises from the growth process (e.g., due to autocatalysis) the timescale of relaxation for such discrepancy is not clear from the above-mentioned result. We show (in figure 2 - figure supplement 3) that for any appreciable amount of positive feedback, the solution moves very slowly around the fixed point (almost like a line attractor) and cannot reach the fixed point in a biologically relevant timescale. Hence the model in ref 8 does not provide a robust mechanism for size control in the presence of autocatalytic growth. We have added this discussion in the Discussion section.

      More importantly, the conclusion seems to largely be based on the analysis shown in Fig. 2A, but the parameters going into this figure are not clear (see the previous paragraph). In particular, the initial size discrepancy of 0.1 µm^3 seems quite large, since it translates to a sphere of a radius of 300 nm. A similarly large initial discrepancy is used on page 3 without any justification. Since the original model itself already showed size stability, a careful quantitative comparison would be necessary.

      We thank the reviewer for the valuable suggestions. The parameters used in Fig. 2A are listed in Table 1 with corresponding references, and we used the parameter values from Zwicker et al. (2014) for rate constants and concentrations.

      The issue of initial size differences between centrosomes is important, but quantitative data on this are not readily available for C. elegans and Drosophila. Centrosomes may differ initially due to disparities in the amount and incorporation rate of PCM between the mother and daughter centrioles. Based on available images and videos (Cabral et al, Dev. Cell, 2019, DOI: https://doi.org/10.1016/j.devcel.2019.06.004), we estimated an initial radius of ~0.5 μm for centrosomes. Accounting for a 5% radius difference would lead to a volume difference of ~0.1 μm<sup>3</sup>, which was used in our analysis (Fig. 2A). These differences likely arise from distinct growth conditions of centrosomes containing different centrioles (older mother and newer daughter).

      More importantly, we emphasize that the initial size difference does not qualitatively alter the results presented in Figure 2. We agree that a quantitative analysis will further clarify our conclusions, and we have revised the manuscript accordingly. For example, Figure 2—figure supplement 3 provides a detailed analysis of how the final centrosome size depends on initial size differences across various parameter values. Additionally, Appendix 3 now includes analytical estimates of the onset of size inequality as a function of these parameters.

      The analysis of the size discrepancy relies on stochastic simulations (e.g., mentioned on pages 2 and 4), but all presented equations are deterministic. It's unclear what assumptions go into these stochastic equations, and how they are analyzed or simulated. Most importantly, the noise strength (presumably linked to the number of components) needs to be mentioned. How is this noise strength determined? What are the arguments for this choice? This is particularly crucial since the authors quote quantitative results (e.g., "a negligible difference in steady-state size (∼ 2% of mean size)" on page 4).

      As described in the Methods, we used the exact Gillespie method (Gillespie, JPC, 1977) to simulate the evolution of the stochastic trajectories of the systems, corresponding to the deterministic growth and reaction kinetics outlined in the manuscript. We've expanded the Methods to include further details on the stochastic simulations and refer to Appendix 1, where we describe the chemical master equations governing autocatalytic growth..

      The noise strength (fluctuations about the mean size of centrosome) does depend on the total monomer concentration (the pool size), and this may affect size inequality. Similar values of the total monomer concentration were used in the catalytic (0.04 uM) and autocatalytic growth (0.33 uM) simulations. These values for the pool size are similar to previous studies (Zwicker et al, PNAS, 2012) and have been optimized to obtain a good fit with experimental growth curves from C. elegans embryo data.

      To present more quantitative results, we have revised our manuscript to add data showing the effect of pool size on centrosome size inequality (Figure 3 - figure supplement 2). We find the size inequality in catalytic growth to increase with decreasing pool size as the origin of this inequality is the stochastic fluctuation in individual centrosome size. The size inequality (ratio of dv/<V>) in the autocatalytic growth does not depend (strongly) on the pool size (dv and <V> both increase similarly with pool size).

      Moreover, the two sets of testable predictions that are offered at the end of the paper are not very illuminative: The first set of predictions, namely that the model would anticipate an "increase in centrosome size with increasing enzyme concentration, the ability to modify the shape of the sigmoidal growth curve, and the manipulation of centrosome size scaling patterns by perturbing growth rate constants or enzyme concentrations.", are so general that they apply to all models describing centrosome growth. Consequently, these observations do not set the shared enzyme pool apart and are thus not useful to discriminate between models. The second part of the first set of predictions about shifting "size scaling" is potentially more interesting, although I could not discern whether "size scaling" referred to scaling with cell size, total amount of material, or enzymatic activity at the centrioles. The second prediction is potentially also interesting and could be checked directly by analyzing published data of the original model (see Fig. 5 of ref. 8). It is unclear to me why the authors did not attempt this.

      In response to the reviewers' valuable feedback, we have revised the manuscript to include results on potential methods for distinguishing catalytic growth from autocatalytic growth. Since the growth dynamics of a single centrosome do not significantly differ between these two models, it is necessary to experimentally examine the growth dynamics of a centrosome pair under various initial size perturbations. In Figure 3-figure supplement 2, we present theoretical predictions for both catalytic and autocatalytic growth models, illustrating the correlation between initial and final sizes after maturation. The figure demonstrates that the initial size difference and final size difference should be correlated only in the autocatalytic growth and the relative size inequality decreases with increasing subunit pool size in catalytic growth while remains almost unchanged in autocatalytic growth. These predictions can be experimentally examined by inducing varying centrosome sizes at the early stage of maturation for different expression levels of the scaffold former proteins.

      A second experimentally testable feature of the catalytic growth model involves sharing of the enzyme between both centrosomes. This could be tested through immunofluorescent staining of the kinase or by constructing a FRET reporter for PLK1 activity, where it can be studied if the active form of the PLK1 is found in the cytoplasm around the centrosomes indicating a shared pool of active enzyme. Additionally, photoactivated localization microscopy could be employed, where fluorescently tagged enzyme can be selectively photoactivated in one centrosome and intensity can be measured at the other centrosome to find the extent of enzyme sharing between the centrosomes.

      We also discuss shifts in centrosome size scaling behavior with cell size by varying parameters of the catalytic growth model (Fig 4). While quantitative analysis of size scaling in Drosophila is currently unavailable, such an investigation could enable us to distinguish catalytic growth mode with other models. We have included this point in the Discussion section.

      “The second prediction is potentially also interesting …” We assume the reviewer is referencing the scenario in Zwicker et al. (ref 8), where differences in centriole activity lead to unequal centrosome sizes. The data in that study represent a case of centrosome growth with variable centriole activity, resulting in size differences in both autocatalytic and catalytic growth models. This differs from our proposed experiment, where we induce unequal centrosome sizes without modifying centriole activity. We have now revised the text to clarify this distinction.

      Taken together, I think the shared enzyme pool is an interesting idea, but the experimental evidence for it is currently lacking. Moreover, the model seems to make little testable predictions that differ from previous models.

      We appreciate the reviewer’s interest in the core idea of our work. As mentioned earlier, we have improved the clarity in model predictions in the revised discussion section. Unfortunately, the lack of publicly available experimental data limits our ability to provide more direct experimental evidence. However, we are hopeful that our theoretical model will inspire future experiments to test these model predictions.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Banerjee & Banerjee argue that a solely autocatalytic assembly model of the centrosome leads to size inequality. The authors instead propose a catalytic growth model with a shared enzyme pool. Using this model, the authors predict that size control is enzyme-mediate and are able to reproduce various experimental results such as centrosome size scaling with cell size and centrosome growth curves in C. elegans.

      The paper contains interesting results and is well-written and easy to follow/understand.

      We are delighted that the reviewer finds our work interesting, and we appreciate the thoughtful suggestions provided. In response, we have revised the text and figures to incorporate these recommendations. Below, we address each of the reviewer’s comments point by point:

      Suggestions:

      ● In the Introduction, when the authors mention that their "theory is based on recent experiments uncovering the interactions of the molecular components of centrosome assembly" it would be useful to mention what particular interactions these are.

      As the reviewer suggested, we have modified the introduction section to add the experimental observations upon which we build our model.

      ● In the Results and Discussion sections, the authors note various similarities and differences between what is known regarding centrosome formation in C. elegan and Drosophila. It would have been helpful to already make such distinctions in the Introduction (where some phenomena that may be C. elegans specific are implied to hold centrosomes universally). It would also be helpful to include more comments for the possible implications for other systems in which centrosomes have been studied, such as human, Zebrafish, and Xenopus.

      We thank the reviewer for this suggestion. We have modified the Introduction to motivate the comparative study of centrosome growth in different organisms and draw relevant connections to centrosome growth in other commonly studied organisms like Zebrafish and Xenopus.

      ● For Fig 1.C, the two axes are very close to being the same but are not. It makes the graph a little bit more difficult to interpret than if they were actually the same or distinctly different. It would be more useful to have them on the same scale and just have a legend.

      We have modified the Figure 1C in the revised manuscript. The plot now shows the growth of a single and a pair of centrosomes both on the same y-axis scale.

      ● The authors refer to Equation 1 as resulting from an "active liquid-liquid phase separation", but it is unclear what that means in this context because the rheology of the centrosome does not appear to be relevant.

      We used the term “active liquid-liquid phase separation” simply to refer to a previous model proposed by Zwicker et al (PNAS, 2014) where the underlying process of growth results from liquid-liquid phase separation. We agree with the reviewer that the rheological property of the centrosome is not very relevant in our discussions and we have thus removed the sentence from the revised manuscript to avoid any confusion.

      ● The authors reject the non-cooperative limit of Eq 1 because, even though it leads to size control, it does not give sigmoidal dynamics (Figure 2B). While I appreciate that this is just meant to be illustrative, I still find it to be a weak argument because I would guess a number of different minor tweaks to the model might keep size control while inducing sigmoidal dynamics, such as size-dependent addition of loss rates (which could be due to reactions happen on the surface of the centrosome instead of in its bulk, for example). Is my intuition incorrect? Is there an alternative reason to reject such possible modifications?

      The reviewer raises an interesting point here. However, we disagree with the idea that minor adjustments to the model can produce sigmoidal growth curves while still maintaining size control. In the absence of an external, time-dependent increase in building block concentration (which would lead to an increasing growth rate), achieving sigmoidal growth requires a positive feedback mechanism in the growth rate. This positive feedback alone could introduce size inequality unless shared equally between the centrosomes, as it is in our model of catalytic growth in a shared enzyme pool. The proposed modification involving size-dependent addition or loss rates due to surface assembly/disassembly may result in unequal sizes precisely because of this positive feedback. A similar example is provided in Appendix 1, where assembly and disassembly across the pericentriolic material volume lead to sigmoidal growth but also generate significant size inequality and lack of robustness in size control.

      ● While the inset of Figure 3D is visually convincing, it would be good to include a statistical test for completeness.

      Following the reviewer’s suggestion, we present a statistical analysis in Figure 3 - Figure supplement 2 in the modified manuscript to enhance clarity. We show that the size difference values are uncorrelated (Pearson’s correlation coefficient ~ 0) with the initial size difference indicating the robustness of the size regulation mechanism.

      ● The authors note that the pulse in active enzyme in their model is reminiscent of the Polo kinase pulse observed in Drosophila. Can the authors use these published experimental results to more tightly constrain what parameter regime in their model would be relevant for Drosophila? Can the authors make predictions of how this pulse might vary in other systems such as C. elegans?

      Thank you for the insightful suggestion regarding the use of pulse dynamics in experiments to better constrain the model’s parameter regime. In our revised manuscript, we attempted this analysis; however, the data from Wong et al. (EMBO 2022) for Drosophila are presented as normalized intensity in arbitrary units, rather than as quantitative measures of centrosome size or Polo enzyme concentration. This lack of quantitative data limits our ability to benchmark the model beyond capturing qualitative trends. We thus believe that quantitative measurements of centrosome size and enzyme concentration are necessary to achieve a tighter alignment between model predictions and biological data.

      We discuss the enzyme dynamics in C. elegans in the revised manuscript. We find the enzyme dynamics corresponding to the fitted growth curves of C. elegans centrosomes are distinctly different from the ones observed in Drosophila. Instead of the pulse-like feature, we find a step-like increase in (cytosolic) active enzyme concentration.

      ● The authors mention that the shared enzyme pool is likely not diffusion-limited in C. elegans embryos, but this might change in larger embryos such as Drosophila or Xenopus. It would be interesting for the authors to include a more in-depth discussion of when diffusion will or will not matter, and what the consequence of being in a diffusion-limit regime might be.

      Both the reviewers have pointed out the importance of considering diffusion effects in centrosome size dynamics, and we agree that this is important to explore. We have developed a spatially extended 3D version of the centrosome growth model, incorporating stochastic reactions and diffusion (see Appendix 4). In this model, the system is divided into small reaction volumes (voxels), where reactions depend on local density, and diffusion is modeled as the transport of monomers/building blocks between voxels.

      We find that diffusion can alter the timescales of growth, particularly when the diffusion timescale is comparable to or slower than the reaction timescale, potentially mitigating size inequality by slowing down autocatalysis. However, the main conclusions of the catalytic growth model remain unchanged, showing robust size regulation independent of diffusion constant or centrosome separation (Figure 2—figure supplement 3). Hence, we focused on the effect of subunit diffusion on the autocatalytic growth model. We find that in the presence of diffusion, the size inequality reduces with increasing diffusion timescale, i.e., increasing distance between centrosomes and decreasing diffusion constant (Figure 2—figure supplement 4). However, the lack of robustness in size control in the autocatalyic growth model remains, i.e., the final size difference increases with increasing initial size difference. Notably, in the diffusion-limited regime (very small diffusion or large distances), the growth curve loses its sigmoidal shape, resembling the behavior in the non-autocatalytic limit (Figure 2). These findings are discussed in the revised manuscript.

      ● The authors state "Firstly, our model posits the sharing of the enzyme between both centrosomes. This hypothesis can potentially be experimentally tested through immunofluorescent staining of the kinase or by constructing FRET reporter of PLK1 activity." I don't understand how such experiments would be helpful for determining if enzymes are shared between the two centrosomes. It would be helpful for the authors to elaborate.

      Our results indicate the necessity of the centrosome-activated enzyme to be shared for the robust regulation of centrosome size equality. If a FRET reporter of the active form of the enzyme (e.g., PLK1) can be constructed then the localization of the active form of the enzyme may be determined in the cytosol. We propose this based on reports of studying PLK activities in subcellular compartments using FRET as described in Allen & Zhang, BBRC (2006). Such experiments will be a direct proof of the shared enzyme pool. Following the reviewer’s suggestion, we have modified the description of the FRET based possible experimental test for the shared enzyme pool hypothesis in the revised manuscript.

      Additionally, we have added another possible experimental test based on photoactivated localization microscopy (PALM), where tagged enzyme can be selectively photoactivated in one centrosome and intensity measured at the other centrosome to indicate whether the enzyme is shared between the centrosomes.

      Recommendations for the authors:

      The manuscript needs to clarify better what species the model describes, how alternative models were rejected, and how the parameters were chosen.

      In the revised manuscript, we have connect the chemical species in our model to those documented in organisms like Drosophila and C. elegans. This connection is detailed in the main text under the Catalytic Growth Model section and summarized in Table 2. We discuss alternative models and our reasons for excluding them in the first results section on autocatalytic growth, with additional details provided in Appendix 1 and the accompanying supplementary figures. The selection of model parameters is addressed in the main text and methods, with references listed in Table 1. We believe that these revisions, along with our point-by-point responses to reviewer comments, comprehensively address all reviewer concerns.

      Reviewer #1 (Recommendations For The Authors):

      I think the style and structure of the paper could be improved on at least two accounts:

      (1) What's the role of the last section ("Multi-component centrosome model reveals the utility of shared catalysis on centrosome size control.")? It seems to simply add another component, keeping the essential structure of the model untouched. Not surprisingly, the qualitative features of the model are preserved and quantitative features are not discussed anyway.

      This model provides a more realistic description of centrosome growth by incorporating the dynamics of the two primary scaffold-forming subunits and their interactions with an enzyme. It is based on the observation that the major interaction pathways among centrosome components are conserved across many organisms (see Raff, Trends in Cell Biology, 2019 and Table 2), typically involving two scaffold-forming proteins and one enzyme that mediates positive feedback between them. These pathways may involve homologous proteins in different species.

      This model allows us to validate the experimentally observed spatial spread of the two subunits, Cnn and Spd-2, in Drosophila. Additionally, we used it to investigate the impact of relaxing the assumption of a shared enzyme pool on size control. Although similar insights could be obtained using a single-component model, the two-component model offers a more biologically relevant framework. We have highlighted these points in the revised manuscript to ensure clarity.

      (2 ) The very long discussion section is not very helpful. First, it mostly reiterates points already made in the main text. Second, it makes arguments for the choice of modeling (top left column of page 8), which probably should have been made when introducing the model. Third, it introduces new results (lower left column of page 8), which should probably be moved to the main text. Fourth, the interpretation of the model in light of the known biochemistry is useful and should probably be expanded although I think it would be crucial to keep information from different organisms clearly separate (this last point actually holds for the entire manuscript).

      We thank the reviewer for the feedback. We have modified the discussion section to focus more on the interpretation of the results, model predictions and future outlook with possible experiments to validate crucial aspects of the model. We have moved most of the justifications to the main text model description.

      Here are a few additional minor points:

      * page 1: Typo "for for" → "for"

      * Page 8: Typo "to to" → "to"

      We thank the reviewer for the useful recommendations. We have corrected all the typos in the revised manuscript.

      * Why can diffusion be neglected in Eq. 1? This is discussed only very vaguely in the main text (on page 3). Strangely, there is some discussion of this crucial initial step in the discussion section, although the diffusion time of PLK1 is compared to the centrosome growth time there and not the more relevant enzyme-mediate conversion rate or enzyme deactivation rate.

      We now discuss the justification of neglecting diffusion while motivating the model. We have added a more detailed discussion in the Methods section. We estimate the timescale of diffusion for the scaffold formers and the enzyme and compare them with the turnover timescales of the respective proteins Spd-2, Cnn and Polo. We find the proteins to diffuse fast compared to their FRAP recovery timescales indicating reaction timescales to be slower than the timescales of diffusion. Nevertheless, following the reviewer’s suggestion, we have also investigated the effect of diffusion on the growth process in Appendix 4.

      * Page 3: The comparison k_0^+ ≫ k_1^+ is meaningless without specifying the number of subunits n. I even doubt that this condition is the correct one since even if k_0^+ is two orders of magnitude larger than k_1^+, the autocatalytic term can dominate if there are many subunits.

      We thank the reviewer for the insightful comment on the comparison between the growth rates k^+_0 and k^+_1. Indeed, the pool size matters and we have now included a linear stability analysis of the autocatalytic growth equations in Appendix 3 to estimate the condition for size inequality. We have commented on these new findings in the revised manuscript.

      * The Eqs. 2-4 are difficult to follow in my mind. For instance, it is not clear why the variables N_av and N_av^E are introduced when they evidently are equivalent to S_1 and E. It would also help to explicitly mention that V_c is the cell volume. Moreover, do these equations contain any centriolar activity? If so, I could not understand what term mediates this. If not, it might be good to mention this explicitly.

      Following the reviewer’s suggestion, we have modified the equations 2-4 and added the definition of V_c to enhance clarity in the revised manuscript. The centriole activity is given by k^+ in the catalytic model. We now explicitly mention it.

      * Page 4: The observed peak of active enzyme (Fig 3C) is compared to experimental observation of a PLK1 peak at centrosomes in Drosophila (ref. 28). However, if I understand correctly, the peak in the model refers to active enzyme in the entire cell (and the point of the model is that this enzymatic pool is shared everywhere), whereas the experimental measurement quantified the amount of PLK1 at the centrosome (and not the activity of the enzyme). How are the quantity in the model related to the experimental measurements?

      The reviewer is correct in pointing out the difference between the quantities calculated from our model and those measured in the experiment by Wong et al. We have clarified this point in the revised manuscript. We hypothesize that if, in future experiments, the active (phosphorylated) polo can be observed by using a possible FRET reporter of activity then the cytosolic pulse can be observed too. We discuss this point in the revised manuscript.

      * Page 6: The asymmetry due to differences in centriolar activity is apparently been done for both models (Eq. 1 and Eqs. 2-4), referring to a parameter k_0^+ in both cases. How does this parameter enter in the latter model? More generally, I don't really understand the difference in the two rows in Fig. 5 - is the top row referring to growth driven by centriolar activity while the lower row refers to pure autocatalytic growth? If so, what about the hybrid model where both mechanisms enter? This is particularly relevant, since ref. 8 claims that such a hybrid model explains growth curves of asymmetric centrosomes quantitatively. Along these lines, the analysis of asymmetric growth is quite vague and at most qualitative. Can the models also explain differential growth quantitatively?

      We believe the reviewer’s comment on centrosome size asymmetry may stem from a lack of clarity in our initial explanation. In this section, as shown in Figure 5, we compare the full autocatalytic model (where both k_0^+ and k_1^+ are non-zero) with the catalytic model. The confusion might have arisen due to an unclear definition of centriolar activity in the catalytic growth model, which we have clarified in the revised manuscript. Specifically, we use k+ in the catalytic model and k0+ in the autocatalytic model as indicators of centriolar activity.

      Our findings quantitatively demonstrate that variations in centriole activity can robustly drive size asymmetry in catalytic growth, independent of initial size differences. However, in autocatalytic growth, increased initial size differences make the system more vulnerable to a loss of regulation, as positive feedback can amplify these differences, ultimately influencing the final size asymmetry. Our results do not contradict Zwicker et al. (ref 8); rather, they complement it. We show that size asymmetry in autocatalytic growth is governed by both centriole activity and positive feedback, highlighting that centriole activity alone cannot robustly regulate centrosome size asymmetry within this framework.

      * The code for performing the simulations does not seem to be available

      We have now made the main codes available in a GitHub repository. Link: https://github.com/BanerjeeLab/Centrosome_growth_model

    1. Reviewer #1 (Public review):

      Summary:

      The study combines predictions from MD simulations with sophisticated experimental approaches including native mass spectrometry (nMS), cryo-EM, and thermal protein stability assays to investigate the molecular determinants of cardiolipin (CDL) binding and binding-induced protein stability/function of an engineered model protein (ROCKET), as well as of the native E. coli intramembrane rhomboid protease, GlpG.

      Strengths:

      State-of-the-art approaches and sharply focused experimental investigation lend credence to the conclusions drawn. Stable CDL binding is accommodated by a largely degenerate protein fold that combines interactions from distant basic residues with greater intercalation of the lipid within the protein structure. Surprisingly, there appears to be no direct correlation between binding affinity/occupancy and protein stability.

      Weaknesses:

      (i) While aromatic residues (in particular Trp) appear to be clearly involved in the CDL interaction, there is no investigation of their roles and contributions relative to the positively charged residues (R and K) investigated here. How do aromatics contribute to CDL binding and protein stability, and are they differential in nature (W vs Y vs F)? (ii) In the case of GlpG, a WR pair (W136-R137) present at the lipid-water on the periplasmic face (adjacent to helices 2/3) may function akin to the W12-R13 of ROCKET in specifically binding CDL. Investigation of this site might prove to be interesting if it indeed does. (iii) Examples of other native proteins that utilize combinatorial aromatic and electrostatic interactions to bind CDL would provide a broader perspective of the general applicability of these findings to the reader (for e.g. the adenine nucleotide translocase (ANT/AAC) of the mitochondria as well as the mechanoenzymatic GTPase Drp1 appear to bind CDL using the common "WRG' motif.)

      Overall, using both model and native protein systems, this study convincingly underscores the molecular and structural requirements for CDL binding and binding-induced membrane protein stability. This work provides much-needed insight into the poorly understood nature of protein-CDL interactions.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This a comprehensive study that sheds light on how Wag31 functions and localises in mycobacterial cells. A clear link to interactions with CL is shown using a combination of microscopy in combination with fusion fluorescent constructs, and lipid specific dyes. Furthermore, studies using mutant versions of Wag31 shed light on the functionalities of each domain in the protein. My concerns/suggestions for the manuscript are minor:

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect on levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comments. We will improve Ln130 in the manuscript. The lipid classes that get impacted by the depletion of Wag31 vs overexpression are different. Wag31 is an adaptor protein that interacts with proteins of the ACCase complex (Meniche et al., 2014; Xu et al., 2014) that synthesize fatty acid precursors and regulate their activity (Habibi Arejan et al., 2022).

      The varied response to lipid homeostasis could be attributed to a change in the stoichiometry of these interactions with Wag31. While Wag31 depletion would prevent such interactions from occurring and might affect lipid synthesis that directly depends on Wag31-protein partner interactions, its overexpression would lead to promiscuous interactions and a change in the stoichiometry of native interactions, ultimately modulating lipid synthesis pathways.

      (2) The pulldown assays results are interesting, but links are tentative.

      The interactome of Wag31 was identified through the immunoprecipitation of Flag-tagged Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off ≥18 and unique peptides≥5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      Though we agree that the interactions can either be direct or through a third partner, the fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, we performed pulldown experiments for validation by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100, eliminating all non-specific and indirect interactions.  However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript. 

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes.  Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Public review):

      Summary

      Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.

      Strengths:

      (1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence.

      (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.

      Weaknesses:

      (1) MS experiments provide some evidence for novel protein-protein interactions. However, the pull-down experiments lack a valid negative control.

      We thank the reviewer for the comments. We will include a valid negative control in the experiment. We would choose ~2 mycobacterial proteins that are not a part of our interactome study and perform a similar pull-down experiment with them and a positive control (known interactor of Wag31).

      (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.

      Previously, we attempted to express the N-terminal (1-60 aa) and the C-terminal (60-212 aa) proteins in various mycobacterial shuttle vectors to perform MS/MS experiments. Despite numerous efforts, neither was expressed with the N/C-terminal FLAG tag nor without any tag in episomal or integrative vectors due to the instability of the protein. Eventually, we successfully expressed the C-terminal Wag31 with an N and C-terminal hexa-His tag. However, this expression was not sufficient or stable enough for us to perform Ni affinity pull-down experiments for mass spectrometry.  The N-terminal of Wag31 could not be expressed in M. smegmatis even with N and C-terminal Hexa-His tags.

      To rule out the role of the N-terminal in mediating protein-protein interactions, we plan to attempt to express N-terminal of Wag31with N and C-terminal hexa-His tag in E. coli. If this clone successfully expresses in E. coli, we will perform pull-down experiments as described in Figure 7.

      Reviewer #3 (Public review):

      Summary:

      This manuscript describes the characterization of mycobacterial cytoskeleton protein Wag31, examining its role in orchestrating protein-lipid and protein-protein interactions essential for mycobacterial survival. The most significant finding is that Wag31, which directs polar elongation and maintains the intracellular membrane domain, was revealed to have membrane tethering capabilities.

      Strengths:

      The authors provided a detailed analysis of Wag31 domain architecture, revealing distinct functional roles: the N-terminal domain facilitates lipid binding and membrane tethering, while the C-terminal domain mediates protein-protein interactions. Overall, this study offers a robust and new understanding of Wag31 function.

      Weaknesses:

      The following major concerns should be addressed.

      • Authors use 10-N-Nonyl-acridine orange (NAO) as a marker for cardiolipin localization. However, given that NAO is known to bind to various anionic phospholipids, how do the authors know that what they are seeing is specifically visualizing cardiolipin and not a different anionic phospholipid? For example, phosphatidylinositol is another abundant anionic phospholipid in mycobacterial plasma membrane.

      We thank the reviewer for the comments. Despite its promiscuous binding to other anionic phospholipids, 10-N-Nonyl-acridine orange is widely used to stain Cardiolipin and determine its localisation in bacterial cells and mitochondria of eukaryotes (Garcia Fernandez et al., 2004; Mileykovskaya & Dowhan, 2000; Renner & Weibel, 2011).  This is because it has a stronger affinity for Cardiolipin than other anionic phospholipids with the affinity constant being 2 × 10<sup>6</sup> M<sup>−1</sup> for Cardiolipin association and 7 × 10<sup>4</sup> M<sup>−1</sup> for that of phosphatidylserine and phosphatidylinositol association (Petit et al., 1992). Additionally, there is not yet another stain available for detecting Cardiolipin. Our protein-lipid binding assays suggest that Wag31 preferentially binds to Cardiolipin over other anionic phospholipids (Fig. 4b), hence it is likely that the majority of redistribution of NAO fluorescence that we observe might be contributed by Cardiolipin mislocalization due to altered Wag31 levels, with smaller degree of NAO redistribution intensity coming indirectly from other anionic phospholipids displaced from the membrane due to the loss of membrane integrity and cell shape changes due to Wag31.

      • Authors' data show that the N-terminal region of Wag31 is important for membrane tethering. The authors' data also show that the N-terminal region is important for sustaining mycobacterial morphology. However, the authors' statement in Line 256 "These results highlight the importance of tethering for sustaining mycobacterial morphology and survival" requires additional proof. It remains possible that the N-terminal region has another unknown activity, and this yet-unknown activity rather than the membrane tethering activity drives the morphological maintenance. Similarly, the N-terminal region is important for lipid homeostasis, but the statement in Line 270, "the maintenance of lipid homeostasis by Wag31 is a consequence of its tethering activity" requires additional proof. The authors should tone down these overstatements or provide additional data to support their claims.

      We agree with the reviewer that there exists a possibility for another function of the N-terminal that may contribute to sustaining mycobacterial physiology and survival. We would revise our statements in the paper to accurately reflect the data. Results shown suggest that the tethering activity of the N-terminal region may contribute to mycobacterial morphology and survival. However, additional functions of this region can’t be ruled out. Similarly, the maintenance of lipid homeostasis by Wag31 may be associated with its tethering activity, although other mechanisms could also contribute to this process. 

      • Authors suggest that Wag31 acts as a scaffold for the IMD (Fig. 8). However, Meniche et. al. has shown that MurG as well as GlfT2, two well-characterized IMD proteins, do not colocalize with Wag31 (DivIVA) (https://doi.org/10.1073/pnas.1402158111). IMD proteins are always slightly subpolar while Wag31 is located to the tip of the cell. Therefore, the authors' biochemical data cannot be easily reconciled with microscopic observations in the literature. This raises a question regarding the validity of protein-protein interaction shown in Figure 7. Since this pull-down assay was conducted by mixing E. coli lysate expressing Wag31 and Msm lysate expression Wag31 interactors like MurG, it is possible that the interactions are not direct. Authors should interpret their data more cautiously. If authors cannot provide additional data and sufficient justifications, they should avoid proposing a confusing model like Figure 8 that contradicts published observations.

      In the literature, MurG and GlfT2 have been shown to have polar localization (Freeman et al., 2023; Hayashi et al., 2016; Kado et al., 2023), and two groups have shown slightly sub-polar localization of MurG (García-Heredia et al., 2021; Meniche et al., 2014). Additionally, (Freeman et al., 2023) they showed SepIVA to be a spatio-temporal regulator of MurG. MS/MS analysis of Wag31 immunoprecipitation data yielded both MurG and SepIVA to be interactors of Wag31 (Fig. 3). Given Wag31 also displays polar localisation, it likely associates with the polar MurG. However, since a sub-polar localization of MurG has also been reported, it is possible that they do not interact directly, and another protein mediates their interaction. We will modify the model proposed in Fig. 8 based on the above.

      We agree that for validation of interaction, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer containing 1% Triton X100, which eliminates all non-specific and indirect interactions.  However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript and propose a model reflecting our results.

      References:

      Freeman, A. H., Tembiwa, K., Brenner, J. R., Chase, M. R., Fortune, S. M., Morita, Y. S., & Boutte, C. C. (2023). Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol, 119(2), 208-223. https://doi.org/10.1111/mmi.15006

      Garcia Fernandez, M. I., Ceccarelli, D., & Muscatello, U. (2004). Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem, 328(2), 174-180. https://doi.org/10.1016/j.ab.2004.01.020

      García-Heredia, A., Kado, T., Sein, C. E., Puffal, J., Osman, S. H., Judd, J., Gray, T. A., Morita, Y. S., & Siegrist, M. S. (2021). Membrane-partitioned cell wall synthesis in mycobacteria. eLife, 10. https://doi.org/10.7554/eLife.60263

      Habibi Arejan, N., Ensinck, D., Diacovich, L., Patel, P. B., Quintanilla, S. Y., Emami Saleh, A., Gramajo, H., & Boutte, C. C. (2022). Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol, 13, 1085918. https://doi.org/10.3389/fmicb.2022.1085918

      Hayashi, J. M., Luo, C. Y., Mayfield, J. A., Hsu, T., Fukuda, T., Walfield, A. L., Giffen, S. R., Leszyk, J. D., Baer, C. E., Bennion, O. T., Madduri, A., Shaffer, S. A., Aldridge, B. B., Sassetti, C. M., Sandler, S. J., Kinoshita, T., Moody, D. B., & Morita, Y. S. (2016). Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A, 113(19), 5400-5405. https://doi.org/10.1073/pnas.1525165113

      Kado, T., Akbary, Z., Motooka, D., Sparks, I. L., Melzer, E. S., Nakamura, S., Rojas, E. R., Morita, Y. S., & Siegrist, M. S. (2023). A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife, 12, e81924. https://doi.org/10.7554/eLife.81924

      Meniche, X., Otten, R., Siegrist, M. S., Baer, C. E., Murphy, K. C., Bertozzi, C. R., & Sassetti, C. M. (2014). Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A, 111(31), E3243-3251. https://doi.org/10.1073/pnas.1402158111

      Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol, 182(4), 1172-1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000

      Petit, J. M., Maftah, A., Ratinaud, M. H., & Julien, R. (1992). 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem, 209(1), 267-273. https://doi.org/10.1111/j.1432-1033.1992.tb17285.x

      Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A, 108(15), 6264-6269. https://doi.org/10.1073/pnas.1015757108

      Xu, W. X., Zhang, L., Mai, J. T., Peng, R. C., Yang, E. Z., Peng, C., & Wang, H. H. (2014). The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun, 448(3), 255-260. https://doi.org/10.1016/j.bbrc.2014.04.116

    1. ojects would y

      Maybe something that explores the use of information as a tool for civil and political movements. Not just within the 20th century, but what role did they play in say women's rights before the suffragette movement?

  3. notebooksharing.space notebooksharing.space
    1. # Your answers here slp=ds.msl.mean(dim=['time', 'longitude'])*0.01 u10=ds.u10.mean(dim=['time', 'longitude']) v10=ds.v10.mean(dim=['time', 'longitude']) atmp=1013.25 zero_line=0 #plots plt.figure(figsize=(12, 6)) plt.plot(slp['latitude'], slp, label="SLP (hPa)", color='blue') plt.axhline(y=1013.25, color='red', linestyle='--', label="Standard Atmosphere (1013.25 hPa)") plt.title("Zonal and Temporal Average of SLP") plt.xlabel("Latitude") plt.ylabel("Pressure (hPa)") plt.legend() plt.grid() plt.show() plt.figure(figsize=(12, 6)) plt.plot(u10['latitude'], u10, label="u10 (m/s)", color='green') plt.axhline(y=0, color='black', linestyle='--', label="Zero Line") plt.title("Zonal and Temporal Average of u10") plt.xlabel("Latitude") plt.ylabel("Wind Speed (m/s)") plt.legend() plt.grid() plt.show() plt.figure(figsize=(12, 6)) plt.plot(v10['latitude'], v10, label="v10 (m/s)", color='orange') plt.axhline(y=0, color='black', linestyle='--', label="Zero Line") plt.title("Zonal and Temporal Average of v10") plt.xlabel("Latitude") plt.ylabel("Wind Speed (m/s)") plt.legend() plt.grid() plt.show()

      Figures look good. Labels are included with nice labels. ;-)

      one detail: u10/v10 can also be described as "zonal wind component at 10m" and "meridional wind component at 10 m"

  4. notebooksharing.space notebooksharing.space
    1. plot the annual average timeseries of global CO22_2 concentration and of global 2m temperature from ERA5 on the same plot (using a secondary y axis for temperature).

      the temperature in the plot does not use the same timestamp as the co2 concentration, therefore you can not see their relation

    2. plot the monthly global CO22_2 concentration as a function of time.

      You should have plotted on the x-axis the date and on the y-axis the co2 concentration. You plotted the mean monthly concentration.

    3. msl_t_avg = ds.msl.mean(dim='time')/100 msl_avg = msl_t_avg.mean(dim= 'longitude').plot( label='Zonal Average Pressure') plt.axhline(y=1013, linewidth=2, linestyle='--', color='black', label='Standard Atmosphere Pressure [1013 hPa]') plt.legend() plt.xlabel('Latitude') plt.ylabel('Sea-Level Pressure (hPa)') plt.title('Average Sea-Level Pressure (Time-Longitude Mean)') plt.grid() plt.show()

      Good!

    1. eficacia intrínseca.

      La eficacia intrínseca se refiere a la capacidad de un fármaco para activar un receptor y producir una respuesta biológica. Imagina que el receptor es una cerradura y el fármaco es una llave. La eficacia intrínseca sería qué tan bien esa llave puede abrir la cerradura y desencadenar una acción.

    2. Figura 1–3

      Los receptores en las células pueden estar en dos formas: inactiva (Ri) y activa (Ra). La forma inactiva (Ri) no produce ningún efecto, incluso si se une a un fármaco. La forma activa (Ra) puede producir un pequeño efecto, incluso sin un fármaco, lo que se llama actividad constitutiva.

      • Agonistas completos: Prefieren unirse a la forma activa (Ra) y aumentan el efecto.
      • Agonistas parciales: Tienen afinidad intermedia por ambas formas (Ri y Ra) y producen un efecto menor.
      • Antagonistas: Tienen la misma afinidad por ambas formas y mantienen el nivel de actividad constitutiva.
      • Agonistas inversos: Prefieren la forma inactiva (Ri) y reducen la actividad constitutiva.
    3. C. Agonistas, agonistas parciales y agonistas inversos

      Los receptores en las células pueden estar en dos formas: inactiva (Ri) y activa (Ra). Incluso sin un agonista (sustancia que activa el receptor), algunos receptores estarán en la forma activa (Ra) y producirán un efecto básico, llamado actividad constitutiva. Los agonistas prefieren unirse a la forma activa (Ra) y la estabilizan, aumentando el número de receptores en esta forma y produciendo un efecto más fuerte. La actividad constitutiva depende de cuántos receptores hay, la concentración de moléculas que ayudan en el proceso y la cantidad de efectores en el sistema.

    4. Algunos fármacos imitan a los agonistas al inhibir las moléculas responsables de terminar la acción de un agonista endógeno.

      Algunos medicamentos actúan como si fueran agonistas (sustancias que activan receptores) al inhibir las moléculas que terminan la acción de un agonista natural del cuerpo. Al amplificar los efectos de los agonistas naturales, estos medicamentos pueden ser más selectivos y menos tóxicos que los agonistas externos.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study asks whether the phenomenon of crossmodal temporal recalibration, i.e. the adjustment of time perception by consistent temporal mismatches across the senses, can be explained by the concept of multisensory causal inference. In particular, they ask whether the explanation offered by causal inference better explains temporal recalibration better than a model assuming that crossmodal stimuli are always integrated, regardless of how discrepant they are.

      The study is motivated by previous work in the spatial domain, where it has been shown consistently across studies that the use of crossmodal spatial information is explained by the concept of multisensory causal inference. It is also motivated by the observation that the behavioral data showcasing temporal recalibration feature nonlinearities that, by their nature, cannot be explained by a fixed integration model (sometimes also called mandatory fusion).

      To probe this the authors implemented a sophisticated experiment that probed temporal recalibration in several sessions. They then fit the data using the two classes of candidate models and rely on model criteria to provide evidence for their conclusion. The study is sophisticated, conceptually and technically state-of-the-art, and theoretically grounded. The data clearly support the authors’ conclusions.

      I find the conceptual advance somewhat limited. First, by design, the fixed integration model cannot explain data with a nonlinear dependency on multisensory discrepancy, as already explained in many studies on spatial multisensory perception. Hence, it is not surprising that the causal inference model better fits the data.

      We have addressed this comment by including an asynchrony-contingent model, which is capable of predicting the nonlinearity of recalibration effects by employing a heuristic approximation of the causal-inference process (Fig. 3). We also updated the previous competitor model with a more reasonable asynchrony-correction model as the baseline of model comparison, which assumes recalibration aims to restore synchrony whenever the sensory measurement of SOA indicates an asynchrony. The causal-inference model outperformed both models, as indicated by model evidence (Fig. 4A). Furthermore, model predictions show that the causal-inference model more accurately captures recalibration at large SOAs at both the group (Fig. 4B) and the individual levels (Fig. S4).

      Second, and again similar to studies on spatial paradigms, the causal inference model fails to predict the behavioral data for large discrepancies. The model predictions in Figure 5 show the (expected) vanishing recalibration for large delta, while the behavioral data don’t decay to zero. Either the range of tested SOAs is too small to show that both the model and data converge to the same vanishing effect at large SOAs, or the model's formula is not the best for explaining the data. Again, the studies using spatial paradigms have the same problem, but in my view, this poses the most interesting question here.

      We included an additional simulation (Fig. 5B) to show that the causal-inference model can predict non-zero recalibration for long adapter SOAs, especially in observers with a high common-cause prior and low sensory precision. This ability to predict a non-zero recalibration effect even at large SOA, such as 0.7 s, is one key feature of the causal-inference model that distinguishes it from the asynchrony-contingent model.

      In my view there is nothing generally wrong with the study, it does extend the 'known' to another type of paradigm. However, it covers little new ground on the conceptual side.

      On that note, the small sample size of n=10 is likely not an issue, but still, it is on the very low end for this type of study.

      This study used a within-subject design, which included 3 phases each repeated in 9 sessions, totaling 13.5 hours per participant. This extensive data collection allows us to better constrain the model for each participant. Our conclusions are based on the different models’ ability to fit individual data.

      Reviewer #2 (Public Review):

      Summary:

      Li et al.’s goal is to understand the mechanisms of audiovisual temporal recalibration. This is an interesting challenge that the brain readily solves in order to compensate for real-world latency differences in the time of arrival of audio/visual signals. To do this they perform a 3-phase recalibration experiment on 9 observers that involves a temporal order judgment (TOJ) pretest and posttest (in which observers are required to judge whether an auditory and visual stimulus were coincident, auditory leading or visual leading) and a conditioning phase in which participants are exposed to a sequence of AV stimuli with a particular temporal disparity. Participants are required to monitor both streams of information for infrequent oddballs, before being tested again in the TOJ, although this time there are 3 conditioning trials for every 1 TOJ trial. Like many previous studies, they demonstrate that conditioning stimuli shift the point of subjective simultaneity (pss) in the direction of the exposure sequence.

      These shifts are modest - maxing out at around -50 ms for auditory leading sequences and slightly less than that for visual leading sequences. Similar effects are observed even for the longest offsets where it seems unlikely listeners would perceive the stimuli as synchronous (and therefore under a causal inference model you might intuitively expect no recalibration, and indeed simulations in Figure 5 seem to predict exactly that which isn't what most of their human observers did). Overall I think their data contribute evidence that a causal inference step is likely included within the process of recalibration.

      Strengths:

      The manuscript performs comprehensive testing over 9 days and 100s of trials and accompanies this with mathematical models to explain the data. The paper is reasonably clearly written and the data appear to support the conclusions.

      Weaknesses:

      While I believe the data contribute evidence that a causal inference step is likely included within the process of recalibration, this to my mind is not a mechanism but might be seen more as a logical checkpoint to determine whether whatever underlying neuronal mechanism actually instantiates the recalibration should be triggered.

      We have addressed this comment by replacing the fixed-update model with an asynchrony-correction model, which assumes that the system first evaluates whether the measurement of SOA is asynchronous, thus indicating a need for recalibration (Fig. 3). If it does, it shifts the audiovisual bias by a proportion of the measured SOA. We additionally included an asynchrony-contingent model, which is capable of replicating the nonlinearity of recalibration effects by a heuristic approximation of the causal-inference process.

      Model comparisons indicate that the causal-inference model of temporal recalibration outperforms both alternative models (Fig. 4A). Furthermore, the model predictions demonstrate that the causal-inference model more accurately captures recalibration at large SOAs at both the group level (Fig. 4B) and individual level (Fig. S4).

      The authors’ causal inference model strongly predicts that there should be no recalibration for stimuli at 0.7 ms offset, yet only 3/9 participants appear to show this effect. They note that a significant difference in their design and that of others is the inclusion of longer lags, which are unlikely to originate from the same source, but don’t offer any explanation for this key difference between their data and the predictions of a causal inference model.

      We added further simulations to show that the causal-inference model can predict non-zero recalibration also for longer adapter SOAs, especially in observers with a large common-cause prior (Fig. 5A) and low sensory precision (Fig. 5B). This ability to predict a non-zero recalibration effect even at longer adapter SOAs, such as 0.7 s, is a key feature of the causal-inference model that distinguishes it from the asynchrony-contingent model.

      I’m also not completely convinced that the causal inference model isn’t ‘best’ simply because it has sufficient free parameters to capture the noise in the data. The tested models do not (I think) have equivalent complexity - the causal inference model fits best, but has more parameters with which to fit the data. Moreover, while it fits ‘best’, is it a good model? Figure S6 is useful in this regard but is not completely clear - are the red dots the actual data or the causal inference prediction? This suggests that it does fit the data very well, but is this based on predicting held-out data, or is it just that by having more parameters it can better capture the noise? Similarly, S7 is a potentially useful figure but it's not clear what is data and what are model predictions (what are the differences between each row for each participant; are they two different models or pre-test post-test or data and model prediction?!).

      I'm not an expert on the implementation of such models but my reading of the supplemental methods is that the model is fit using all the data rather than fit and tested on held-out data. This seems problematic.

      We recognize the risk of overfitting with the causal-inference model. We now rely on Bayesian model comparisons, which use model evidence for model selection. This method automatically incorporates a penalty for model complexity through the marginalization over the parameter space (MacKay, 2003).

      Our design is not suitable for cross-validation because the model-fitting process is computationally intensive and time-consuming. Each fit of the causal-inference model takes approximately 30 hours, and multiple fits with different initial starting points are required to rule out that the parameter estimates correspond to local minima.

      I would have liked to have seen more individual participant data (which is currently in the supplemental materials, albeit in a not very clear manner as discussed above).

      We have revised Supplementary Figures S4-S6 to show additional model predictions of the recalibration effect for individual participants, and participants’ temporal-order judgments are now shown in Supplement Figure S7. These figures confirm the better performance of the causal-inference model.

      The way that S3 is described in the text (line 141) makes it sound like everyone was in the same direction, however, it is clear that 2 /9 listeners show the opposite pattern, and 2 have confidence intervals close to zero (albeit on the -ve side).

      We have revised the text to clarify that the asymmetry occurs in both directions and is idiosyncratic (lines 168-171). We summarized the distribution of the individual asymmetries of the recalibration effect across visual-leading and auditory-leading adapter SOAs in Supplementary Figure S2.

      Reviewer #3 (Public Review):

      Summary:

      Li et al. describe an audiovisual temporal recalibration experiment in which participants perform baseline sessions of ternary order judgments about audiovisual stimulus pairs with various stimulus-onset asynchronies (SOAs). These are followed by adaptation at several adapting SOAs (each on a different day), followed by post-adaptation sessions to assess changes in psychometric functions. The key novelty is the formal specification and application/fit of a causal-inference model for the perception of relative timing, providing simulated predictions for the complete set of psychometric functions both pre and post-adaptation.

      Strengths:

      (1) Formal models are preferable to vague theoretical statements about a process, and prior to this work, certain accounts of temporal recalibration (specifically those that do not rely on a population code) had only qualitative theoretical statements to explain how/why the magnitude of recalibration changes non-linearly with the stimulus-onset asynchrony of the adapter.

      (2) The experiment is appropriate, the methods are well described, and the average model prediction is a fairly good match to the average data (Figure 4). Conclusions may be overstated slightly, but seem to be essentially supported by the data and modelling.

      (3) The work should be impactful. There seems a good chance that this will become the go-to modelling framework for those exploring non-population-code accounts of temporal recalibration (or comparing them with population-code accounts).

      (4) A key issue for the generality of the model, specifically in terms of recalibration asymmetries reported by other authors that are inconsistent with those reported here, is properly acknowledged in the discussion.

      Weaknesses:

      (1) The evidence for the model comes in two forms. First, two trends in the data (non-linearity and asymmetry) are illustrated, and the model is shown to be capable of delivering patterns like these. Second, the model is compared, via AIC, to three other models. However, the main comparison models are clearly not going to fit the data very well, so the fact that the new model fits better does not seem all that compelling. I would suggest that the authors consider a comparison with the atheoretical model they use to first illustrate the data (in Figure 2). This model fits all sessions but with complete freedom to move the bias around (whereas the new model constrains the way bias changes via a principled account). The atheoretical model will obviously fit better, but will have many more free parameters, so a comparison via AIC/BIC or similar should be informative

      In the revised manuscript, we switched from AIC to Bayesian model selection, which approximates and compares model evidence. This method incorporates a strong penalty for model complexity through marginalization over the parameter space (MacKay, 2003).

      We have addressed this comment by updating the former competitor model into a more reasonable version that induces recalibration only for some measured SOAs and by including another (asynchrony-contingent) model that is capable of predicting the nonlinearity and asymmetry of recalibration (Fig. 3) while heuristically approximating the causal inference computations. The causal-inference model outperformed the asynchrony-contingent model, as indicated by model evidence (Fig. 4A). Furthermore, model predictions show that the causal-inference model more accurately captures recalibration at large SOAs at both the group (Fig. 4B) and the individual level (Fig. S4).

      (2) It does not appear that some key comparisons have been subjected to appropriate inferential statistical tests. Specifically, lines 196-207 - presumably this is the mean (and SD or SE) change in AIC between models across the group of 9 observers. So are these differences actually significant, for example via t-test?

      We statistically compared the models using Bayes factors (Fig. 4A). The model evidence for each model was approximated using Variational Bayesian Monte Carlo. Bayes factors provided strong evidence in support of the causal-inference model relative to the other models.

      (3) The manuscript tends to gloss over the population-code account of temporal recalibration, which can already provide a quantitative account of how the magnitude of recalibration varies with adapter SOA. This could be better acknowledged, and the features a population code may struggle with (asymmetry?) are considered.

      We simulated a population-code model to examine its prediction of the recalibration effect for different adapter SOAs (lines 380–388, Supplement Section 8). The population-code model can predict the nonlinearity of recalibration, i.e., a decreasing recalibration effect as the adapter SOA increases. However, to capture the asymmetry of recalibration effects across auditory-leading and visual-leading adapter stimuli, we would need to assume that the auditory-leading and visual-leading SOAs are represented by neural populations with unequal tuning curves.

      (4) The engagement with relevant past literature seems a little thin. Firstly, papers that have applied causal inference modeling to judgments of relative timing are overlooked (see references below). There should be greater clarity regarding how the modelling here builds on or differs from these previous papers (most obviously in terms of additionally modelling the recalibration process, but other details may vary too). Secondly, there is no discussion of previous findings like that in Fujisaki et al.’s seminal work on recalibration, where the spatial overlap of the audio and visual events didn’t seem to matter (although admittedly this was an N = 2 control experiment). This kind of finding would seem relevant to a causal inference account.

      References:

      Magnotti JF, Ma WJ and Beauchamp MS (2013) Causal inference of asynchronous audiovisual speech. Front. Psychol. 4:798. doi: 10.3389/fpsyg.2013.00798

      Sato, Y. (2021). Comparing Bayesian models for simultaneity judgement with different causal assumptions. J. Math. Psychol., 102, 102521.

      We have revised the Introduction and Discussion to better situate our study within the existing literature. Specifically, we have incorporated the suggested references (lines 66–69) and provided clearer distinctions on how our modeling approach builds on or differs from previous work on causal-inference models, particularly in terms of modeling the recalibration process (lines 75–79). Additionally, we have discussed findings that might contradict the assumptions of the causal-inference model (lines 405–424).

      (5) As a minor point, the model relies on simulation, which may limit its take-up/application by others in the field.

      Upon acceptance, we will publicly share the code for all models (simulation and parameter fitting) to enable researchers to adapt and apply these models to their own data.

      (6) There is little in the way of reassurance regarding the model’s identifiability and recoverability. The authors might for example consider some parameter recovery simulations or similar.

      We conducted a model recovery for each of the six models described in the main text and confirmed that the asynchrony-contingent and causal-inference models are identifiable (Supplement Section 11). Simulations of the asynchrony-correction model were sometimes best fit by causal-inference models, because the latter behaves similarly when the prior of a common cause is set to one.

      We also conducted a parameter recovery for the winning model, the causal-inference model with modality-specific precision (Supplement Section 13).

      Key parameters, including audiovisual bias  , amount of auditory latency noise  , amount of visual latency noise  , criterion, lapse rate  showed satisfactory recovery performance. The less accurate recovery of  is likely due to a tradeoff with learning rate  .

      (7) I don't recall any statements about open science and the availability of code and data.

      Upon acceptance of the manuscript, all code (simulation and parameter fitting) and data will be made available on OSF and publicly available.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      In addition to the comments below, we would like to offer the following summary based on the discussion between reviewers:

      The major shortcoming of the work is that there should ideally be a bit more evidence to support the model, over and above a demonstration that it captures important trends and beats an account that was already known to be wrong. We suggest you:

      (1) Revise the figure legends (Figure 5 and Figure 6E).

      We revised all figures and figure legends.

      (2) Additionally report model differences in terms of BIC (which will favour the preferred model less under the current analysis);

      We now base the model comparison on Bayesian model selection, which approximates and compares model evidence. This method incorporates a strong penalty for model complexity through marginalization over the parameter space (MacKay, 2003).

      (3) Move to instead fitting the models multiple times in order to get leave-one-out estimates of best-fitting loglikelihood for each left-out data point (and then sum those for the comparison metric).

      Unfortunately, our design is not suitable for cross-validation methods because the model-fitting process is computationally intensive and time-consuming. Each fit of the causal-inference model takes approximately 30 hours, and multiple fits with different initial starting points are required to rule out local minima.

      (4) Offering a comparison with a more convincing model (for example an atheoretical fit with free parameters for all adapters, e.g. as suggested by Reviewer 3.

      We updated the previous competitor model and included an asynchrony-contingent model, which is capable of predicting the nonlinearity of recalibration (Fig. 3). The causal-inference model still outperformed the asynchrony-contingent model (Fig. 4A). Furthermore, model predictions show that only the causal-inference model captures non-zero recalibration effects for long adapter SOAs at both the group level (Fig. 4B) and individual level (Figure S4).

      Reviewer #1 (Recommendations For The Authors):

      A larger sample size would be better.

      This study used a within-subject design, which included 9 sessions, totaling 13.5 hours per participant. This extensive data collection allows us to better constrain the model for each participant. Our conclusions are based on the different models’ ability to fit individual data rather than on group statistics.

      It would be good to better put the study in the context of spatial ventriloquism, where similar model comparisons have been done over the last ten years and there is a large body of work to connect to.

      We now discuss our model in relation to models of cross-modal spatial recalibration in the Introduction (lines 70–78) and Discussion (lines 324–330).

      Reviewer #2 (Recommendations For The Authors):

      Previous authors (e.g. Yarrow et al.,) have described latency shift and criterion change models as providing a good fit of experimental data. Did the authors attempt a criterion shift model in addition to a shift model?

      We have considered criterion-shift variants of our atheoretical recalibration models in Supplement Section 1. To summarize the results, we varied two model assumptions: 1) the use of either a Gaussian or an exponential measurement distribution, and 2) recalibration being implemented either as a shift of bias or a criterion. We fit each model variant separately to the ternary TOJ responses of all sessions. Bayesian model comparisons indicated that the bias-shift model with exponential measurement distributions best captured the data of most participants.

      Figure 4B - I'm not convinced that the modality-independent uncertainty is anything but a straw man. Models not allowed to be asymmetric do not show asymmetry? (the asymmetry index is irrelevant in the fixed update model as I understand it so it is not surprising the model is identical?).

      We included the assumption that temporal uncertainty might be modality-independent for several reasons. First, there is evidence suggesting that a central mechanism governs the precision of temporal-order judgments (Hirsh & Sherrick, 1961), indicating that precision is primarily limited by a central mechanism rather than the sensory channels themselves. Second, from a modeling perspective, it was necessary to test whether an audio-visual temporal bias alone, i.e., assuming modality-independent uncertainty, could introduce asymmetry across adapter SOAs. Additionally, most previous studies implicitly assumed symmetric likelihoods, i.e., modality-independent latency noise, by fitting cumulative Gaussians to the psychometric curves derived from 2AFC-TOJ tasks (Di Luca et al., 2009; Fujisaki et al., 2004; Harrar & Harris, 2005; Keetels & Vroomen, 2007; Navarra et al., 2005; Tanaka et al., 2011; Vatakis et al., 2007, 2008; Vroomen et al., 2004).

      Why does a zero SOA adapter shift the pss towards auditory leading? Is this a consequence of the previous day’s conditioning - it’s not clear from the methods whether all listeners had the same SOA conditioning sequence across days.

      The auditory-leading recalibration effect for an adapter SOA of zero has been consistently reported in previous studies (e.g., Fujisaki et al., 2004; Vroomen et al., 2004). This effect symbolizes the asymmetry in recalibration. This asymmetry can be explained by differences across modalities in the noisiness of the latencies (Figure 5C) in combination with audiovisual temporal bias (Figure S8).

      We added details about the order of testing to the Methods section (lines 456–457).

      Reviewer #3 (Recommendations For The Authors):

      Abstract

      “Our results indicate that human observers employ causal-inference-based percepts to recalibrate cross-modal temporal perception” Your results indicate this is plausible. However, this statement (basically repeated at the end of the intro and again in the discussion) is - in my opinion - too strong.

      We have revised the statement as suggested.

      Intro and later

      Within the wider literature on relative timing perception, the temporal order judgement (TOJ) task refers to a task with just two response options. Tasks with three response options, as employed here, are typically referred to as ternary judgments. I would suggest language consistent with the existing literature (or if not, the contrast to standard usage could be clarified).

      Ref: Ulrich, R. (1987). Threshold models of temporal-order judgments evaluated by a ternary response task. Percept. Psychophys., 42, 224-239.

      We revised the term for the task as suggested throughout the manuscript.

      Results, 2.2.2

      “However, temporal precision might not be due to the variability of arrival latency.” Indeed, although there is some recent evidence that it might be.

      Ref: Yarrow, K., Kohl, C, Segasby, T., Kaur Bansal, R., Rowe, P., & Arnold, D.H. Neural-latency noise places limits on human sensitivity to the timing of events. Cognition, 222, 105012 (2022).

      We included the reference as suggested (lines 245–248).

      Methods, 4.3.

      Should there be some information here about the order of adaptation sessions (e.g. random for each observer)?

      We added details about the order of testing to the Methods section (lines 456–457).

      Supplemental material section 1.

      Here, you test whether the changes resulting from recalibration look more like a shift of the entire psychometric function or an expansion of the psychometric function on one side (most straightforwardly compatible with a change of one decision criterion). Fine, but the way you have done this is odd, because you have introduced a further difference in the models (Gaussian vs. exponential latency noise) so that you cannot actually conclude that the trend towards a win for the bias-shift model is simply down to the bias vs. criterion difference. It could just as easily be down to the different shapes of psychometric functions that the two models can predict (with the exponential noise model permitting asymmetry in slopes). There seems to be no reason that this comparison cannot be made entirely within the exponential noise framework (by a very simple reparameterization that focuses on the two boundaries rather than the midpoint and extent of the decision window). Then, you would be focusing entirely on the question of interest. It would also equate model parameters, removing any reliance on asymptotic assumptions being met for AIC.

      We revised our exploration of atheoretical recalibration models. To summarize the results, we varied two model assumptions: 1) the use of either a Gaussian or an exponential measurement distribution, and 2) recalibration being implemented either as a shift of the cross-modal temporal bias or as a shift of the criterion. We fit each model separately to the ternary TOJ responses of all sessions. Bayesian model comparisons indicated that the bias-shift model with exponential measurement distributions best described the data of most participants.

      References

      Di Luca, M., Machulla, T.-K., & Ernst, M. O. (2009). Recalibration of multisensory simultaneity:

      cross-modal transfer coincides with a change in perceptual latency. Journal of Vision, 9(12), Article 7.

      Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. ’ya. (2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7(7), 773–778.

      Harrar, V., & Harris, L. R. (2005). Simultaneity constancy: detecting events with touch and vision. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 166(3-4), 465–473.

      Hirsh, I. J., & Sherrick, C. E., Jr. (1961). Perceived order in different sense modalities. Journal of Experimental Psychology, 62(5), 423–432.

      Keetels, M., & Vroomen, J. (2007). No effect of auditory-visual spatial disparity on temporal recalibration. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 182(4), 559–565.

      MacKay, D. J. (2003). Information theory, inference and learning algorithms.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=201b835c3f3a3626ca07b e68cc28cf7d286bf8d5

      Navarra, J., Vatakis, A., Zampini, M., Soto-Faraco, S., Humphreys, W., & Spence, C. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Brain Research. Cognitive Brain Research, 25(2), 499–507.

      Tanaka, A., Asakawa, K., & Imai, H. (2011). The change in perceptual synchrony between auditory and visual speech after exposure to asynchronous speech. Neuroreport, 22(14), 684–688.

      Vatakis, A., Navarra, J., Soto-Faraco, S., & Spence, C. (2007). Temporal recalibration during asynchronous audiovisual speech perception. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 181(1), 173–181.

      Vatakis, A., Navarra, J., Soto-Faraco, S., & Spence, C. (2008). Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 185(3), 521–529.

      Vroomen, J., Keetels, M., de Gelder, B., & Bertelson, P. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Research. Cognitive Brain Research, 22(1), 32–35.

    1. In [12]: ### Exercise 3.1: # Calculating the temporal and zonal average of sea-level pressure: p_zonal_avg = ds3.msl.mean(dim=['time','longitude']) p_zonal_avg = p_zonal_avg / 100 # Converting from [Pa] to [hPa] # Creating the line-plot: plt.plot(ds3.latitude, p_zonal_avg, linewidth=2, label='Zonal Average Pressure') plt.axhline(y=1013, linewidth=2, linestyle='--', color='black', label='Standard Atmosphere Pressure [1013 hPa]') # Adding lables and a legend: plt.title('Temporal and Zonal Average Sea-level Pressure (ERA5 1979-2018)') plt.xlabel('latitude') plt.ylabel('Mean Sea-level Pressure [hPa]') plt.legend() plt.show()

      Great!

    2. When looking close enough and ignoring the uncertainties for now, one can see that the days with high heat stress stay on a similar level for 30 years in the middle of the 21st cetury, despite the distinct temperature decrease that has already taken place.

      Probably you could think of a nicer graphic illustrating this (e.g. two plots below each other, upper plot showing x-axis time and y-axis temperature, lower plot showing x-axis time and y-axis change of days with heat stress.

  5. inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
    1. y students rarely out themselves as being poor. You could not tell they struggle financially by the papers they turn in to me or by what they say when we discuss things in my sociology classes at the University of St. Thomas.

      I feel like this is because people don't want to be seen as the "poor person" they wanna be seen like everybody else. I feel like that can go for a lot of things not just socio-economic status. In other words, people don't want to be defined by their circumstance(s).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1

      Comment 1: A gallery of different cell cycle stages should be included to define KDM4A centrosomal localization at G1, S and G2 phases and whether it is localized to duplicating centrosomes.

      Response: We thank the reviewer for this excellent suggestion. We have now included Fig S1H demonstrating the persistence/retention of KDM4A at the centrosome through the cell cycle. The text in the Results section has been updated to reflect this addition.

      Comment 2: The immunoprecipitations in Fig. 1 and Supp. Fig. 1 must include appropriate controls. There is no positive control in Fig. 1E and the negative controls for the tagged pulldowns are not appropriate in that there is no other HA-tagged protein in cells. Antibody controls and the reciprocal immunoprecipitations should also be included in the same figure (with controls).

      Response: To address the first point, we have included Histone H3 as a positive control for the KDM4A antibody in Figures 1E and 1F. As for the second point raised by the reviewer, the empty vector is an HA-tagged empty vector and so the antibody controls are already included in the Figure as the ‘empty vector’. We have now included detailed information in the Figure legend to clarify the same. In addition, as suggested by the reviewer we have moved the reverse IPs to the main Figure 1 (Figures 1G and 1I).

      Comment 3: Fig. 1H: The use of overexpressed GFP-centrin for immunoprecipitations is questionable; centrin overexpression can cause centrosome amplification, so the level of centrin relative to the endogenous level should be demonstrated.

      Response: This is with regards to the renumbered Fig. 1J. We have generated hTERT RPE-1 GFP-Centrin expressing stable cell lines that were used for our studies. This is a commonly used cell line in the field and although transient over-expression of GFP-centrin does cause centrosome defects, stable cells are less likely to have elevated centrosome defects. Importantly, the concern of overamplification of centrosomes in these cells is less of a concern given that we have only used these cells to validate the localization of KDM4A to centrosomes using centrin as a centrosome marker. Nonetheless, to ensure that we do not have an aberrant increase in centrosome defects in these cells we have included IF images of our cells (green channel in low-mag and high-mag images below) and are happy to report that we did not observe significantly elevated incidence of centrosome amplification in these stable cell lines.

      Comment 4: The precise localization of KDM4A should be determined more clearly with respect to known centrosomal structures/ regions. One would speculate a PCM localization from the data presented here, but the use of centrobin as a marker does not allow the mother centriole's location to be determined with great clarity. It is unclear why the authors chose centrobin as a marker; further explanation of this might be helpful to the reader. Centrobin is usually cited as a daughter centriole marker (PMID: 16275750, but see 29440264). Supp. Fig. 3J appears to shows 2centrioles labelled with centrobin but the paper does not specify whether centrobin is chosen as a daughter marker or otherwise.

      Response: We thank the reviewer for this astute observation. Our initial rationale for choosing centrobin was simply to use a centrosome marker that worked robustly and reliably with minimal background staining, essential for the single-molecule super-resolution imaging. The question we wanted to address was generating a geographic region in the cell showing nano-scale localization of KDM4A. The 2D images shown in Fig. 2 can be understandably static and hard to visualize the 3D distribution of KDM4A which is not exclusive to centrioles (centrobin although more daughter centriole, does show weaker signal at the mother centriole as well). We have now extensively re-worked Figure 2, including the inclusion of a video in Supplemental Information. We have now included new nano-scale imaging of KDM4A with g-tubulin (a more traditional centrosome marker), which shows a similar distribution of KDM4A across the centrosome and have also included distribution measurements along the x- and y-axis showing both KDM4A and centrobin/g-tubulin. We have modified the text to refer to centrobin as a centrosome marker (centrobin as the reviewer rightly noted can localize to both centrioles although predominantly at the daughter centriole).

      Comment 5: Related to this localization issue, Fig. 2D is unclear to this reviewer. What is this normalized to- a marker or just a set of coordinates? This is an unusual means of representing a localization that does not help the reader understand the (sub-) centrosomal location of KDM4A. The analysis in Supp. Fig. 4 is of somewhat limited value and might be omitted.

      __Response: __We apologize for the confusion with the Figure and have simplified the graphs to indicate the single-molecule distribution plotted along the x- and y-axis showing both KDM4A and the centrosome markers i.e. centrobin and g-tubulin.

      Comment 6: Fig. 3 shows the amplification of gamma-tubulin signals, but there is no control for cell cycle stage. The Kdm4a knockout cells appear to be twice the size of the controls, suggesting a G2 phase arrest, which can potentiate centrosome overduplication, or cytokinetic failure in a previous cell cycle (this may also be the case in Figs. 6C and 7B). Therefore, these cells should be phenotyped more robustly with respect to their proliferative characteristics and cell cycle phase distribution. Cell cycle phenotypes should also be checked in the rescue experiments.

      Response: We thank the reviewer for the comments above. The cells shown in Fig. 3 are interphase cells evaluated for centrosome numbers in Kdm4a-deficient cells, independent of mitosis. We apologize for the lack of clarity and the confusion generated by our erroneous statement at the beginning of the paragraph “we next investigated a functional role for KDM4A at mitotic centrosomes”. In fact, we started by first evaluating interphase cells to interrogate consequences of losing Kdm4a, followed by evaluations of the mitotic phenotypes once we observed increased centrosome numbers. This error has now been corrected in the Results.

      As for the reviewer’s comment on phenotyping the cells further, we have now performed these evaluations and have included them in Figure 3 (as new panels Figures 3D, 3E, 3F). Our MTT proliferation assays showed the Kdm4a-null cells proliferated slower than control non-targeted MEFs, although this did not result in any significant issues with cell cycle progression with both cell lines progressing without any arrests and importantly without accumulating increased DNA content/aneuploidy. The rescue cell lines were also phenotyped (new Figures 7C, 7D and 7E) and similarly did not show any altered cell cycle progression.

      Comment 7: Related to the previous point, in the DAPI staining in Figure 5A, 'pseudo-bipolar' cells #1 and #3 (from the top) seem to have greatly increased levels of DNA, suggesting failed cytokinesis as a mechanism of centrosome abnormality. This is a very different process to a centrosome overduplication within a single cell cycle; given that these are knockouts, it is not clear what conclusions should be drawn from the current analysis.

      Response: The reviewer makes an excellent point, about the increased centrosome numbers arising from failure to complete cytokinesis. We have performed further phenotyping of the Kdm4a-null cells, included as new Figures 3D, 3E and 3F. Although the Kdm4a-deficient cells grew slower than their Kdm4a-proficient counterparts, there were no significant issues with cell cycle progression and importantly no evidence of increased aneuploidy. We have also now performed further analysis using centrin as a centriole marker to quantify centrosome numbers (new Figures 4C, 4D and 4E) and have found that there is a significant increase in disjointed centrioles (Figure 4E) suggesting that in addition to any potential amplification there also appears to be an increased loss of cohesion in cells deficient for KDM4A. We have also further confirmed presence of single/disjointed centrioles using TEM analysis (new Figure 4F)

      Comment 8: The JIB-04 result may suggest that KDM4A inhibition causes fragmentation of spindle poles, given that it is a relatively short treatment that would probably not be long enough for centrosome overduplication. Whether this arises during M phase, distinct from the over duplication phenotype seen where there are >4 centrioles, should be posed as a separate question- these may be distinct outcomes from KMD4A inhibition at different cell cycle times.

      Response: We completely agree with the reviewer that the JIB-04 treatment is relatively short and does in fact suggest that this is independent of any over duplication phenotype observed in the Kdm4a-CRISPR knockouts. We thank the reviewer for the suggestion of posing two separate questions to address this point and have made the changes in the manuscript (see Results). In addition, our new data discussed in Comment 7 above, corroborates this hypothesis.

      Comment 9: It is unclear why the authors call the cell shown in Fig. 4B 'pseudo-bipolar'- there are clearly four poles here (as in the multipolar example shown in Fig 5A). This makes the data in Fig. 5 difficult to interpret. The authors should review their classification.

      Response: We thank the reviewer for catching this error. We apologize for the misrepresentation of the representative image and have now included the correct image that shows pseudo-bipolar spindles (new Figure 5D) replacing the multipolar spindle. In addition, we have reviewed our data and the quantitation remains unchanged.

      Comment 10: Expression of the vector control in the Kdm4a nulls in Fig. 7A appears to show a decline in the H3K36me3 levels, confusing the outcome of this experiment. Quantitation should be provided for these blots.

      Response: We have now included the requested quantitation (new Figure 7B) for Figure 7A.

      Comment 11: A rescue experiment should be included for the siRNA knockdown of KDM4A.

      Response: A rescue experiment with the siRNA experiments is challenging as we use a pooled siRNA (4 siRNAs) targeting KDM4A. Rescue with a KDM4A construct would result in the knockdown of the exogenously expressed KDM4A as well. The rescue experiments have been therefore performed with the CRISPR knockout cell lines.

      Comment 12: Size markers should be shown in all immunoblots.

      Response: We have now included size markers as requested by the reviewer for all Figures showing immunoblots (Figures 1, 5, 7 and Supplementary Figures 1, 5).

      Comment 13: p.6, 11 'the resulting payment' and 'caustic chromosome environment' are strange usages and should be rephrased.

      Response: The text has been rephrased.

      Comment 14: Are all panels shown at the same magnification in Fig. 1B? (The telophase DAPI appears different to the anaphase)

      Response: We have confirmed that the magnification is the consistent across the entire panel of images in Figure 1.

      Comment 15: Blow-up panels should be shown so that the centrosomes can be visualised more clearly (Fig. 1 and Supp. Fig. 1).

      Response: We have now included blow-up panels for all centrosome images in Figure 1 and Supplemental Figure 1.

      Comment 16: The MT labelling in Fig. 1D is not of good quality; this imaging should be improved.

      Response: We believe that microtubule densities are impacted by modulating KDM4A in cells likely arising from alternate mechanisms that we are currently investigating. However, to the reviewer’s point we have placed the transient overexpression images in Supplementary information (Supplemental Figure 1I) and have replaced with new Figure 1D, using our stable clones expressing RFP-vector or RFP-KDM4A.

      Reviewer 2

      Comment 1: Coimmunoprecipitation and GFP-trap analyses demonstrated interactions between KDM4A and centrobin, CP110, and centrin-2 (Fig. 1). While the authors suggest a functional a functional association with the centrosome, it is noteworthy that no known centriole protein has been identified to interact simultaneously with centrobin, CP110, and centrin-2, located in distinct sub-centriolar regions. Additionally, 3D super-resolution microscopy indicates that KDM4A is not restrained to a particular region of the centrosome, surely not at the centriole (Fig. 4D). These results hint that centrobin, CP110 and centrin-2 may be potential substrates of KDM4A. Therefore, it is worth to conduct immunostaining and coimmunoprecipitation analyses with the JIB-04-treated cells.

      Response: The reviewer makes an excellent point. The co-immunoprecipitation studies were not conducted to show a direct interaction between the centrosome proteins and KDM4A, but more as a proof-of principle that KDM4A is interacting with centrosome proteins (we do not know if this is direct or indirect, although the data would likely suggest an indirect mechanism). Given that we had used centrobin, centrin and CP110 in our immunofluorescence analysis we also used them for our co-IP studies to provide further evidence of a centrosome localization for KDM4A. It is intriguing that any one of these proteins could in fact be substrates for KDM4A, although an in-depth study would be required to prove this since the super-resolution localization would suggest that KDM4A is not at the centrioles per se and is in fact more of a pericentriolar protein. We have clarified this point in the Discussion. Although the experiments suggested with the JIB treatment would be intriguing, identifying a bone fide centrosome substrate for KDM4A’s demethylase activity is not trivial and would require identification of methylation on a substrate followed by then determining if KDM4A can demethylate the target. Methylation on non-chromatin substrates such as centrosome proteins is not currently well characterized.

      Comment 2: The generation supernumerary centrioles in Kdm4a KO MEFs is intriguing yet warrants careful description (Fig. 3). First, supernumerary centrioles should be coimmunostained with multiple centriole markers, such as centrin-2, CP110 and centrobin antibodies at synchronized populations such as G1, S and M phases. Second, the number of centrioles per cells may be counted and statistically analyzed.

      Response: We thank the reviewer for making this suggestion. We have now included new Figures 4C, 4D, 4E and 4F where we show immunofluorescence with Centrin 2 in Kdm4a-deficient cells. Having found an increased incidence of unpaired centrioles in cells deficient for Kdm4a we have further performed TEM to show the presence of these unpaired/disjoint centrioles.

      Comment 3: The high proportion of pseudo-bipolar cells in the NT group requires attention (Fig. 5).

      Response: We thank the reviewer for this astute observation. To obtain enough mitotic cells for analysis we synchronized the MEFs, which appeared to increase the baseline of pseudo-bipolar spindles reflected in the quants. Despite this increase the differential between the controls and Kdm4a-null cells is significant, as indicated, and we have now made this evident in the text for clarity.

      Comment 4: The KO-rescue cells should be valuable tools to confirm specific roles of KDM4A at the centrosome (Fig. 7). The authors may generate stable cell lines in which wild type and H188A mutant KDM4A are expressed in the KO cells, and use them for centrosome localization of the ectopic proteins, spindle formation and supernumerary centriole generation.

      Response: The reviewer makes an excellent point and in fact we generated the stables (Figure 7) with this idea in mind. Unfortunately (but not completely surprising as this is frequently observed in comparable settings) we observed decreased mitotic abnormalities and genomic instability in the Kdm4a-null cells over time in culture. This is likely arising from a compensatory mechanism/redundancy that perhaps kicks in to enable survival of these cells. The process of generating the stables was therefore tricky with us only being able to reliably analyze genomic stability as a downstream readout of mitotic abnormalities that might have occurred in these cells (early passages analyzed for genomic stability).

      Reviewer 3

      Comment 1: Figure 1D: the RFP vector alone localizes to the centrosome. How was the signal across the cells? Can the authors provide a fluorescence intensity measurement comparing the negative control RFP and RFP-KDM4A to demonstrate the localization at centrosomes of the enzyme? While I found the endogenous staining convincing, the fusion protein is less.

      Response: The MEFs were transiently transfected with the RFP-vector/KDM4A for the images shown. In our experience it is not uncommon for the RFP/mCherry/GFP tags to be prominent at the spindle and often tagged vector controls are omitted from many prominent publications. However, in our case there is a significant increase in RFP-KDM4A signal observed at the spindle poles and we have now included the quantification of signal from the two poles in Supplemental Figure 1J where the signal is 3 times higher in the RFP-KDM4A expressing cells compared to vector. We have also included new Figure 1D demonstrating the RFP-KDM4A localization to spindle poles in our stable cell lines where the signal for the control RFP-vector is negligible. The transient transfection data has been moved to Supplemental Figure 1 (1I).

      Comment 2: Figure 1E-F: How specific do the authors think the interactions with CP110 and centrobin are? Do they IP the entire centrosome proteome or do they think that they reveal some specific interactions within the centrosome? Can the authors comment on this? What is the significance of these interactions? Do the authors think that KDM4A is a centriolar component? Or a PCM component? This is only briefly mentioned in the discussion, it should be extended. Did they try to IP PCM components as well?

      Response: The reviewer brings up an excellent point. The purpose of the immunoprecipitation was to demonstrate the ability of KDM4A to pull down centrosome associated proteins and vice versa. We are unable to comment on the interactions being direct or indirect, although we suspect that most of the interactions are likely indirect, given that KDM4A is not specifically localized to the centrioles. As per the reviewer’s suggestion, we have now expanded the Discussion to speculate on the potential significance of these interactions and how they might enable identification of novel KDM4A interactors and potential substrates.

      Comment 3: Fig.S3: the signal of KDM4A seems broader than that of centrobin, with an average diameter of 749 nm. What is the diameter of centrobin for comparison using this method? The interpretation of the authors concerning this localization is not clear to me: "The quantification data of the diameter of the KDM4A distribution, independently in the different axes (x, y, z), revealed a relatively uniform/circular distribution (Fig. 2D) suggesting that KDM4A was not restrained to a particular region of the centrosome". Is KDM4A at centriole or at centrosomes? PCM or centriole component? From the interpretation stated above, it seems that KDM4A is everywhere from the proximal to the distal axis of the centriole, is it correct? But isn't more PCM?

      Response: We would like to apologize for the lack of clarity with respect to the centrobin measurements compared to those of KDM4A. We have attempted to clarify the distributions measurements by showing the distributions for both the centrobin and KDM4A signals. In addition, we have anow included new data with g-tubulin to show co-localization of KDM4A signal with g-tubulin and to also demonstrate that the signal for KDM4A is not centriole specific but is essentially more uniformly distributed throughout the centrosome. We have also included a video (Video 1) as Supplemental data to clarify this point.

      Comment 4: Fig.4B: The authors established that there is an increase in centrosome number upon short inactivation of KDM4A by JIB-04, which affects its enzymatic activity and not the scaffolding function. In addition, the loss of KDM4A phenocopies the effect of the drug: this means that the enzymatic activity is required to control the centrosome number. This is also re-enforced by the rescue with WT enzyme and not the enzymatically dead mutant of KDM4A (looking at micronuclei formation-Fig.7). Could the author speculate on this? The fast action of the inhibitor would exclude a block in S phase as stated in the discussion. The authors mention centrosome fragmentation but there is no evidence that this is happening here. The authors mentioned several possible mechanisms in the discussion without really exploring them. The authors also mention here that the chronic loss of KDM4A could arise through a distinct mechanism than that of the inhibitor, this statement was surprising. Could the authors check if they have a cell cycle delay or block in their KO cells? While it seems that the authors would like to address these points in the future, I think that the mechanistic aspect is lacking in this study or at least some hints of it.

      Response: We agree with all the points brought up by the reviewer. We have elaborated the discussion as recommended, however the challenge with a demethylase is identifying a potential methyltransferase that can lay a methyl mark on a potential substrate followed by then establishing KDM4A as an eraser for the same substrate. To address, the comment about a cell cycle delay as also brought up by Reviewer 1 (Comment 6), we have performed additional phenotyping of the cells and these data are now included in Figure 3 (as new panels Figures 3D, 3E, 3F) and new Figures 7C, 7D and 7E (for the rescue cell lines) which did not show any altered cell cycle progression.

      Comment 5: In general, the figures are organized in an unconventional manner with the panels from one figure distributed on several pages. Could the authors group the panels of each figure in one page to ease the understanding and the reading?

      Response: Although we do understand how having multiple panels on several pages makes its difficult to read, the immunofluorescence images would be extremely difficult to observe clearly. Also, this comment will be resolved once the manuscript is accepted for publication as we will re-format per journal guidelines.

      Comment 6: Figure S1F-G: the authors provide a large field of view showing a dozen of nuclei. While I acknowledge that this is to show the overall staining, itis difficult to really see the foci of KDM4A or g-Tubulin or centrin. The quality of the images looks really pixelated; this might be due to the PDF compression, but I cannot see any red signal on the panels. Could the authors enhance the B/C of the images so that one can see the signal corresponding to the centrosomes? Is it also possible to have a zoom on the centrosome itself with split channels to illustrate the co-localization? As it is, it is not clearly shown. In the panel G, there are many foci of KDM4A in the nucleus and 2 associated with a centrin staining, which correspond to the centrosomes. However, the signals do not seem to fully colocalize. What do the authors think about this?

      Response: We have provided larger zoomed in view of the cells in Figure S1 as requested.

      Comment 7: Figure 1A: same comment as above concerning the quality of the image. I am also concerned by the g-Tubulin staining as it looks not on focus and I do not see any foci that would correspond to the centrosome position, while the merge image clearly shows yellow signal, proof of co-localisation. Could the author correct this? In the inset, can the authors zoom on the centrosomes and display the split channels so that one can appreciate the co-localization of the 2 signals?The quality and display of Fig.1B is much better. Could we have the same rendering for the interphase cells of 1A?

      Response: The picture in Figure 1A is a raw image. This image has not undergone the same post-image deconvolution applied to the other images in the manuscript. The deconvolved images reduce the KDM4A signal in the nucleus and only demonstrate the highly intense signal at the centrosomes especially in mitotic cells. If we show the deconvolved image here it would lead to the erroneous perception that there is no KDM4A signal in the nucleus and the rest of the cell. To clarify this point we have modified the figure legends to state that this is a raw image. In addition, we have also provided blow-ups of the centrosomes specifically.

      Comment 8: Fig.3D: the nucleus of the cell is really affected with many blobs or micronuclei. Is this cell dying? The authors count the number of g-tubulin foci in interphase (Fig. 3C). Could they do it in mitosis and use centrin? In mitosis, there should be 4

      Response: The cell in question is not dying and is micronucleated. The question of genomic instability is addressed later in the manuscript and hence the point was not made in this figure. We thank the reviewer for suggesting use of centrin. We have now included these data as new Figures 4C, 4D and 4E.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Centrosomes are microtubules-based structures surrounded by a pericentriolar material, serving as Microtubule Organizing Center (MTOC) and are thus important during cell division. Ensuring proper segregation of the genetic material is crucial and defects occurring during this step can lead to drastic consequences like aneuploidy and chromosome instability. It is well established that centrosome defects (number, function, structure) can give rise to defective mitosis. In the present study, Chowdhury et al. demonstrate that the lysine demethylase 4A (KDM4A), known as a chromatin methyl marks eraser, localizes to centrosomes both in interphase and mitosis and is important for centrosome homeostasis. Intriguingly, the authors propose that the novel role of KDM4A in regulating centrosome integrity is unrelated to its function in regulating gene expression but linked to its enzymatic activity without providing a mechanistic advance.

      Major Comments

      This manuscript reports convincingly the localization of KDM4A at centrosomes both in interphase and in mitosis as well as the phenotype linked to the loss of KDM4A. While these are interesting observations, there are some important aspects for improvements that are listed below:

      • Figure 1D: the RFP vector alone localizes to the centrosome. How was the signal across the cells? Can the authors provide a fluorescence intensity measurement comparing the negative control RFP and RFP-KDM4A to demonstrate the localization at centrosomes of the enzyme? While I found the endogenous staining convincing, the fusion protein is less.
      • Figure 1E-F: How specific do the authors think the interactions with CP110 and centrobin are? Do they IP the entire centrosome proteome or do they think that they reveal some specific interactions within the centrosome? Can the authors comment on this? What is the significance of these interactions? Do the authors think that KDM4A is a centriolar component? Or a PCM component? This is only briefly mentioned in the discussion, it should be extended. Did they try to IP PCM components as well?
      • Fig.S3: the signal of KDM4A seems broader than that of centrobin, with an average diameter of 749 nm. What is the diameter of centrobin for comparison using this method? The interpretation of the authors concerning this localization is not clear to me: "The quantification data of the diameter of the KDM4A distribution, independently in the different axes (x, y, z), revealed a relatively uniform/circular distribution (Fig. 2D) suggesting that KDM4A was not restrained to a particular region of the centrosome". Is KDM4A at centriole or at centrosomes? PCM or centriole component? From the interpretation stated above, it seems that KDM4A is everywhere from the proximal to the distal axis of the centriole, is it correct? But isn't more PCM?
      • Fig.4B: The authors established that there is an increase in centrosome number upon short inactivation of KDM4A by JIB-04, which affects its enzymatic activity and not the scaffolding function. In addition, the loss of KDM4A phenocopies the effect of the drug: this means that the enzymatic activity is required to control the centrosome number. This is also re-enforced by the rescue with WT enzyme and not the enzymatically dead mutant of KDM4A (looking at micronuclei formation-Fig.7). Could the author speculate on this? The fast action of the inhibitor would exclude a block in S phase as stated in the discussion. The authors mention centrosome fragmentation but there is no evidence that this is happening here. The authors mentioned several possible mechanisms in the discussion without really exploring them. The authors also mention here that the chronic loss of KDM4A could arise through a distinct mechanism than that of the inhibitor, this statement was surprising. Could the authors check if they have a cell cycle delay or block in their KO cells? While it seems that the authors would like to address these points in the future, I think that the mechanistic aspect is lacking in this study or at least some hints of it.

      Minor comments

      In general, the figures are organized in an unconventional manner with the panels from one figure distributed on several pages. Could the authors group the panels of each figure in one page to ease the understanding and the reading?

      • Figure S1F-G: the authors provide a large field of view showing a dozen of nuclei. While I acknowledge that this is to show the overall staining, it is difficult to really see the foci of KDM4A or g-Tubulin or centrin. The quality of the images looks really pixelated; this might be due to the PDF compression, but I cannot see any red signal on the panels. Could the authors enhance the B/C of the images so that one can see the signal corresponding to the centrosomes? Is it also possible to have a zoom on the centrosome itself with split channels to illustrate the co-localization? As it is, it is not clearly shown. In the panel G, there are many foci of KDM4A in the nucleus and 2 associated with a centrin staining, which correspond to the centrosomes. However, the signals do not seem to fully colocalize. What do the authors think about this?
      • Figure 1A: same comment as above concerning the quality of the image. I am also concerned by the g-Tubulin staining as it looks not on focus and I do not see any foci that would correspond to the centrosome position, while the merge image clearly shows yellow signal, proof of co-localisation. Could the author correct this? In the inset, can the authors zoom on the centrosomes and display the split channels so that one can appreciate the co-localization of the 2 signals? The quality and display of Fig.1B is much better. Could we have the same rendering for the interphase cells of 1A?
      • Fig.3D: the nucleus of the cell is really affected with many blobs or micronuclei. Is this cell dying? The authors count the number of g-tubulin foci in interphase (Fig. 3C). Could they do it in mitosis and use centrin? In mitosis, there should be 4 centrin dots (2/spindle pole), it would nicely complement the phenotype of increased number of centrioles. How do the authors interpret these supernumerary centrioles? Is it due to overduplication? Centriole fragmentation? De novo centriole formation? Or failure of cytokinesis?

      Significance

      Controlling centrosome number is key to ensure faithful chromosome segregation. Increased number of centrosomes through diverse mechanisms can lead to abnormal mitosis despite the well-known centrosome clustering mechanism that permits the formation of a bipolar spindle. In this manuscript, the authors describe the presence of a chromatin eraser KDM4A at centrosomes across the cell cycle without specific localization within the centriole. While the role of KDM4A on chromatin has been described, the authors uncovered a novel function for KDM4A through its enzymatic activity in regulating centrosome numbers that would be independent on its impact on gene expression. The findings described in this manuscript are interesting despite lacking a mechanistical understanding ("Further studies will be necessary to understand the mechanistic underpinnings and molecular targets of KDM4A enzymatic activity at the centrosome"). Conceptually, it is interesting for scientists from centrosome and mitosis fields to consider uncanonical proteins, as exemplified by the enzyme KDM4A, in regulating centrosome function.

    1. Leandro Folgar, président du conseil d'administration de l'agence nationale uruguayenne pour l'innovation en technologie éducative (CEIBAL), décrit l’évolution de ce programme depuis son lancement en 2007.

      Il souligne le succès de CEIBAL en Uruguay, attribuable à des facteurs contextuels comme un système démocratique fort et un accès généralisé à internet.

      Folgar détaille les différentes initiatives de CEIBAL, axées sur l’équité et la qualité de l’éducation, incluant la fourniture d’ordinateurs, la formation des enseignants, et l'utilisation de la science comportementale pour optimiser les interventions.

      Il met l'accent sur l'importance de l'adaptation constante du programme face aux nouveaux défis technologiques, notamment l'intelligence artificielle, pour garantir une éducation équitable pour tous.

      Enfin, il insiste sur le rôle crucial des enseignants dans le succès de la transformation numérique de l'éducation.

      Voici un résumé chronométré de la présentation de Leandro Folgar :

      0:00-2:00 : Folgar commence par présenter l’Uruguay, soulignant ses caractéristiques uniques, telles que sa forte démocratie, son PIB élevé par habitant et son engagement en faveur des énergies renouvelables.

      Il souligne le rôle de ces facteurs dans le succès de la transformation numérique du pays, en particulier dans le domaine de l’éducation.

      2:00-4:00 : Il présente ensuite le Ceibal, l’agence nationale d’innovation pour les technologies éducatives de l’Uruguay.

      Il explique comment le Ceibal a évolué à partir du programme « Un ordinateur portable par enfant » et est devenu un élément clé du paysage éducatif uruguayen. Folgar souligne l’accent mis par le Ceibal sur l’équité et la garantie que tous les enfants, y compris ceux des zones rurales, aient accès aux technologies éducatives.

      4:00-7:00 : Folgar met en évidence les initiatives clés du Ceibal, notamment la fourniture d’appareils, la connectivité Internet, des plateformes éducatives et des programmes de formation pour les enseignants.

      Il explique comment le Ceibal aborde les réparations des appareils, le développement professionnel des enseignants et l’utilisation des sciences comportementales dans l’éducation.

      7:00-9:00 : Il aborde le rôle de la science cognitive dans l’éducation et la collaboration du Ceibal avec des organisations de recherche telles que Stanford pour mener des expériences et évaluer l’impact des technologies éducatives.

      9:00-11:00 : Folgar discute des défis posés par l’intelligence artificielle dans l’éducation et de la nécessité d’une approche intentionnelle pour garantir que l’IA ne crée pas une nouvelle fracture numérique.

      Il souligne l’importance des enseignants dans l’intégration efficace des technologies dans l’éducation.

      11:00-13:00 : Il présente des exemples concrets de la manière dont le Ceibal a utilisé les sciences comportementales pour améliorer la participation des élèves aux tests et aux programmes de codage.

      Il souligne les avantages des interventions comportementales en termes de simplicité, de rentabilité et de concentration sur les obstacles structurels.

      13:00-15:00 : Folgar conclut en soulignant que la transformation numérique dans l’éducation est un marathon continu qui nécessite une collaboration entre les chercheurs, les décideurs politiques et les enseignants.

      Il réaffirme l’importance des enseignants en tant que technologie la plus importante au service de l’apprentissage.

    1. Using a balance, place weigh paper on it and zero the scale. Using that measure a metalrod and record measurement. Then take a 25 mL graduated cylinder and fill about half withwater then record the exact volume. In the graduated cylinder add the metal rod, record the newvolume.To calculate the density of a metal rod, the mass and volume of the metal rod needed tobe found. The volume was calculated by subtracting the volume of the water in a graduatedcylinder with the metal rod, by the volume of the initial water. Using that calculated volume andthe mass found by using the balance you will use the density equation d=m/v where v is equalto the volume of the cylinder, m is equal to the mass of the metal rod and d equals the density ofthe metal rod.Sugar Content Procedure & CalculationsTo begin use a 125 mL Erlenmeyer flask and fill it with about 50 mL of 2% sugar liquid.Measure a 50 mL beaker by using a balance, record value. Then using that 50 mL beaker and a10 mL volumetric pipette plus pipette filler, fill the 10 mL volumetric pipette and filler to 10.00 mLof 2% sugar. Put the liquid in the volumetric pipette into the 50mL beaker that was previouslymeasured. Next measure and record the mass of the beaker using the balance. This processwas repeated 2 more times for a total of 3 trials Then using a cranberry juice using the samesteps and doing a total of 3 trials. Once more do the same steps using root beer for a total of 3trials.To calculate the sugar content for the cranberry juice and the root beer, first calculatethe average density of the celebration standard, 2% sugar. This is found by first subtracting thefinal mass of both the beaker and the liquid by the initial mass of just the beaker to find theliquid's mass of the 2% sugar. Then using the density equation d=m/v where d= density, v=volume and m=mass. Use the mass found by subtracting the final and initial and divide it bythe constant 10 mL of 2% sugar. Then repeat this for each trial, it was repeated 2 more times fora total of 3 more times. Using the 3 density’s find the average by adding all the desitys of 2%sugar and dividing it by 3. These calculations where completed for both the cranberry juice andthe root beer. After calculating each of those using the calibration standard averages of theclass for the sugar % create a plot graph and a trend line (Figure). Using the trend line equationwhere x represents the % sugar content and y represents the density in g/mL, substitute theaverage density of both cranberry juice and the root beer into the y of the trend line equation.Then solve for x, the % sugar content.Data

      It's all written in the wrong tense

    1. u_mean.plot(ax=axes[1], label='U-Wind(m/s)') axes[1].axhline(0, color='black', linestyle='--',label='No Wind') axes[1].legend() axes[1].set_title('Zonal Mean of U-Wind', fontsize=14, fontweight='bold') #V-Wind Plot v_mean.plot(ax=axes[2], label='V-Wind(m/s)') axes[2].axhline(0, color='black', linestyle='--',label='No Wind') axes[2].legend() axes[2].set_title('Zonal Mean of V-Wind', fontsize=14, fontweight='bold')

      here the unit is [m/s] and it is best to add that to the y-label

      To make it easier to understand for the reader, I would replace U-wind by zonal wind (u-) component at 10m and "V-Wind" by meridional wind (v-) component at 10m.

    1. # Mean SLP and converted to hPa mean_slp = ds_uvslp['msl'].mean(dim=['time', 'longitude']) / 100 # Mean u and v mean_u10 = ds_uvslp['u10'].mean(dim=['time', 'longitude']) mean_v10 = ds_uvslp['v10'].mean(dim=['time', 'longitude']) # Plot fig = plt.figure(figsize=(12, 15)) # Mean SLP Plot ax0 = fig.add_subplot(3, 1, 1) ax0.plot(mean_slp['latitude'], mean_slp, label="Mean SLP", color='blue') ax0.axhline(y=1013, color='grey', linestyle='--', label="Standard atmospheric pressure (1013 hPa)") ax0.set_title("3.1: Temporal and Zonal Average of Sea-Level Pressure") ax0.set_xlabel("Latitude") ax0.set_ylabel("SLP (hPa)") ax0.legend() # Mean u10 Plot ax1 = fig.add_subplot(3, 1, 2) ax1.plot(mean_u10['latitude'], mean_u10, label="Mean u10", color='green') ax1.axhline(y=0, color='grey', linestyle='--', label="Zero line") ax1.set_title("3.2.a: Temporal and Zonal Average of u10 (m/s)") ax1.set_xlabel("Latitude") ax1.set_ylabel("u10 (m/s)") ax1.legend() # Mean v10 Plot ax2 = fig.add_subplot(3, 1, 3) ax2.plot(mean_v10['latitude'], mean_v10, label="Mean v10", color='red') ax2.axhline(y=0, color='grey', linestyle='--', label="Zero line") ax2.set_title("3.2.b: Temporal and Zonal Average of v10 (m/s)") ax2.set_xlabel("Latitude") ax2.set_ylabel("v10 (m/s)") ax2.legend() plt.show()

      Good! To make it easier to understand for the reader, I would replace u10 by zonal wind (u-) component at 10m and v10 by meridional wind (v-) component at 10m.

    1. u.plot(label = 'U-component of surface wind', color= 'orange'); v.plot(label = 'V-component of surface wind'); plt.axhline(y= 0, color= 'black'); plt.legend(loc='upper right'); plt.xlabel('Latitude'); plt.ylabel('Surface wind [m/s]'); plt.grid(); plt.title('Temporal and zonal averages of surface wind components');

      Great! Good idea to plot the two components together!

    2. slp.plot(label = 'mean sea level pressure', color= 'orange'); plt.axhline(y= 1013.25, xmin=0.045, xmax=0.955, label='standard atmosphere pressure'); plt.legend(loc='lower right'); plt.xlabel('Latitude'); plt.ylabel('Mean sealevel pressure [hPa]'); plt.grid(); plt.title('temporal and zonal average of sea-level pressure in comparison to standard pressure');

      Looks good!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Oleh et al. uses in vitro electrophysiology and compartmental modeling (via NEURON) to investigate the expression and function of HCN channels in mouse L2/3 pyramidal neurons. The authors conclude that L2/3 neurons have developmentally regulated HCN channels, the activation of which can be observed when subjected to large hyperpolarizations. They further conclude via blockade experiments that HCN channels in L2/3 neurons influence cellular excitability and pathway-specific EPSP kinetics, which can be neuromodulated. While the authors perform a wide range of slice physiology experiments, concrete evidence that L2/3 cells express functionally relevant HCN channels is limited. There are serious experimental design caveats and confounds that make drawing strong conclusions from the data difficult. Furthermore, the significance of the findings is generally unclear, given modest effect sizes and a lack of any functional relevance, either directly via in vivo experiments or indirectly via strong HCN-mediated changes in known operations/computations/functions of L2/3 neurons.

      Specific points:

      (1) The interpretability and impact of this manuscript are limited due to numerous methodological issues in experimental design, data collection, and analysis. The authors have not followed best practices in the field, and as such, much of the data is ambiguous and/or weak and does not support their interpretations (detailed below). Additionally, the authors fail to appropriately explain their rationale for many of their choices, making it difficult to understand why they did what they did. Furthermore, many important references appear to be missing, both in terms of contextualizing the work and in terms of approach/method. For example, the authors do not cite Kalmbach et al 2018, which performed a directly comparable set of experiments on HCN channels in L2/3 neurons of both humans and mice. This is an unacceptable omission. Additionally, the authors fail to cite prior literature regarding the specificity or lack thereof of Cs+ in blocking HCN. In describing a result, the authors state "In line with previous reports, we found that L2/3 PCs exhibited an unremarkable amount of sag at 'typical' current commands" but they then fail to cite the previous reports.

      We thank the reviewer for the thorough examination of our manuscript; however, we disagree with many of the raised concerns for several reasons, as detailed here:

      To address the lack of certain citations, we would like to emphasize that in the introduction section, we did initially focus on the several decades-long line of investigation into the HCN channel content of layer 2/3 pyramidal cells (L2/3 PCs), where there has undoubtedly been some controversy as to their functional contribution. We did not explicitly cite papers that claimed to find no/little HCN channels/sag- although this would be a significant list of publications from some excellent investigators, as methods used may have differed from ours leading to different interpretations. Simply stated, unless one was explicitly looking for HCN in L2/3 PCs, it might go unobserved. However, we now addressed this more clearly in the revision:

      Just to take one example: in the publication mentioned by the reviewer (Kalmbach et al 2018), the investigators did not carry out voltage clamp or dynamic clamp recordings, as we did in our work here. Furthermore, the reported input resistance values in the aforementioned paper were far above other reports in mice (Routh et al. 2022, Brandalise et al 2022, Hedrick et al 2012; which were similar to our findings here), suggesting that recordings in Kalmbach were carried out at membrane potentials where HCN activation may be less available (Routh, Brager and Johnston 2022).

      Another reason for some mixed findings in the field is undoubtedly due to the small/nonexistent sag in L2/3 current clamp recordings (in mice). We also observed a very small sag, which can be explained by the following:  The ‘sag’ potential is a biphasic voltage response emerging from a relatively fast passive membrane response and a slower Ih activation. In L2/3 PCs, hyperpolarization-activated currents are apparently faster than previously described, and are located proximally (Figure 2 & Figure 5). Therefore, their recruitment in mouse L2/3 PCs is on a similar timescale to the passive membrane response, resulting in a more monophasic response. We now include a more full set of citations in the updated introduction section, to highlight the importance of HCN channels in L2/3 PCs in mice (and other species).

      The justification for using cesium (i.e., ‘best practices’) is detailed below.

      (2) A critical experimental concern in the manuscript is the reliance on cesium, a nonspecific blocker, to evaluate HCN channel function. Cesium blocks HCN channels but also acts at potassium channels (and possibly other channels as well). The authors do not acknowledge this or attempt to justify their use of Cs+ and do not cite prior work on this subject. They do not show control experiments demonstrating that the application of Cs+ in their preparation only affects Ih. Additionally, the authors write 1 mM cesium in the text but appear to use 2 mM in the figures. In later experiments, the authors switch to ZD7288, a more commonly used and generally accepted more specific blocker of HCN channels. However, they use a very high concentration, which is also known to produce off-target effects (see Chevaleyre and Castillo, 2002). To make robust conclusions, the authors should have used both blockers (at accepted/conservative concentrations) for all (or at least most) experiments. Using one blocker for some experiments and then another for different experiments is fraught with potential confounds.

      To address the concerns regarding the usage of cesium to block HCN channels, we would like to state that neither cesium nor ZD-7288 are without off-target effects, however in our case the potential off-target effects of external cesium were deemed less impactful, especially concerning AP firing output experiments. Extracellular cesium has been widely accepted as a blocker of HCN channels (Lau et al. 2010, Wickenden et al. 2009, Rateau and Ropert 2005, Hemond et al. 2009, Yang et al. 2015, Matt et al. 2010). However, it is well known to act on potassium channels as well at higher concentrations, which has been demonstrated with intracellular and extracellular application (Puil et al. 1981, Fleidervish et al. 2008, Williams et al. 1991, 2008).

      Although we initially performed ‘internal’ control experiments to ensure the cesium concentration was unlikely to greatly block voltage gated K+ channels during our recordings, we recognize these were not included in the original manuscript. These are detailed as follows: during our recordings cesium had no significant effect on action potential halfwidth, ruling out substantial blocking of potassium channels, nor did it affect any other aspects of suprathreshold activity (now reported in results, page 4 - line 113). Furthermore, we observed similar effects on passive properties (resting membrane potential, input resistance) following ZD-7288 as with cesium, which we now also updated in our figures (Supplementary Figure 1). We did acknowledge that ZD-7288 is a widely accepted blocker of HCN, and for this reason we carried out some of our experiments using this pharmacological agent instead of cesium.

      On the other hand, ZD-7288 suffers from its own side effects, such as potential effects on sodium channels (Wu et al. 2012) and calcium channels (Sánchez-Alonso et al. 2008, Felix et al. 2003). As our aim was to provide functional evidence for the importance of HCN channels, we initially deemed these potential effects unacceptable in experiments where AP firing output (e.g., in cell-attached experiments) was measured. Nonetheless, in new experiments now included here, we found the effects of ZD and cesium on AP output were similar as shown in new Supplemental Figure 1.

      Many experiments were supported by complementary findings using external cesium and ZD-7288. For example, the effect of ZD-7288 on EPSPs was confirmed by similar synaptic stimulation experiments using cesium. This is important, as synaptic inputs of L2/3 PCs are modulated by both dendritic sodium (Ferrarese et al. 2018) and calcium channels (Landau 2022), therefore the application of ZD-7288 alone may have been difficult to interpret in isolation. We thank the reviewer for bringing up this important point.

      (3) A stronger case could be made that HCN is expressed in the somatic compartment of L2/3 cells if the authors had directly measured HCN-isolated currents with outside-out or nucleated patch recording (with appropriate leak subtraction and pharmacology). Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work. It has been shown to produce erroneous results over and over again in the field due to well-known space clamp problems (see Rall, Spruston, Williams, etc.). The authors could have also included negative controls, such as recordings in neurons that do not express HCN or in HCN-knockout animals. Without these experiments, the authors draw a false equivalency between the effects of cesium and HCN channels, when the outcomes they describe could be driven simply by multiple other cesium-sensitive currents. Distortions are common in these preparations when attempting to study channels (see Williams and Womzy, J Neuro, 2011). In Fig 2h, cesium-sensitive currents look too large and fast to be from HCN currents alone given what the authors have shown in their earlier current clamp data. Furthermore, serious errors in leak subtraction appear to be visible in Supplementary Figure 1c. To claim that these conductances are solely from HCN may be misleading.

      We disagree with the argument that “Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work”. Although this method is not without its confounds (i.e. space clamp), it is still a useful initial measure as demonstrated countless times in the literature. However, the reviewer is correct that the best approach to establish the somatodendritic distribution of ion channels is by direct somatic and dendritic outside-out patches. Due to the small diameter of L2/3 PC dendrites, these experiments haven’t been carried out yet in the literature for any other ion channel either to our knowledge. Mapping this distribution electrophysiologically may be outside the scope of the current manuscript, but it was hard for us to ignore the sheer size of the Cs<sup>+</sup> sensitive hyperpolarizing currents in whole cell. Thus, we will opt to report this data.

      Also, we should point out that space clamp-related errors manifest in the overestimation of frequency-dependent features, such as activation kinetics, and underestimation of steady-state current amplitudes. The activation time constant of our measured currents are somewhat faster than previously reported; reducing major concerns regarding space clamp errors. Furthermore, we simply do not understand what “too large… to be from HCN currents” means. Our voltage-clamp measured currents are similar to previously reported HCN currents (Meng et al. 2011, Li 2011, Zhao et al. 2019, Yu et al. 2004, Zhang et al. 2008, Spinelli et al. 2018, Craven et al. 2006, Ying et al. 2012, Biel et al. 2009).

      Furthermore, we should point out that our measured currents activated at hyperpolarized voltages, had the same voltage dependence as HCN currents, did not show inactivation, influenced both input resistance and resting membrane potential, and are blocked by low concentration extracellular cesium. Each of these features would point to HCN.

      (4) The authors present current-clamp traces with some sag, a primary indicator of HCN conductance, in Figure 2. However, they do not show example traces with cesium or ZD7288 blockade. Additionally, the normalization of current injected by cellular capacitance and the lack of reporting of input resistance or estimated cellular size makes it difficult to determine how much current is actually needed to observe the sag, which is important for assessing the functional relevance of these channels. The sag ratio in controls also varies significantly without explanation (Figure 6 vs Figure 7). Could this variability be a result of genetically defined subgroups within L2/3? For example, in humans, HCN expression in L2/3 varies from superficial and deep neurons. The authors do not make an effort to investigate this. Regardless of inconsistencies in either current injection or cell type, the sag ratio appears to be rather modest and similar to what has already been reported previously in other papers.

      We thank the reviewer for pointing out that our explanation for the modest sag ratio might have not been sufficient to properly understand why this measurement cannot be applied to layer 2/3 pyramidal cells. Briefly: sag potential emerges from a relatively (compared to I<sub>h</sub>) fast passive membrane response and a slower HCN recruitment. The opposing polarity and different timescales of these two mechanisms results in a biphasic response called “sag” potential. However, if the timescale of these two mechanisms is similar, the voltage response is not predicted to be biphasic. We have shown that hyperpolarization activated currents in our preparations are fast and proximal, therefore they are recruited during the passive response (see Figure 2g.). This means that although a substantial amount of HCN currents are activated during hyperpolarization, their activation will not result in substantial sag. Therefore, sag ratio measurement is not necessarily applicable to approximate the HCN content of mouse L2/3 PCs. We would like to emphasize that sag ratio measurements are correct in case of other cell types (i.e. L5 and CA1 PCs_,_ and our aim is not to discredit the method, but rather to show that it cannot be applied similarly in the case of mouse L2/3 PCs.

      Our own measurements, similar to others in the literature show that L2/3 PCs exhibit modest sag ratios, however, this does not mean that HCN is not relevant. I<sub>h</sub> activation in L2/3 PCs does not manifest in large sag potential but rather in a continuous distortion of steady-state responses (Figure 2b.). The reviewer is correct that L2/3 PCs are non-homogenous, therefore we sampled along the entire L2/3 axis. This yielded some potential variability in our results (i.e., passive properties); yet we did not observe any cells where hyperpolarizing-activated/Cs<sup>+</sup>-sensitive currents could not be resolved. As structural variability of L2/3 cells does result in variability in cellular capacitance, we compensated for this variability by injecting cellular capacitance-normalized currents. Our measured cellular capacitances were in accordance with previously published values, in the range of 50-120 pF. Therefore, the injected currents were not outside frequently used values. Together, we would like to state that whether substantial sag potential is present or not, initial estimates of the HCN content for each L2/3 PC should be treated with caution.

      (5) In the later experiments with ZD7288, the authors measured EPSP half-width at greater distances from the soma. However, they use minimal stimulation to evoke EPSPs at increasingly far distances from the soma. Without controlling for amplitude, the authors cannot easily distinguish between attenuation and spread from dendritic filtering and additional activation and spread from HCN blockade. At a minimum, the authors should share the variability of EPSP amplitude versus the change in EPSP half-width and/or stimulation amplitudes by distance. In general, this kind of experiment yields much clearer results if a more precise local activation of synapses is used, such as dendritic current injection, glutamate uncaging, sucrose puff, or glutamate iontophoresis. There are recording quality concerns here as well: the cell pictured in Figure 3a does not have visible dendritic spines, and a substantial amount of membrane is visible in the recording pipette. These concerns also apply to the similar developmental experiment in 6f-h, where EPSP amplitude is not controlled, and therefore, attenuation and spread by distance cannot be effectively measured. The outcome, that L2/3 cells have dendritic properties that violate cable theory, seems implausible and is more likely a result of variable amplitude by proximity.

      To resolve this issue, we made a supplementary figure showing elicited amplitudes, which showed no significant distance dependence and minimal variability (new Supplementary Figure 6). We thank the reviewer for suggesting an amplitude-halfwidth comparison control (now included as new Supplementary Figure 6).). To address the issue of the non-visible spines, we would like to note that these images are of lower magnification and power to resolve them. The presence of dendritic spines was confirmed in every recorded pyramidal cell observed using 2P microscopy at higher magnification.

      We would like to emphasize that although our recordings “seemingly” violated the cable theory, this is only true if we assume a completely passive condition. As shown in our manuscript, cable theory was not violated, as the presence of NMDA receptor boosting explained the observed ‘non-Rallian’ phenomenon.

      (6) Minimal stimulation used for experiments in Figures 3d-i and Figures 4g-h does not resolve the half-width measurement's sensitivity to dendritic filtering, nor does cesium blockade preclude only HCN channel involvement. Example traces should be shown for all conditions in 3h; the example traces shown here do not appear to even be from the same cell. These experiments should be paired (with and without cesium/ZD). The same problem appears in Figure 4, where it is not clear that the authors performed controls and drug conditions on the same cells. 4g also lacks a scale bar, so readers cannot determine how much these measurements are affected by filtering and evoked amplitude variability. Finally, if we are to believe that minimal stimulation is used to evoke responses of single axons with 50% fail rates, NMDA receptor activation should be minimal to begin with. If the authors wish to make this claim, they need to do more precise activation of NMDA-mediated EPSPs and examine the effects of ZD7288 on these responses in the same cell. As the data is presented, it is not possible to draw the conclusion that HCN boosts NMDA-mediated responses in L2/3 neurons.

      As stated in the figure legends, the control and drug application traces are from the same cell, both in figure 3 and figure 4, and the scalebar is not included as the amplitudes were normalized for clarity. We have address the effects of dendritic filtering above in answer (5), and cesium blockade above in answer (2). To reiterate, dendritic filtering alone cannot explain our observations, and cesium is often a better choice for blocking HCN channels compared to ZD-7288, which blocks sodium channels as well.

      When an excitatory synaptic signal arrives onto a pyramidal cell in typical conditions, neurotransmitter sensitive receptors transmit a synaptic current to the dendritic spine. This dendritic spine is electrically isolated by the high resistance of the spine neck and due to the small membrane surface of the spine, the synaptic current can elicit remarkably large voltage changes. These voltage changes can be large enough to depolarize the spine close to zero millivolts upon even single small inputs (Jayant et al. 2016). Therefore, to state that single inputs arriving to dendritic spines cannot be large enough to recruit NMDA receptor activation is incorrect. This is further exemplified by the substantial literature showing ‘miniature’ NMDA recruitment via stochastic vesicle release alone.

      (7) The quality of recordings included in the dataset has concerning variability: for example, resting membrane potentials vary by >15-20 mV and the AP threshold varies by 20 mV in controls. This is indicative of either a very wide range of genetically distinct cell types that the authors are ignoring or the inclusion of cells that are either unhealthy or have bad seals.

      Although we are aware of the diversity of L2/3 PCs, resolving further layer depth differences is outside the scope of our current manuscript. However, as shown in Kalmbech et al, resting membrane potential can greatly vary (>15-20 mV) in L2/3 PCs depending on distance from pia. We acknowledge that the variance in AP threshold is large and could be due to genetically distinct cell types.

      (8) The authors make no mention of blocking GABAergic signaling, so it must be assumed that it is intact for all experiments. Electrical stimulation can therefore evoke a mixture of excitatory and inhibitory responses, which may well synapse at very different locations, adding to interpretability and variability concerns.

      We thank the reviewer for pointing out our lack of detail regarding the GABAergic signaling blocker SR 95531. We did include this drug in our recordings of (50Hz stim.) signal summation, so GABAergic responses did not contaminate our recordings. We now included this information in the results section (page 5) and the methods section (page 15)

      (9) The investigation of serotonergic interaction with HCN channels produces modest effect sizes and suffers the same problems as described above.

      We do not agree with the reviewer that 50% drop in neuronal AP firing responses (Figure 7b) was a modest effect size. Thus, we opted to keep this data in the manuscript.

      (10) The computational modeling is not well described and is not biologically plausible. Persistent and transient K channels are missing. Values for other parameters are not listed. The model does not seem to follow cable theory, which, as described above, is not only implausible but is also not supported by the experimental findings.

      The model was downloaded from the Cell Type Database from the Allen Institute, with only minor modifications including the addition of dendritic HCN channels and NDMA receptors- which were varied along a wide parameter space to find a ‘best fit’ to our observations. These additions were necessary to recapitulate our experimental findings. We agree the model likely does not fully recapitulate all aspects of the dendrites, which as we hope to convey in this manuscript, are not fully resolved in mouse L2/3 PCs. This is a previously published neuronal model, and despite its potential shortcomings, is one among a handful of open-source neuronal models of a fully reconstructed L2/3 PC.

      Reviewer #2 (Public Review):

      Summary:

      This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.

      Strengths:

      The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.

      Weaknesses:

      The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.

      We thank the reviewer for pointing out our careful and well-constrained experiments and for making suggestions. The potential effects of space clamp errors are detailed in the extended explanations under Reviewer 1, Specific points (3).

      Reviewer #3 (Public Review):

      Summary:

      The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with a greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1, 2 and 6 weeks of age. Several results are supported by biophysical simulations.

      Strengths:

      The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.

      Weaknesses:

      Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis and statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (for example EPSPs, overlaid conditions) should be shown much more.

      However, on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the fact that the more selective blocker ZD7288 was used in a subset of experiments makes the choice of Cs+ as the primary blocker all the more curious); pathway-specific synaptic stimulation, for example via optogenetic activation of specific long-range inputs, to complement / support / verify the layer-specific electrical stimulation.

      We thank the reviewer for their very careful examination of our manuscript and helpful suggestions. We addressed the concerns raised in the review and presented more raw traces in our figures. Although direct dendritic HCN mapping measurements are outside the scope of the current manuscript due to the morphological constraints presented by L2/3 PCs (which explains why no other full dendritic nonlinearity distribution has been described in L2/3 PCs with this method), we nonetheless supplemented our manuscript with additional suggested experiments as suggested. For example, we included the excellent suggestion of pathway-specific optogenetic stimulation to further validate the disparate effect of HCN channels for distal and proximal inputs. We agree that ZD-7288 is a widely accepted blocker of HCN channels. However, the off-target effects on sodium channels may have significantly confounded our measurements of AP output using extracellular stimulation. Therefore, we chose low concentration cesium as the primary blocker for those experiments, but now validated several other Cs<sup>+</sup>-based results with ZD-7288 as well.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I have some issues that need clarification or correction.

      (1) On page 3, line 90, the authors state "We found that bath application of Cs+ (1mM)..." but the methods and Figure 1 state "2mM Cs+". Please check and correct.

      Correct, typo corrected.

      (2) Related to Cs+ application, the methods state that "CsMeSO4 (2mM) was bath applied..." Is this correct? CsMeSO4 is typically used intracellularly while CsCl is used extracellularly. If so, please justify. If not, please correct.

      It is correct. The justification for not using CsCl selectively extracellularly is that introducing intracellular chloride ions can significantly alter basic biophysical properties, unrelated to the cesium effect. However, no similar distinction has been made for CsMeSO4, which would exclude the use of this drug extracellularly.

      (3) The authors normalize the current injections by cell capacitance (pA/pF). Was this done because there is a significant variance in cell morphology? A bit of justification for why the authors chose to normalize the current injection this way would help. If there is significant variation in cell capacitance across cells (or developmental ages), the authors could also include these data.

      Indeed, we choose to normalize current injection to cellular capacitance due to the markedly different morphology of deep and superficial L2/3 PCs. Deeper L2/3 PCs have a pronounced apical branch, closely resembling other pyramidal cell types such as L5 PCs, while superficial L2/3 PC lack a thick main apical branch and instead are equipped with multiple, thinner apical dendrites. This morphological variation would yield an inherent bias in several of the reported measurements, therefore we corrected for it by normalizing current injection to cellular capacitance, similar to our previous recent publications (Olah, Goettemoeller et al., 2022, Goettemoeller et al. 2024, Kumar et al. 2024).

      (4) On page 15, line 445, the section heading is "PV cell NEURON modeling". Is this a typo? The models are of L2/3 pyramidal neurons, correct?  

      Correct, typo corrected.

      (5) Figures 3F and 3I are plots of the voltage integral for different inputs before and after Cs+. The y-axis label units are "pA*ms". This should be "mV*ms" for a voltage integral.  

      Correct, typo corrected.

      (6) On page 9, line 273, the text reads "Voltage clamp experiments revealed that the rectification of steady-state voltage responses to hyperpolarizing current injection was amplified with 5-CT (Fig. 7c)". Both the text and Figure 7C describe current clamp, not voltage clamp, recordings. Please check and correct.

      Correct, typo corrected.

      (7) Figure 2i looks to be a normalized conductance vs voltage (i.e. activation) plot. The y-axis shows 0-1 but the units are in nS. Is that a coincidence or an error?

      Correct, typo corrected.

      Reviewer #3 (Recommendations For The Authors):

      This is your paper. My comments are my own opinion, I don't expect you to agree or to respond. But I hope that what I wrote below will help you to understand my perspective.

      Please pardon my directness (and sheer volume) in this section - I have a lot of notes/thoughts and hope you may find some of them helpful. My high-level comments are unfortunately rather critical, and in (small) part that is because I encountered too many errors/typos/ambiguities in figures, legend, and text. I expect many would be caught with good proofreading, but uncorrected caused confusion on my part, or an inability to interpret your figures with confidence, given some ambiguity.

      The paper reads a bit like patchwork - likely a result of many "helpful" reviewers who came before me. Consider starting with and focusing on the synaptic findings, expanding the number of figures and panels dedicated to that, showing example traces for all conditions, and giving yourself the space to portray these complex experiments and results. While I'm not a fan of a large number of supplemental figures, I feel you could move the "extra" results to the supplementals to improve the focus and get right to the meat of it.

      For me, the main concern is that the evidence you present for the non-uniform HCN distribution is rather indirect. Ideally, I'd like to see patch recordings from various dendritic locations (as others have done in rats, at least; I'm not sure if L2/3 mice have had such conductance density measurements made in basal and apical dendrites). Otherwise, perhaps optical mapping, either functional or via staining. I also mention some concerns about the choice of internal and cesium. More generally, I want to see more primary data (traces), in particular for the big synaptic findings (non-uniform, L1-vs-L4 differences, NMDAR).

      We thank the reviewer for the helpful suggestions. Indeed, direct patch clamp recording is widely considered to be the best method to identify dendritic ion channel distribution, however, we choose an in silico approach instead, for several reasons. Undoubtedly, one of the main reasons to omit direct dendritic recordings was that due to the uniquely narrow apical dendrites this method is extremely challenging, with no previous examples in the literature where isolated dendritic outside-out patch recordings were achieved from this cell type. However, there are theoretical considerations as well. In primates, it has been demonstrated that HCN1 channels are concentrated on dendritic spines (Datta et al., 2023) therefore direct outside-out recordings are not adequate in these circumstances. In future experiments we could directly target L2/3 PC dendrites for outside out recordings in order to resolve dendritic nonlinearity distribution, although a cell-attached methodology may be better suited due to the HCN biophysical properties being closely regulated by intracellular signaling pathways.

      The introduction and Figures 1 and 2 are not so interesting and not entirely accurate: L2/3 do not have "abundant" HCN, nor is there an actual controversy about whether they have HCN. It's been clear (published) for years that they have about the same as all other non-PT neocortical pyramidal neurons (see e.g. Larkum 2007; Sheets 2011). Your own Figure 1A has a logarithmic scale and shows L2/3 as having the lowest expression (?) of all pyramidals and roughly 10x lower than L5 PT, but the text says "comparable", which is misleading.

      We thank the reviewer for this comment. Although there are sporadic reports in the literature about the HCN content of L2/3 PCs, most of these publications arrive to the same conclusion from the negligible sag potential (as the mentioned Larkum et al., 2007 publication); namely that L2/3 PCs do not contain significant amount of HCN channels. We have shown with voltage and current clamp recordings that this assumption is false, as sag potential is not a reliable indicator of HCN content in L2/3 PCs. With the term “controversial” we aimed to highlight the different conclusions of functional investigations (e.g. Sheets et al., 2011) and sag potential recordings (e.g. Larkum et al., 2007), regarding the importance of HCN channels in L2/3 PCs.

      Non-uniform HCN with distal lower density has already been published for a (rare) pyramidal neuron in CA1 (Bullis 2007), similar to what you found in L2/3, and different from the main CA1 population.

      We thank the reviewer for this suggestion. We have now included the mentioned citation in the introduction section (page 3).

      Express sag as a ratio or percentage, consistently. Figure out why in Figure 7 the average sag ratio is 0.02 while in Fig. S1 it is 0.07 (for V1) - that is a massive difference.

      The calculation of sag ratio is consistent across the manuscript (at -6pA.pF), except for experiments depicted in Fig. 7 where sag ratio was calculated from -2pA/pF steps. Explanation below:

      Sag should be measured at a common membrane potential, with each neuron receiving a current pulse appropriate to reach that potential. Your approach of capacitance-based may allow for the same, but it is not clear which responses are used to calculate a single sag value per cell (as in Figure 2d).

      Thank you, we now included this info in the methods section. Sag potential was measured at the -6 pA/pF step peak voltage, except for Fig. 7 as noted above. We have now included this discrepancy detail in the methods section (page 14 ). These recordings in Fig. 7 took significantly longer than any other recording in the manuscript, as it took a considerable time to reach steady-state response from 5-CT application. -6pA/pF is a current injection in the range of 400-800 pA, which was proven to be too severe for continued application in cells after more than an hour of recording. Accordingly, we decided to lower the hyperpolarizing current step in these recordings. The absolute value of sag is thus different in Fig. 7, but nonetheless the 5-CT effect was still significant. Notably, we probably wouldn’t have noticed the small sag in L2/3 here (and thus the entire study), save for the fact that we looked at -6pA/pF to begin.

      In a paper focused on HCN, I would have liked to see resonance curves in the passive characterization.

      We thank the reviewer for the suggestion. Resonance curves can indeed provide useful insights into the impact of HCN on a cell’s physiological behavior, however, these experiments are outside the scope of our current manuscript as without in vivo recordings, resonance curves do not contribute to the manuscript in our opinion.

      How did you identify L2/3? Did you target cells in L2 or L3 or in the middle, or did you sample across the full layer width for each condition? A quantitative diagram showing where you patched (soma) and where you stimulated (L1, L4) with actual measurements, would be helpful (supplemental perhaps). You mention in the text that some L2/3 don't have a tuft, suggesting some variability in morphology - some info on this would be useful, i.e. since you did fill at least some of the neurons (eg 3A), how similar/different are the dendritic arbors?

      We sampled the entire L2/3 region during our recordings. It has been published that deep and superficial L2/3  PCs are markedly different in their morphology, and a recent publication (Brandelise et al. 2023) has even separated these two subpopulations to broad-tufted and slender tufted pyramidal cells, which receive distinct subcortical inputs. Although this differentiation opens exciting avenues for future research, examining potential layer gradients in our dataset would warrant significantly higher sample numbers and is currently out of the scope of our manuscript.

      Distal vs proximal: this could use more clarification, considering how central it is to your results. What about a synapse on a basal dendrite, but 150 or 200 um from the soma, is that considered proximal? Is the distance to the soma you report measured along the 3D dendrite, along the 2D dendrite, as a straight line to the soma, or just relative to some layers or cortical markers? (I apologize if I missed this).

      We thank the reviewer for pointing out the missing description in the results section. We have amended this oversight (p15).  Furthermore, although deeper L3 PCs have characteristic apical and basal dendritic branches, when recordings were made from more superficial L2 cells, a large portion of their dendrites extended radially, which made their classification ambiguous. Therefore, we did not use “apical” and “basal” terminology in the paper to avoid confusion. Distances were measured along the 3D reconstructed surface of the recovered pyramidal cells. This information is now included in the methods.

      Line 445, "PV cell NEURON modeling" ... hmm. Everyone re-uses methods sections to some degree, but this is not confidence-inspiring, and also not from a proofreading perspective.

      We have corrected the typo.

      It seems that you constructed a new HCN NEURON mechanism when several have been published/reviewed already. Please explain your reasons or at least comment on the differences.

      There are slight differences in our model compared to previously published models. Nevertheless, we took a previously published HCN model as a base (Gasparini et al, 2004), and created our own model to fit our whole-cell voltage clamp recordings.

      Bath-applied Cs+ can change synaptic transmission (in the hippocampus; Chevaleyre 2002). But also ZD7288 has some such effects. Also, see (Harris 1995) for a Cs+ and ZD7288 comparison. As well as (Harris 1994) for more Cs+ side-effects (it broadens APs, etc). Bath-applied blockers may affect both long-range and local synapses in your recordings, via K-channels or perhaps presynaptic HCN (though I am aware of your Fig. 1e). Since you can do intracellular perfusion, you could apply ZD7288 postsynaptically (Sheets 2011), an elegant solution.

      We thank the reviewer for the suggestion. We were aware of the potential presynaptic effects of cesium (i.e., presynaptic Kv or other channel effects) and did measure PPR after cesium application (Fig. 1h), noting no effect. At Cs<sup>+</sup> concentrations used here, we now also include new data in the results showing no effect on somatically recorded AP waveform (i.e., representative of a Kv channel effect). As stated earlier for reviewer 1, we now performed additional experiments using either cesium or ZD-7288 for comparison (e.g., see updated Fig. 1; Supplementary Figure 1; Fig. 3b-e). Intracellular ZD re-perfusion is an elegant solution which we will absolutely consider in future experiments.

      K-Gluconate is reported to inhibit Ih (Velumian 1997), consider at least some control experiments with a different internal for the main synaptic finding - maybe you'll find no big change ...

      We thank the reviewer for the suggestion. Although K-Gluconate can inhibit HCN current, the use of this intracellular solution is often used in the literature to measure this current (Huang & Trussel 2014). We have chosen this intracellular solution to improve recording stability.  

      (Biel 2009) is a very comprehensive HCN review, you may find it useful.

      We thank the reviewer for bringing this to our attention, we have now included the citation in the introduction.

      "Hidden" in your title seems too much.

      We changed the title to more accurately describe our findings and removed ‘hidden’.

      While I'm glad you didn't record at room temperature, the choice of 30C seems a bit unfortunate - if you go to the trouble to heat the bath, why not at least 34C, which is reasonably standard as an approximation for physiological temperature?

      We thank the reviewer for pointing this out. The choice of 30C was made to approach physiological temperature levels, while preserving the slices for extended amounts of time which is a standard approach. Future experiments in vivo be performed to further understand the naturalistic relevance at ~37C.

      Line 506: do you mean "Hz" here? It's not a frequency, is it? I think it's a unitless ratio?

      Correct, we have amended the typo.

      Line 95: you have not shown that HCN is "essential" for "excess" AP firing.

      We have corrected the phrasing, we agree.

      Fig. 2b,c: is this data from a single example neuron, maybe the same neuron as in 2a? Or from all recorded neurons pooled?

      The data is from several recorded cells pooled.

      Fig. 3 (important figure):

      Why did you not use a paired test for panels e and f? You have the same number of neurons for each condition and the expectation is that you record each neuron in control and then in cesium condition, which would be a paired comparison. Or did you record only 1 condition per neuron?

      This figure presents your main finding (in my opinion). You should show examples of the synaptic responses, i.e. raw traces, for each condition and panel, and overlaid in such a way that the reader can immediately see the relevant comparison - it's worth the space it requires.

      We thank the reviewer for the suggestions. Traces are only overlaid in the paper when they come from the same cell. For Fig. 3d-i, EPSPs in every neuron were evoked in 2-3 different locations (i.e., 1-2 ‘L4’ locations for Type-I and Type-II synapses, and one ‘L1’ location in each) with the same stimulation pipette and one pharmacological condition per cell. Therefore two-sample t-test were used since the control and cesium conditions came from separate cells (i.e., separate observations). This was necessary, as we can never assume that the stimulating electrode can return back to the same synapse after moving it. We were not comfortable with showing overlaid traces from different cells, however, we did show representative traces from control and the Cs<sup>+</sup> conditions in Fig. 3h. Complementary ZD-7288 experiments can be found on panel b and c, where we did perform within-cell pharmacology (and thus used paired t-tests) from one stimulation area/cell. We hope these complementary experiments increase overall confidence as neither pharmacological approach is 100% without off-target effects. We now also included more overlaid traces where appropriate (i.e., Fig. 3b, and in the new  Fig. 3k experiments using within-cell pharmacology comparisons). We do realize these complementary approaches could cause confusion to the reader, and have now done our best to make the slightly different approaches in this Figure clearer in the results section.

      Consider repeating at least some of these critical experiments with ZD7288 instead of Cs+ (and not K-gluc), or even with ZD7288 pipette perfusion, if it's technically feasible here.

      We thank the reviewer for the suggestions. Although many of our recordings using Cs<sup>+</sup> already had complementary experiments (such as synaptic experiments Figure 3e vs Figure 3b), we recognize the need to extend the manuscript with more ZD-7288 experiments. We have now extended Figure 1 with three panels (Figure 1 c,d,e), which recapitulates a fundamental finding, the change in overall excitability upon HCN channel blockade, using ZD-7288 as well.

      Fig. 3a, why show a schematic (and weirdly scaled) stimulating electrode? Don't you have a BF photo showing the actual stimulating electrode, which you could trace to scale or overlay? Could you use this panel to indicate what counts as "distal" and what as "proximal", visually?

      The stimulating electrode was unfortunately not filled with florescent materials, therefore it was not captured during the z-stack.

      Fig. 3b: is the y-axis labeled correctly? A "100% change" would mean a doubling, but based on the data points here I think y=100% means "no change"?

      The scale is labeled correctly, 100% means doubling.

      Fig. 3b, c: again, show traces representing distal and proximal, not just one example (without telling us how far it was). And use those traces to illustrate the half-width measurement, which may be non-trivial.

      We have extended Figure 3b with an inset showing the effect of ZD-7288 on a proximal stimulating site. The legend now includes additional information indicating stimulating location 28 µm away from the soma in control conditions (black trace) and upon Z-7288 application (green trace).  

      Line 543, 549: it seems you swapped labels "h" and "i"?

      Typo corrected.

      Fig. 4b: to me, MK-801 only *partially* blocks amplification, but in the text L198 you write "abolish".

      We thank the reviewer for pointing this out. Indeed, there are several other subthreshold mechanisms that are still intact after pipette perfusion, which can cause amplification. We have now clarified this in the text (p7).

      Fig. 4e,f: what is the message? Uniform NMDAR? The red asterisk in (e) is at a proximal/distal ratio of roughly 1. I don't understand the meaning of the asterisk (the legend is too basic) and I'm surprised to see a ratio of 1 as the best fit, and also that the red asterisk is at a dendritic distance of 0 um in (f). This could use more explanation (if you feel it's relevant).

      We thank the reviewer for pointing this out. We have now included a better explanation in the results and figure legend. We have also updated the figure to make it clearer and added model traces in Fig. 4f, which correspond to example data from slices in Fig. 4g (both green). The graph suggests nonuniform, proximally abundant NMDA distribution. The color coding corresponds to the proximal EPSP halfwidth divided by distal EPSP halfwidth. It is true that the dendritic distance ‘center’ was best-fit very close to the soma, but also note the dispersion (distribution) half-width was >150mm, so there is quite a significant dendritic spread despite the proximal bias prediction. Based on this model there is likely NMDA spread throughout the entire dendrite, but biased proximally. Naturally, future work will need to map this at the spine level so this is currently an oversimplification. Nonetheless, a proximal NMDA bias was necessary to recapitulate findings from Fig. 3, and additional slice recordings in Fig. 4 were consistent with this interpretation.

      Fig. 4g: I feel your choice of which traces to overlay is focusing on the wrong question. As the reader, what I want to see here is an overlay of all 4 conditions for one pathway. If this is a sequential recording in a single cell (Cs, Cs+MK801, wash out Cs, MK801), then the overlay would be ideal and need not be scaled. Otherwise, you can scale it. But the L1/L4 comparison does not seem appropriate to me. I find myself trying to imagine what all the dark lines would look like overlaid, and all the light lines overlaid separately. Also, the time axis is missing from this panel. Consider a subtraction of traces (if appropriate).

      In these recordings, all EPSPs cells were measured using a stimulating electrode that was moved between L1 and L4 (only once, to keep the exact input consistent) to measure the different inputs in a single neuron. In separate sets of experiments, the same method was used but in the presence of Cs<sup>+</sup>, Cs<sup>+</sup> + MK-801, or MK-801 alone. This was the most controlled method in our hands for this type of approach, as drug wash outs were either impractical or not possible.  Overlaying four traces would have presented a more cluttered image, and were not actually performed experimentally. As our aim was to resolve the proximal-distal halfwidth relationship, therefore we deemed the within-cell L1 vs. L4 comparison appropriate. We have nonetheless added model traces in Fig. 4f, which correspond to example data from slices in Fig. 4g (both green). The bar graphs should serve also serve to illustrate the input-specific  relationship- i.e., that the only time the L1 and L4 EPSP relationship was inverted was in the presence of Cs<sup>+</sup> (green bars) and that this effect was occluded with simultaneous MK-801 in the pipette (red bars).

      Line 579: should "hyperpolarized" be depolarized?

      Corrected

      Fig. 5a: it looks like the HCN density is high in the most basal dendrites (black curve above), then drops towards the soma, then rises again in the apicals (red curve). Is that indeed how the density was modeled? If so, this is completely at odds with the impression I received from reading your text and experimental data - there, "proximal" seems to mean where the L4 axons are, and "distal" seems to mean where the L1 axons are, in other words, high HCN towards the pia and low HCN towards the white matter. But this diagram suggests a biphasic hill-valley-hill distribution of HCN (meaning there is a second "distal" region below the soma). In that case, would the laterally-distant basal dendrites also be considered distal? How does the model implement the distribution - is it 1D, 2D or 3D? As you can probably tell, this figure raised more questions for me and made me wonder why I don't have a better understanding yet of your definitions.

      We thank the reviewer for pointing this out. We agree our initial cartoon of the parameter fitting procedure was not accurate and should have just been depicted a single ‘curve’. We have now simplified it to better demonstrate what the model is testing, and also made the terms more consistent and accurate. There is no ‘second’ region in the model. We hope this better illustrates it now. We also edited the legend to be clearer. Because the model description in Fig. 4d suffered from similar shortcomings, we also modified it accordingly as well as the figure legend there.

      Fig. 5b: why is the best fit at a proximal/distal ratio of 1, yet sigma is 50 um?

      Proximal/distal bias on this figure was fitted to 0.985 (prox/distal ratio) as we modeled control conditions, with intact NDMA and HCN channels,  which closely approximated the control recording comparisons.

      Fig. 6h, Line 662: "vs CsMeSO4 ... for putative LGN events" The panel shows proximal vs distal, not control vs Cs+. What's going on here?

      Typo corrected.

      Fig. 7e: the ctrl sag ratio here averages 0.02, while in Fig. S1 the average (for V1 and others) is about 0.07.  Please refer to our answer given to the previous question regarding sag ratio measurements. Briefly, recordings made with 5-CT application were made using a less severe, -2 pA/pF current injection to test seg responses. This more modest hyperpolarization activated less HCN channels, therefore the sag ratio is lower compared to previously reported datapoints.

      We have included this explanation in the methods section (page 14)

      Now hear you are using a paired test for this pharmacology, but you didn't previously (see my earlier comments/questions).

      Paired t-test were used for these experiments as these control and test datapoints came from the same cell. Cells were recorded in control conditions, and after drug application.

      Line 137: single-axon activation: but cortical axons make multi-synaptic contacts, at least for certain types of pre- and post-synaptic neurons, and (e.g. in L5-L5 pairs) those contacts can be distributed across the entire dendritic arbor. In other words, it's possible that when you stimulate in L1, you activate local axons, and the signal could then propagate to multiple synaptic contact locations, some being distal and some proximal. Maybe you have reasons to believe you're able to avoid this?

      We thank the reviewer for this question. Cortical axons often make distributed contacts, however, top-down and bottom-up pathways innervating L2/3 PCs are at least somewhat restricted to L2/3/L4 and L1, respectively (Shen et al. 2022, Sermet et al. 2019). Therefore, due to the lack evidence suggesting a heavily mixed topographical distribution for top-down and bottom-up inputs, we have reason to believe that L1 stimulation will result in mainly distal input recruitment, while L4 stimulation will mainly excite proximal dendritic regions. The resolution of our experiments was also improved by the minimal stimulation and visual guidance (subset of experiments) of the stimulation. Furthermore, new optogenetic experiments stimulating LGN and LM axons, which have been anatomically defined previously as biased to deeper layers and L1, respectively, were now also performed (Fig. 3j-l) with analogous cesium effects as our local electrical stimulation experiments. Future work using varying optogenetic stimulation parameters will expand on this.

      L140: "previous reports" ==> citation needed.

      We have inserted the citation needed.

      L149: "arriving to layer 1"; but I think earlier you noted that some or many L2/3 neurons lack a dendritic tuft; do they all nevertheless have dendrites in L1? Note that cortico-cortical long-range axons still need to pass through all cortical layers on their way up to L1.

      We thank the reviewer for the question. Although the more superficial L2/3 PCs lack distinct apical tuft, their dendrites reach the pia similarly to deeper L2/3 PCs. All of our recorded and post-hoc recovered cells had dendrites in L1, except in cases where they were clearly cut during the slicing procedure, which cells were occluded from the study.

      When you write "L4 axons" or "L4 inputs", do you specifically mean long-range thalamic axons? Or axons from local L4 neurons? What about axons in L4 that originate from L5 pyramidal neurons?

      In case of ‘L4’ axons, we cannot disambiguate these inputs a priori, as they are both part of the bottom-up pathway, and are possibly experimentally indistinguishable. Even with restricted opto LGN stimulation, disynaptic inputs via L4 PCs cannot be completely ruled out under our conditions. On the other hand, the probability of L5 PC axons to terminate on L2/3 PCs is exceedingly low (single reported connection out of 1145 potential connections; Hage et al. 2022). We did find two clearly different synaptic subpopulations (Supp. Fig 3) in L4- which was tempting to classify as one or the other. However we felt there was not enough evidence in the literature as well as our additional optogenetic experiments to make a classification on the source of these different L4 inputs. Thus we deemed them as Type-I or Type-II for now.

      Do you inject more holding current to compensate for the resting membrane potential when Cs+ or ZD7288 is in the bath?

      We thank the reviewer for the question. We did not inject a compensatory current, as we wanted to investigate the dual, physiologically relevant action of HCN channels (George et al. 2009)

      I'd like to see distributions (histograms) of L4 and L1 EPSP amplitudes, under control conditions and ideally also under HCN block.

      We have now extended the manuscript with a supplementary figure (Supplementary Figure 6) to show that EPSP peak was not distance dependent in control conditions, and there was no relationship between peak and halfwidth in our dataset.

      Line 186, custom pipette perfusion: why not use this for internal ZD7288, to make it cell-specific?

      We thank the reviewer for the question, this is a good point. In future work we will consider this when applicable. It is certainly a way to control for bath application confounds in many ways.

      L205: "recapitulate our experimental findings" - which findings do you mean? I think a bit of explanation/referencing would help.

      Corrected.

      Line 210: L4-evoked were narrower than L1-evoked: is this not expected based on filtering?

      We thank the reviewer for pointing this out, the word “Intriguingly” has been omitted.

      Line 231 and 235: "in L5 PCs" should be restricted to L5 PT-type PCs.

      We have corrected this throughout the manuscript.

      Neuromodulation, Fig. 7, L263-282: the neuromodulation finding is interesting. However, a bit like the developmental figure, it feels "tacked on" and the transition feels a bit awkward. I think you may want to discuss/cite more of the existing literature on neuromodulatory interactions with HCN (not just L2/3). Most importantly, what I feel is missing is a connection to your main finding, namely L1 and L4 inputs. Does serotonergic neuromodulation put L1 and L4 back on equal footing, or does it exaggerate the differences?

      We thank the reviewer for the question. We agree with the reviewer that Figure 7 does not give a complete picture about how the adult brain can capitalize on this channel distribution, as our intention was to show that HCN channels are not a stationary feature of L2/3 PC, but a feature which can be regulated developmentally and even in the adult brain via neuromodulation. In other words, the subthreshold NMDA boosting we observed can be gated by HCN, depending on developmental stage and/or neuromodulatory state of the system. We have now added some brief language to better introduce the transition and its relevance to the current study in the results (p8), and discussed the implications in the discussion section of the original manuscript.

      General comment: different types/sources of synapses may have different EPSP kinetics. I feel this is not mentioned/discussed adequately, considering your emphasis on EPSPs/HCN.

      See points above on input-specific synaptic diversity.

      Line 319/320: enriched distal HCN is found in L5 PT-type, not in all L5 PCs.

      Corrected

      L320: CA1 reportedly has a subset of pyramidal neurons that have higher proximal HCN than distal (I gave the citation above). In light of that, I think "unprecedented" is an overstatement.

      Corrected.

      Methods:

      L367: What form of anesthesia was used?

      Amended.

      Which brain areas, and how?

      Amended.

      Why did you first hold slices at 34C, but during recording hold at 30C?

      We held the slices at 34C to accelerate the degradation of superficial damaged parts of the slice, which is in line with currently used acute slice preparation methodologies, regardless of the subsequent recording temperature.

      Pipette resistance/tip size?

      Amended.

      Cell-attached recordings (L385): provide details of recordings. What was the command potential (fixed value, or did you adjust it per neuron by some criteria)?

      Amended.

      What type of stimulating electrode did you use? If glass, what solution is inside, and what tip size?

      We thank the reviewer for pointing these out, the specific points were added to the methods section.

      L392/393: you adjusted the holding (bias) current to sit at -80 mV. What were the range and max values of holding current? Was -80 mV the "raw" potential, or did it account for liquid junction? If you did not account for liquid junction potential, then would -80 in your hands effectively be between -95 and -90 mV? That seems unusually hyperpolarized.

      All cells were held with bias holding currents between -50 pA and 150 pA. To be clear, as mentioned below, we did not change the bias current after any drug applications. We did not correct for liquid junction potential, and cells were ‘held‘ with bias current at -80 mV as during our recordings, as 1) this value was apparently close to the RMP (i.e. little bias current needed at this voltage on average) (Fig. 2e) and 2) to keep consistent conditions across recordings. The uncorrected -80 mV is in the range of previously reported membrane potential values both in vivo and in vitro (Svoboda et al. 1999, Oswald et al. 2008, Luo et al. 2017), which found the (corrected) RMP to be below -80mV. Naturally this will not reflect every in vivo condition completely and further investigation using naturalistic conditions in the future are warranted.  

      Did you adjust the bias current during/after pharmacology?

      Bias current was not adjusted in order to resolve the effect on resting membrane potential.

      L398: sag calculation could use better explanation: how did you combine/analyze multiple steps from a single neuron when calculating sag? Did you choose one level (how) or did you average across step sizes or ...?

      Sag ratio was measured at -6 pA/pF current step except for one set of experiments in Fig. 7. Methods section was amended.

      L400, 401: 10 uM Alexa-594 or 30 um Alexa-594, which is correct?

      10 µM is correct, typo was corrected

      L445: "PV cell" seems like a typo?

      Typo is corrected.

      L450: "altered", please describe the algorithm or manual process.

      Alterations were made manually.

      L474: NDMA, typo.

      Typo is fixed.

      L474: "were adjusted", again please describe the process.

      Adjustments were made by a grid-search algorithm.

      Biel, M., Wahl-Schott, C., Michalakis, S., & Zong, X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiological reviews, 89(3), 847-885. https://journals.physiology.org/doi/full/10.1152/physrev.00029.2008 - (very comprehensive review of HCN)

      Bullis JB, Jones TD, Poolos NP. Reversed somatodendritic I(h) gradient in a class of rat hippocampal neurons with pyramidal morphology. J Physiol. 2007 Mar 1;579(Pt 2):431-43. doi: 10.1113/jphysiol.2006.123836. Epub 2006 Dec 21. PMID: 17185334; PMCID: PMC2075407. https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2006.123836 - (CA1 subset (PLPs) have a reversed HCN gradient; cell-attached patches, NMDAR)

      Velumian AA, Zhang L, Pennefather P, Carlen PL. Reversible inhibition of IK, IAHP, Ih, and ICa currents by internally applied gluconate in rat hippocampal pyramidal neurones. Pflugers Arch. 1997 Jan;433(3):343-50. doi: 10.1007/s004240050286. PMID: 9064651. https://link.springer.com/article/10.1007/s004240050286 - (K-Gluc internal inhibits HCN)

      Sheets, P. L., Suter, B. A., Kiritani, T., Chan, C. S., Surmeier, D. J., & Shepherd, G. M. (2011). Corticospinal-specific HCN expression in mouse motor cortex: I h-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. Journal of neurophysiology, 106(5), 2216-2231. https://journals.physiology.org/doi/full/10.1152/jn.00232.2011 - (L2/3 IT have same sag ratio as all other non-PT pyramidals, roughly 5% (vs 20% PT); intracellular ZD7288 used at 10 or 25 um)

      Harris NC, Constanti A. Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J Neurophysiol. 1995 Dec;74(6):2366-78. doi: 10.1152/jn.1995.74.6.2366. PMID: 8747199. https://journals.physiology.org/doi/abs/10.1152/jn.1995.74.6.2366 - (comparison Cs+ and ZD7288)

      Harris, N. C., Libri, V., & Constanti, A. (1994). Selective blockade of the hyperpolarization-activated cationic current (Ih) in guinea pig substantia nigra pars compacta neurones by a novel bradycardic agent, Zeneca ZM 227189. Neuroscience letters, 176(2), 221-225. https://www.sciencedirect.com/science/article/abs/pii/0304394094900876 - (Cs+ is not HCN-selective; it also broadens APs, reduces the AHP)

      Chevaleyre, V., & Castillo, P. E. (2002). Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proceedings of the National Academy of Sciences, 99(14), 9538-9543. https://pnas.org/doi/abs/10.1073/pnas.142213199 - (Cs+ blocks K channels, increases transmitter release; but also ZD7288 affects synaptic transmission)

      Thank you

    1. Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (post-synaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [1]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task?<br /> (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:<br /> (7a) for instance the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.<br /> (7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.<br /> (7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      (1) https://www.nature.com/articles/s41467-020-17236-y

    2. Author response:

      Reviewer #1 (Public review):

      Summary:

      Can a plastic RNN serve as a basis function for learning to estimate value. In previous work this was shown to be the case, with a similar architecture to that proposed here. The learning rule in previous work was back-prop with an objective function that was the TD error function (delta) squared. Such a learning rule is non-local as the changes in weights within the RNN, and from inputs to the RNN depends on the weights from the RNN to the output, which estimates value. This is non-local, and in addition, these weights themselves change over learning. The main idea in this paper is to examine if replacing the values of these non-local changing weights, used for credit assignment, with random fixed weights can still produce similar results to those obtained with complete bp. This random feedback approach is motivated by a similar approach used for deep feed-forward neural networks.

      This work shows that this random feedback in credit assignment performs well but is not as well as the precise gradient-based approach. When more constraints due to biological plausibility are imposed performance degrades. These results are not surprising given previous results on random feedback. This work is incomplete because the delay times used were only a few time steps, and it is not clear how well random feedback would operate with longer delays. Additionally, the examples simulated with a single cue and a single reward are overly simplistic and the field should move beyond these exceptionally simple examples.

      Strengths:

      • The authors show that random feedback can approximate well a model trained with detailed credit assignment.

      • The authors simulate several experiments including some with probabilistic reward schedules and show results similar to those obtained with detailed credit assignments as well as in experiments.

      • The paper examines the impact of more biologically realistic learning rules and the results are still quite similar to the detailed back-prop model.

      Weaknesses:

      • The authors also show that an untrained RNN does not perform as well as the trained RNN. However, they never explain what they mean by an untrained RNN. It should be clearly explained. These results are actually surprising. An untrained RNN with enough units and sufficiently large variance of recurrent weights can have a high-dimensionality and generate a complete or nearly complete basis, though not orthonormal (e.g: Rajan&Abbott 2006). It should be possible to use such a basis to learn this simple classical conditioning paradigm. It would be useful to measure the dimensionality of network dynamics, in both trained and untrained RNN's.

      Thank you for pointing out the lack of explanation about untrained RNN. Untrained RNN in our simulations (except Fig. 6D/6E-gray-dotted) was randomly initialized RNN (i.e., connection weights were drawn from a pseudo normal distribution) that was used as initial RNN for training of value-RNNs. As you suggested, the performance of untrained RNN indeed improved as the number of units increased (Fig. 2J), and its highest part was almost comparable to the highest performance of trained value-RNNs (Fig. 2I). In the revision we will show the dimensionality of network dynamics (as you have suggested), and eigenvalue spectrum of the network.

      • The impact of the article is limited by using a network with discrete time-steps, and only a small number of time steps from stimulus to reward. What is the length of each time step? If it's on the order of the membrane time constant, then a few time steps are only tens of ms. In the classical conditioning experiments typical delays are of the order to hundreds of milliseconds to seconds. Authors should test if random feedback weights work as well for larger time spans. This can be done by simply using a much larger number of time steps.

      Thank you for pointing out this important issue, for which our explanation was lacking and our examination was insufficient. We do not consider that single time step in our models corresponds to the neuronal membrane time constant. Rather, for the following reasons, we assume that the time step corresponds to several hundreds of milliseconds:

      - We assume that single RNN unit corresponds to a small neuron population that intrinsically (for genetic/developmental reasons) share inputs/outputs and are mutually connected via excitatory collaterals.

      - Cortical activity is suggested to be sustained not only by fast synaptic transmission and spiking but also, even predominantly, by slower synaptic neurochemical dynamics (Mongillo et al., 2008, Science "Synaptic Theory of Working Memory" https://www.science.org/doi/10.1126/science.1150769).

      - In line with such theoretical suggestion, previous research examining excitatory interactions between pyramidal cells, to which one of us (the corresponding author Morita) contributed by conducting model fitting (Morishima, Morita, Kubota, Kawaguchi, 2011, J Neurosci, https://www.jneurosci.org/content/31/28/10380), showed that mean recovery time constant from facilitation for recurrent excitation among one of the two types of cortico-striatal pyramidal cells was around 500 milliseconds.

      If single time step corresponds to 500 milliseconds, three time steps from cue to reward in our simulations correspond to 1.5 sec, which matches the delay in the conditioning task used in Schultz et al. 1997 Science. Nevertheless, as you pointed out, it is necessary to examine whether our random feedback models can work for longer delays, and we will examine it in our revision.

      • In the section with more biologically constrained learning rules, while the output weights are restricted to only be positive (as well as the random feedback weights), the recurrent weights and weights from input to RNN are still bi-polar and can change signs during learning. Why is the constraint imposed only on the output weights? It seems reasonable that the whole setup will fail if the recurrent weights were only positive as in such a case most neurons will have very similar dynamics, and the network dimensionality would be very low. However, it is possible that only negative weights might work. It is unclear to me how to justify that bipolar weights that change sign are appropriate for the recurrent connections and inappropriate for the output connections. On the other hand, an RNN with excitatory and inhibitory neurons in which weight signs do not change could possibly work.

      Our explanation and examination about this issue were insufficient, and thank you for pointing it out and giving us helpful suggestion. In the Discussion (Line 507-510) of the original manuscript, we described "Regarding the connectivity, in our models, recurrent/feed-forward connections could take both positive and negative values. This could be justified because there are both excitatory and inhibitory connections in the cortex and the net connection sign between two units can be positive or negative depending on whether excitation or inhibition exceeds the other." However, we admit that the meaning of this description was not clear, and more explicit modeling will be necessary as you suggested.

      Therefore in our revision, we will examine models, in which inhibitory units (modeling fast-spiking (FS) GABAergic cells) will be incorporated, and neuron will follow Dale’s law.

      • Like most papers in the field this work assumes a world composed of a single cue. In the real world there many more cues than rewards, some cues are not associated with any rewards, and some are associated with other rewards or even punishments. In the simplest case, it would be useful to show that this network could actually work if there are additional distractor cues that appear at random either before the CS, or between the CS and US. There are good reasons to believe such distractor cues will be fatal for an untrained RNN, but might work with a trained RNN, either using BPPT or random feedback. Although this assumption is a common flaw in most work in the field, we should no longer ignore these slightly more realistic scenarios.

      Thank you very much for this insightful comment. In our revision, we will examine situations where there exist not only reward-associated cue but also randomly appeared distractor cues.

      Reviewer #2 (Public review):

      Summary:

      Tsurumi et al. show that recurrent neural networks can learn state and value representations in simple reinforcement learning tasks when trained with random feedback weights. The traditional method of learning for recurrent network in such tasks (backpropagation through time) requires feedback weights which are a transposed copy of the feed-forward weights, a biologically implausible assumption. This manuscript builds on previous work regarding "random feedback alignment" and "value-RNNs", and extends them to a reinforcement learning context. The authors also demonstrate that certain non-negative constraints can enforce a "loose alignment" of feedback weights. The author's results suggest that random feedback may be a powerful tool of learning in biological networks, even in reinforcement learning tasks.

      Strengths:

      The authors describe well the issues regarding biologically plausible learning in recurrent networks and in reinforcement learning tasks. They take care to propose networks which might be implemented in biological systems and compare their proposed learning rules to those already existing in literature. Further, they use small networks on relatively simple tasks, which allows for easier intuition into the learning dynamics.

      Weaknesses:

      The principles discovered by the authors in these smaller networks are not applied to deeper networks or more complicated tasks, so it remains unclear to what degree these methods can scale up, or can be used more generally.

      In our revision, we will examine more biologically realistic models with excitatory and inhibitory units, as well as more complicated tasks with distractor cues. We will also consider whether/how the depth of networks can be increased, though we do not currently have concrete idea on this last point. Thank you also for giving us the detailed insightful 'recommendations for authors'. We will address also them in our revision.

      Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (post-synaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      Thank you for this insightful comment. We have realized that this is actually an issue that would need multilateral considerations. A previous study of one of us (Wärnberg & Kumar, 2023 PNAS) assumed that DA represents a vector error rather than a scalar RPE, and thus homogeneous DA was considered as negative control because it cannot represent vector error other than the direction of (1, 1, .., 1). In contrast, the present work assumed that DA represents a scalar RPE, and then homogeneous DA (i.e., constant feedback) would not be said as a failure mode because it can actually represent a scalar RPE and FA to the direction of (1, 1, .., 1) should in fact occur. And this FA to (1, 1, ..., 1) may actually be interesting because it means that if heterogeneity of DA inputs is not large and the feedback is not far from (1, 1, ..., 1), states are learned to be represented in such a way that simple summation of cortical neuronal activity approximates value, thereby potentially explaining why value is often correlated with regional activation (fMRI BOLD signal) of not only striatal but also cortical regions (which I have been considering as an unresolved mystery). But on the other hand, the case with constant feedback is the same as the simple delta rule, as you pointed out, and then what could be obtained from the present analyses would be that FA is actually occurring behind the successful operation of such a simple rule. Anyway we will make further examinations and considerations on this issue.

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      In response to this insightful comment, we considered concrete predictions of our models. In the FA model, the feedback vector c and the value-weight vector w are initially at random (on average orthogonal) relationships and become gradually aligned, whereas in the non-negative model, the vectors c and w are loosely aligned from the beginning. We considered how the vectors c and w can be experimentally measured. Each element of the feedback vector c is multiplied with TD-RPE, modulating the degree of update in each pyramidal cell (more accurately, pyramidal cell population that corresponds to single RNN unit). Thus each element of c could be measured as the magnitude of response of each pyramidal cell to DA stimulation. The element of the value-weight vector w corresponding to a given pyramidal cell could be measured, if striatal neuron that receives input from that pyramidal cell can be identified (although technically demanding), as the magnitude of response of the striatal neuron to activation of the pyramidal cell.

      Then, the abovementioned predictions can be tested by (i) identify cortical, striatal, and VTA regions that are connected by meso-cortico-limbic pathway and cortico-striatal-VTA pathway, (ii) identify pairs of cortical pyramidal cells and striatal neurons that are connected, (iii) measure the responses of identified pyramidal cells to DA stimulation, as well as the responses of identified striatal neurons to activation of the connected pyramidal cells, and (iv) test whether the DA->pyramidal responses and the pyramidal->striatal responses are associated across pyramidal cells, and whether such associations develop through learning. We will elaborate this tentative idea, and also other ideas, in our revision.

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [https://www.nature.com/articles/s41467-020-17236-y]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task?

      In reply to this suggestion, we will explore how our results compare to the previous studies including the paper [https://www.nature.com/articles/s41467-020-17236-y], and explore benefits of our models. At preset, we think of one possible direction. According to our results (Fig. 6E), under the non-negativity constraint, the model with random feedback and monotonic plasticity rule (bioVRNNrf) performed better, on average, than the model with backprop and non-monotonic plasticity rule (revVRNNbp) when the number of units was large, though the difference in the performance was not drastic. We will explore reasons for this, and examine if this also applies to cases with more realistic models, e.g., having separate excitatory and inhibitory units (as suggested by other reviewer).

      (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      In reply to this comment and also other reviewer's comment, we will examine the performance of the different models in more complex tasks, e.g., having distractor cues or longer delays. We will also see whether or not the better performance of bioVRNNrf than revVRNNbp mentioned in the previous point applies to the different tasks.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:

      (7a) for instance the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.

      (7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.

      (7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      Thank you for your helpful suggestions. We will thoroughly revise our writings.

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      We will make considerations on whether/how the non-negative constraints could have any benefits other than biological plausibility, in particular, in theoretical aspects or applications using neuro-morphic hardware, while we will also elaborate the links to biology and concretize the model's predictions.

    1. g h

      in figure 3D some possible candidate genes were identified for flesh color. in 6G and 6H, we see an accumulation of the favorable allele in the promotor of one of these candidates, IbOr, during sweet potato improvement.

    1. San Pablo recuerda que nadie es tentado más allá de sus posibilidades, porque el Señor no nos abandona nunca y, con Él cerca, podemos vencer toda tentación

      esperanza

    2. El problema es cómo poder leerla, porque también esta tiene algo importante que decirnos, y si tenemos prisa en liberarnos de ella, corremos el riesgo de perderla.

      interesante

    1. y spouse cheated onme—that was a wake up call. I started asking myself, “What do YOUwant?”, “What makes YOU happy?” I think like many people I had gonealong [in] life not questioning many things along the way. As a 40-year-old woman, I feel like this is the time I’m becoming an adult—it’s now,but it hasn’t completely happened ye

      Do these question make you become an adult any sooner?

    2. I feel that only when I’m able to support myself �nancially willI be a true “adult.” Some of the traditional markers of adulthood(turning 18, turning 21) have come and gone without me feeling anymore adult-y, and I don’t think that marriage would make me feel grownup unless it was accompanied by �nancial independence.

      Financial independence could be the sign of adulthood.

    Annotators

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The use of antalarmin, a selective CRF1 receptor antagonist, prevents the deficits in sociability in (acutely) morphine-treated males, but not in females. In addition, cell-attached experiments show a rescue to control levels of the morphine-induced increased firing in PVN neurons from morphine-treated males. Similar results are obtained in CRF receptor 1-/- male mice, confirming the involvement of CRF receptor 1-mediated signaling in both sociability deficits and neuronal firing changes in morphine-treated male mice.

      Strengths:

      The experiments and analyses appear to be performed to a high standard, and the manuscript is well written and the data clearly presented. The main finding, that CRF-receptor plays a role in sociability deficits occurring after acute morphine administration, is an important contribution to the field.

      Weaknesses:

      The link between the effect of pharmacological and genetic modulation of CRF 1 receptor on sociability and on PVN neuronal firing, is less well supported by the data presented. No evidence of causality is provided.

      Major points:

      (1) The results of behavioral tests and the neural substrate are purely correlative. To find causality would be important to selectively delete or re-express CRF1 receptor sequence in the VPN. Re-expressing the CRF1 receptor in the VPN of male mice and testing them for social behavior and for neuronal firing would be the easier step in this direction.

      We agree with this comment and have acknowledged that further studies, such as genetic or pharmacological inactivation of CRF<sub>1</sub> receptors selectively in the paraventricular nucleus of the hypothalamus (PVN), are warranted to address this issue (page 17, line 25 to page 18, line 1).

      We would also like to mention that our manuscript title intentionally presented our findings separately without implying causality. Our idea was simply to pair the behavioral data to neural activity within a network of interest, i.e., the PVN CRF-oxytocin (OXY)/arginine-vasopressin (AVP) network, which is thought to play a critical role at the interface of substance use disorders and social behavior. Accordingly, we previously reported that genetic CRF<sub>2</sub> receptor deficiency reliably eliminated sociability deficits and hypothalamic OXY and AVP expression induced by cocaine withdrawal (Morisot et al., 2018). Thus, the present manuscript reliably shows that CRF<sub>1</sub> receptor-mediated effects of acute morphine administration upon social behavior are consistently mirrored by neural activity changes within the PVN, and particularly within its OXY<sup>+</sup>/AVP<sup>+</sup> neuronal populations. In addition, we demonstrate that the latter effects are sex-linked, which is in line with previous reports of sex-biased CRF<sub>1</sub> receptor roles in rodents (Rosinger et al., 2019; Valentino et al., 2013) and humans (Roy et al., 2018; Weber et al., 2016).

      (2) It would be interesting to discuss the relationship between morphine dose and CRF1 receptor expression.

      We are not aware of studies reporting CRF<sub>1</sub> receptor expression following acute morphine administration. However, repeated heroin self-administration was shown to increase CRF<sub>1</sub> receptor expression in the ventral tegmental area (VTA). We have mentioned the latter study in the present revised version of our manuscript at page 18, lines 1-2.

      (3) It would be important to show the expression levels of CRF1 receptors in PVN neurons in controls and morphine-treated mice, both males and females.

      We agree with this reviewer comment and, in the present version of the manuscript, have mentioned that examination of CRF<sub>1</sub> receptor expression in the PVN might help to understand the brain mechanisms underlying morphine effects upon social behavior (page 18, lines 2-6). Moreover, at page 15, lines 11-19 we have mentioned studies showing higher levels of the CRF<sub>1</sub> receptor in the PVN of adult (2 months) and old (20-24 months) male mice, as compared to adult and old female mice (Rosinger et al., 2019). Thus, differences in PVN CRF<sub>1</sub> receptor expression between male and female mice might underlie the sex-linked effects of CRF<sub>1</sub> receptor antagonism by antalarmin reported in our manuscript.

      (4) It would be important to discuss the mechanisms by which CRF1 receptor controls the firing frequency of APV+/OXY+ neurons in the VPN of male mice.

      Using the in situ hybridization technique, studies reported relatively low expression of the CRF<sub>1</sub> receptor in the PVN (Van Pett et al., 2000). However, more recent studies using genetic approaches identified a substantial population of CRF<sub>1</sub> receptor-expressing neurons within the PVN (Jiang et al., 2019, 2018). These CRF<sub>1</sub> receptor-expressing neurons are believed to respond to local CRF release and likely form bidirectional connections with both CRF and OXY+/AVP+ neurons (Jiang et al., 2019, 2018). Thus, one proposed mechanism of action is that morphine increases intra-PVN release of CRF, which may act on intra-PVN CRF<sub>1</sub> receptor-expressing neurons. The latter neurons might in turn influence the activity of PVN OXY+/AVP+ neurons, which largely project to the VTA and the bed nucleus of the stria terminalis (BNST) to modulate social behavior. Within this framework, pharmacological or genetic inactivation of CRF<sub>1</sub> receptors might deregulate the activity of intra-PVN CRF-OXY/AVP interactions and thus interfere with opiate-induced social behavior deficits. In particular, the latter phenomenon might be more pronounced in male mice since they express more CRF<sub>1</sub> receptor-positive neurons in the PVN, as compared to female mice (Rosinger et al., 2019). The putative mechanisms of action described herein are also mentioned at page 16, lines 12 to page 17, line 7 of the present revised version of the manuscript.

      Minor points:

      (1) The phase of the estrous cycles in which females are analyzed for both behavior and electrophysiology should be stated.

      The normal estrous cycle of laboratory mice is 4-5 days in length, and it is divided into four phases (proestrus, estrus, metestrus and diestrus). The three-chamber experiments were generally carried out over a 5-day period, thus spanning across the entire estrous cycle. In particular, on each test day approximately the same number of mice was assigned to each experimental group. Thus, within each group the number of female mice tested on each phase of the estrous cycle was likely similar. Moreover, except for firing frequency displayed by vehicle/morphine-treated mice, female and male mice showed similar results variability, indicating a marginal role for the estrous cycle in the spread of data. We would also like to mention relatively recent studies indicating no significant difference over different phases of the estrous cycle in the social interaction test as well as in anxiety-like and anhedonia-like behavioral tests in C57BL/6J female mice (Zhao et al., 2021). Accordingly, similar findings were also reported by other authors who found no difference across the diestrus and estrus phases of the estrous cycle in C57BL/6J female mice tested in behavioral assays of anxiety-like, depression-like and social interaction (Zeng et al., 2023).

      A paragraph has been added to page 20, lines 1-9 of the present version of the manuscript to explain why we did not monitor the estrous cycle in female mice.

      (2) It would be important to show the statistical analysis between sexes.

      Following this reviewer comment, we examined the sociability ratio results by a three-way ANOVA with sex (males vs. females), pretreatment (vehicle vs. antalarmin) and treatment (saline vs. morphine) as between-subjects factors. The latter analysis revealed an almost significant sex X pretreatment X treatment interaction effect (F<sub>1,53</sub>=3.287, P=0.075), which could not allow for post-hoc individual group comparisons. Nevertheless, Newman-Keuls post-hoc comparisons revealed that male mice treated with antalarmin/morphine showed higher sociability ratio than female mice treated with antalarmin/morphine (P<0.05). The latter statistical results have been added to the present revised version of the manuscript at page 7, lines 2-8.

      We also examined neuronal firing frequency by a three-way ANOVA with sex (males vs. females), pretreatment (vehicle vs. antalarmin) and treatment (saline vs. morphine) as between-subjects factors. Analysis of firing frequency of all of the recorded cells in C57BL/6J mice revealed a sex X pretreatment X treatment interaction effect (F<sub>1,195</sub>=4.765, P<0.05). Newman-Keuls post-hoc individual group comparisons revealed that male mice treated with vehicle/morphine showed higher firing frequency than all other male and female groups (P<0.0005). Moreover, male mice treated with antalarmin/morphine showed lower firing frequency than male mice treated with vehicle/morphine (P<0.0005). In net contrast, female mice treated with antalarmin/morphine did not differ from female mice treated with vehicle/morphine (P=0.914). The latter statistical results have been added to the present revised version of the manuscript at page 8, lines 4-12. Finally, similar results were obtained following the three-way ANOVA (sex X pretreatment X treatment) of firing frequency recorded in the subset of neurons co-expressing OXY and AVP (data not shown).

      Thus, sex-linked responses to morphine were detected also by three-way ANOVAs including sex as a variable. However, in the revised version of the manuscript we did not include novel figures combining the two sexes because it would have been largely redundant with the figures already reported, especially with Fig. 1D, Fig. 1G, Fig. 2B and Fig. 2D.

      Reviewer #2 (Public review):

      This manuscript reports a series of studies that sought to identify a biological basis for morphine-induced social deficits. This goal has important translational implications and is, at present, incompletely understood in the field. The extant literature points to changes in periventricular CRF and oxytocin neurons as critical substrates for morphine to alter social behavior. The experiments utilize mice, administered morphine prior to a sociability assay. Both male and female mice show reduced sociability in this procedure. Pretreatment with the CRF1 receptor antagonist, antalarmin, clearly abolished the morphine effect in males, and the data are compelling. Consistently, CRF1-/- male mice appeared to be spared of the effect of morphine (while wild-type and het mice had reduced sociability). The same experiment was reported as non-feasible in females due to the effect of dose on exploratory behavior per se. Seeking a neural correlate of the behavioral pharmacology, acute cell-attached recordings of PVN neurons were made in acute slices from mice pretreated with morphine or anatalarmin. Morphine increased firing frequencies, and both antalarmin and CRF1-/- mice were spared of this effect. Increasing confidence that this is a CRF1 mediated effect, there is a gene deletion dose effect where het's had an intermediate response to morphine. In general, these experiments are well-designed and sufficiently powered to support the authors' inferences. A final experiment repeated the cell-attached recordings with later immunohistochemical verification of the recorded cells as oxytocin or vasopressin positive. Here the data are more nuanced. The majority of sampled cells were positive for both oxytocin and vasopressin, in cells obtained from males, morphine pretreatment increased firing in this population and was CRF1 dependent, however in females the effect of morphine was more modest without sensitivity to CRF1. Given that only ~8 cells were only immunoreactive for oxytocin, it may be premature to attribute the changes in behavior and physiology strictly to oxytocinergic neurons.

      In sum, the data provide convincing behavioral pharmacological evidence and a regional (and possibly cellular) correlation of these effects suggesting that morphine leads to sociality deficits via CRF interacting with oxytocin in the hypothalamus. While this hypothesis remains plausible, the current data do not go so far as directly testing this mechanism in a site or cell-specific way.

      We agree with this reviewer’s comment and acknowledge that further studies are needed to better understand the neural substrates of CRF<sub>1</sub> receptor-mediated sociability deficits induced by morphine. This has been mentioned at page 17, line 25 to page 18, line 6 of the present revised version of the manuscript.

      With regard to the presentation of these data and their interpretation, the manuscript does not sufficiently draw a clear link between mu-opioid receptors, their action on CRF neurons of the PVN, and the synaptic connectivity to oxytocin neurons. Importantly, sex, cell, and site-specific variations in the CRF are well established (see Valentino & Bangasser) yet these are not reviewed nor are hypotheses regarding sex differences articulated at the outset. The manuscript would have more impact on the field if the implications of the sex-specific effects evident here were incorporated into a larger literature.

      At page 15, line 19 to page 16, line 2 of the present version of the manuscript, we have mentioned prior studies reporting differences in CRF<sub>1</sub> receptor signaling or cellular compartmentalization between male and female rodents (Bangasser et al., 2013, 2010). However, the latter studies were conducted in cortical or locus coeruleus brain tissues. Thus, more studies are needed to examine CRF<sub>1</sub> receptor signaling or cellular compartmentalization in the PVN and their relationship to the sex-linked results reported in our manuscript.

      With regards to the model proposed in the discussion, it seems that there is an assumption that ip morphine or antalarmin have specific effects on the PVN and that these mediate behavior - but this is impossible to assume and there are many meaningful alternatives (for example, both MOR and CRF modulation of the raphe or accumbens are worth exploration).

      We focused our discussion on PVN OXY/AVP systems because ourelectrophysiology studies examined neurons expressing OXY and/or AVP in this brain area. However, we understand that other brain areas/systems might mediate the effect of systemic administration of the CRF<sub>1</sub> receptor antagonist antalarmin or whole-body genetic disruption of the CRF<sub>1</sub> receptor upon morphine-induced social behavior deficits. For this reason, at page 16, line 12 to page 17, line 7 of the present version of the manuscript we have mentioned the possible involvement of BNST OXY or VTA dopamine systems in the CRF<sub>1</sub> receptor-mediated social behavior effects of morphine reported herein. Indeed, literature suggests important CRF-OXY and CRF-dopamine interactions in the BNST and the VTA, which might be relevant to the expression of social behavior. Nevertheless, to date the implication of the latter brain systems interactions in social behavior alterations induced by substances of abuse remains to be elucidated.

      While it is up to the authors to conduct additional studies, a demonstration that the physiology findings are in fact specific to the PVN would greatly increase confidence that the pharmacology is localized here. Similarly, direct infusion of antalarmin to the PVN, or cell-specific manipulation of OT neurons (OT-cre mice with inhibitory dreadds) combined with morphine pre-exposure would really tie the correlative data together for a strong mechanistic interpretation.

      We agree with this reviewer’s comment that the suggested experiments would greatly increase the understanding of the brain mechanisms underlying the social behavior deficits induced by opiate substances. We have acknowledged this at page 17, line 25 to page 18, line 6.

      Because the work is framed as informing a clinical problem, the discussion might have increased impact if the authors describe how the acute effects of CRF1 antagonists and morphine might change as a result of repeated use or withdrawal.

      Prior studies reported behavioral and neuroendocrine (hypothalamus-pituitary-adrenal axis) effects of chronic systemic administration of CRF<sub>1</sub> receptor antagonists, such as R121919 and antalarmin (Ayala et al., 2004; Dong et al., 2018). However, to our knowledge, no studies have directly compared the behavioral effects of acute vs. repeated administration of CRF<sub>1</sub> receptor antagonists. We previously reported that acute administration of antalarmin increased the expression of somatic opiate withdrawal in mice, indicating that this compound is effective following withdrawal from repeated morphine administration (Papaleo et al., 2007). Nevertheless, further studies are needed to specifically address this reviewer’s comment.

      Reviewer #3 (Public review):

      Summary:

      In the current manuscript, Piccin et al. identify a role for CRF type 1 receptors in morphine-induced social deficits using a 3-chamber social interaction task in mice. They demonstrate that pre-treatment with a CRFR1 antagonist blocks morphine-induced social deficits in male, but not female, mice, and this is associated with the CRF R1 antagonist blocking morphine-induced increases in PVN neuronal excitability in male but not female mice. They followed up by using a transgenic mouse CRFR1 knockout mouse line. CRFR1 genetic deletion also blocked morphine-induced social deficits, similar to the pharmacological approach, in male mice. This was also associated with morphine-induced increases in PVN neuronal excitability being blocked in CRFR1 knockout mice. Interestingly they found that the pharmacological antagonism of the CRFR1 specifically blocked morphine-induced increases in oxytocin/AVP neurons in the PVN in male mice.

      Strengths:

      The authors used both male and female mice where possible and the studies were fairly well controlled. The authors provided sufficient methodological detail and detailed statistical information. They also examined measures of locomotion in all of the behavioral tasks to separate changes in sociability from overall changes in locomotion. The experiments were well thought out and well controlled. The use of both the pharmacological and genetic approaches provides converging lines of evidence for the role of CRFR1 in morphine-induced social deficits. Additionally, they have identified the PVN as a potential site of action for these CRFR1 effects.

      Weaknesses:

      While the authors included both sexes they analyzed them independently. This was done for simplicity's sake as they have multiple measures but there are several measures where the number of factors is reduced and the inclusion of sex as a factor would be possible.

      Please, see above our response to the same comment made by Reviewer 1.

      Additionally, single doses of both the CRFR1 antagonist and morphine are used within an experiment without justification for the doses. In fact, a lower dose of morphine was needed for the genetic CRFR1 mouse line. This would suggest that the dose of morphine being used is likely causing some aversion that may be more present in the females, as they have lower overall time in the ROI areas of both the object and the mouse following morphine exposure.

      The morphine dose was chosen based on our prior study showing that morphine (2.5 mg/kg) impaired sociability in male and female C57BL/6J mice, without affecting locomotor activity (Piccin et al., 2022). Also, the antalarmin dose (20 mg/kg) and the route of administration (per os) was chosen based on our prior studies demonstrating behavioral effects of this CRF<sub>1</sub> receptor antagonist administered per os (Contarino et al., 2017; Ingallinesi et al., 2012; Piccin and Contarino, 2020). This is now mentioned in the “materials and methods” section of the present revised version of the manuscript at page 23, lines 6-13. We also agree with this reviewer that female mice seemed more sensitive to morphine than male mice. Indeed, during the habituation phase of the three-chamber test female mice treated with morphine (2.5 mg/kg) spent less time in the ROIs containing the empty wire cages, as compared to saline-treated female mice (Fig. 1E). However, morphine did not affect locomotor activity in female mice (Fig. S1B), suggesting independency between social approach and ambulation.

      As for the discussion, the authors do not sufficiently address why CRFR1 has an effect in males but not females and what might be driving that difference, or why male and female mice have different distribution of PVN cell types during the recordings.

      At page 15, line 11 to page 16, line 2, we have mentioned possible mechanisms that might underlie the sex-linked results reported in our manuscript. Moreover, at page 16, lines 6-9 we have mentioned a seminal review reporting sex-linked expression of PVN OXY and AVP in a variety of animal species that is similar to the present results. Nevertheless, as mentioned in the “discussion” section, further studies are needed to elucidate the neural substrates underlying sex-linked effects of opiate substances upon social behavior.

      Additionally, the authors attribute their effect to CRF and CRFR1 within the PVN but do not consider the role of extrahypothalamic CRF and CRFR1. While the PVN does contain the largest density of CRF neurons there are other CRF neurons, notably in the central amygdala and BNST, that have been shown to play important roles in the impact of stress on drug-related behavior. This also holds true for the expression of CRFR1 in other regions of the brain, including the VTA, which is important for drug-related behavior and social behavior. The treatments used in the current manuscript were systemic or brain-wide deletion of CRFR1. Therefore, the authors should consider that the effects could be outside the PVN.

      Even if they suggest a role for PVN CRF<sub>1</sub>-OXY circuits, we are aware that the present data do not support a direct link between behavior and PVN CRF<sub>1</sub> receptors. Thus, at page 16, line 12 to page 17, line 7 of the present version of the manuscript we have mentioned some studies showing a role for PVN OXY, BNST OXY or VTA dopamine systems in social behavior. Interestingly, the latter brain systems are thought to interact with the CRF system. However, more studies are warranted to understand the implication of CRF-OXY or CRF-dopamine interactions in social behavior deficits induced by substances of abuse.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      I commend the authors on crafting a well-written and clear manuscript with excellent figures. Furthermore, the data analysis and rigor are quite high. I have a few suggestions in the order they appear in the manuscript:

      The introduction has a number of abrupt transitions. For example, the sentence beginning with "Besides," in paragraph 2 jumps from CRF to oxytocin and vasopressin without a transition or justification. In all, vasopressin may be better removed from the introduction. There is sufficient evidence in the literature to support the CRF-OT circuit that might mediate behavioral pharmacology and this should be clearly described in the introduction.

      We have added a sentence at page 3, lines 22-23 to introduce possible interactions of the CRF system with other brain systems implicated in social behavior. Also, in the “introduction” section both OXY and AVP systems are mentioned because our electrophysiology studies examined the effect of morphine upon the activity of OXY- and AVP-positive neurons.

      Our interest in the PVN CRF-OXY/AVP network also stems from previous findings from our laboratory showing that genetic inactivation of the CRF<sub>2</sub> receptor eliminated both sociability deficits and increased hypothalamic OXY and AVP expression associated with long-term cocaine withdrawal in male mice (Morisot et al., 2018). Moreover, evidence suggests the implication of AVP systems in opiate effects. In particular, pharmacological antagonism of AVP-V1b receptors decreased the acquisition of morphine-induced conditioned place preference in male C57BL/6N mice housed with morphine-treated mice (Bates et al., 2018).

      Throughout the manuscript, it seems that there is an assumption that ip morphine or antalarmin have specific effects on the PVN and that these mediate behavior - this is impossible to assume and there are many meaningful alternatives (for example, both MOR and CRF modulation of the raphe or accumbens are worth exploration). While it is up to the authors to conduct additional studies, a demonstration that the physiology findings are in fact specific to the PVN would greatly increase confidence that the pharmacology is localized here. Similarly, direct infusion of antalarmin to the PVN, or cell-specific manipulation of OT neurons (OT-cre mice with inhibitory dreadds) combined with morphine pre-exposure would really tie the correlative data together for a strong mechanistic interpretation.

      We agree that the suggested experiments would greatly increase the understanding of the brain mechanisms underlying the social behavior deficits induced by opiate substances. This has been acknowledged at page 17, line 25 to page 18, line 6 of the present version of the manuscript.

      Also in the introduction, the reference to shank3b mice is not the most direct evidence of oxytocin involvement in sociability. It may be helpful to point reviewers to studies with direct manipulation of these populations (Grinevich group, for example).

      At page 4, lines 4-6 of the “introduction” section, we have added a sentence to mention a seminal paper by the Grinevich group demonstrating an important role for OXY-expressing PVN parvocellular neurons in social behavior (Tang et al., 2020). Moreover, at page 4, lines 8-10 we have mentioned a recent study showing that targeted chemogenetic silencing of PVN OXY neurons in male rats impaired short- and long-term social recognition memory (Thirtamara Rajamani et al., 2024).

      It would be helpful in the figures to indicate which panels contain male or female data.

      The sex of the mice is mentioned above each panel of the main and supplemental figures, except for the studies with CRF<sub>1</sub> receptor-deficient mice wherein only experiments carried out with male mice were illustrated. In the latter case, the sex (male) of the mice is mentioned in the related legend.

      The discussion itself departs from the central data in a few ways - the passages suggesting that morphine produces a stress response and that CRF1 antagonists would block the stress state are highly speculative (although testable). The manuscript would have more impact if the sex-specific effects and alternative hypotheses were enhanced in the discussion.

      At page 16, line 12 to page 17, line 7 of the “discussion” section, we have suggested that interaction of the CRF system with other brain systems implicated in social behavior (i.e., OXY, dopamine) might underlie the sex-linked CR<sub>1</sub> receptor-mediated effects of morphine reported in our manuscript. Also, at page 15, line 19 to page 16, line 2 we have mentioned studies showing sex-linked CRF<sub>1</sub> receptor signaling and cellular compartmentalization that might be relevant to the present findings. Finally, to further support the notion of morphine-induced PVN CRF activity, at page 15, lines 4-6 we have mentioned a study suggesting that activation of presynaptic mu-opioid receptors located on PVN GABA terminals might reduce GABA release (and related inhibitory effects) onto PVN CRF neurons (Wamsteeker Cusulin et al., 2013). Nevertheless, we believe that more work is needed to better understand the role for the CRF<sub>1</sub> receptor in opiate-induced stress responses and activity of OXY and dopamine systems implicated in social behavior.

      Reviewer #3 (Recommendations for the authors):

      (1) You should provide justification for the doses selected for treatments and the route of administration for the CRFR1 antagonist, especially for females.

      This has been added at page 23, lines 6-13 of the present version of the manuscript. In particular, the doses and routes of administration for morphine and antalarmin used in the present study were chosen based on previous work from our laboratory. Indeed, the intraperitoneal administration of morphine (2.5 mg/kg) impaired social behavior in male and female mice, without affecting locomotor activity (Piccin et al., 2022). Moreover, the oral route of administration for antalarmin was chosen for its translational relevance, as it could be easily employed in clinical trials assessing the therapeutic value of pharmacological CRF<sub>1</sub> receptor antagonists.

      (2) For the electrophysiology data you should include the number of cells per animal that were obtained. It appears that fewer cells from more females were obtained than in males and so the distribution of individual animals to the overall variance may be different between males and females.

      The number of cells examined and animals used in the electrophysiology experiments are reported above each panel of the related Figures 2, 3 and 4 as well as in the supplementary tables S1B and S1C. Overall, the number of cells examined in male and female mice was quite similar. Also, the number of male and female mice used was comparable. Standard errors of the mean (SEM) were quite similar across the different male and female groups (Fig. 2B and 2D), except for vehicle/morphine-treated male mice. Indeed, in the latter group a considerable number of cells displayed elevated firing responses to morphine, which accounted for the higher spread of the data. Accordingly, as mentioned above, the three-way ANOVA with sex (males vs. females), pretreatment (vehicle vs. antalarmin) and treatment (saline vs. morphine) as between-subjects factors revealed that male mice treated with vehicle/morphine showed higher firing frequency than all other male and female groups (P<0.0005). Finally, a similar pattern of firing frequency was observed also in neurons co-expressing OXY and AVP, wherein vehicle/morphine-treated male mice displayed higher SEM, as compared to all other male and female groups (Fig. 4C and 4F). Thus, except for vehicle/morphine-treated mice, distribution of the firing frequency data did not seem to be linked to the sex of the animal.

      (3) You should consider using a nested analysis for the slice electrophysiology data as that is more appropriate.

      We thank the reviewer for this suggestion. However, after careful consideration, we have decided to keep the current statistical analyses. In particular, given the relatively low variability of our data, we believe that the use of parametric ANOVA tests is appropriate. Moreover, additional details supporting our choice are provided just above in our response to the comment #2.

      (4) While it makes sense to not want to directly compare male and female data that results in needing to run a 4-way ANOVA, there are many measures, such as sociability, firing rate, etc., that if including sex as a factor would result in running a 3-way ANOVA and would allow for direct comparison of male and female mice.

      Please, see above our response to the same comment made by Reviewer 1. Notably, the results of our new statistical analyses including sex as a variable further support sex-linked effects of the CRF<sub>1</sub> receptor antagonist antalarmin upon morphine-induced sociability deficits and PVN neuronal firing. Nevertheless, we would like to keep the figures illustrating our findings as they are since it easily allows detecting the observed sex-linked results. Finally, we hope that this reviewer agrees with our choice, which is consistent with the wording of the title (i.e., “in male mice”).

      (5) There are grammatical and phrasing issues throughout the manuscript and the manuscript would benefit from additional thorough editing.

      We appreciate this reviewer’s feedback. Thus, upon revising, we have carefully edited the manuscript with regard to possible grammatical and phrasing errors. We hope that our changes have made the manuscript clearer in order to facilitate readability by the audience.

      (6) The discussion should be edited to include consideration of an explanation for the presence of the effect in male, but not female, mice more clearly. The discussion should also include some discussion as to why the distribution of cell types used in the electrophysiology recordings was different between males and females and whether the distribution of CRFR1 is different between males and females. Lastly, the authors need to include consideration of extrahypothalamic CRF and CRFR1 as a possible explanation for their effects. While they have PVN neuron recordings, the treatments that they used are brain-wide and therefore the possibility that the critical actions of CRFR1 could be outside the PVN.

      At page 15, line 11 to page 16, line 2 of the “discussion” section, we have suggested several mechanisms that might underlie the sex-linked behavioral and brain effects of CR<sub>1</sub> receptor antagonism reported in our manuscript. With regard to the distribution of cell types examined in the electrophysiology studies, at page 16, lines 6-9 we have mentioned a seminal review reporting sex-linked expression of PVN OXY and AVP in a variety of animal species that is similar to our results. Moreover, at page 18, lines 2-6 we mentioned that more studies are needed to examine PVN CRF<sub>1</sub> receptor expression in male and female animals, an issue that is still poorly understood. Finally, at page 16, line 12 to page 17, line 7 of the “discussion” section we also suggest that CRF<sub>1</sub> receptor-expressing brain areas other than the PVN, such as the BNST or the VTA, might contribute to the sex-linked effects of morphine reported in our manuscript. Thus, in agreement with this reviewer’s suggestion, in the present version of the manuscript we have further emphasized the possible implication of CRF<sub>1</sub> receptor-expressing extrahypothalamic brain areas in social behavior deficits induced by opiate substances.

      References

      Ayala AR, Pushkas J, Higley JD, Ronsaville D, Gold PW, Chrousos GP, Pacak K, Calis KA, Gerald M, Lindell S, Rice KC, Cizza G. 2004. Behavioral, adrenal, and sympathetic responses to long-term administration of an oral corticotropin-releasing hormone receptor antagonist in a primate stress paradigm. J Clin Endocrinol Metab 89:5729–5737. doi:10.1210/jc.2003-032170

      Bangasser DA, Curtis A, Reyes B a. S, Bethea TT, Parastatidis I, Ischiropoulos H, Van Bockstaele EJ, Valentino RJ. 2010. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 15:877, 896–904. doi:10.1038/mp.2010.66

      Bangasser DA, Reyes B a. S, Piel D, Garachh V, Zhang X-Y, Plona ZM, Van Bockstaele EJ, Beck SG, Valentino RJ. 2013. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol Psychiatry 18:166–173. doi:10.1038/mp.2012.24

      Bates MLS, Hofford RS, Emery MA, Wellman PJ, Eitan S. 2018. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward. Drug Alcohol Depend 188:113–118. doi:10.1016/j.drugalcdep.2018.03.021

      Contarino A, Kitchener P, Vallée M, Papaleo F, Piazza P-V. 2017. CRF1 receptor-deficiency increases cocaine reward. Neuropharmacology 117:41–48. doi:10.1016/j.neuropharm.2017.01.024

      Dong H, Keegan JM, Hong E, Gallardo C, Montalvo-Ortiz J, Wang B, Rice KC, Csernansky J. 2018. Corticotrophin releasing factor receptor 1 antagonists prevent chronic stress-induced behavioral changes and synapse loss in aged rats. Psychoneuroendocrinology 90:92–101. doi:10.1016/j.psyneuen.2018.02.013

      Ingallinesi M, Rouibi K, Le Moine C, Papaleo F, Contarino A. 2012. CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping. Mol Psychiatry 17:1283–1294. doi:10.1038/mp.2011.119

      Jiang Z, Rajamanickam S, Justice NJ. 2019. CRF signaling between neurons in the paraventricular nucleus of the hypothalamus (PVN) coordinates stress responses. Neurobiol Stress 11:100192. doi:10.1016/j.ynstr.2019.100192

      Jiang Z, Rajamanickam S, Justice NJ. 2018. Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. J Neurosci 38:1874–1890. doi:10.1523/JNEUROSCI.1492-17.2017

      Morisot N, Monier R, Le Moine C, Millan MJ, Contarino A. 2018. Corticotropin-releasing factor receptor 2-deficiency eliminates social behaviour deficits and vulnerability induced by cocaine. Br J Pharmacol 175:1504–1518. doi:10.1111/bph.14159

      Papaleo F, Kitchener P, Contarino A. 2007. Disruption of the CRF/CRF1 receptor stress system exacerbates the somatic signs of opiate withdrawal. Neuron 53:577–589. doi:10.1016/j.neuron.2007.01.022

      Piccin A, Contarino A. 2020. Sex-linked roles of the CRF1 and the CRF2 receptor in social behavior. J Neurosci Res 98:1561–1574. doi:10.1002/jnr.24629

      Piccin A, Courtand G, Contarino A. 2022. Morphine reduces the interest for natural rewards. Psychopharmacology (Berl) 239:2407–2419. doi:10.1007/s00213-022-06131-7

      Rosinger ZJ, Jacobskind JS, De Guzman RM, Justice NJ, Zuloaga DG. 2019. A sexually dimorphic distribution of corticotropin-releasing factor receptor 1 in the paraventricular hypothalamus. Neuroscience 409:195–203. doi:10.1016/j.neuroscience.2019.04.045

      Roy A, Laas K, Kurrikoff T, Reif A, Veidebaum T, Lesch K-P, Harro J. 2018. Family environment interacts with CRHR1 rs17689918 to predict mental health and behavioral outcomes. Prog Neuropsychopharmacol Biol Psychiatry 86:45–51. doi:10.1016/j.pnpbp.2018.05.004

      Tang Y, Benusiglio D, Lefevre A, Hilfiger L, Althammer F, Bludau A, Hagiwara D, Baudon A, Darbon P, Schimmer J, Kirchner MK, Roy RK, Wang S, Eliava M, Wagner S, Oberhuber M, Conzelmann KK, Schwarz M, Stern JE, Leng G, Neumann ID, Charlet A, Grinevich V. 2020. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 23:1125–1137. doi:10.1038/s41593-020-0674-y

      Thirtamara Rajamani K, Barbier M, Lefevre A, Niblo K, Cordero N, Netser S, Grinevich V, Wagner S, Harony-Nicolas H. 2024. Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Mol Psychiatry 29:412–424. doi:10.1038/s41380-023-02336-0

      Valentino RJ, Van Bockstaele E, Bangasser D. 2013. Sex-specific cell signaling: the corticotropin-releasing factor receptor model. Trends Pharmacol Sci 34:437–444. doi:10.1016/j.tips.2013.06.004

      Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE. 2000. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212. doi:10.1002/1096-9861(20001211)428:2<191::aid-cne1>3.0.co;2-u

      Wamsteeker Cusulin JI, Füzesi T, Inoue W, Bains JS. 2013. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat Neurosci 16:596–604. doi:10.1038/nn.3374

      Weber H, Richter J, Straube B, Lueken U, Domschke K, Schartner C, Klauke B, Baumann C, Pané-Farré C, Jacob CP, Scholz C-J, Zwanzger P, Lang T, Fehm L, Jansen A, Konrad C, Fydrich T, Wittmann A, Pfleiderer B, Ströhle A, Gerlach AL, Alpers GW, Arolt V, Pauli P, Wittchen H-U, Kent L, Hamm A, Kircher T, Deckert J, Reif A. 2016. Allelic variation in CRHR1 predisposes to panic disorder: evidence for biased fear processing. Mol Psychiatry 21:813–822. doi:10.1038/mp.2015.125

      Zeng P-Y, Tsai Y-H, Lee C-L, Ma Y-K, Kuo T-H. 2023. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci 16:1146109. doi:10.3389/fnmol.2023.1146109

      Zhao W, Li Q, Ma Y, Wang Z, Fan B, Zhai X, Hu M, Wang Q, Zhang M, Zhang C, Qin Y, Sha S, Gan Z, Ye F, Xia Y, Zhang G, Yang L, Zou S, Xu Z, Xia S, Yu Y, Abdul M, Yang J-X, Cao J-L, Zhou F, Zhang H. 2021. Behaviors Related to Psychiatric Disorders and Pain Perception in C57BL/6J Mice During Different Phases of Estrous Cycle. Front Neurosci 15:650793. doi:10.3389/fnins.2021.650793

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors advance our understanding of neurodevelopmental changes in the brain's structural and functional connectivity, as well as their coupling. The paper presents evidence of alterations in and stability of the principal organizational gradients of structure and function across development (age) and contrasts them between neurotypical and neurodivergent individuals. The authors further extend their findings by exploring links with graph theory measures of brain connectivity and indices of nodal structure-function coupling. Finally, the developmental shifts in structural and functional brain organization are examined for potential associations with cognitive and psychopathological markers. The results suggest that structure-function coupling, both brain-wide and within specific functional networks, is associated with certain cognitive dimensions but not with measures of psychopathology.

      Strengths:

      This manuscript makes a significant contribution to the field by synthesizing previous research while offering novel insights into the developmental trajectories of brain organization. A key strength of this study lies in its integration of both structural and functional connectivity data, providing a comprehensive view of brain changes throughout development. The authors present findings that challenge earlier reports of shifts in principal gradients during late childhood and early adolescence (e.g., Dong et al., 2021; Xia et al., 2022), underscoring an important inconsistency that could have broader implications for our understanding of developmental brain reorganization. The introduction and discussion sections are well-crafted, offering a thorough review of relevant prior studies and effectively situating the current findings within the broader context of the literature. Additionally, the study design and methodology are detailed and adhere to recommended best practices, demonstrating a commendable level of rigor in the formulation of the study and its various assessments.

      Weaknesses:

      Despite these strengths, I think there are aspects of the manuscript that would benefit from further refinement. Below is detailed feedback and suggestions provided point-by-point.

      Lack of Sensitivity Analyses for some Key Methodological Decisions:<br /> Certain methodological choices in this manuscript diverge from approaches used in previous works. In these cases, I recommend the following: (i) The authors could provide a clear and detailed justification for these deviations from established methods, and (ii) supplementary sensitivity analyses could be included to ensure the robustness of the findings, demonstrating that the results are not driven primarily by these methodological changes. Below, I outline the main areas where such evaluations are needed:<br /> - Use of Communicability Matrices for Structural Connectivity Gradients: The authors chose to construct structural connectivity gradients using communicability matrices, arguing that diffusion map embedding "requires a smooth, fully connected matrix." However, by definition, the creation of the affinity matrix already involves smoothing and ensures full connectedness. I recommend that the authors include an analysis of what happens when the communicability matrix step is omitted. This sensitivity test is crucial, as it would help determine whether the main findings hold under a simpler construction of the affinity matrix. If the results significantly change, it could indicate that the observations are sensitive to this design choice, thereby raising concerns about the robustness of the conclusions. Additionally, if the concern is related to the large range of weights in the raw structural connectivity (SC) matrix, a more conventional approach is to apply a log-transformation to the SC weights (e.g., log(1+𝑆𝐶𝑖𝑗)), which may yield a more reliable affinity matrix without the need for communicability measures.<br /> - Individual-Level Gradients vs. Group-Level Gradients: Unlike previous studies that examined alterations in principal gradients (e.g., Xia et al., 2022; Dong et al., 2021), this manuscript focuses on gradients derived directly from individual-level data. In contrast, earlier works have typically computed gradients based on grouped data, such as using a moving window of individuals based on age (Xia et al.) or evaluating two distinct age groups (Dong et al.). I believe it is essential to assess the sensitivity of the findings to this methodological choice. Such an evaluation could clarify whether the observed discrepancies with previous reports are due to true biological differences or simply a result of different analytical strategies.<br /> - Procrustes Transformation: It is unclear why the authors opted to include a Procrustes transformation in this analysis, especially given that previous related studies (e.g., Dong et al.) did not apply this step. I believe it is crucial to evaluate whether this methodological choice influences the results, particularly in the context of developmental changes in organizational gradients. Specifically, the Procrustes transformation may maximize alignment to the group-level gradients, potentially masking individual-level differences. This could result in a reordering of the gradients (e.g., swapping the first and second gradients), which might obscure true developmental alterations. It would be informative to include an analysis showing the impact of performing vs. omitting the Procrustes transformation, as this could help clarify whether the observed effects are robust or an artifact of the alignment procedure. (Please also refer to my comment on adding a subplot to Figure 1)<br /> - SC-FC Coupling Metric: The approach used to quantify nodal SC-FC coupling in this study appears to deviate from previously established methods in the field. The manuscript describes coupling as the "Spearman-rank correlation between Euclidean distances between each node and all others within structural and functional manifolds," but this description is unclear and lacks sufficient detail. Furthermore, this differs from what is typically referred to as SC-FC coupling in the literature. For instance, the cited study by Park et al. (2022) utilizes a multiple linear regression framework, where communicability, Euclidean distance, and shortest path length are independent variables predicting functional connectivity (FC), with the adjusted R-squared score serving as the coupling index for each node. On the other hand, the Baum et al. (2020) study, also cited, uses Spearman correlation, but between raw structural connectivity (SC) and FC values. If the authors opt to introduce a novel coupling metric, it is essential to demonstrate its similarity to these previous indices. I recommend providing an analysis (supplementary) showing the correlation between their chosen metric and those used in previous studies (e.g., the adjusted R-squared scores from Park et al. or the SC-FC correlation from Baum et al.). Furthermore, if the metrics are not similar and results are sensitive to this alternative metric, it raises concerns about the robustness of the findings. A sensitivity analysis would therefore be helpful (in case the novel coupling metric is not similar to previous ones) to determine whether the reported effects hold true across different coupling indices.

      Methodological ambiguity/lack of clarity in the description of certain evaluation steps:<br /> Some aspects of the manuscript's methodological descriptions are ambiguous, making it challenging for future readers to fully reproduce the analyses based on the information provided. I believe the following sections would benefit from additional detail and clarification:<br /> - Computation of Manifold Eccentricity: The description of how eccentricity was computed (both in the results and methods sections) is unclear and may be problematic. The main ambiguity lies in how the group manifold origin was defined or computed. Specifically:<br /> (1) In the results section, it appears that separate manifold origins were calculated for the NKI and CALM groups, suggesting a dataset-specific approach.<br /> (2) Conversely, the methods section implies that a single manifold origin was obtained by somehow combining the group origins across the three datasets, which seems contradictory.<br /> Moreover, including neurodivergent individuals in defining the central group manifold origin is conceptually problematic. Given that neurodivergent participants might exhibit atypical brain organization (as suggested by Fig. 1), this inclusion could skew the definition of what should represent a typical or normative brain manifold. A more appropriate approach might involve constructing the group manifold origin using only the neurotypical participants from both the NKI and CALM datasets. Given the reported similarity between group-level manifolds of neurotypical individuals in CALM and NKI, it would be reasonable to expect that this combined origin should be close to the origin computed within neurotypical samples of either NKI or CALM. As a sanity check, I recommend reporting the distance of the combined neurotypical manifold origin to the centers of the neurotypical manifolds in each dataset. Moreover, if the manifold origin was constructed while utilizing all samples (including neurodivergent samples) I think this needs to be reconsidered.<br /> - Computation of SC-FC coupling: As noted in a previous comment, the explanation of this procedure is vague. The description lacks detail on the specific steps taken and differs from previous standard approaches in the field. I suggest clarifying the methodology and comparing with previous SC-FC coupling metrics.<br /> - Performing Procrustes transformation: The brief explanation in the first paragraph of page 30 does not provide enough information about the procedure or its justification. Since the Procrustes transformation alters the shape of individual gradients, it could artificially inflate consistency across development. I recommend including a rationale for using the Procrustes transformation and conducting a sensitivity analysis to assess its impact on the findings. Additionally, clarifying how exactly the transformation was applied to align gradients across hemispheres, individuals, and or datasets would help resolve ambiguity.

      Insufficient Supporting Evaluations for Certain Claims:<br /> There are instances where additional analyses are necessary to substantiate the claims made in the manuscript. Without these evaluations, some conclusions may be premature or potentially misleading. I believe the following points need further analysis or, alternatively, adjustments to the claims:<br /> - Evaluating the Consistency of Gradients Across Development: The results shown in Fig. 1.e are used as evidence suggesting that gradients are consistent across ages. However, I believe additional analyses are required to identify potential sources of the observed inconsistency compared to previous works. The claim that the principal gradient explains a similar degree of variance across ages does not necessarily imply that the spatial structure of the gradient remains stable. The observed variance explanation is hence not enough to ascertain inconsistency with findings from Dong et al., as the spatial configuration of gradients may still change over time. Moreover, the introduction of the Procrustes transformation (not used by Dong et al.) further ambiguates the cause of this inconsistency. I suggest the following additional analyses to strengthen this claim: (1) Alignment to Group-Level Gradients: Assess how much of the variance in individual FC matrices is explained by each of the group-level gradients (G1, G2, and G3, for both FC and SC). This analysis could be visualized similarly to Fig. 1.e, with age on the x-axis and variance explained on the y-axis. If the explained variance varies as a function of age, it may indicate that the gradients are not as consistent as currently suggested. (2) For each individual's gradients (G1, G2, and G3, separately for FC and SC, without Procrustes transformation), evaluate their spatial similarity to the corresponding group-level gradients using a similarity metric (e.g., correlation coefficient). High spatial similarity, without a Procrustes transformation, would support the claim of stable gradient structures across development. On the other hand, if the similarities alter during development (e.g. such that at a certain age, individual G1 is less similar to group G1) this would contradict the stability of gradients during development. These additional analyses could potentially be included as additional panels in Fig. 1. In case significant deviations are observed, it might help refine the interpretation of the results and provide a more nuanced understanding of developmental changes in gradient organization.<br /> - Prediction vs. Association Analysis: The term "prediction" is used throughout the manuscript to describe what appear to be in-sample association tests. This terminology may be misleading, as prediction generally implies an out-of-sample evaluation where models trained on a subset of data are tested on a separate, unseen dataset. If the goal of the analyses is to assess associations rather than make true predictions, I recommend refraining from using the term "prediction" and instead clarifying the nature of the analysis. Alternatively, if prediction is indeed the intended aim (which would be more compelling), I suggest conducting the evaluations using a k-fold cross-validation framework. This would involve training the Generalized Additive Mixed Models (GAMMs) on a portion of the data and testing their predictive accuracy on a held-out sample (i.e., different individuals). Additionally, the current design appears to focus on predicting SC-FC coupling using cognitive or pathological dimensions. This is contrary to the more conventional approach of predicting behavioral or pathological outcomes from brain markers like coupling. Could the authors clarify why this reverse direction of analysis was chosen? Understanding this choice is crucial, as it impacts the interpretation and potential implications of the findings.

      Methodological considerations<br /> - In typical applications of diffusion map embedding, sparsification (e.g., retaining only the top 10% of the strongest connections) is often employed at the vertex-level resolution to ensure computational feasibility. However, since the present study performs the embedding at the level of 200 brain regions (a considerably coarser resolution), this step may not be necessary or justifiable. Specifically, for FC, it might be more appropriate to retain all positive connections rather than applying sparsification, which could inadvertently eliminate valuable information about lower-strength connections. Whereas for SC, as the values are strictly non-negative, retaining all connections should be feasible and would provide a more complete representation of the structural connectivity patterns. Given this, it would be helpful if the authors could clarify why they chose to include sparsification despite the coarser regional resolution, and whether they considered this alternative approach (using all available positive connections for FC and all non-zero values for SC). It would be interesting if the authors could provide their thoughts on whether the decision to run evaluations at the resolution of brain regions could itself impact the functional and structural manifolds, their alteration with age, and or their stability (in contrast to Dong et al. which tested alterations in high-resolution gradients).

      The Issue of Abstraction and Benefits of the Gradient-Based View:<br /> - The manuscript interprets the eccentricity findings as reflecting changes along the segregation-integration spectrum. Given this, it is unclear why a more straightforward analysis using established graph-theory measures of segregation-integration was not pursued instead. Mapping gradients and computing eccentricity adds layers of abstraction and complexity. If similar interpretations can be derived directly from simpler graph metrics, what additional insights does the gradient-based framework offer? While the manuscript argues that this approach provides "a more unifying account of cortical reorganization," it is not evident why this abstraction is necessary or advantageous over traditional graph metrics. Clarifying these benefits would strengthen the rationale for using this method.

    1. Debido a la alta complejidad de los culturemas, no siempre será posiblereemplazarlos, entonces también representan un desafío para la comprensióncompleta de textos culturales en un idioma extranjero. Esto implicaría que el públicometa deba contar con una comprensión cultural profunda para la comprensión deestos.
    1. Los culturemas son, por definición, nociones específico-culturales deun país o de un ámbito cultural y muchos de ellos poseen una estructurasemántica y pragmática compleja. Los culturemas son también unidades decomunicación que necesariamente han de ser tenidas en cuenta einventariadas en diccionarios ad hoc3. Mediante estos diccionarios nosolamente se podrá hacer un estudio comparado de los culturemas impor-tantes en las distintas lenguas del mundo, sino que se hará también unacontribución significativa a la enseñanza de lenguas (a nivel avanzado) y a latraducción. Como es sabido, uno de los escollos importantes de la traducciónson los culturemas, y mediante un estudio comparativo se estará en
    1. Lacartografía, permite encontrar las distintas formas del paisaje que seva construyendo al mismo tiempo que los movimientos que lotransforman, la cartografía transforma la visión estática en movimiento

      La cartografía nos ayuda a entender cómo un paisaje cambia y evoluciona con el tiempo, mostrando tanto lo que está pasando en un momento específico como los procesos históricos detrás de esos cambios. Más que solo describir la realidad, la cartografía también la construye, ya que incluye diferentes puntos de vista y reflexiones. Es un proceso en el que comprender un lugar o situación implica trabajar juntos y adaptarse a los contextos en los que ocurre

    2. cuerpo es un territorio donde diferentes lenguajes, distintasformas de decir, encuentran entrelazamiento y síntesis. Pero también,el territorio se hace cuerpo en los lugares de la intersubjetividad.Somos territorio, porque somos historia, presente y futuro contados,relatados, dichos, desde una perspectiva situada, no abstracta oindividual. Lo corporal entrelaza espacio y subjetividad. Así, el cuerpoes en el territorio y esa relación se construye y de construye desde losubjetivo en diálogo con lo social. El cuerpo cuenta, relata diferentesformas de encuentro, desencuentro que dialogan con otras formas deaproximación a lo social y lo cultural

      Las corporalidades abarcan diferentes lenguajes, formas de decir, coincidencias y conclusiones. El territorio se hace cuerpo en la historia, presente y futuro relatados desde una mirada ubicada, pensada y no colectiva.

    1. La cartografía es una herramienta que nos permite ganar conscien-cia sobre la realidad, los conflictos y las capacidades individuales ycolectivas. Abre caminos desde la reflexión compartida para consoli-dar lecturas y visiones frente a un espacio y tiempo específicos, paragenerar complicidades frente a los futuros posibles en donde cadauno tiene un papel que asumir.

      La cartografía nos ubica en la realidad actual, problemáticas en la sociedad y las capacidades de las colectividades. Ayuda a reflexionar de manera multilateral para un entendimiento amplio de lo que se percibe sobre las visiones de un espacio y tiempo específicos que da como resultado el entendimiento mutuo sobre los futuros posibles que cada uno tiene que asumir.

    1. modulate membrane structure, organization, and fluidity.

      In my previous bio class, I learned that cholesterol is in the plasma membrane so reinforce the structural integrity if the membrane is too "liquid-y". But also provides somewhat of a block in between phospholipids so the plasma membrane doesn't clump/freeze up.

    1. The first thing to do is to read the graph. What is plotted on the x-axis? What is plotted on the y-axis? For the

      I know this is only a wording problem, but I don’t understand what high affinity oxygen means? For example, my guess would be that high affinity (being drawn to something) would mean a higher % saturation?

    1. Analyse d'une intervention sur les inégalités scolaires : résumé et points clés

      Ce document résume une intervention portant sur la sociologie des inégalités scolaires, avec un focus sur le rôle du système Parcoursup.

      Thèmes principaux :

      • L'évolution des inégalités scolaires :

      L'intervention souligne une massification de l'accès à l'éducation depuis les années 60, mais une persistance, voire une recrudescence, des inégalités entre catégories sociales.

      Le diplôme des parents reste un facteur déterminant de la réussite scolaire des enfants. * Le rôle du capital culturel :

      • Reprenant les travaux de Bourdieu et Passeron, l'intervenante met en lumière l'importance du capital culturel dans la réussite scolaire.
      • L'école valorisant un capital culturel spécifique, les enfants issus de milieux favorisés bénéficient d'un avantage.
      • L'impact des socialisations familiales :

      Les socialisations familiales jouent un rôle crucial, notamment à travers l'inculcation de normes, de valeurs et de dispositions favorables à la réussite scolaire.

      • Les stratégies familiales :

      • Face aux inégalités, les familles développent des stratégies pour maximiser les chances de réussite de leurs enfants.

      • Ces stratégies, comme le choix d'un établissement ou le recours aux cours particuliers, dépendent des ressources économiques et culturelles des familles.

      • La dimension spatiale des inégalités :

      • Les inégalités scolaires sont aussi spatiales.

      • La ségrégation scolaire, qui concentre les élèves de milieux défavorisés dans certains établissements, aggrave les inégalités.

      • L'analyse du système Parcoursup :

      • L'intervenante analyse Parcoursup comme un système générateur d'angoisse et de compétition.

      • Elle met en évidence ses limites en matière de mixité sociale et ses effets sur la ségrégation scolaire.

      Points clés et citations :

      • Massification et inégalités :

      "On est dans une sorte de troisième explosion scolaire [...] liée à une augmentation des aspirations de poursuite d’études [...] et à une augmentation démographique."

      • Capital culturel et indifférence de l'école : "L'école fait comme si tout le monde partait sur la même ligne de départ alors qu’en fait il y a évidemment des décalages qui sont liés au fait que les parents soient diplômés ou non et transmettent du coup des formes de capital culturel."

      • Socialisations familiales :

      "Cette socialisation [à la réussite scolaire] elle dépend de ce qu’elle appelle l’économie des relations intrafamiliales et qu’en fait dès qu’il y a du conflit, des accidents biographiques, c’est-à-dire des maladies, des séparations, des choses comme ça, et bien ça fragilise les processus de socialisation."

      • Stratégies familiales : "Dans les milieux populaires la sanction elle est plutôt sur le coup et elle est pas forcément mise en place dans une temporalité [...] alors qu'à l'école ce qu’on vise c’est en effet cet enjeu de règles auto-dirigées où les élèves se donnent à eux-mêmes leurs règles, font leur travail scolaire parce que ça les, ils ont l’impression que ça les émancipe."

      • Ségrégation scolaire : "La ségrégation ça dit à la fois qu’il y a bien une mise à l’écart institutionnelle [...] et deuxième élément ça génère de l’inégalité."

      Parcoursup et angoisse :

      "Parcoursup ça a été analysé comme une gestion des risques [...] par par par des collègues qui sont notamment liés à des angoisses très fortes documentées qualitativement euh comme une épreuve avec des files d’attente"

      Parcoursup et sélection :

      "Cette mise en concurrence elle contribue à une une ségrégation pas tellement sociale parce que le bonus boursier dans Parcoursup permet justement de maîtriser cette question de la mixité sociale.

      Par contre on va avoir des de une hétérogénéité croissante des formations sur le plan scolaire." Pistes de réflexion :

      • Comment concilier la massification de l'accès à l'éducation avec la réduction des inégalités scolaires ?
      • Comment l'école peut-elle prendre en compte la diversité des socialisations familiales et des capitaux culturels ?
      • Quelles politiques publiques mettre en place pour lutter contre la ségrégation scolaire et favoriser la mixité sociale et académique ?
      • Comment repenser le système Parcoursup pour le rendre plus juste et moins anxiogène ?
      • L'intervention analysée met en lumière la complexité des inégalités scolaires et la nécessité d'une approche multidimensionnelle pour les comprendre et les combattre.

      Elle souligne l'importance d'une politique publique ambitieuse et volontariste, qui ne se limite pas à des mesures cosmétiques ou à une simple logique d'égalité des chances.

    1. La vidéo explore l'histoire et les méthodes modernes de prédiction des crimes.

      Elle commence par des tentatives historiques, basées sur la phrénologie, avant de présenter des approches mathématiques contemporaines utilisant des données policières pour prédire les crimes futurs, notamment en utilisant des modèles inspirés de la propagation des tremblements de terre.

      L'efficacité de ces modèles est discutée, soulignant les défis posés par les biais et la discrimination potentielle.

      Enfin, la vidéo explore l'utilisation de réseaux sociaux pour comprendre et prédire la propagation de la violence entre gangs.

      Voici un sommaire minuté de la vidéo "Peut-on prédire les futurs crimes ?" du chaîne YouTube "Fouloscopie":

      0:00-1:40 Introduction: Introduction à la phrénologie et ses méthodes, notamment les travaux de Cesare Lombroso et Francis Galton qui pensaient pouvoir identifier les criminels par leur apparence physique.

      L'auteur explique que cette approche a été abandonnée et que la vidéo se concentrera sur les méthodes modernes de prédiction du crime.

      1:40-3:15 Introduction à la Fouloscopie:

      Présentation de la fouloscopie, une branche qui étudie le comportement collectif des criminels.

      L'auteur explique qu'il est possible de prédire le crime comme une sorte de "météo criminelle" grâce à des modèles mathématiques.

      3:15-4:50 Analyse des données de Chicago:

      Utilisation des données de la Chicago Police Department pour 2018. L'auteur affiche les données sur une carte, chaque point rouge représentant un crime.

      4:50-6:50 La méthode d'Andrea Bertozzi:

      Introduction d'Andrea Bertozzi, une mathématicienne qui utilise l'équation des tremblements de terre pour prédire le crime.

      L'auteur explique que les crimes sont souvent des "répliques" de crimes précédents, un phénomène appelé "le crime appelle le crime".

      6:50-8:10 Visualisation des prédictions:

      Démonstration de la façon dont l'équation de Bertozzi peut être utilisée pour générer une carte de risque criminel.

      L'auteur explique que la méthode a été adoptée par la police de Santa Cruz et d'autres villes américaines, grâce au logiciel PredPol développé par Jeffrey Brantingham.

      8:10-11:00 Biais raciaux de PredPol:

      Discussion sur les biais raciaux potentiels de PredPol. Intervention de Cyrus North qui souligne que l'intelligence artificielle peut être raciste.

      L'auteur utilise des simulations pour montrer comment PredPol peut amplifier les biais existants dans le travail de la police.

      11:00-13:10 Solutions aux biais:

      Discussion des solutions pour corriger les biais de PredPol, y compris l'ajout d'un contre-biais pour forcer une affectation des policiers proportionnelle à la taille de la population.

      L'auteur soulève la question de savoir s'il vaut mieux une police efficace ou une police juste.

      13:10-15:25 Introduction aux gangs de Los Angeles:

      Introduction aux Krazy Ass Mexicans, un gang de Los Angeles, et à leur réseau de rivalités avec d'autres gangs.

      L'auteur utilise un graphique pour visualiser les rivalités et les attaques entre les gangs.

      15:25-17:45 La contagion des fusillades:

      Découverte que le risque d'agression se propage de proche en proche, comme une contagion.

      L'auteur utilise des données sur les fusillades entre gangs pour illustrer ce phénomène.

      17:45-20:30 Épidémiologie criminelle:

      Introduction d'Andrew Papachristos, un sociologue qui utilise l'épidémiologie pour étudier le crime.

      L'auteur explique comment Papachristos a cartographié le réseau d'interactions de 170 000 criminels et a mis en évidence des cascades de propagation d'attaques par arme à feu.

      20:30-22:10 Interruption de la contagion:

      Introduction de Gary Slutkin, un médecin virologue reconverti en criminologie, qui utilise des méthodes d'épidémiologie pour interrompre la propagation du crime.

      L'auteur explique comment Slutkin identifie les victimes potentielles et les met en "quarantaine" pour empêcher de nouvelles attaques.

      22:10-22:50 Conclusion:

      Conclusion de la vidéo en laissant la question ouverte de savoir si la fouloscopie peut mettre fin à la criminalité. L'auteur encourage les spectateurs à se faire leur propre opinion.

    1. Les extraits présentés concernent une table ronde commémorant les 60 ans de BUC Ressources, un centre de formation en travail social rattaché à la Sauvegarde des Yvelines.

      La discussion explore l'histoire de BUC Ressources, son évolution depuis sa création en 1964, son rôle dans le développement de la formation en travail social, et l'importance croissante de la co-formation intégrant la perspective des personnes accompagnées. L'accent est mis sur l'influence de facteurs historiques, politiques, et philosophiques sur la formation et la pratique du travail social.

      Des intervenants clés, impliqués dans l'histoire de BUC Ressources et experts en travail social, partagent leurs réflexions et expériences.

      Sommaire minuté de la vidéo "BUC Ressources - 60 ans de formation en travail social - Sauvegarde des Yvelines"

      0:34 - 1:00 : Introduction et informations pratiques

      • Table ronde sur le thème "60 ans de formation en travail social".
      • Remerciements aux participants, y compris une collègue du Québec.
      • Invitation à un verre et à une visite guidée des nouvelles installations après la table ronde.

      3:29 - 4:21 : Discours d'Anne Petiau, directrice du CERA

      • Remerciements à BUC Ressources pour son engagement dans la recherche.
      • Soulignement de l'originalité d'avoir un campus, un centre de formation et un centre de recherche au sein d'une association médico-sociale.
      • Importance de poursuivre et de partager ces richesses.
      • Souhaits de continuation et d'excellence pour l'avenir de BUC Ressources.

      4:32 - 5:27 : Historique de BUC Ressources

      • Début de l'activité en 1964.
      • 11 formations diplômantes et certifiantes dispensées.
      • Effectif moyen de 1100 à 1200 étudiants en formation initiale et 650 à 700 en formation continue.
      • Description de BUC Ressources comme un lieu vivant et un bouillon de culture avec des formateurs aux profils variés.
      • Distinction entre l'éducation spécialisée et le travail social à BUC Ressources.

      5:27 - 9:58 : Témoignages d'anciens étudiants et formateurs

      • Parcours et motivations de plusieurs anciens étudiants et formateurs.
      • Description de la formation, notamment la double diplomation en partenariat avec l'Université de Lille.
      • Soutien du Ministère dans la création de l'école et la construction des bâtiments.
      • Importance de l'unité de pensée autour de l'éducation spécialisée et de la liberté dans les approches pédagogiques.
      • Diversité des intervenants invités par les formateurs.
      • Descriptions d'activités et de sessions spécifiques, comme la sculpture sur pierre et le "forestage froissartage".

      11:06 - 14:26 : Spécificités de la pédagogie de BUC Ressources

      • Importance de l'articulation entre théorie et pratique.
      • Possibilité de structurer son parcours en fonction de son profil et des besoins du terrain.
      • Richesse de la co-construction des savoirs et de l'interaction entre étudiants et formateurs.
      • Semaines de regroupement avec des cours sur des thématiques variées et des semaines d'approfondissement au choix.
      • Importance de l'enseignement juridique et de la co-construction de projets avec les personnes accompagnées.
      • Description de l'ambiance conviviale et chaleureuse de l'école, notamment grâce à la cantine et à l'épicerie solidaire.

      17:10 - 18:47 : Impact et perspectives d'avenir

      • Formation de nombreux cadres du secteur.
      • Impact sur l'encadrement et la formation des directeurs et chefs de services.
      • Projet de modernisation des bâtiments et des installations à l'horizon 2030 intégrant le développement durable.
      • Témoignages sur l'apport de la formation sur les plans académique et personnel.
      • Importance de la liberté de penser et de l'ambiance festive à BUC Ressources.

      18:47 - 21:47 : Introduction de la table ronde

      • Remerciements aux participants et introduction du thème "60 ans de formation en travail social".
      • Contexte de la création de BUC Ressources en 1964, peu avant la création du diplôme d'éducateur spécialisé en 1967.
      • BUC Ressources comme partie intégrante de la Sauvegarde des Yvelines, créée en 1876.
      • Objectif de la table ronde : situer BUC Ressources dans l'histoire des établissements de formation en travail social et dans l'histoire plus large du travail social et des évolutions sociales.
      • Présentation des intervenants de la table ronde.

      21:47 - 37:32 : Intervention de Guy Dreano, co-fondateur de BUC Ressources

      • Témoignage en tant que dernier survivant des fondateurs de l'école.
      • Remerciements aux personnes et aux institutions ayant permis la création et le développement de l'école.
      • Importance de l' "ouverture" comme état d'esprit et fil conducteur de BUC Ressources.
      • Contexte professionnel et associatif de la création de l'école.
      • Rôle des conseillers pédagogiques et des moniteurs de stage.
      • Engagement des professionnels dans les instances régionales et nationales pour faire évoluer l'inadaptation sociale des enfants et adolescents.
      • Spécificité de BUC Ressources comme première école dirigée par des éducateurs ayant une expérience de terrain.
      • Chronologie de dates clés marquant l'évolution du secteur et la professionnalisation du métier d'éducateur.

      37:32 - 57:46 : Intervention de Marcel Jaeger, ancien directeur de BUC Ressources et président de l'UNAFORIS

      • Diversification de la structure et de l'activité de BUC Ressources au cours de son développement.
      • Passage d'une petite école à un établissement plus grand, rejoignant le monde des IRTS.
      • Importance des liens avec le secteur professionnel et l'appartenance à la Sauvegarde des Yvelines.
      • Coopérations internationales, notamment sur la question du décloisonnement entre le sanitaire et le social.
      • Distinction de BUC Ressources par son positionnement précoce sur la recherche et la formation à la recherche pour les étudiants.
      • Prise en compte progressive de la question du handicap et organisation d'un colloque sur la loi de 1975 en faveur des personnes handicapées.
      • Importance de l'éthique et de la réflexion sur le positionnement en situation difficile, notamment grâce à l'influence de Guy Dreano.
      • Impact des contraintes extérieures, comme la baisse des subventions de l'État, sur le développement de l'école et l'obligation de se positionner sur la formation continue.
      • Sensibilité de BUC Ressources aux évolutions des politiques publiques et réactivité face aux nouvelles lois.
      • Obligation de formalisation des compétences avec la mise en place de la VAE.
      • Tension entre la formalisation techniciste des compétences et la tradition axée sur les valeurs et la pratique.

      57:46 - 1:12:21 : Intervention d'Amélie Maugère, professeure à l'École de travail social de Montréal

      • Comparaison entre l'histoire de BUC Ressources et celle de l'École de travail social de Montréal, fondée en 1940.
      • Influence de la tradition catholique sur l'École de Montréal et laïcisation progressive de la société québécoise à partir des années 1960.
      • Importance des femmes dans l'avènement du travail social.
      • Tension entre technicisme et valeurs dans la formation.
      • Création d'un système de protection sociale moderne au Québec dans les années 1960 et son impact sur la formation en travail social.
      • Professionnalisation accrue et émergence d'une expertise techniciste.

      1:12:21 - 1:29:22 : Intervention de Carole Lefloc, autrice de "De la grande exclusion au pouvoir d'agir"

      • Parcours personnel d'experte d'expérience et ses différentes formes d'expertise et d'activités dans le travail social.
      • Difficulté à définir l'expertise expérientielle.
      • Importance de l'analyse et de l'extraction des compétences du parcours de vie pour une intégration effective des personnes accompagnées en école de formation.
      • Importance de la participation des personnes concernées dans les décisions et les instances de consultation.
      • Rôle crucial du travail social dans le soutien et la reconstruction des personnes en difficulté.
      • Importance de la formation et de la conscientisation des étudiants sur les réalités vécues par les personnes concernées.
      • Nécessité de reconnaître la participation citoyenne comme une fonction et une activité à part entière.
      • Plaidoyer pour un Tronc commun dans les formations de l'humain, intégrant le savoir expérientiel.
      • Identification et valorisation des compétences issues de l'expérience de vie.

      1:29:22 - 2:12:11 : Intervention d'Elsa Lagier, responsable pédagogique et chargée de recherche au CERA

      • La participation des personnes concernées dans la formation n'est pas nouvelle, mais elle évolue vers une plus grande reconnaissance de leur expertise.
      • Importance de donner du temps et d'adopter une posture d'écoute et de non-jugement envers les personnes concernées.
      • Les témoignages des personnes concernées permettent aux étudiants de comprendre les réalités du terrain et de développer une posture professionnelle plus juste et respectueuse.
      • La formation en travail social doit s'appuyer sur des savoirs pluriels, y compris ceux des personnes concernées.
      • La coformation, associant différentes catégories de personnes dans un même lieu et un même temps, est une modalité prometteuse pour intégrer le savoir expérientiel.
      • L'échange en dehors de la relation d'accompagnement est une modalité spécifique de la coformation.
      • Les émotions occupent une place importante dans la dynamique de la coformation.
      • Les modules de coformation sont perçus comme des moments marquants par les étudiants, qui en retirent des apprentissages durables.
      • Enjeux éthiques et méthodologiques de la coformation, notamment la formation des personnes concernées à l'intervention, leur statut et leur rémunération.
      • Importance de mobiliser un collectif de personnes concernées pour garantir une pluralité d'expériences et de points de vue.
      • La professionnalisation des personnes concernées peut poser question quant à la représentativité de leur discours.
      • BUC Ressources développe des outils et des modules de coformation pour encourager la participation des personnes concernées de manière éthique et pertinente.

      2:12:11 - 2:12:43 : Conclusion de la table ronde

      • Remerciements aux intervenants et aux participants.
      • Invitation à consulter les travaux des intervenants pour approfondir la réflexion.
      • Annonce des prochaines rencontres de BUC Ressources et des conférences disponibles en replay.
      • Invitation à poursuivre les échanges lors du cocktail de clôture.

      2:12:43 - 2:12:59 : Remerciements et invitation au cocktail

      • Remerciements aux participants.
      • Invitation au cocktail de clôture pour poursuivre les échanges de manière informelle.
    1. podcast sous forme d'interview. Description des outils de surveillance des citoyens. Il manque une définition des différents termes utilisés. Quelle distinction entre espionnage et surveillance.

      Il y a une différence de nature il me semble entre Pegasus et les application de géolocalisation pendant le covid

    1. Briefing Doc: Construction des inégalités scolaires à l'école maternelle Auteur: Sébastien Gouddeau, enseignant-chercheur à l'université de Poitiers, laboratoire CERCA

      Contexte: Présentation donnée à l'INSP de Lille

      Thème principal: L'impact des situations langagières collectives sur la construction des inégalités scolaires à l'école maternelle

      Points importants:

      Différences préexistantes: * Des différences de vocabulaire, de familiarité avec les savoirs scolaires et de compétences comme la conscience phonologique existent avant l'entrée à l'école maternelle. * Ces différences sont souvent expliquées par des facteurs individuels comme l'intelligence et la motivation, nourrissant les débats sur les théories des dons et du handicap socioculturel. * "ces différences qui qui existent avant l'entrée à l'école elles sont diverses elles sont liées au vocabulaire que possèdent les enfants euh elles sont liées à la connaissance qu'ils ont du nom des lettres du son des lettres"

      Modèle de construction des inégalités en trois étapes: Différences de socialisation: Les enfants de milieux favorisés sont davantage socialisés à exprimer leurs idées et à valoriser certaines expériences.

      Opportunités inégales: Les situations langagières collectives, en s'appuyant sur le vécu des enfants, offrent davantage d'opportunités aux enfants de milieux favorisés de participer et de contribuer.

      Interprétation et perception de soi: Les différences de participation sont interprétées comme des différences d'intelligence et de motivation, impactant l'image de soi et l'engagement des élèves.

      "l'enfant qui va réussir euh précocément à l'école maternelle va être assez vite perçu euh comme plus intelligent ou plus motivé contrairement à l'enfant qui va se retrouver en difficulté relative"

      Études:

      Observations en classe: Des observations vidéo dans des classes de maternelle montrent que les enfants de milieux populaires participent moins souvent, sont moins interrogés et ont des prises de parole plus courtes. Ces différences persistent même en contrôlant le niveau de langage.

      Expériences: * Des expériences menées en primaire et au collège montrent que les situations de comparaison sociale (ex: lever la main lorsqu'on a fini) augmentent l'écart de réussite entre les élèves de milieux favorisés et populaires. * Une manipulation expérimentale des avantages et désavantages de socialisation (via un système d'écriture fictif) confirme que la comparaison sociale pénalise les élèves "désavantagés". * Perception des enfants: Des études menées en grande section montrent que les enfants expliquent les différences de participation et de réussite par des caractéristiques internes des élèves (intelligence, motivation, sagesse), et non par des facteurs externes.

      Solutions:

      • Interventions pédagogiques: Des interventions en classe visant à modifier la perception de la réussite scolaire et à donner des stratégies aux enseignants pour gérer les prises de parole sont en cours d'analyse.
      • Formation des enseignants: La sensibilisation des enseignants aux biais potentiels et aux stratégies pour une participation plus équitable est cruciale.
      • Action au niveau sociétal: Réduire les inégalités de socialisation entre les familles est essentiel pour faciliter la tâche des enseignants.

      Conclusion:

      L'école maternelle, malgré son objectif de réduire les inégalités de langage, peut paradoxalement contribuer à les renforcer via les situations langagières collectives.

      Il est important de prendre conscience de ces mécanismes et d'agir à différents niveaux pour garantir une réelle égalité des chances pour tous les élèves.

      Citation importante:

      "il y a des contextes qui vont davantage amplifier ces inégalités de départ que d'autres et les contextes de comparaison social font partie des contextes qui vont amplifier les inégalités"

      Questions ouvertes:

      • Transférabilité des résultats aux États-Unis et aux autres pays.
      • Impact du profil attributionnel des enseignants sur leurs pratiques.
      • Diffusion des connaissances scientifiques aux enseignants et aux décideurs.
    1. Detenerse es reconocer: es importante para el discernimiento, es un trabajo de recogida de esas perlas preciosas y escondidas que el Señor ha sembrado

      Detenerse para reflexionar y discernir

    2. lo había comprendido precisamente releyendo su vida, notando en ella los pasos silenciosos y discretos, pero incisivos, de la presencia del Señor

      Confesiones

    1. Agam and agam, 1t was nec-mc . . ¡· . 11 t remind everyone that no educatwn 1s po 1tica y neu-essary o . . 1 Emphasizing that a white male professor m an Enghsh tra. ,. ak d arttnent who teaches only work by "great white men IS m -ep . . ing a political decision, we had to work cons1stently agamst and through the overwhelming will on the part of folks to deny the politics of racism, sexism, heterosexism, and so forth that · form how and what we teach. We found again and again that :most everyone, especially the old guard, were more distur~ed by the overt recognition of the role our political perspectives play in shaping pedagogy than by their pa~sive acce~tance of ways of teaching and learning that reflect bmses, particularly a white supremacist standpoint.

      This passage demonstrates how actions that may appear harmless can be negatively charged. This professor is only portraying what appears to be valuable; "white men." This brings me to a time in high school. My senior year I took an African American Lit class, but the person who was instructing the class was a white male with blue eyes. The teacher was well aware of his place and knew the confusion that would strike within students upon finding out that it was him that was teaching the class. Although, he had no ill-intent, since the teacher was white, I don't believe he truly could've fully understood the material to that extent... As in, he has never had to experience it.

    1. Le Professeur Michel Lejoyeux, dans son interview, met en avant de nombreux éléments clés pour cultiver la bonne humeur et le bien-être.

      En transposant ces idées au domaine de l'éducation, on peut imaginer plusieurs pistes :

      Encourager l'activité physique et une alimentation saine :

      • Intégrer davantage de cours d'éducation physique et sportive dans les programmes scolaires.
      • Proposer des activités physiques variées et adaptées à tous les niveaux, y compris des activités de pleine conscience comme le yoga ou la méditation en mouvement.
      • Sensibiliser les élèves à l'importance d'une alimentation équilibrée et leur apprendre à faire des choix alimentaires sains.
      • Organiser des ateliers de cuisine pour les élèves et leurs familles.

      Développer la créativité et l'expression artistique :

      • Accorder une place plus importante aux arts (musique, théâtre, arts plastiques, danse) dans les programmes scolaires.
      • Encourager la création et l'expression personnelle à travers des projets artistiques.
      • Organiser des sorties culturelles (musées, concerts, spectacles) et des rencontres avec des artistes.
      • Favoriser la "fixation sur l'instant présent" en proposant des activités qui demandent de la concentration et de l'attention (ex : observation d'une œuvre d'art, écoute attentive d'un morceau de musique).

      Cultiver la gratitude et l'optimisme :

      • Intégrer des exercices de gratitude dans la routine scolaire (ex : chaque jour, demander aux élèves de partager une chose positive qui leur est arrivée).
      • Encourager les élèves à se concentrer sur leurs réussites et à apprendre de leurs erreurs plutôt que de ruminer leurs échecs.
      • Valoriser les comportements positifs et les efforts des élèves.
      • Promouvoir un climat scolaire bienveillant et encourageant.

      Favoriser le lien social et la communication positive :

      • Organiser des activités qui favorisent la coopération et l'entraide entre élèves.
      • Encourager la communication non-violente et l'écoute bienveillante.
      • Mettre en place des espaces de parole où les élèves peuvent exprimer leurs émotions et leurs difficultés.
      • Sensibiliser les élèves au harcèlement et à l'importance du respect mutuel.

      Il est important de rappeler que le bonheur est une notion subjective et personnelle.

      Il ne s'agit pas d'imposer un modèle unique de bonheur aux élèves, mais plutôt de leur donner les outils et les ressources nécessaires pour cultiver leur propre bien-être et leur épanouissement.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their general comment and for the critical evaluation of our analyses and results interpretation. Their comments greatly helped us to improve the manuscript.

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: An analysis of an Arabidopsis VSP13 presumed lipid transport is provided. The analysis pretty much follows similar studies done on yeast and human homologs. Key findings are the identification of multiple products from the locus due to differential splicing, analysis of lipid binding and transport properties, subcellular location, tissue specific promoter activity, mutant analysis suggesting a role in lipid remodeling following phosphate deprivation, but no physiological or growth defects of the mutants. Major points: The paper is generally written and documented, the experiments are well conducted and follow established protocols. The following major points should be considered:

      1. There are complementary lipid binding assays that should be considered such as liposome binding assays, or lipid/western dot blots. All of these might give slightly different results and may inform a consensus. Of course, non-membrane lipids such as TAG cannot be tested in a liposome assay.

      Concerning lipid transfer proteins (LTPs), it is important to differentiate the lipid binding capacity related to the transport specificity (which lipids are transported by a LTP?) from the lipid binding capacity linked to the targeting of a LTP to a specific membrane (a LTP can bind a specific lipid via a domain distinct from the lipid transfer domain to be targeted in cells, but will not transport this lipid). Both aspects are of high interest to be determined. Our goal here was to focus on the identification of the lipids bound to AtVPS13M1 and to be likely transported, which is why we used a truncation (1-335) corresponding to the N-term part of the hydrophobic tunnel. Liposome binding assays and lipid dot blots are necessary to answer the question of the membrane binding capacity of the protein. We think that this aspect is out of the scope of the current article as it will require to express and purify other AtVPS13M1 domains that are known to bind lipids such as the two PH domains and the C2. This will be the scope of future investigations in our lab.

      Similarly, lipid transfer based only on fluorophore-labeled lipids may be misleading because the fluorophore could affect binding. It is mentioned that the protein in this assay is tethered by 3xHis to the liposomes. Un less I ma missing something, I do not understand how that should work. This needs to be better explained.

      We truly agree with Reviewer 1 that the presence of a fluorophore could affect lipid binding to the protein. In this assay, lipids are labeled on their polar head and it is therefore difficult to conclude about the specificity of our protein in term of transport. This assay is used as a qualitative assay to show that AtVPS13M1(1-335) is able to transfer lipids in vitro, and in the manuscript, we did not make any conclusion about its transport specificity based on this assay, but rather used the binding assay to assess the binding, and likely transport, specificity of AtVPS13M1. FRET-based assay is a well-accepted assay in the lipid transfer community to easily probe lipid transport in vitro and has been used in the past to assess transfer capacity of different proteins, including for VPS13 proteins (for examples, see (Kumar et al., 2018; Hanna et al., 2022; Valverde et al., 2019)).

      To be able to transfer lipids from one liposome to another, both liposomes have to be in close proximity. Therefore, we attached our protein on donor acceptors, to favor the transport of the fluorescent lipids from the donor to the acceptor liposomes. Then, we progressively increased acceptor liposomes concentration to favor liposome proximity and the chance to have lipid transfer. We added a scheme on Figure 3B of the revised version of the manuscript to clarify the principle of the assay. In addition, we provided further control experiments suggested by Reviewers 2 and 3 showing that the fluorescence signal intensity depend on AtVPS13M1(1-335) protein concentration and that no fluorescence increase is measured with a control protein (Tom20.3) (see Figure 3C-D of the revised manuscript).

      The in vivo lipid binding assay could be obscured by the fact that the protein was produced in insect cells and lipid binding occurs during the producing. What is the evidence that added plants calli lipids can replace lipids already present during isolation.

      Actually we don’t really know whether the insect cells lipids initially bound to AtVPS13M1(1-335) are replaced by calli lipids or whether they bound to still available lipid binding sites on the protein. But we have two main lines of evidence showing that our purified protein can bind plant lipids even in the presence of insect cells lipids: 1) our protein can bind SQDG and MGDG, two plants specific lipids, and 2) as explained p.8 (lines 243-254), lipids coming from both organisms have a specific acyl-chain composition, with insect cells fatty acids mainly composed of C16 and C18 with 0 or 1 unsaturation whereas plant lipids can have up to 3 unsaturations. By analyzing and presenting on the histograms lipid species from insect cells, calli and those bound to AtVPS13M1(1-335), we were able to conclude that for all the lipid classes besides PS, a wide range of lipid species deriving from both organisms was bound to our protein. The data about the lipid species bound to AtVPS13M1(1-335) are presented in Figure 2E and S2.

      The effects on lipid composition of the mutants are not very drastic from what I can tell. Furthermore, how does this fit with the lipid composition of mitochondria where the protein appears to be mostly located?

      It is true that lipid composition variations in the mutants are not drastic but still statistically significant. As a general point in the field of lipid transfer, it is not very common to have major changes in total lipidome on single mutants of lipid transfer proteins because of a high redundancy of lipid transport pathway in cells. This is particularly true for VPS13 proteins, as exemplified by multiple studies. Major lipid phenotypes can be revealed in specific conditions, such as phosphate starvation in our case, or when looking at specific organelles or specific tissues and/or developmental stages. This is explained and illustrated by examples in the discussion part p. 16 (line 526-532). In addition, as suggested by Reviewer 3, we performed further lipid analysis on calli and also on rosettes under Pi starvation and found a similar trend (Figure 4 and S4 of the revised version of the manuscript). Thus, we believe that, even if not drastic, these variations during Pi starvation are a real phenotype of our mutants.

      As we found that our protein is located at the mitochondrial surface, we agree that Reviewer 1’s suggestion to perform lipidomic analyses on isolated mitochondria will be of high interest but this will be the scope of future studies that we will performed in our lab. First, we would like to identify all the organelles at which AtVPS13M1 is localized before performing subfractionations of these different organelles from the same pool of cell cultures grown in presence or absence of phosphate.

      For the localization of the fusion protein, has it been tested whether the furoin is functional? This should be tested (e.g. by reversion of lipid composition).

      As we did not observe major developmental phenotypes in our mutants, complementation should be indeed tested by performing lipidomic analyses in calli or plants grown in presence or absence of Pi, which is a time-consuming and expensive experiment. Because we used the fusions mainly for tissue expression study and subcellular localization and not for functional analyses, we believe that this is not an essential control to be performed for this work.

      It is speculated that different splice forms are located to different compartments. Can that be tested and used to explain the observed subcellular location patterns?

      Indeed some splice forms can modify the sequence of domains putatively involved in protein localization. This could be tested by producing synthetic constructs with one specific exon organization, which is challenging according to the size of AtVPS13M1 cDNA (around 12kb). In addition, our long-read sequencing experiment and PCR analyses revealed the existence of six transcripts, a major one representing around 92% and the five others representing less than 2.5% (Figure 1D). Among the five less abundant transcripts, four produce proteins with a premature stop codon and are likely to arise from splicing defects as explained in the discussion part p. 15 (lines 488-496). One produces a full-length protein with an additional loop in the VAB domain but because of the low abundance of this alternative transcript (1.4%), we believe it does not contribute significantly to the major localization we observed in plants and did not attend to analyze its localization.

      GUS fusion data only probe promoter activity but not all levels of gene expression. That caveat should be discussed.

      We are aware of this drawback and that is the reason why we fused the GUS enzyme directly to our protein expressed under its native locus (i.e. with endogenous promoter and exons/introns) as depicted in Figure 5A. Therefore, our construction allows to assess directly AtVPS13M1 protein level in plant tissues.

      Minor points: 1. Extraplastidic DGDG and export from chloroplasts following phosphate derivation was first reported in PMID: 10973486.

      We added this reference in the text.

      Check throughout the correct usage of gene expression as genes are expressed and proteins produced.

      Many thanks for this remark, we modified the text accordingly

      In general, the paper is too long. Redundancies between introduction, results and discussion should be removed to streamline.

      We reduced the text to avoid redundancy.

      I suggest to redraw the excel graphs to increase line thickness and enlarge font size to increase presentation and readability.

      We tried as much as we can to enlarge graphs and font size increasing readability.

      Reviewer #1 (Significance (Required)):

      Significance: Interorganellar lipid trafficking is an important topic and especially under studied in plants. Identifying components involved represents significant progress in the field. Similarly, lipid remodeling following phosphate derivation is an important phenomenon and the current advances our understanding.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The manuscript "AtVPS13M1 is involved in lipid remodelling in low phosphate and is located at the mitochondria surface in plants" by Leterme et al. identifies the protein VPS13M1 as a lipid transporter in Arabidopsis thaliana with important functions during phosphate starvation. The researchers were able to localise this protein to mitochondria via GFP-targeting in Arabidopsis. Although VPS13 proteins are well described in yeast and mammals, highlighting their importance in many vital cellular processes, there is very little information on them in plants. This manuscript provides new insights into plant VPS13 proteins and contributes to a better understanding of these proteins and their role in abiotic stress responses, such as phosphate starvation.

      Major points: - Please describe and define the domains of the VPS13M1 protein in detail, providing also a figure for that. Figure 1 is mainly describing possible splice variants, whereas the characteristics of the protein are missing.

      We have added information on AtVPS13M1 domain organization in the introduction (p.4, lines 103-109) and referred to Figure 1A that described protein domain organization. We did not added too much details as plant VPS13 protein domains organization was extensively described in two previous studies cited several times in the manuscript (Leterme et al., 2023; Levine, 2022).

      • Please compare the expression level of VPS13M1 in the presence and in the absence of phosphate.

      Many thanks for this suggestion. We performed qRT-PCR analyses of AtVPS13M1 from mRNA extracted from calli grown six days in presence and absence of phosphate. The results obtained did not reveal variations in mRNA level. The results were added in Figure S1A of the revised version of the manuscript and discussed in p.5 (lines 154-156).

      • Page 9, second paragraph: Here, the lipid transport capability of AtVPS13M1 is described. Varying concentrations of this recombinant protein should be used in this test. Further, it is not highlighted, that a truncated version of VSP13M1 is able to transport lipids. This is surprising, since this truncated version is less than 10% of the total protein (only aa 1-335).

      We agree with reviewer 2 that increasing protein concentration is an important control to perform. We included an experiment with an increasing quantity of protein (2X and 4X) in the revised version of the manuscript and showed that the signal intensity increased faster when protein concentration is higher (Figure 3D of the revised manuscript). As requested by Reviewer 3, we also included a negative control with Tom20.3 to show that the signal increase after the addition of AtVPS13M1(1-335) is specific to this protein (Figure 3C of the revised manuscript).

      The transport ability of the N-terminal part of VPS13 was demonstrated in yeast and mammals VPS13D (Kumar et al., 2018; Wang et al., 2021). We highlighted this p. 7 (lines 213-218) of the revised version of the manuscript. This is explained by the inherent structure of VPS13 proteins that are composed of several repeats of the same domain type called RBG (for repeating β-groove), each forming a β-sheet with a hydrophobic surface. The higher the number of RBG repeats, the longer the hydrophobic tunnel is. The (1-335) N-terminal region corresponds to two RBG unit repeats forming a “small” tunnel able to bind and transfer lipids. The number of RBG repeats has influence on the quantity of lipids bound per protein in vitro, the longest the protein is, the highest the number of lipid molecules bound is (Kumar et al., 2018), but the effect on protein length on in vitro lipid transfer capacity has not been investigated yet to the best of our knowledge.

      • Also, for phenotype analysis, T-DNA insertion mutants are used that still contain VPS13M1 transcripts. Although protein fragments where not detected by proteomic analysis, this might be due to low sensitivity of the proteomic assay. Further the lipid transport domain of VPS13M1 (aa 1-335) might not be affected by the T-DNA insertions at all. Here more detailed analysis needs to be done to prove that indeed loss-of protein function occurs in the mutants.

      We do not have other methods than proteomic to test whether our mutants are KO or not. We tried unsuccessfully to produce antibodies. Mass spectrometry is the most sensitive method but the absence of detection indeed does not mean the absence of the protein. From proteomic data, we can conclude that at least, our mutants present a decrease in AtVPS13M1 protein level, thus we called them “knock down” in the revised version of the manuscript and added the following sentence p. 9 (lines 297-300): “As the absence of detection of a protein by mass spectrometry-based proteomics does not allow us to strictly claim the absence of this protein in the sample, we concluded that AtVPS13M1 expression in both atvps13m1-1 and atvps13m1-4 was below the detection limit and consider them as knock down (KD) for AtVPS13M1.”

      • Localisation in mitochondria: As the Yepet signal is very weak, a control image of not transfected plant tissue needs to be included. Otherwise, it might be hard to distinguish the Yepet signal from background signal. The localisation data presented in Figure 5 does not allow the conclusion that VPS13M1 is localized at the surface of mitochondria as stated in the title. It only indicates (provided respective controls see above) that VPS13M1 is in mitochondria. Please provide more detailed analysis such as targeting to tobacco protoplasts, immunoblots or in vitro protein import assays. Also test +Pi vs. -Pi to see if VPS13M1 localisation is altered in dependence of Pi.

      Indeed our Yepet signal is not very strong but on the experiments we performed on Col0 non-transformed plants, we did not very often see fluorescence background in the leaves’ vascular tissue, that is why we focused our study on this tissue. We sometimes observed some background signals in some cells that are clearly different from AtVPS13M1-3xYepet signals and never co-localized with mitochondria. Examples of these aspecific signals are presented in Figure S6E of the revised version of the manuscript.

      We agree with reviewer 2 that our confocal images suggested, but not demonstrated, a localization at the surface of mitochondria. To confirm the localization, we generated calli cell cultures from AtVPS13M1-3xYepet lines and performed subcellular fractionations and western blot analyses confirming that AtVPS13M1 was indeed enriched in mitochondria and also in microsomal fractions (Figure 6G of the revised version). Then we performed mild proteolytic digestion of the isolated mitochondria with thermolysin and show that AtVPS13M1 was degraded, as the outer membrane protein Tom20.3, but not the inner membrane protein AtMic60, showing that AtVPS13M1 is indeed at the surface of mitochondria (Figure 5H of the revised manuscript). We believe that this experiment, in addition to the confocal images showing a signal around mitochondria, convincingly demonstrates that AtVPS13M1 is located at the surface of mitochondria.

      The localization of AtVPS13M1 under Pi starvation is a very important question that we tried to investigate without success. Indeed, we intended to perform confocal imaging on seedlings grown in liquid media to easily perform Pi starvation as described for the analysis of AtVPS13M1 tissue expression with β-glucuronidase constructs. However, the level of fluorescence background was very high in seedlings and no clear differences between non-transformed and AtVPS13M1-3xYepet lines were observed, even in root tips where the protein is supposed to be the most highly expressed according to β-glucuronidase assays. Example of images obtained are presented in Figure R1. We concluded that the level of expression of our construct was too low in seedlings. The constructions of lines with a higher AtVPS13M1 expression level, by changing the promotor, to better analyze AtVPS13M1 in different tissues or in response to Pi starvation will be the scope of future work in our laboratory in order to investigate AtVPS13M1 localization under low Pi.

      Phenotype analysis needs to be done under Pi stress and not under cold stress! Further, root architecture and root growth should also be done under Pi depletion. Here the title is also misleading, it is not at all clear why the authors switch from phosphate starvation to cold stress.

      In the revised version of the manuscript, we analyzed the seedlings root growth of two mutants (atvps13m1-3 and m1-4) under low Pi and did not notice significant differences (Figure 7E, S7D of the revised version). We analyzed growth under cold stress because this stress also promotes remodeling of lipids, but we agree that it goes beyond the scope of this article that is focused on Pi starvation and we removed this part from the revised manuscript.

      Minor points: Page 3, line 1: what does the abbreviation VPS stand for?

      The definition of VPS (Vacuolar Protein Sorting) was added.

      Page 3, line 1: change "amino acids residues" to "amino acid residues"

      This was done.

      Page 3, line 8 - 12: please rewrite this sentence. You write, that because of their distribution VPS13 proteins do exhibit many important physiological roles. The opposite is true: They are widely distributed in the cell because of their involvement in many physiological processes.

      We changed the sentence to “ VPS13 proteins localize to a wide variety of membranes and membrane contact sites (MCSs) in yeast and human (Dziurdzik and Conibear, 2021). This broad distribution on different organelles and MCSs is important to sustain their important roles in numerous cellular and organellar processes such as meiosis and sporulation, maintenance of actin skeleton and cell morphology, mitochondrial function, regulation of cellular phosphatidylinositol phosphates level and biogenesis of autophagosome and acrosome (Dziurdzik and Conibear, 2021; Hanna et al., 2023; Leonzino et al., 2021).”

      Page 6, line6: change "cDNA obtained from A. thaliana" to "cDNA generated from A. thaliana.

      This was done.

      Page 6, line 10: change" 7.6kb" to "7.6 kb"

      This was done.

      Page 7: address this question: can the isoforms form functional VPS13 proteins? This might help to postulate whether these isoforms are a result of defective splicing events.

      We addressed this aspect in the discussion p.15 at lines 486-502.

      Figure 2 B: Change "AtVPS13M1"to "AtVPS13M1(1-335)"

      This was done.

      Figure 2, legend: -put a blank before µM in each case.

      This was done.

      -Change 0,125µM to 0.125 µM

      This was done.

      -what does "in absence (A-0µM)" mean?

      This means that the Acceptor liposomes are at 0 µM. To clarify, we changed it to “Acceptor 0 µM” in the revised version of the manuscript (Figure 3C).

      -Which statistical analysis was employed?

      We performed a non-parametric Mann-Whitney test in the revised version of the manuscript. This was indicated in the legend.

      -Further, rewrite the sentence "Mass spectrometry (MS) analysis of lipids bound to AtVPS13M1(1-335) or Tom20 (negative control) after incubation with calli total lipids. Results are expresses in nmol of lipids per nmol of proteins (C) or in mol% (D)". -"C" and "D" are not directly comparable, as in "C" no Tom20 was used and in "C" no insect cells were used.

      -Further, in "D" the experimental setup is not clear. AtVPS13(1-335) is supposed to be purified protein after incubation with calli lipids (figure 2, A). Further, in the same figure, lipid composition of "insect cells" and "calli-Pi" are compared àwhy? Please clarify this.

      C and D are two different representations of the same results providing different types of information. In C., the results are expressed in nmol of lipids / nmol of proteins to assess 1) that the level of lipids found in AtVPS13M1(1-335) purifications is significantly higher than what we can expect from the background (assessed using Tom20) and 2) what are the classes of lipids that associate or not to AtVPS13M1(1-335). In D. the lipid distribution in mol% is presented for AtVPS13M1(1-335) as well as for total extracts from calli and insect cells to be able to compare if one lipid class is particularly enriched or not in AtVPS13M1(1-335) purifications compared to the initial extracts with which the protein was incubated. As an example, it allows to deduce that the absence of DGDG detected in the AtVPS13M1(1-335) purifications is not linked to a low level of DGDG in the calli extract, because it represented around 15 mol%, but likely to a weak affinity of the protein for this lipid. We did not represent the Tom20 lipid distribution on this graph because it represents background of lipid binding to the purification column and might suggest that Tom20 binds lipids. We changed the legend in this way and hope that it is clearer now: “C-D. Mass spectrometry (MS) analysis of lipids bound to AtVPS13M1(1-335) or Tom20 (negative control) after incubation with calli total lipids and repurification. Results are expresses in nmol of lipids per nmol of proteins in order to analyze the absolute quantity of the different lipid classes bound to AtVPS13M1(1-335) compared to Tom20 negative control (C), and in mol% to assess the global distribution of lipid classes in AtVPS13M1(1-335) purifications compared to the total lipid extract of insect cells and calli (D).”

      Figure 3: -t-test requires a normal distribution of the data. This is not possible for an n=3. Please use an adequate analysis.

      We performed more replicates and used non-parametric Mann-Whitney analyses in the revised version of the manuscript.

      -Please clarify the meaning of the letters on the top of the bars in the legend.

      This corresponded to the significance of t-tests performed in the first version of the manuscript that were reported in Table S3. As in the new version we performed Mann-Whitney tests, we highlighted the significance by stars and in the figure legends.

      Please, make it clear that two figures belong to C.

      This was clarified in the legend.

      -Reorganise the order of figure 3 (AàBàCàD)

      Because of the configuration of the different histograms presented in the figure, we were not able to change the order but we believed that the graphs can be easily red this way.

      Page 10, 3. Paragraph: since the finding, that no peptides were found in the VSP13M1 ko lines, although transcription was not altered, is surprising, please include the proteomic data in the supplement

      Proteomic data were deposited on PRIDE with the identifier PXD052019. They will remain not publicly accessible until the acceptance of the manuscript.

      Page 11, line 17: The in vitro experiments showed a low affinity of VSP13M1 towards galactolipids. It is further claimed that this is consistent with the finding of the AtVSP13M1 Ko line in vivo, that in absence of PI, no change in DGDG content could be observed. However, the "absence" of VSP13M1 in vivo might still result in a bigger VSP13M1 protein, than the truncated form (1-335) used for the in vitro experiments

      It is true that our in vitro experiments were performed only with a portion of AtVPS13M1 and that the length of the protein could influence protein binding specificity. We removed this assessment from the manuscript.

      Page 13, lane 8: you should reconsider the use of a triple Yepet tag: If two or more identical fluorescent molecules are in close proximity, their fluorescence emission is quenched, which results in a weak signal (as the one that you obtained). See: Zhuang et al. 2000 (PNAS) Fluorescence quenching: A tool for single-molecule protein-folding study

      Many thanks to point this paper. We use a triple Yepet because AtVPS13M1 has a very low level of expression and because this strategy was used successfully to visualize proteins for which the signal was below the detection level with a single GFP (Zhou et al., 2011). The quenching of the 3xYepet might also depend on the conformation they adopt on the targeting protein.

      Page 13, line 14: change 1µm to 1 µm

      This was done.

      Page 13, line 29: please reduce the sentence to the first part: if A does not colocalize with B, it is not necessary to mention that B does not colocalise with A.

      The sentence was modified accordingly.

      Page 14, 2. Paragraph: it is not conclusive that phenotype analysis is suddenly conducted with plants under cold stress, since everything was about Pi-starvation and the role of VSP13M1. Lipid remodelling under Pi stress completely differs from the lipid remodelling under cold stress.

      We eliminated this part in the revised version of the manuscript.

      Page 14, line 20: change figure to Figure

      This was done.

      Page 07, line 17: change artifact to artefact

      This was done.

      Reviewer #2 (Significance (Required)):

      General assessment: The paper is well written and technically sound. However, some points could be identified, that definitely need a revision. Overall, we got the impression that so far, the data gathered are still quite preliminary and need some more detailed investigations prior to publication (see major points).

      Advance: The study definitely fills a gap of knowledge since not much is known on the function of plant VPS13 proteins so far.

      Audience: The study is of very high interest to the plant lipid community but as well of general interest for Plant Molecular Biology and intracellular transport.

      Our expertise: Plant membrane transport and lipid homeostasis.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Leterme et al. (2024) describes the characterization of VPS13M1 from Arabidopsis. VPS13 proteins have been analyzed in yeast and animals, where they establish lipid transfer connections between organelles, but not much is known about VPS13 proteins in plants. First, different splicing forms were characterized, and the form A was identified as the most relevant one with 92% of the transcripts. The protein (just N-terminal 335 amino acids out of ca. 3000 amino acids) was expressed in insect cells and purified. Next, the protein was used for lipid binding assays with NBD-labeled lipids followed by analysis in polyacrylamide gel electrophoresis. VPS13M1 bound to PC, PE, PS and PA. Then, the protein from insect cells was incubated with Arabidopsis callus lipids, and lipids bound to VPS13M1 analyzed by LC-MS/MS. Lipid transfer between liposomes was measured by the change in fluorescence in donor liposomes derived from two labeled lipids after addition of the protein caused by lipid transfer and dilution to acceptor liposomes. T-DNA insertion mutants were isolated and the lipids measured in callus derived from these mutants. Protein localization in different plant organs was recorded with a GUS fusion construct transferred into transgenic plants. The protein was localized to mitochondria using a VPS13M1-Yepet fusion construct transferred into mutant plants. The mutant plants show no visible difference to wild type, even when the plants were grown under stress conditions like low temperature. The main message of the title is that VPS13M1 localizes to the mitochondria which is well documented, and it is involved in lipid remodeling under low phosphate conditions.

      The lipid transfer assay shown in Figure 2F lacks a negative control. This would be the experiment with donor and acceptor liposomes in the presence of another protein like Tom20.

      Many thanks for this suggestion. In the revised version of the manuscript, we performed a fluorescent lipid transport assay with Tom20.3 in the presence of 25 µM of donor liposomes and 1.5 mM of acceptor liposomes, the condition for which we observed a maximum of transport for AtVPS13M1(1-335). As expected, no fluorescence increase was observed. The results are presented in the Figure 3C of the revised manuscript.

      The lipid data (Fig. 3 and Fig. S4) do not sufficiently support the second claim, i.e. that the protein is involved in lipid remodeling under low P. Data in Fig. 3C are derived from only 3 replicates and in Fig. S4 from only 2 replicas with considerable error bars. Having only 2 replicates is definitely not sufficient. Fig. 3C shows a suppression in the decrease in PE and PC at 4 d of P deprivation (significant for two mutants for PE, for only one for PC). Fig. S4A shows suppression of the decrease in PC at 6 d after P deprivation (significant for both mutants), but no significant effect on PE. Fig. 4SB shows no significant change in PE or PC at -P after 8 d of P deprivation. The data are not consistent. There are also problems with the statistics in Fig. 3 and Fig. S4. The authors used T-test, but place letters a, b, c on top of the bars. Usually, asterisks should be used to indicate significant differences. Data indicate medians and ranges, not mean and SD. In Fig. S4, how can you indicate median and range if you have only 2 replicates? Why did the authors use callus for lipid measurements? Why not use leaves and root tissues? What does adjusted nmol mean? What does the dashed line at 1.05 on the y axis mean? Taken together, I suggest to repeat lipid measurements with leaves and roots from plantets grown under +P and -P conditions in tissue culture with 5 replcates. Significant differences can be analyzed on the level of absolute (nmol per mg FW/DW) or relative (%) amounts.

      Here are our answers to concerns about the design of our lipidomics experiments:

      We used calli for lipid measurement because it is very easy to control growth conditions and to performed phosphate starvation from this cell cultures. The second reason is that it is a non-photosynthetic tissue with a high level of phospholipids and a low level of galactoglycerolipids and it is easier to monitor the modification of the balance phospholipids/galactoglycerolipids in this system. The lipid analysis on calli at 4 days of growth in presence or absence of Pi were performed on 3 biological replicates but on two different mutants (atvps13m-1 and m1-3) and we drew our conclusions based on variations that were significant for both mutants. In the revised version of the manuscript, we performed further lipidomic analyses on calli from Col0 and another mutant (atvps13m1-2) after 6 days of growth in presence or absence of Pi (Figure 4E, S4A-C, n=4-5) and added new data on a photosynthetic tissue (rosettes) from Col0 and atvps13m1-3 mutant. For rosettes analysis, seeds were germinated 4 days in plates with 1 mM Pi and then transferred on plates with 1 mM or 5 µM of Pi. Rosettes were harvested and lipids analyzed after 6 days (Figure 4F-G, S4D, n=4-5). All the data were represented with medians and ranges because we believe that median is less sensitive to extreme values than mean and might better represent what is occurring. Ranges highlight the minimal and maximal value of the data analyzed and we believe it is a representative view of the variability we obtained between biological samples.

      Lipid measurement are done by mass spectrometry. As it was already reported, mass spectrometry quantification is not trivial as the intensity of the response depends on the nature of the molecule (for a review, see (Jouhet et al., 2024)). To counteract this ionisation problem, we developed a method with an external standard that we called Quantified Control (QC) corresponding to an A. thaliana callus lipid extract for which the precised lipid composition was determined by TLC and GC-FID. All our MS signals were “adjusted” to the signal of this QC as described in (Jouhet et al., 2017). Therefore our lipid measurement are in adjusted nmol. In material and method we modified the sentence accordingly p22 lines 720-723: “Lipid amounts (pmol) were adjusted for response differences between internal standards and endogenous lipids and by comparison with a quality control (QC).” This allows to represent all the lipid classes on a same graph and to have an estimation of the lipid classes distribution. To assess the significance of our results, we used in the revised version of the manuscript non-parametric Mann-Whitney tests and added stars representing the p-value on charts. This was indicated in the figure legends.

      Here are our answers to concerns about the interpretation of our lipidomics experiments:

      To summarize, in the revised version of the manuscript, lipid analyses were performed in calli from 3 different mutants (two at day 4, one at day 6) and in the rosettes from one of these mutants. All the results are presented in Figure 4 and S4. In all the experiments, we found that in +Pi, there is no major modifications in the lipid content or composition. In –Pi, we found that the total glycerolipid content is always higher in the mutant compared to the Col0, whatever the tissue or mutant considered (Figure 4A and S4A, D). In calli, this higher increase in lipid content is mainly due to an accumulation of phospholipids and in rosettes, of galactolipids. Because of high variability between our biological replicates, we did not always found significant differences in the absolute amount of lipids in –Pi. However, the analysis of the fold change in lipid content in –Pi vs +Pi always pointed toward a reduced extent of phospholipid degradation. We also added in these graphs the fold change for the total phospholipids and total galactolipids contents in the revised version of the manuscript. We believe that the new analyses we performed strengthen our conclusion about the role of AtVPS13M1 in phospholipid degradation and not on the recycling of precursors backbone to feed galactoglycerolipids synthesis at the chloroplast envelope.

      Page 9, line 15: Please use the standard form of abbreviations of lipid molecular species with colon, e.g. PC32:0, not PC32-0

      The lipid species nomenclature has been changed accordingly.

      Page 11, line 4, (atvps13m1.1 and m1.3: please indicate the existence of mutant alleles with dashes, i.e. (atvps13m1-1 and atvps13m1-3

      Names of the mutants have been changed accordingly.

      Page 14, line 21: which line is indicated by atvps13m1.2-4? What does -4 indicate here?

      This indicates that mutants m1-2 to m1-4 were analyzed.

      Page 16, line 25: many abbreviations used here are very specific and not well known to the general audience e.g. ONT, IR, PTC, NMD etc. I think it is OK to mention them here, but still use the full terms, given that they are not used very frequently in the manuscript.

      We kept ONT abbreviation because it was cited many times in both the results and discussion part. IR, PTC and NMD were cited only in the discussion and were eliminated.

      Page 19, line 11. The authors cite Hsueh et al and Yang et al for LPTD1 playing a role in lipid homeostasis during P deficiency. But Yang et al. described the function of a SEC14 protein in Arabidopsis and rice during P deficiency. Is SEC14 related to LPTD1?

      Many thanks for noticing this mistake. We removed the citation Yang et al. in the revised version of the manuscript.

      Reference Tangpranomkorn et al. 2022: In the text, it says that this is a preprint, but in the Reference list, this is indicated with "Plant Biology" as Journal. In the internet, I could only find this manuscript in bioRxiv.

      This manuscript was accepted in “New Phytologist” in December 2024 and is now cited accordingly in the new version of the manuscript.

      Reviewer #3 (Significance (Required)):

      The manuscript by Leterme et al describes the characterization of the lipid binding and transport protein VTPS13M1 from Arabidopsis. I think that the liposome assay needs to be done with a negative control. Furthermore, I have major concerns with the lipid data in Fig. 3C and Fig. S4. These lipid data of the current manuscript need to be redone. I do not agree that the lipid data allow the conclusion that "AtVPS13M1 is involved in lipid remodeling in low phosphate" as stated in the title.

      References cited in this document:

      Dziurdzik, S.K., and E. Conibear. 2021. The Vps13 Family of Lipid Transporters and Its Role at Membrane Contact Sites. Int J Mol Sci. 22:2905. doi:10.3390/ijms22062905.

      Hanna, M., A. Guillén-Samander, and P. De Camilli. 2023. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol. 39:409–434. doi:10.1146/annurev-cellbio-120420-014634.

      Hanna, M.G., P.H. Suen, Y. Wu, K.M. Reinisch, and P. De Camilli. 2022. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. Journal of Cell Biology. 221:e202111018. doi:10.1083/jcb.202111018.

      Jouhet, J., E. Alves, Y. Boutté, S. Darnet, F. Domergue, T. Durand, P. Fischer, L. Fouillen, M. Grube, J. Joubès, U. Kalnenieks, J.M. Kargul, I. Khozin-Goldberg, C. Leblanc, S. Letsiou, J. Lupette, G.V. Markov, I. Medina, T. Melo, P. Mojzeš, S. Momchilova, S. Mongrand, A.S.P. Moreira, B.B. Neves, C. Oger, F. Rey, S. Santaeufemia, H. Schaller, G. Schleyer, Z. Tietel, G. Zammit, C. Ziv, and R. Domingues. 2024. Plant and algal lipidomes: Analysis, composition, and their societal significance. Progress in Lipid Research. 96:101290. doi:10.1016/j.plipres.2024.101290.

      Jouhet, J., J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme, S. Collin, S. Roy, E. Maréchal, and F. Rébeillé. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE. 12:e0182423. doi:10.1371/journal.pone.0182423.

      Kumar, N., M. Leonzino, W. Hancock-Cerutti, F.A. Horenkamp, P. Li, J.A. Lees, H. Wheeler, K.M. Reinisch, and P. De Camilli. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 217:3625–3639. doi:10.1083/jcb.201807019.

      Leonzino, M., K.M. Reinisch, and P. De Camilli. 2021. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1866:159003. doi:10.1016/j.bbalip.2021.159003.

      Leterme, S., O. Bastien, R.A. Cigliano, A. Amato, and M. Michaud. 2023. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. Contact (Thousand Oaks). 6:1–23. doi:10.1177/25152564231211976.

      Levine, T.P. 2022. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. Contact. 5:251525642211343. doi:10.1177/25152564221134328.

      Valverde, D.P., S. Yu, V. Boggavarapu, N. Kumar, J.A. Lees, T. Walz, K.M. Reinisch, and T.J. Melia. 2019. ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol. 218:1787–1798. doi:10.1083/jcb.201811139.

      Wang, J., N. Fang, J. Xiong, Y. Du, Y. Cao, and W.-K. Ji. 2021. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions. Nat Commun. 12:1252. doi:10.1038/s41467-021-21525-5.

      Zhou, R., L.M. Benavente, A.N. Stepanova, and J.M. Alonso. 2011. A recombineering-based gene tagging system for Arabidopsis. Plant J. 66:712–723. doi:10.1111/j.1365-313X.2011.04524.x.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript by Leterme et al. (2024) describes the characterization of VPS13M1 from Arabidopsis. VPS13 proteins have been analyzed in yeast and animals, where they establish lipid transfer connections between organelles, but not much is known about VPS13 proteins in plants. First, different splicing forms were characterized, and the form A was identified as the most relevant one with 92% of the transcripts. The protein (just N-terminal 335 amino acids out of ca. 3000 amino acids) was expressed in insect cells and purified. Next, the protein was used for lipid binding assays with NBD-labeled lipids followed by analysis in polyacrylamide gel electrophoresis. VPS13M1 bound to PC, PE, PS and PA. Then, the protein from insect cells was incubated with Arabidopsis callus lipids, and lipids bound to VPS13M1 analyzed by LC-MS/MS. Lipid transfer between liposomes was measured by the change in fluorescence in donor liposomes derived from two labeled lipids after addition of the protein caused by lipid transfer and dilution to acceptor liposomes. T-DNA insertion mutants were isolated and the lipids measured in callus derived from these mutants. Protein localization in different plant organs was recorded with a GUS fusion construct transferred into transgenic plants. The protein was localized to mitochondria using a VPS13M1-Yepet fusion construct transferred into mutant plants. The mutant plants show no visible difference to wild type, even when the plants were grown under stress conditions like low temperature. The main message of the title is that VPS13M1 localizes to the mitochondria which is well documented, and it is involved in lipid remodeling under low phosphate conditions. The lipid transfer assay shown in Figure 2F lacks a negative control. This would be the experiment with donor and acceptor liposomes in the presence of another protein like Tom20. The lipid data (Fig. 3 and Fig. S4) do not sufficiently support the second claim, i.e. that the protein is involved in lipid remodeling under low P. Data in Fig. 3C are derived from only 3 replicates and in Fig. S4 from only 2 replicas with considerable error bars. Having only 2 replicates is definitely not sufficient. Fig. 3C shows a suppression in the decrease in PE and PC at 4 d of P deprivation (significant for two mutants for PE, for only one for PC). Fig. S4A shows suppression of the decrease in PC at 6 d after P deprivation (significant for both mutants), but no significant effect on PE. Fig. 4SB shows no significant change in PE or PC at -P after 8 d of P deprivation. The data are not consistent. There are also problems with the statistics in Fig. 3 and Fig. S4. The authors used T-test, but place letters a, b, c on top of the bars. Usually, asterisks should be used to indicate significant differences. Data indicate medians and ranges, not mean and SD. In Fig. S4, how can you indicate median and range if you have only 2 replicates? Why did the authors use callus for lipid measurements? Why not use leaves and root tissues? What does adjusted nmol mean? What does the dashed line at 1.05 on the y axis mean? Taken together, I suggest to repeat lipid measurements with leaves and roots from plantets grown under +P and -P conditions in tissue culture with 5 replcates. Significant differences can be analyzed on the level of absolute (nmol per mg FW/DW) or relative (%) amounts. Page 9, line 15: Please use the standard form of abbreviations of lipid molecular species with colon, e.g. PC32:0, not PC32-0 Page 11, line 4, (atvps13m1.1 and m1.3: please indicate the existence of mutant alleles with dashes, i.e. (atvps13m1-1 and atvps13m1-3

      Page 14, line 21: which line is indicated by atvps13m1.2-4? What does -4 indicate here? Page 16, line 25: many abbreviations used here are very specific and not well known to the general audience e.g. ONT, IR, PTC, NMD etc. I think it is OK to mention them here, but still use the full terms, given that they are not used very frequently in the manuscript. Page 19, line 11. The authors cite Hsueh et al and Yang et al for LPTD1 playing a role in lipid homeostasis during P deficiency. But Yang et al. described the function of a SEC14 protein in Arabidopsis and rice during P deficiency. Is SEC14 related to LPTD1? Reference Tangpranomkorn et al. 2022: In the text, it says that this is a preprint, but in the Reference list, this is indicated with "Plant Biology" as Journal. In the internet, I could only find this manuscript in bioRxiv.

      Significance

      The manuscript by Leterme et al describes the characterization of the lipid binding and transport protein VTPS13M1 from Arabidopsis. I think that the liposome assay needs to be done with a negative control. Furthermore, I have major concerns with the lipid data in Fig. 3C and Fig. S4. These lipid data of the current manuscript need to be redone. I do not agree that the lipid data allow the conclusion that "AtVPS13M1 is involved in lipid remodeling in low phosphate" as stated in the title.

    1. puede definirse a la selección y revisión de sentencias, como la facultad que tiene como propósito principal el desarrollo de jurisprudencia vinculante sobre el alcance de las garantías jurisdiccionales, o dicho en términos más sencillos, como un mecanismo que le permite a la Corte Constitucional generar precedentes a partir de problemas jurídicos concretos que han sido resueltos por jueces de instancia

      DEFINICIÓN

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      Previous experimental studies demonstrated that membrane association drives avidity for several potent broadly HIV-neutralizing antibodies and its loss dramatically reduces neutralization. In this study, the authors present a tour de force analysis of molecular dynamics (MD) simulations that demonstrate how several HIV-neutralizing membrane-proximal external region (MPER)-targeting antibodies associate with a model lipid bilayer.

      First, the authors compared how three MPER antibodies, 4E10, PGZL1, and 10E8, associated with model membranes, constructed with two lipid compositions similar to native viral membranes. They found that the related antibodies 4E10 and PGZL1 strongly associate with a phospholipid near heavy chain loop 1, consistent with prior crystallographic studies. They also discovered that a previously unappreciated framework region between loops 2-3 in the 4E10/PGZL1 heavy chain contributes to membrane association. Simulations of 10E8, an antibody from a different lineage, revealed several differences from published X-ray structures. Namely, a phosphatidylcholine binding site was offset and includes significant interaction with a nearby framework region. The revised manuscript demonstrates that these lipid interactions are robust to alterations in membrane composition and rigidity. However, it does not address the reverse-that phospholipids known experimentally not to associate with these antibodies (if any such lipids exist) also fail to interact in MD simulations.

      Next, the authors simulate another MPER-targeting antibody, LN01, with a model HIV membrane either containing or missing an MPER antigen fragment within. Of note, LN01 inserts more deeply into the membrane when the MPER antigen is present, supporting an energy balance between the lowest energy conformations of LN01, MPER, and the complex. These simulations recapitulate lipid binding interactions solved in published crystallographic studies but also lead to the discovery of a novel lipid binding site the authors term the "Loading Site", which could guide future experiments with this antibody.

      The authors next established course-grained (CG) MD simulations of the various antibodies with model membranes to study membrane embedding. These simulations facilitated greater sampling of different initial antibody geometries relative to membrane. These CG simulations , which cannot resolve atomistic interactions, are nonetheless compelling because negative controls (ab 13h11, BSA) that should not associate with membrane indeed sample significantly less membrane.

      Distinct geometries derived from CG simulations were then used to initialize all-atom MD simulations to study insertion in finer detail (e.g., phospholipid association), which largely recapitulate their earlier results, albeit with more unbiased sampling. The multiscale model of an initial CG study with broad geometric sampling, followed by all-atom MD, provides a generalized framework for such simulations.

      Finally, the authors construct velocity pulling simulations to estimate the energetics of antibody membrane embedding. Using the multiscale modelling workflow to achieve greater geometric sampling, they demonstrate that their model reliably predicts lower association energetics for known mutations in 4E10 that disrupt lipid binding. However, the model does have limitations: namely, its ability to predict more subtle changes along a lineage-intermediate mutations that reduce lipid binding are indistinguishable from mutations that completely ablate lipid association. Thus, while large/binary differences in lipid affinity might be predictable, the use of this method as a generative model are likely more limited.

      The MD simulations conducted throughout are rigorous and the analysis are extensive, creative, and biologically inspired. Overall, these analyses provide an important mechanistic characterization of how broadly neutralizing antibodies associate with lipids proximal to membrane-associated epitopes to drive neutralization.

      Reviewer #2 (Public review):

      In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.

      The use of multiscale MD simulations allows for a detailed exploration of the system at different time and length scales. The combination of MD simulations and structural bioinformatics provides a comprehensive approach to validate the identified binding sites. Finally, the steered MD simulations offer quantitative insights into the binding strength between the membrane and bnAbs.

      While the simulations and analyses provide qualitative insights into the binding interactions, they do not offer a quantitative assessment of energetics. The coarse-grained simulations exhibit artifacts and thus require careful analysis.

      This study contributes to a deeper understanding of the molecular mechanisms underlying bnAb recognition of the HIV-1 envelope. The insights gained from this work could inform the design of more potent and broadly neutralizing antibodies.

      Recommendations for the authors:

      Reviewing Editor:

      We recommend the authors remove the figure and section related to bnAb LN01, perform additional analysis (e.g., further expanding on the differences in antibody binding in the presence or absence of antigen), and present this as a separate manuscript in a follow-up study.

      We consider the analysis of a bnAb with a transmembrane antigen and of LN01 as essential to the manuscript and novel results.  Study of LN01 provides many insights unique from the other MPER bnAbs in this study.  We agree further characterization of LN01 and bnAbs with transmembrane antigen or full-length Env are intriguing and necessary to complete the full mechanistic understanding of lipid-associated antibodies.  LN01 section in this paper is novel in the field and demonstrates the preliminary evidence motivating further work, which we agree are beyond the scope of this already long detailed study.

      Reviewer #1 (Recommendations for the authors):

      I appreciate the degree to which the authors responded to my previous points raised in the private review, including edits where I might have missed something in the manuscript or relevant literature. I imagine such a point-by-point response was quite onerous. Thank you also for balancing presentation/clarity with content/rigor considering the large information content of this manuscript; in silico results are inherently hard to present given the delicate balance between rigorous validation and novel information content. I apologize if I repeat points raised and addressed previously and commend the authors on their revised study, which is much improved in clarity; any additional revisions are of course entirely at your discretion.

      "...now having more diversity in lipid headgroup chemistries" references the wrong figure-it should be: Figure 2-figure supplement 2A-C. The incorrect figure is also referenced again several sentences down: "...relevant CDR and framework surface loops..."

      Thank you for pointing out this error. We have corrected figure references.

      "One shared conformational difference observed for these bnAbs the higher cholesterol bilayers was slightly more extensive and broader interaction profiles as well as modestly deeper embedding of the relevant CDR and framework surfaces loops" please rephrase

      Thank you for this suggestion.  We rephrased this for improved clarity and flow. 

      "These results bolster the feasibility for using all-atom MD as an in silico platform to explore differential phospholipid affinity at these sites (i.e., specificity studies) and influence on antibody preferred conformation as membrane composition and lipid chemistry are systematically varied" Please tone down these speculations-you have demonstrated that simulations are robust to different headgroup chemistries but have not provided evidence for the exclusion of lipids that are known not to associate with these antibodies.

      We rephrased this speculation to highlight the potential of this application. We also emphasize future studies that would be required to achieve this application in the following sentence.

      “These results motivate use of all-atom MD as an in silico approach for exploring differential phospholipid affinity at these sites…”

      Figure 2A: Specify which PDB entry corresponds to the displayed crystal structures in the main figure or caption.

      We clarified these PDB entries in the figure caption. 

      Check reference formatting in supplemental figures when generating VOR.

      I am not sure how relevant this might be to the claims of Figure 2-figure supplement 3, but AlphaFold3-based phospholigand docking might provide an additional orthogonal approach if relevant ligand(s) are available for such analysis (particularly for the newly proposed 10E8 POPC complex).

      Thank you for this suggestion.  AI/ML based prediction methods like AF3 and RoseTTAFold All-Atom (RFAA) are interesting new methods that have come since our initial submission.   We’ve decided these experiments are beyond the scope of this already long and detailed study. We have added a sentence suggesting use of these methods in future work.

      "We next studied bnAb LN01 to interrogate differences" --> this transition still reads a bit unclear. Why shift gears and change antibodies? Also, while you do go into its interactions both +/- antigen, there's no lead into the simulation initialization with and without antigen to guide the reader into the comparisons you will draw in the figure. Also, the order of information presentation is a bit strange, where the rationale for choosing a single monomeric helix is brought up in the middle of the paragraph instead of at the beginning of the section. In the next paragraph, it goes back to the initialization of the membrane composition again, which feels a bit disorganized-I do appreciate the unique challenge of having to weave through so much quality data! In fact, if you were to conduct simulations of membrane + antigen vs. membrane + LN01 vs. membrane + LN01 + antigen, I am tempted to say that this could be removed from this manuscript and flow better as a paper in and of itself.

      We thank the reviewer for the suggestion to improve the writing style.  We feel this section adds a lot of value to the manuscript, so we will keep it in the paper and improved the transition as well as rationale.  

      We selected to study the additional antibody LN01 and the monomeric MPER-TM antigen conformation because of the existing structural evidence available without additional creative model building.  This rationale has been updated in the new text.  

      We changd the order of information as suggested, moving the rationale for antigen fragment earlier in the paragraph followed by the background of the lipids sites from the crystal that can lead into simulation set-up.  We clarified the simulation initialization was similar for systems with and without antigen in the opening sentence of the paragraph

      "previously observed snorkeling and hydration of TM Arg686" --> Is this R696 (numbering could be different based on the particular Env)?

      Thank you for noting this typo, we have corrected the numbering.

      Potential font color issue with Figure 3-Figure supplement 1 B and part of A text-could be fixed in typesetting.

      The discussion reads very well. Is it possible to direct antibody maturation, even in an engineered context, towards membrane affinity without increasing immunogenic polyreactivity? This is mentioned very briefly and cited with ref 36, but I would be interested in the author's thoughts on this topic.

      We thank the reviewer for the insightful idea to explore in future work.  Our conclusion alludes to possibly artificially evolving membrane affinity studied by MD, as done in vitro by Nieva and co-workers.  Because the hypothetical nature, we’ve chosen not to elaborate on those ideas from this manuscript.

      Reviewer #2 (Recommendations for the authors):

      To ensure reproducibility and facilitate further research, the authors should publicly deposit the code for running the MD simulations and analyses (e.g., on GitHub) along with the underlying data used in the study (e.g., on Zenodo.org).

      We appreciate the consideration for open-source code and analysis. Representative code and simulation trajectories were uploaded to the following repositories:

      https://github.com/cmaillie98/mper_bnAbs.git

      https://zenodo.org/records/13830877

      —-

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Previous experimental studies demonstrated that membrane association drives avidity for several potent broadly HIV-neutralizing antibodies and its loss dramatically reduces neutralization. In this study, the authors present a tour de force analysis of molecular dynamics (MD) simulations that demonstrate how several HIV-neutralizing membrane-proximal external region (MPER)-targeting antibodies associate with a model lipid bilayer.

      First, the authors compared how three MPER antibodies, 4E10, PGZL1, and 10E8, associated with model membranes, constructed with a lipid composition similar to the native virion. They found that the related antibodies 4E10 and PGZL1 strongly associate with a phospholipid near heavy chain loop 1, consistent with prior crystallographic studies. They also discovered that a previously unappreciated framework region between loops 2-3 in the 4E10/PGZL1 heavy chain contributes to membrane association. Simulations of 10E8, an antibody from a different lineage, revealed several differences from published X-ray structures. Namely, a phosphatidylcholine binding site was offset and includes significant interaction with a nearby framework region.

      Next, the authors simulate another MPER-targeting antibody, LN01, with a model HIV membrane either containing or missing an MPER antigen fragment within. Of note, LN01 inserts more deeply into the membrane when the MPER antigen is present, supporting an energy balance between the lowest energy conformations of LN01, MPER, and the complex. Additional contacts and conformational restraints imposed by ectodomain regions of the envelope glycoprotein, however, remain unaddressed-the size of such simulations likely runs into technical limitations including sampling and compute time.

      The authors next established course-grained (CG) MD simulations of the various antibodies with model membranes to study membrane embedding. These simulations facilitated greater sampling of different initial antibody geometries relative to membrane. Distinct geometries derived from CG simulations were then used to initialize all-atom MD simulations to study insertion in finer detail (e.g., phospholipid association), which largely recapitulate their earlier results, albeit with more unbiased sampling. The multiscale model of an initial CG study with broad geometric sampling, followed by all-atom MD, provides a generalized framework for such simulations.

      Finally, the authors construct velocity pulling simulations to estimate the energetics of antibody membrane embedding. Using the multiscale modelling workflow to achieve greater geometric sampling, they demonstrate that their model reliably predicts lower association energetics for known mutations in 4E10 that disrupt lipid binding. However, the model does have limitations: namely, its ability to predict more subtle changes along a lineage-intermediate mutations that reduce lipid binding are indistinguishable from mutations that completely ablate lipid association. Thus, while large/binary differences in lipid affinity might be predictable, the use of this method as a generative model are likely more limited.

      The MD simulations conducted throughout are rigorous and the analysis are extensive. However, given the large amount of data presented within the manuscript, the text would benefit from clearer subsections that delineate discrete mechanistic discoveries, particularly for experimentalists interested in antibody discovery and design. One area the paper does not address involves the polyreactivity associated with membrane binding antibodies-MD simulations and/or pulling velocity experiments with model membranes of different compositions, with and without model antigens, would be needed. Finally, given the challenges in initializing these simulations and their limitations, the text regarding their generalized use for discovery, rather than mechanism, could be toned down.

      Overall, these analyses provide an important mechanistic characterization of how broadly neutralizing antibodies associate with lipids proximal to membrane-associated epitopes to drive neutralization.

      Reviewer #2 (Public Review):

      In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.

      The conclusions from the paper are mostly well supported by the simulations, however, they remain very descriptive and the key findings should be better described and validated. In particular:

      It has been shown that the lipid composition of HIV membrane is rich in cholesterol [1], which accounts for almost 50% molar ratio. The authors use a very different composition and should therefore provide a reference. It has been shown for 4E10 that the change in lipid composition affects dynamics of the binding. The robustness of the results to changes of the lipid composition should also be reported.

      The real advantage of the multiscale approach (coarse grained (CG) simulation followed by a back-mapped all atom simulation) remains unclear. In most cases, the binding mode in the CG simulations seem to be an artifact.

      The results reported in this study should be better compared to available experimental data. For example how does the approach angle compare to cryo-EM structure of the bnAbs engaging with the MPER region, e.g. [2-3]? How do these results from this study compare to previous molecular dynamics studies, e.g.[4-5]?

      References<br /> (1) Brügger, Britta, et al. "The HIV lipidome: a raft with an unusual composition." Proceedings of the National Academy of Sciences 103.8 (2006): 2641-2646.<br /> (2) Rantalainen, Kimmo, et al. "HIV-1 envelope and MPER antibody structures in lipid assemblies." Cell Reports 31.4 (2020).<br /> (3) Yang, Shuang, et al. "Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack." Nature Communications 13.1 (2022): 6393.<br /> (4) Carravilla, Pablo, et al. "The bilayer collective properties govern the interaction of an HIV-1 antibody with the viral membrane." Biophysical Journal 118.1 (2020): 44-56.<br /> (5) Pinto, Dora, et al. "Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01." Cell host & microbe 26.5 (2019): 623-637.

      Considering reviewer suggestions, we slightly reorganized the results section into specific sub-sections with headings and changed the order in which key results were presented to allow the subsequent analysis more accessible for readers.  Supplemental materials were redistributed into eLife format, having each supplemental item grouped to a corresponding main figure. Many slightly detail modifications were made to figures (mostly supplemental items) without changing their character, such as clearer axes labels or revised annotations within panels.

      The major additions within the results sections based on the reviews were:

      (1) An expanded the comparison between our simulation analyses to previous simulations and to existing cryo-EM structural evidence for MPER antibodies’ membrane orientation the context of full-length antigen, resulting in new supplemental figure panels.

      (2) New atomistic simulations of 10E8, PGZL1, and 4E10 evaluating the phospholipid binding predictions in a different lipid composition more closely modeling HIV membranes.

      Minor edits to the analyses and interpretations include:

      (1) Outlining the geometric components contributing to variance in substates after clustering the atomistic 10E8, 4E10, and PGZL1 simulations.

      (2) Better defining the variance and durability of membrane interactions within and across systems in the coarse grain methods section.

      (3) Removed interpretations in the original results sections regarding polyreactivity and energetics for MPER bnAbs that were not explicitly supported by data.   

      (4) More context of the prevenance of bnAb loop geometries in structural informatics section

      (5) Rationale for the choice of the continuous helix MPER-TM conformation in LN01-antigen conformations, and citations to previous gp41 TM simulations.

      (6) Removed language on the novelty of the coarse grain and steered pulling simulations as newly developed approaches; tempering the potential discriminating power and applications of those approaches, in light of their limitations.

      The discussion was revised to provide more novel context of the results within the field, including discussing direct relevance of the simulation methods for evaluating immune tolerance mechanisms and into antibody engineering.   We have shared custom scripts used for molecular dynamics analysis on github (https://github.com/cmaillie98/mper_bnAbs.git) and uploaded trajectories to a public repository hosted on Zenodo (https://zenodo.org/records/13830877).

      Recommendations for the authors:

      Below, I provide an extensive list of minor edits associated with the text and figures for the authors to consider. I provide these with the hope of increasing the accessibility of the manuscript to broader audiences but leave changes to the discretion of the authors.

      Text/clarity

      Figure 1 main text

      The main text discussing Figure 1 is disorganized, making the analysis difficult to follow. I would suggest the following: moving the sentence, "4E10 and PG2L1 are structurally homologous" immediately after the paragraph discussing the simulation initiation. Then, add a sentence that directly compares their experimental affinity, neutralization, and polyreactivity of 4E10 and PG2L1 (later, an unintroduced idea pops up, "These patterns may in part explain 4E10's greater polyreactivity"). Next, lead into the discussion of the MD simulation data with something to the effect of: "Given these similarities, we first compared mechanisms of membrane insertion between 4E10 and PG2L1 to bolster confidence in our predictions". Later, the sentence "Across 4E10 and PGZL1 simulations, the bound lipid phosphates"

      We thank the reviewer for the suggestion and we have restructured the beginning of the results to implement this style: to first introduce then discuss the comparative PGZL1 & 4E10 results, i.e. Figure 1 plus associated supplements.

      In the background and the introduction text leading up to Figure 1, CDR-H3 is discussed at length, however, the first figure focuses almost entirely on how CDR-H1 coordinates a lipid phosphate headgroup. Are there experimental mutations in this loop that do not affect affinity (e.g., to a soluble gp41 peptide), but do affect neutralization (like the WAWA mutation for CDR-H3, discussed later)?

      We have altered the Introduction (para 2) and Results (4E10/PGZL1 sub-section) to give more balanced discussion of CDRs H1 & H3.  That includes referencing experimental data addressing the reviewer’s question; a PGZL1 clone H4K3 where mutations to CDRH1 were introduced and shown have minimal impact on affinity to MPER peptide via ELISA and BLI, but those mutant bnAbs had significantly reduced neutralization efficacy (PMC6879610).

      The sentence "These phospholipid binding events were highly stable, typically persisting for hundreds of nanoseconds" should be moved down to immediately precede, "[However], in a PGZL1 simulation, we observed a". This would be a good place for a paragraph break following, "Thus, these bnABs constitutively", since this block of text is very long.

      Similarly, the sentence and parts of the section, "Likewise, the interactions coordinating the lipid phosphate oxygens at CDR-H1" more appropriately belongs immediately before or after the sentence, "Our simulations uncover the CDR-lipid interactions that are the most feasible".

      Thank you for the detailed guidance in reorganizing the Figure 1 results.  We followed the advice to directly compare 4E10 and PGZL1 results separately from 10E8, moving those sections of text appropriately.  New paragraph breaks were added to improve accessibility and flow of concepts throughout the Results.

      In the sentence, "our simulations uncover CDR-lipid interactions that are the most feasible and biologically relevant in the context of a full [HIV] lipid bilayer... validation to which of the many possible ions" à have you confidently determined lipid binding and positioning outside of the site validated in figure 1? Which site(s) are these referencing? The next two sentences then introduce two new ideas on the loop backbone stability then lead into lipid exchange, which is a bit jarring.

      We have adjusted the language concerning the putative ions/lipids electron density across the many PGZL1 and 4E10 crystal structures, and additionally make the explicit point that we confidently determined the lack of lipid binding outside of the site focused on in Figure 1.

      “… both bnAbs showed strong hotspots for a lipid phosphate bound within the CDR-H1 loops, with minimal phospholipid or cholesterol ordering around the proteins elsewhere.  The simulated lipid phosphates bound within CDR-H1 have exceptional overlap with electron densities and atomic details of modelled headgroups from respective lipid-soaked co-crystal structures…”

      Figure 2 main text

      "We similarly investigated bnAb 10E8" - Please make this a separate subheader, the block text is very long up to this point.

      Thank you for the suggestion. We introduced a sub-header to separate work on 10E8 all-atom simulations.

      "we observed a POPC complexed with... modelled as headgroup phosphoglycerol anions..." - please cite the references within the text.

      Thank you for pointing out this missing reference, we added the appropriate reference.

      "One striking and novel observation" - please remove the phrase "striking" throughout, for following best practices in scientific writing (PMC10212555)-this is generally well-done throughout.

      We removed “striking” from our text per your suggestion.

      "This CDR-L1 site highlights... (>500 fold) across HIV strains" - How much do R29 and Y32 also contribute to antigen binding and the conformation of this loop? These mutants also decreased Kd by approximately 20X, and based on the co-crystal structure with the TM antigen (PDB: 4XCC), seem to play a more direct role in antigen contact. Additionally, these residues should be highlighted on a figure, otherwise it's difficult to understand why they are important for membrane association.

      We thank the reviewer for deep engagement to these supporting experimental details.  The R29A+Y32A 10E8 mutant referenced in the text showed only 4-fold Kd increase, a modest change for an SPR binding experiment.  Whereas R29E+Y32E 10E8 mutant resulted in 40x Kd increase, the “20x” the reviewer refers to.  Both 10E8 mutants showed similar drastically reduced breadth and potency of over 2 orders of magnitude on average.

      These mutated CDR-L1 residues are not directly involved in antigen contact and adopt the same loop helix conformation when antigen is bound.  A minor impact on antigen binding affinity could be due altering pre-organization of CDR loops upon losing interactions from the Tyr & Arg sidechains - particularly Tyr31 in contact with CDR-H3.

      As per the suggestion, clearer annotated figure panel denoting these sidechains has been added to Figure 2-Figure Supplement 1 for 10E8 analysis.

      "Structural searches querying... identified between 10^5 and 2*10^6..." - why is this value represented as such a large range? Does this depend on the parameters used for analysis? Please clarify.

      Additionally, how prevalent are any random loop conformations compared to the ones you searched? It's otherwise difficult to attribute number of occurrences within the 2 A cutoff to biological significance, as this number is not put in context.

      We appreciate the reviewers comment to contextualize the range and relative frequency of the bnAb loop conformations.   RMSD and length of loop are the key parameters, which can be controlled by searching reference loops of similar length.  The main point of the backbone-level searching is simply to imply the bnAb loops are not particularly rare when comparing loops of similar length.   

      We did as was suggested and added comparison to random loops of the same length to the main text, including a new Supplementary Table 4.   

      “…identified between 105 to 2∙106 geometrically similar sub-segments within natural proteins (<2 Å RMSD)40, reflecting they are relatively prevalent (not rare) in the protein universe, comparing well with frequency of other surface loops of similar length in antibodies (Supplementary Table 3).”

      "We next examined the geometries" could start after its own new subheading. Moreover, while there's an emphasis on tilt for neutralization, there is not a figure clearly modelling the proposed Env tilt compared to the relatively planar bilayer. It would be helpful to have an additional panel somewhere that shows the orientation of the antibody (e.g., a representative pose) in the simulations relative to an appropriately curved membrane, Env, the binding conformation of the antibody to Env, and apo Env, given the tilting observed in PMID: 32348769 and theorized in PMC5338832. What additional conformational changes or tilting need to occur between the antibodies and Env to accomplish binding to their respective epitopes?

      Thank you for outlining an interesting element to consider in our analysis of a multi-step binding mechanism for MPER antibodies. We added additional figure panels in the supplement to outline the similarities and differences between our simulations and Fabs with the inferred membranes in cryo-EM experiments of full-length HIV Env.  The simulated Fabs’ angles are very similar with only minor tilting to match the cryo-EM antibody-membrane geometries. 

      We added Figure 1-figure supplement 1A & Figure 2-figure supplement 2A, and alter to text to reflect this:

      “The primary difference is Env-bound Fabs in cryo-EM adopt slightly more shallow approach angles (~15_°_) relative to the bilayer normal.  The simulated bnAbs in isolation prefer orientations slightly more upright, but presenting CDRs at approximately the same depth and orientation.  Thus, these bnAbs appear pre-disposed in their membrane surface conformations, needing only a minor tilt to form the membrane-antibody-antigen neutralization complex.”   

      Env tilt dynamics and membrane curvature of natural virions may reconcile some of these differences.  Recent in situ tomography of Full-length Env in pseudo-virions corroborates our approximation of flat bilayers over the short length scales around Env.

      The sentence "we next examined the geometries" mentions "potential energy cost, if any, for reorienting...". However, there's no further discussions of geometry or energy cost within this section. Please rephrase, or move this figure to main and increase discussion associated with the various conformational ensembles, their geometry, and their phospholipid association.

      As the reviewer highlights, the unbiased simulations and our analysis do not explicitly evaluate energetics.  We removed this phrase, and now only allude to the minimal energy barrier between the similar geometric conformations, relative to the tilting & access requirements for antigen binding mechanism.

      “The apparent barrier for re-orientation is likely much less energetically constraining than shielding glycans and accessibility of MPER”

      ".. describing the spectrum of surface-bound conformations" cites the wrong figure.

      Thank you for noticing this error; we correct the figure reference to (Figure 2-figure supplement 4).

      Please comment on the significance of how global clustering (Fig. S5A-C) was similar for 4E10 and PGZL1, but different for 10E8 (e.g., blue, orange, and yellow clusters for 4E10 and PHZL1 versus cyan, red, and green clusters for 10E8). As the cyan cluster seems to be much closer in Euclidian space to the 4E10/PGZL1 clusters, it might warrant additional analysis. What do these clusters represent in terms of structure/conformation? How do these clusters differ in membrane insertion as in (A)?

      We are grateful you identify analysis in the geometric clustering section that may be of interest to other readers. We have added additional supplementary table (Table 2) to detail the CDR loop membrane insertion and global Fab angles which describe each cluster, to demonstrate their similarities and differences.  We also better describe how global clustering was similar for 4E10 and PGZL1, but different for 10E8 in the relevant results section<br /> The cyan cluster is not close in structure to 4E10/PGZL1 clusters.  We note the original figure panel had an error.  The updated Figure 2-supplement 4B shows the correct Euclidian distance hierarchy with an early split between 4e10/pgzl1 and 10e8 clusters.

      Figure 3 main text

      The start of this section, "We next studied bnAb LN01...", is a good place for a new subheader.

      We have added an additional subheader here: Antigen influence on membrane bound conformations and lipid binding sites for LN01

      There should be a sentence in the main text defining the replicate setup and production MD run time. Is the apo and complex based on a published structure? How do you embed the MPER? Is the apo structure docked to membrane like in 4E10? The MD setup could also be better delineated within the methods.

      The first two paragraphs in this section have been updated to clarify the relevant simulations configuration and Fab membrane docking prediction details. 

      The procedure was the same for predicting an initial membrane insertion, albeit now we use the LN01-TM complex and the calculation will account for the membrane burial of the the TM domain and MPER fragment.  As mentioned, LN01 is predicted as inserted with CDR loops insert similarly with or without the TM-MPER fragment.  The geometry differs from PGZL1/4E10 and 10E8, denoted by the text.

      Please comment on the oligomerization state of the antigen used in the MD simulation: how does the simulation differ from a crossed MPER as observed in an MPER antibody-bound Env cryo-EM structure (PMID: 32348769), a three-helix bundle (PMC7210310), or single transmembrane helix (PMC6121722)? How does the model MPER monomer embed in the membrane compared to simulations with a trimeric MPER (PMC6035291, PMID: 33882664)-namely, key arginine residues such as R696?

      We thank the reviewer for pointing out critical underlying rationale for modeling this TM-MPER-LN01 complex which we have corrected in the revised draft. The range of potential conformations and display of MPER based on TM domain organization could easily be its own paper – we in fact have a manuscript in preparation on the topic.  

      The updated text expands the rationale for choosing the monomeric uninterrupted helix form of the MPER-TM model antigen (para 1 of LN01 section). The alternative conformations we did not to explore are called out, with references provided by the reviewer.

      The discussion qualified that the MPER presentation is likely oversimplified here, noting MPER display in the full-length Env trimer will vary in different conformational states or membrane environments. However, the only cryo-EM structures of full-length ENV with TM domains resolved have this continuous helix MPER-TM conformation – seen both within crossing TM dimers or dissociated TM monomers.

      Are there additional analyses that can validate the dynamics of the MPER monomer in the membrane and relative to LN01? Such as key contacts you would expect to maintain over the duration of the MD simulation?

      We also increased description of this TM domain’s behavior, dynamics (tilt, orientation, Arg696 snorkeling, and complex w LN01) to provide a clearer picture of the simulation results – which aligns with past MD of the gp41 TM domain as a monomer (para 2 of LN01 section).  As well, we noted key LN01-MPER contacts that were maintained.

      How does the model MPER modulate membrane properties like lipid density and lipid proximities near LN01?

      We checked and didn’t notice differences for the types of lipids (chol, etc) proximal to the MPER-TM or the CDR loops versus the bulk lipid bilayer distributions.  Due to the already long & detailed nature of this manuscript, we elect not to include discussion on this topic.

      Supplemental figure 1H-I would be better positioned as a figure 3-associated supplemental figure.

      We rearranged to follow the eLife format and have paired supplemental panels with their most relevant main figures.

      Figure 3F/H reference a "loading site" but this site is defined much later in the text, which was confusing.

      Thank you for pointing out this source of confusion, we rearranged our discussion to reflect the order in which we present data in figures.

      What evidence suggests that lipids "quickly exchange from the Loading site into the X-ray site by diffusion"? I do not gather this from Figure S1H/I.

      We have rearranged the loading side and x-ray site RMSD maps in Figure 3-Figure supplement 1 to better illustrate how a lipid exchanges between these sites.

      Figure 4 main text

      The authors assert that in the CG simulations, restraints, "[maintain] Fab tertiary and quaternary structure". However, backbone RMSD does not directly assert this claim-an additional analysis of the key interfacial residues between chains, or geometric analysis between the chains, would better support this claim.

      Thank you for pointing this point.  We rephrased to add that the major sidechain contacts between heavy and light chain persist, in addition to backbone RMSD, to describe how these Fabs maintain the fold stably in CG representation. 

      In several cases, CG models sample and then dissociate from the membrane. In the text, the authors mention, "course-grained models can distinguishing unfavorable and favorable membrane-bound conformations". Is there a particular orientation that causes/favors membrane association and dissociation? This analysis could look at conformations immediately preceding association and dissociation to give clues as to what orientation(s) favor each state.

      Thank you for suggesting this interesting analysis.  Clustering analysis of associated states are presented in Figure 5, Figure 5-Figure Supplement 1, and Figure 6, which show all CDR and framework loop directed insertion.  This feature is currently described in the main text.  

      We did not find strong correlation of specific orientations as “pre-dissociation” states or ineffective non-inserting “scanning” events.  We revised the key sentence to reflect the major take away – that non-CDR alternative conformations did not insert and most of those having CDRs inserted in a different manner than all-atom simulations also were prone to dissociate:

      “Given that non-CDR directed and alternative CDR-embedded orientations readily dissociate, we conclude that course-grained models can distinguish unfavorable and favorable membrane-bound conformations to an extent that provides utility for characterizing antibody-bilayer interaction mechanisms.”

      Figure 6 main text

      "For 4E10, trajectories initiated from all three geometries..." only two geometries are shown for each antibody. Please include all three on the plot.

      The plots include markers for all three geometries for 4E10, highlighted in stars or with letters on the density plots of angles sampled (Figure 6B,C)

      "Aligning a full-length IgG... unlikely that two Fabs simultaneously..." Are there theoretical conformations in which two Fabs could simultaneously associate with membrane? If this was physiological or could be designed rationally, could an antibody benefit further from avidity?

      Our modeling suggests the theoretical conformations having two Fabs on the membrane are infeasible.  It’s even less likely multiple Env antigens could be engaged by one IgG.  We have revised the text to express this more clearly.

      Figure 7 main text

      "An intermediate... showed a modest reduction in affinity..." what affinity does PGZL1 have for this antigen?

      The preceding sentence for this information: “Mature PGZL1 has relatively high affinity to the MPER epitope peptide (Kd = 10 nM) and demonstrates great breadth and potency, neutralizing 84% of a 130 strain panel “

      Figures

      Figure 1

      It would be helpful to have an additional panel at the top of this figure further zoomed out showing the orientation of the antibody (e.g., a representative pose) in the simulations relative to an appropriately curved membrane, Env, the binding conformation of the antibody to Env, and apo Env, given the tilting observed in PMID: 32348769 and theorized in PMC5338832. What additional conformational changes or tilting need to occur between the antibodies and Env to accomplish binding to their respective epitopes?

      Thank you for the suggestion to include this analysis.  We have added to the text reflecting this information, as well as making new supplemental panels for 4E10 and 10E8 that we compare simulated 4E10 and 10E8 Fab conformations to cryoEM density maps with Fabs bound to full-length HIV Env. Figure 1-figure supplement 1A & Figure 2-figure supplement 2A

      In Figure 1, space permitting, it would be helpful to annotate the distances between the phosphates and side chains (similarly, for Figure S1A).

      To avoid the overloading the Main figure panels with text, those relevant distances are listed in the methods sections.  Those distances are used to define the “bound” lipid phosphate state.  Generally, we note the interactions are within hydrogen bonding distance.

      Annotating "Replicate 1" and "Replicate 2" on the left side of Figure 1C/D would make this figure immediately intuitive.

      We have added these labels.

      Figure caption 1C: Please clarify the threshold/definition of a contact used to binarize "bound" versus "unbound" (for example, "mean distance cutoff of 2A between the phosphate oxygen and the COM of CDR-H1") [on further reading of the methods section, this criterion is quite involved and might benefit from: a sentence that includes "see methods"]. Additionally, C could use a sentence explaining the bar such as in E, "Phosphate binding is mapped to above each MD trajectory" Please define FR-H3 in the figure caption for E/F.

      We have added these details to the figure caption.

      Because Figure 1 is aggregated simulation time, it would be helpful to also represent the data as individual replicates or incorporate this information to calculate standard deviations/statistics (e.g., 1 microsecond max using the replicates to compute a standard deviation).

      We believe the current quantification & display of data via sharing all trajectories is sufficient to convey the major point for how often each CDR-phosholipid binding site it occupied.  Further tracking and statistics of inter-atomic distances will likely be too tedious & add minimal value. There is some dynamics of the phosphate oxygens between the polar within the CDR site but our “bound” state definitions sufficiently describe the key participating interactions are made.

      Figure 2

      For A, it would be helpful to annotate the yellow and blue mesh on the figure itself.

      We have defined the orange phosphate and blue choline densities.

      Also, where are R29 and Y32 relative to this site? In the X-ray panels, Y38 is not shown, and the box delineating the zoom-in is almost imperceptible.

      Thank you for this suggestion to include those amino acids which are referenced in the text as critical sites where mutation impacts function. To clarify, Y32 is the pdb numbering for residue Y38 in IMGT numbering. We have added a panel to Figure 2-Figure Supplement 1 having a cartoon graphic of 10E8 loop groove with sidechains & annotating R29 and Y38, staying consistent with out use of IMGT numbering in the manuscript.

      Figure 3

      It might read clearer to have "LN01+MPER-TM" and "LN01-Apo" in the middle of A/B and C/D, respectively, and a dotted line delineating the left and right side of the figure panels.

      We have added these details to the figure for clarity for readers.

      It would be helpful to show some critical interactions that are discussed in the text, such as the salt bridge with K31, by labeling these on the figure (e.g., in E-H).

      We drafted figure panels with dashed lines to indicate those key interactions.  However, they became almost imperceptible and overloaded with annotations that distracted from the overall details.  For K31, the interaction occurs in LN01 crystal structures readers can refer to.

      Why are axes cut off for J?

      We corrected this.

      Please re-define K/L plots as in Figure 1, and explain abbreviations.

      We updated the figure caption to reflect these changes.

      Figure 4

      The caption for panel A states that the Fab begins in solvent 1-2 nm above the bilayer, but the main text states 0.5-2 nm.

      We have reconciled this difference and listed the correct distances: 0.5-2nm.

      Please label the y-axis as "Replicate" for relevant figure panels so that they are more immediately interpretable.

      This label has been added.

      A legend with "membrane-associated" and "non-associated" within the figure would be helpful. Additionally, the average percent membrane associated, with a standard deviation, should be shown (Similar to 1C, albeit with the statistics).

      This legend has been added.  We also added the additional statistical metrics requested to strengthen our analysis.

      The text references "10, 14, and 12 extended insertion events" for the three antibody-based simulations. How do you define "extended insertion events"? Would breaking this into average insertion time and standard deviation better highlight the association differences between MPER antibodies and controls, in addition to the variability due to difference random initialization?

      We thank the reviewer for the insightful suggestion on how to better organize quantitative analysis to support the method. Supplemental Table 3 includes these numbers.

      Figure 5

      The analysis in Fig. S6C could be included here as a main figure.

      The drafted revised figure adding S6C to Figure 5 made for too much information.  Likewise, putting this panel S6C separated it from the parent clustering data of S6B, so we decided to keep these figures separated.  The S6 figure is now Figure 5-figure supplement 1.

      Figure 6

      Please annotate membrane insertion on E as %.

      These are phosphate binding RMSD/occupancy vs time.  The panels are now too small to annotate by %.  The qualitative presentation is sufficient at this stage.  The quantitative % are listed in-line within text when relevant to support assertions made. 

      Please use the figure caption to explain why certain clusters (e.g., 10E8 cluster A, artifact, Fig. S6E) are not included in panel E.

      We have added this information in the figure caption.

      Figure 7

      Please show all points on the box and whisker plots (panels E and F), and perform appropriate statistical tests to see if means are significantly different (these are mentioned in the text, but should be annotated on the graph and mentioned within the figure caption).

      We have changed these plots to show all data points along with relevant statistical comparisons. The figure captions describe unpaired t-test statistical tests used.

      Figure S1

      G, H, and I do not belong here-they should be moved to accompany their relevant text section, which associates with Figure 3. It would be helpful to associate this with Figure 3 in the eLife format, "Figure 3-Supplemental Figure 1" or its equivalent.

      It's very difficult to distinguish the green and blue circles on panel G.

      We darkened the shading and added outline for better visualization

      Subfigure I is missing a caption, could be included with H: "(H,I) Additional replicates for LN01+TM (H) and LN01 (I)".

      We corrected this as suggested.

      Why is H only 3 simulations and not 4? Does it not have a lipid in the x-ray site? Also, the caption states "(top, green)" and "(bottom, cyan)", but the green vs. cyan figures are organized on the left and right. Additional labels within the figure would help make this more intuitive.

      If the point of H and I is to illustrate that POPC exchanges between the X-ray and loading sites, this is unclear from the figure. Consider clarifying these figures.

      Thank you for describing the confusion in this figure, we have added labels to clarify.

      Figure S2 (panels split between revised Figure 4 associated figure supplements)

      The LN01 figures should likely follow later so that they can associate with Figure 3, despite being a similar analysis.

      We corrected supplements to eLife format so supplements are associated with relevant main figures.

      Figure S3 (panels split between revised Figure 1 & 2 associated figure supplements)

      As hydrophobicity is discussed as a driving factor for residue insertion, it would be helpful to have a rolling hydrophobicity chart underneath each plot to make this claim obvious.

      We prefer the current format, due to the worry of having too much information in these already data-rich panels.  As well, residues are not apolar but are deeply inserted.

      Figure S4 (panels split between revised Figure 1 & 2 associated figure supplements)

      It would be helpful to label the relevant loops on these figures.

      We have labeled loops for clarity.

      Do any of these loops have minor contacts with Env in the structure?

      The 4E10 and PGZL1 CDRH-1 loop does not directly contact bound MPER peptides bound in crystal structures. 

      FRL-3 and CDR-H1 in 10E8 do not contact the MPER peptide antigen component based on x-ray crystal structures.

      Do motif contacts with lipid involve minor contacts with additional loops other than those displayed in this figure?

      The phosphate-loop interactions in motifs used as query bait here are mediated solely by the backbone and side chain interactions of the loops displayed. We visually inspected most matches and did not see any “consensus” additional peripheral interactions common across each potential instance in the unrelated proteins.  The supplied Supplemental Table 2 contains the information if a reader wanted to conduct a detailed search. 

      Why is there such a difference between the loop conformation adopted in the X-ray structure and that in the MD simulation, and why does this lead to the large observed differences in ligand-binding structure matches?

      We thank the reviewer for carefully noting our error in labeling of CDR loop and framework region input queries. We revised the labeling to clarify the issue.

      The is minimal structural difference between the loops in x-ray and MD.

      Figure S5 (Figure 2-Figure supplement 4)

      This figure is not colorblind friendly-it would be helpful to change to such a pallet as the data are interesting, but uninterpretable to some.

      We have left this figure the same.

      "Susbstates" - "Substates"

      Corrected, thank you.

      Panel B is uninterpretable-please break the axis so that the Euclidian distances can be represented accurately but the histograms can be interpreted.

      We have adjusted axis for this plot to better illustrate the cluster thresholds.

      The clusters in D-H should be analyzed in greater depth. What is the structural relevance of these clusters other than differences in phospholipid occupancy in (I)? Snapshots of representative poses for each cluster could help clarify these differences.

      We have adjusted the text to describe the geometric differences in each of those clusters that result in the different exceptionally lower propensities for forming the key phospholipid interaction.  

      The figure caption should make it clear that 3 μS of aggregate simulation time is being used here instead of 4 μS to start with unique tilt initializations. E.g., "unique starting membrane-bound conformations (0 degrees, -15 degrees, 15 degrees initialization relative to the docked pose)". Further, why was the particular 0-degree replicate chosen while the other was thrown out? Or was this information averaged? Why is the full 4 μS then used for D-I?

      We thank the reviewer for noting these details.  We didn’t want to bias the differential between 10E8 and 4E10/PGZL1 by including the replicate simulations.  The analysis was mainly intended to achieve more coarse resolution distinction between 10E8 and the similar PGZL1/4E10.  

      In the subsequent clustering of individual bnAb simulation groups, the replicate 0 degree simulations had sufficiently different geometric sampling and unique lipid binding behavior that we though it should be used (4 us total) to achieve finer conformational resolution for each bnAb.

      Figure S6 (now Figure 5-Figure Supplement 1)

      Please label the CDRs in C and provide a color key like in other figures. Also, please label the y-axes. This figure could move to main below 5B with the clusters "A,B,C" labeled on 5B.

      We have added the axes labels and color key legend.  We retained a minimal CDR loop labeling scheme for the more throughput interaction profiles here where colored sections in the residue axes denote CDR loop regions.

      Figure S7 (Figure 7 Figure Supplement 1)

      Panels A and B would likely read better if swapped.

      We have swapped these panels for a better flow.

      For panel C, please display mean and standard deviation, and compare these values with an appropriate statistical test.

      This is already displayed in main figure, we have removed it from supplement.

      For E and F, please clarify from which trajectory(s) you are extracting this conformation from. Are these the global mean/representative poses? How do they compare to other geometrically distinct clusters?

      The requested information was added to supplemental figure caption.  These are frames from 2 distinct time points selected phosphate bound frames from 0-degree tilt replicates for both 4E10 and 10E8, representing at least 2 distinct macroscopic substates differing in global light chain and heavy chain orientation towards the membrane. 

      Table S2 (now Supplementary Table 3)

      Please add details for the 13h11 simulation.

      Additionally, please add average contact time and their standard deviation to the table, rather than just the aggregated total time. This will highlight the variability associated with the random initializations of each simulation.

      We have added the details for 13h11 and the requested analysis (average aggregated time +/- standard deviation and average time per association event +- standard deviation) to supplement our summary statistics for this method.

      Reviewer #2 (Recommendations For The Authors):

      (1) The structure of the manuscript should be improved. For example, almost half of the introduction (three paragraphs) summarize the results. I found it hard to navigate all the data and specific interactions described in the result section. Furthermore, the claims at the end of several sections seem unsupported. Especially for the generalization of the approach. This should be moved to the discussion section. The discussion is pretty general and does not provide much context to the results presented in this study.

      We have significantly reorganized the results section to improve the flow of the manuscript and accessibility for readers, especially the first sections of all-atom simulations. We also removed claims not directly supported by data from our results, and expanded on some of these concepts in the discussion to make some more novel context to the result.

      (2) The author should cite more rigorously previous work and refrain from using the term "develop" to describe the simple use of a well established method. E.g. Several studies have investigated membrane protein interactions e.g. [1], membrane protein-bilayer self-assembly [2], steered molecular dynamics [3], etc.

      Thank you for identifying relevant work for the simulations that set precedent for our novel application to antibody-membrane interactions.  We have removed language about development of simulation methods from the text and now better reference the precedent simulation methods used here.

      (3) Have the authors considered estimating the PMF by combining the steered MD simulation through the application of Jarzynski's equality?

      We performed from preliminary PMFs for Fab-membrane binding, but saw it was taking upward of 40 us to reach convergence.  Steered simulations focus on a key lipid may be easier.

      Although PMFs are beyond the scope of this work, we added proposals & allusion to their utility as the next steps for more rigorous quantification of fab-membrane interactions.

      Minor

      (4) The term "integrative modeling" is usually used for computational pipelines which incorporate experimental data. Multiscale modeling would be more appropriate for this study.

      We altered descriptions throughout the manuscript to reflect this comment.

      (5) Units to report the force in the steered molecular dynamics are incorrect. They should be 98.

      We changed axes and results to correctly report this unit.

      (6) Labels for axes of several graphs are not missing.

      We added labels to all axes of graphs, except for a few where stacked labels can be easily interpreted to save space and reduce complexity in figures.

      (7) Figure 3 K & L is this really < 1% of total? The term "total" should also be clarified.

      Thank you for pointing this out, we changed the % labels to be correct with axes from 0-100%. We clarified total in the figure caption.

      (8) The font size in figures should be uniformized.

      This suggestion has been applied

      (9) Time needed for steered MD should be reported in CPUh and not hours (page 17).

      We removed comments on explicit time measurements for our simulations.

      (10) Version of Martini force field is missing in methods section

      We used Martini 2.6 and added this to the methods.

      References

      (1) Prunotto, Alessio, et al. "Molecular bases of the membrane association mechanism potentiating antibiotic resistance by New Delhi metallo-β-lactamase 1." ACS infectious diseases 6.10 (2020): 2719-2731.

      (2) Scott, Kathryn A., et al. "Coarse-grained MD simulations of membrane protein-bilayer self-assembly." Structure 16.4 (2008): 621-630.

      (3) Izrailev, S., et al. "Computational molecular dynamics: challenges, methods, ideas. Chapter 1. Steered molecular dynamics." (1997).

    1. Voici un sommaire minuté de la transcription :

      • 0:00-3:20 Introduction au vote électronique
      • Mélanie Mondo et Maxime Lalisse présentent Scrutin.app, une application visant à garantir un vote électronique sécurisé et libre.
      • Distinction entre le vote par urne électronique et le vote électronique en ligne, l’application se concentrant sur ce dernier.
      • Avantages et inconvénients du vote électronique en ligne.
      • Recommandations de l'ANSSI pour le vote électronique : vérifiabilité, transparence, confidentialité.
      • Objectif de Scrutin.app : garantir le secret du vote, la vérifiabilité, la transparence, et proposer une solution libre et open source.
      • Public cible de l’application : collectifs et associations.
      • Méthodes de vote supportées : suffrage uninominal et jugement majoritaire.

      • 3:20-7:40 Fonctionnement de Scrutin.app

      • Maxime Lalisse détaille le fonctionnement de Scrutin.app, soulignant la simplicité d’utilisation et la sécurité.
      • Avantages de l’application mobile en termes de sécurité.
      • Scrutin.app s’appuie sur le protocole Belenios, développé par le Loria à Nancy.
      • Explication du chiffrement et de la vérifiabilité des votes.
      • Résistance à l'influence et possibilité de revoter.

      • 7:40-11:00 Confidentialité et vérifiabilité des votes

      • Mélanie Mondo explique le chiffrement asymétrique et homomorphique utilisé pour garantir le secret du vote.
      • Rôle des gardiens de l’élection et du partage du secret de chiffrement.
      • Anonymisation des votes via le chiffrement homomorphique ou les mixnets.
      • Transparence et vérifiabilité grâce à une base de données publique et à des cérémonies de création et de dépouillement des élections.
      • Vérification de la prise en compte des votes et des résultats.
      • Vérifiabilité de l’éligibilité des candidats via des signatures.

      • 11:00-12:30 Projets et questions de l’audience

      • Mélanie Mondo et Maxime Lalisse présentent l'état actuel de l'application et ses utilisations.
      • Améliorations prévues : interface utilisateur, site internet, disponibilité sur les stores d'applications, intégration de nouveaux modes de vote.
      • Proposition d'accompagnement des structures et associations pour la mise en place de votes en ligne.
      • Début de la session de questions/réponses avec l’audience.

      • 12:30-15:00 Sécurité et clés privées

      • Un membre de l'audience questionne l'envoi de clés privées par email.
      • Maxime Lalisse explique le système actuel basé sur Belenios et l'envoi d'un mot de passe générant une clé privée.
      • Discussion sur l’utilisation de PGP pour signer les votes.
      • Maxime Lalisse reconnaît la nécessité d'améliorer la gestion des clés privées, mais la considère comme un objectif à long terme.

      • 15:00-17:20 Rôle des gardiens et sécurité de l’application web

      • Un membre de l'audience s’interroge sur le rôle des gardiens et la nécessité de leur présence pour le dépouillement.
      • Maxime Lalisse explique le principe du partage de secret de Shamir et la possibilité de choisir les paramètres de sécurité, y compris de faire de tous les votants des gardiens.
      • Un autre membre de l’audience questionne la fiabilité de l'application web par rapport à l'application mobile.
      • Maxime Lalisse met en avant les avantages de l'application mobile en termes de sécurité et de vérifiabilité du code source.

      • 17:20-20:10 Sécurité de l'accès au serveur et de la base de données

      • Un membre de l'audience soulève la question de la sécurité de l’accès au serveur et de la base de données.
      • Maxime Lalisse explique que Belenios et Scrutin.app utilisent un append-only log, empêchant la suppression de données de la base.
      • La base de données est distribuée et chaque appareil peut vérifier qu'aucune donnée n’a été supprimée.
      • L’administrateur de la base de données ne peut pas la manipuler.

      • 20:10-21:10 Business model et financement

      • Un membre de l’audience demande si un business model est prévu pour Scrutin.app.
      • Mélanie Mondo évoque les réflexions en cours concernant le financement, notamment via des fondations.
      • L’objectif actuel est de proposer un outil gratuit et accessible, avec une éventuelle option premium pour les élections de grande envergure.
      • La possibilité d’un système de dons est également mentionnée.

      • 21:10-23:00 Résultats en temps réel et résistance à la coercition

      • Un membre de l’audience revient sur la question des gardiens et des résultats en temps réel.
      • Maxime Lalisse précise que les résultats ne sont dévoilés qu’au moment du dépouillement, même si la base de données est accessible à tous.
      • Un autre membre de l'audience interroge la résistance de Scrutin.app à la coercition.
      • Mélanie Mondo reconnaît la difficulté de ce problème, lié à la fois à la confidentialité et à la vérifiabilité du vote.
      • Différentes solutions sont évoquées, comme le revote, la confiance dans l'appareil de vote, et des protocoles impliquant des tiers de confiance.

      • 23:00-Fin de la présentation

      • Maxime Lalisse souligne que le vote papier actuel présente également des faiblesses en matière de coercition.
      • Il rappelle l’importance d’une société saine autour du vote, quel que soit le système utilisé.
      • Maxime Lalisse encourage l’audience à utiliser Scrutin.app et à les contacter pour toute question ou besoin spécifique.
    1. we fight for love, por amor y la luna; for the future, y nuestra derecho; to know how to read; to have a pair of shoes; to watch our children grow,

      from Shireen: Twanda's self-marriage is at once a parody and a fantasy of revolutionary desire. What "por amor y la luna" (for love and the moon) brings back to earth is this: the struggle for the barest humanity –education, food, to live– becomes epic. Finally, when Twanda declares that marriage is not an individual decision but a communal and political one, the gender inequalities are dealt with, too. The use of the phrase 'to’ twice is instructive as it opens the demands for relevance and immediacy. Here, marriage represents togetherness and endurance, and love is connected with a vision of justice and freedom for the generations to come.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      (1) “…Given that the focus in the paper is on tissue-specific immune training, it would be helpful to know whether the ongoing presence of BCG at low levels in the profiled tissue contributes to the trained immunity phenotypes observed.”….“To address point 1, the authors could treat with anti-BCG antibiotics at 2 or 4 weeks post-BCG exposure and profile the impact on trained immunity phenotypes.”

      We thank the reviewer for this important comment. The experiment suggested by the reviewer is to treat with abx to remove BCG from the tissue from the first week post challenge for the duration of four weeks. In previous work, Kaufmann et al (PMID: 29328912) showed that after a month of antibiotics, BCG levels are reduced, but residual BCG levels still remains. Accroding to their results, while antibiotic treatment reduces the training phenotype of LKS<sup>+</sup> HSC expansion in the bone marrow, protection against TB was maintained during ex-vivo challenge of BMDMs.

      In our experiments, we are concerned that antibiotic treatment will only change the dynamics of BCG clearance, but residual BCG will remain and will limit our interpretation. Furthermore, examining the transcriptional changes we observed at early timeponts after BCG may not be relavant at 1 month post antibiotics.

      As an alternative approach, we refer to our results with an antibody to block early IFNg signaling (1-5 days; Figure S4 K-M). Here, although BCG levels are comparable between treatment and control groups, we were unable to detect any TI-related transcriptional signatures upon early aIFNg treatment. This indicates that that residual BCG is not sufficient for the TI phenotype in the spleen. We now emphasize this point in the revised version of the manuscript (see lines 335-339).

      (2) “Related to the point about BCG above, it would be helpful to understand whether this is a specifically time-limited requirement when trained immunity is first induced, or whether ongoing signaling through this axis is required for maintenance of the observed trained immunity phenotypes.”… “To address point 2, authors could treat with the inhibitor at 2 weeks and/or 4 weeks post-BCG and profiling later transcriptional and/or salmonella growth phenotypes.”

      We thank the reviewer for his comment, but respectfully claim that this experiment might not be feasible. As IFNg signaling is directly required for control of Salmonella infection,  we are concerned that late IFNg inhibition will also directly affect the response to Salmonella challenge and control. Thus, in our experiments, to ensure that treatment only affects the response to BCG challenge, we were careful to limit aIFNg treatment to the early time points and allowed long resting period before Salmonella challenge.

      Furthermore, inhibition of IFNg at late time point was already tested in both Lee et al, and Tran et al. (PMID: 38036767, 38302603). The authors show that late blockage of IFNg signalling (days 14-21) is sufficient to prevent protection during a viral challenge. This would indeed imply that ongoing signalling is necessary in this context to generate protection, specifically also late signalling events. Furthermore, Lee at al., also observed a biphasic activation pattern of cytokines and recruited cells, suggesting that rather than continuous activation, sequential cell activation and signalling may be occurring.

      Respectfully, in our experiments we focus on the early time points based on our observations of early recruitment of CM-T cells (Figure S2. C-D). This was our main findings of this paper. We agree with the reviewer that future experiments are required to compare the differences in cell populations that are invovled in the early vs. late trained phenotpe dynamics.

      Minor points:

      Experimental conditions for the shown data are not consistently clear from the figure legends- would add more detail about the biological conditions.

      OK – done

      Figure 3E missing units on the legend

      OK – done

      Figure 4C middle panel missing y-axis label

      OK – done

      Line 40- remove "both"

      OK- done

      Line 156- Language could be clearer about what was described previously in contrast to the results shown in this work

      We have modified the text accordingly in the revised manuscript

      Reviewer #2:

      “A significant amount of work has already been performed for this study. The work is rich with data and description.”

      We thank the reviewer for acknowledging the importance of our work.

      Minor comments for the authors to consider:

      “BCG is widely recognised to induce trained immunity. In this study, Salmonella is used as secondary infection event. Why? What is role of Salmonella in this study? Does this study contribute to our understanding of the Salmonella infection process? What does this tell us about Salmonella/vaccines? Is there any evidence that BCG protects against Salmonella infection? “

      We thank the reviewer for this important comment. We now added to the introduction and the discussion the relevance of our study to the potential of BCG and trained immunity as an alternative heterologous vaccine approach to traditional vaccines that require strain-specific vaccine for each pathogen (lines 49-55 of the revised manuscript).

      “Figure 1E. RPM cannot be detected by scRNAseq?”

      The reviewer is correct. we excluded RPMs from the scRNA-seq analysis. As we discuss in the manuscript (lines 94-96), and in our previous publication (PMID: 34788598), RPM activation involves rapid cell death. As we are analyzing by scRNA-seq two weeks after BCG challenge, we only measured scRNA-seq of CD11b+ cells, which exclude RPMs, as we were worried that our transcriptional data would represent transcriptional signatures of dying cells, making interpretation of the data difficult.

      “Figures 1H and I. The CM-T macrophages are not represented? Are they contemplated within the CM population? Would be useful to see the contribution of CM-T to the total CM DEGs/pathways.”

      The reviewer is correct. CM-T cells are evident only after BCG challenge. Because of this, our analysis of DEGs induced in monocytes by BCG requires analysis of all monocytes together. Thus, we were careful throughout the manuscript to refer to CM when analyzing bulk RNA-seq data.

      “Lines 104-117. Can the authors summarise or move the text in this paragraph to discussion? Although it provides important context, it cuts the line of thought and reduces comprehension of this section. “

      OK – we moved this section to the discussion in the revised manuscript.

      “Line 127. Is it Fig 1I or 1F that the authors are referring to? “

      The reviewer is correct, and we changed the text in the revised manuscipt accordingly.

      “Figure 1J. x-axis labels CM cells but both text and figure legend refer to this panel as CM-T. If this is the case, please show data for CM and CM-T separately.”

      Please see our earlier point above that limits these analyses. As such we have also edited the text and figure legend to reflect this.

      “Lines 136-139. Please indicate that this can be found in Fig 1J.”

      OK – indicated in the revised manuscript

      “Line 152. Please add that STm infection occurred at 14 and 60 days post training.”

      OK – added

      “Lines 162-163. This is repeated from lines 89-90, maybe the reduction of RPMs can be only highlighted in this section so that the previous section can be just focused on the new CM-T population?”

      The reviewer is correct - we removed the mention of RPMs here, and mention them only later in the revised manuscript.

      “Line 163. The recruitment is CM or CM-T cells? Since they express CXCL9 (line 165 and Fig1J) could this be used as a marker for the CM-T population at this time point?”

      The reviewer is correct, and we thank him for this important comment. We now indicate that CXCL9+ is a marker for the CM-Ts population here and throughout the revised manuscript (lines 153-155 of the revised manuscript).

      “Line 173. The loss of CXCL9 at 60 dpi means that CM-T population disappears/reduces or returns to CM only? If the population is reduced, could it be related to the reduced STm infection control at 60 days?”

      OK– done. Referred to these cells as CM-Ts and suggested a correlation with protection loss in the text (lines 160-162 of the revised manuscript).

      “Figure 2D. Can the authors show if there is variation in the myeloid populations after PBS injection at different time points? Are the percentages shown only at 3 dpi? It is curious that at 30 dpi the transcriptome has a significant change for certain genes.”

      There are indeed variations across the PBS time points samples, which we demonstrate in Figure S2B. The percentages shown in the main figure for PBS reflect the mean of all time points, this is now stated in greater clarity in the revised manuscript (lines 151-152). We also noted an increase in the cell cycling genes at D30 for the control mice as well, and while still significant in BCG, we limited interpretation accordingly.

      “Line 208. The authors can highlight that the expression of STAT1 follows the same pattern as IFNg. Maybe even present the graphs side by side?”

      The reviewer is correct, and we have implemented their suggestion as such in the updated text (lines 192-195) and figure (Fig. 2H).

      “Line 213. Authors mention a replenishment of the RPM population - what time point are you referring to? At 60 dpi the population seems to be halved compared to 14 dpi. Later (line 230), authors refer to the replenishment as a repopulation by other cell types - is repopulation more correct than replenishment?”

      The reviewer is correct, and we thank the reviewer for this important comment. We now changed replenishment to repopulation (lines 95, 201), which is more accurate given the continued decreased percentage at later time points.

      Lines 214-222. It is not clear what is the conclusion from these experiments: is the recruitment of progenitors from the BM or by local signals?

      The reviewer is correct, we agree that the wording in the initial manuscript was imprecise. This experiment specifically tests whether trained bone marrow progenitors can sustain the observed TI signatures in a naive environment. By transplanting trained bone marrow into naive hosts, we demonstrate that progenitor programming alone is sufficient to maintain long-term SCA-1 expression in NCMs, without requiring ongoing local tissue signals. We now better clarify this text in the revised manuscript (lines 202-212).

      “Line 333-334. Where is the data that shows that upon Fedratinib RPMs have enhanced survival?”

      OK – We now indicate the figure in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      My main concern is the use of the 700K SNP dataset. This set of SNPs suffers from a heavy ascertainment bias, which can be seen in the PCA in the supplementary material where all the aurochs cluster in the center within the variation of cattle. Given the coverage of some of the samples, multiple individuals would have less than 10K SNP covered. The majority of these are unlikely to be informative here given that they would just represent fixed positions between taurine and indicine or SNPs mostly variable in milk cattle breeds. The authors would get a much better resolution (i.e. many more SNPs to work with their very low genome coverage data) using the 1000 bull genome project VCF data set:

      https://www.ebi.ac.uk/ena/browser/view/PRJEB42783 which based on whole genome resequencing data from many cattle. This will certainly help with improving the resolution of qpAdm and f4 analysis, which have huge confidence intervals in most cases. Right now some individuals have huge confidence intervals ranging from 0 to 80% auroch ancestry...

      We thank the reviewer for this suggestion. We repeated our analyses with a SNP panel from Run 6 of the 1000 Bulls project presented in Naval-Sanchez et al 2020. This panel reduced standard errors and narrowed down confidence intervals for the ancient samples. Another consequence is that more single-source qpAdm models can now be rejected highlighting the abundance of hybridization. For our comparison to modern breeds, we still use the 700K dataset as it provides a set of different modern European cattle breeds.

      I agree with the authors that qpAdm is likely to give quite a noisy estimate of ancestry here (likely explain part of the issue I mentioned above). Although qpAdm is good for model testing here for ancestry proportion the authors instead could use an explicit f4 ratio - this would allow them to specify a model which would make the result easier to interpret.

      We have added ancestry estimates from f4 ratios to the manuscript and display them together with qpAdm and Struct-f4 (as suggested by reviewer #3) in our new Table 1. We decided to keep all three different estimates to illustrate that results are not consistent for all analyses. An additional feature of qpAdm is the possibility that two source models can be rejected and additional ancestries can be identified.

      The interpretation of the different levels of allele sharing on X vs autosome being the result of sex-bias admixture is not very convincing. Could these differences simply be due to a low recombination rate on the X chromosome and/or lower effective population size, which would lead to less efficient purifying selection?

      Following this comment (and another comment referring to the X chromosome analysis by reviewer #2), we decided to remove sex bias from the title of our study and add more information on the caveats of this analysis. While estimating ancestry on the X chromosome can be difficult, we also add that our patterns are consistent with what has been suggested based on ancient mitochondrial data (Verdugo et al 2019). For Neolithic Anatolia, it has been suggested that the insemination of domestic cows by auroch bulls has been intentional or even ritual (Peters et al 2012). A recent parallel archaeogenomic study also concluded sex-biased introgression from autosomal, X-chromosomal and Y-chromosomal data (Rossi et al 2024). As our results are consistent with these previous studies as well as the lower differentiation of modern breeds on the X chromosome (da Fonseca et al 2019), we still consider the general pattern of our results valid even if the exact extent of sex bias is difficult to assess.

      The authors suggest that 2 pop model rejection in some domestic population might be due to indicine ancestry, this seems relatively straightforward to test.

      We had already performed this analysis of modeling their ancestry from three sources using qpAdm. The results are shown in Supplementary Table S6 and we now refer to this more explicitly in the text: “The presence of indicine ancestry can be confirmed in a qpAdm analysis using three sources resulting in fitting models for all breeds (Supplementary Table S6).”

      The first sentence of the paper is a bit long-winded, also dogs were domesticated before the emergence of farming societies.

      We rephrased the first sentence to “Domestication of livestock and crops has been the dominant and most enduring innovation of the transition from a hunter-gathering lifestyle to farming societies.”

      It would be good to be specific about the number of genomes and coverage info in the last paragraph of the intro.

      This information is included in the first paragraph of the results section and we decided to not duplicate the numbers in the preceding introduction paragraph to retain a flow for the readers.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors investigated the admixture history of domestic cattle since they were introduced into Iberia, by studying genomic data from 24 ancient samples dated to ~2000-8000 years ago and comparing them to modern breeds. They aimed to (1) test for introgression from (local) wild aurochs into domestic cattle; (2) characterize the pattern of admixture (frequency, extent, sex bias, directionality) over time; (3) test for correlation between genetic ancestry and stable isotope levels (which are indicative of ecological niche); and (4) test for the hypothesized higher aurochs ancestry in a modern breed of fighting bulls.

      Strengths:

      Overall, this study collects valuable new data that are useful for testing interesting hypotheses, such as admixture between domestic and wild populations, and correlation between genome-wide aurochs ancestry and aggressiveness.

      Thank you for highlighting the importance of our study and the potential of our dataset.

      Weaknesses:

      Most conclusions are partially supported by the data presented. The presence of admixed individuals in prehistorical periods supports the hypothesized introgression, although this conclusion needs to be strengthened with an analysis of potential contamination. The frequency, sex-bias, and directionality of admixture remain highly uncertain due to limitations of the data or issues with the analysis. There is considerable overlap in stable isotope values between domestic and wild groups, indicating a shared ecological niche, but variation in classification criteria for domestic vs wild groups and in skeletal elements sampled for measurements significantly weakens this claim. Lastly, the authors presented convincing evidence for relatively constant aurochs ancestry across all modern breeds, including the Lidia breed which has been bred for aggressiveness for centuries. My specific concerns are outlined below.

      Contamination is a common concern for all ancient DNA studies. Contamination by modern samples is perhaps unlikely for this specific study of ancient cattle, but there is still the possibility of cross-sample contamination. The authors should estimate and report contamination estimates for each sample (based on coverage of autosomes and sex chromosomes, or heterozygosity of Y or MT DNA). Such contamination estimates are particularly important to support the presence of individuals with admixed ancestry, as a domestic sample contaminated with a wild sample (or vice versa) could appear as an admixed individual.

      We thank the reviewer for this suggestion. Due to our low coverage data, we focused on estimating contamination from the mitochondrial data by implementing the approach used by Green et al (2008). We make the code for this step available on Github. While most samples displayed low levels of contamination, we identified one sample (moo013a) with a surprisingly high (~50%) level of contamination which was excluded from further analysis.

      A major limitation of this study is uncertainty in the "population identity" for most sampled individuals (i.e., whether an individual belonged to the domesticated or wild herd when they were alive). Based on chronology, morphology, and genetic data, it is clear the Mesolithic samples from the Artusia and Mendandia sites are bona fide aurochs, but the identities of individuals from the other two sites are much less certain. Indeed, archeological and morphological evidence from El Portalon supports the presence of both domestic animals and wild aurochs, which is echoed by the inter-individual heterogeneity in genetic ancestry. Based on results shown in Fig 1C and Fig 2 it seems that individuals moo017, moo020, and possibly moo012a are likely wild aurochs that had been hunted and brought back to the site by humans. Although the presence of individuals (e.g., moo050, moo019) that can only be explained by two-source models strongly supports that interbreeding happened (if cross-contamination is ruled out), it is unclear whether these admixed individuals were raised in the domestic population or lived in the wild population and hunted.

      The reviewer is pointing out an important topic, the unknown identity of the studied individuals. We have revised the text making clear that we do not know whether the individuals were hunted or herded. At the same time, their genomic ancestry speaks for itself showing that there was hybridization between wild and domestic and that different individuals carried different degrees of wild ancestry. In the revised version, we have added the unknown identity as well as the fact that our results can be affected by both, changes in human hunting and herding practices over time. Regardless of the exact identity of the individuals, our results can still be seen as (a) evidence for hybridization and (b) changes in human practices (hunting and/or herding) and their relationship to bovids over time.

      Such uncertainty in "population identity" limits the authors' ability to make conclusions regarding the frequency, sex bias, and directionality of gene flow between domestic and wild populations. For instance, the wide range of ancestry estimates in Neolithic and Chalcolithic samples could be interpreted as evidence of (1) frequent recent gene flow or (2) mixed practices of herding and hunting and less frequent gene flow. Similarly, the statement about "bidirection introgression" (on pages 8 and 11) is not directly supported by data. As the genomic, morphological, and isotope data cannot confidently classify an individual as belonging to the domesticated or wild population, it seems impossible to conclude the direction of gene flow (if by "bidirection introgression" the authors mean something other than "bidirectional gene flow", they need to clearly explain this before reaching the conclusion.)

      We have removed “bidirectional introgression” from the text and replaced it with the more neutral term “hybridization”. Furthermore, we used the revision to mention at several places in the text that it is not clear whether the sequenced individuals were hunted and herded and that the observed pattern likely reflects changes in both hunting and herding practices.

      The f4 statistics shown in Fig 3B are insufficient to support the claim regarding sex-biased hybridization, as the f4 statistic values are not directly comparable between the X chromosome and autosomes. Because the effective population size is different for the X chromosome and autosomes (roughly 3:4 for populations with equal numbers of males and females), the expected amount of drift is different, hence the fraction of allele sharing (f4) is expected to be different. In fact, the observation that moo004 whose autosomal genome can be modeled as 100% domestic ancestry still shows a higher f4 value for the X chromosome than autosomes hints at this issue. A more robust metric to test for sex-biased admixture is the admixture proportion itself, which can be estimated by qpAdm or f4-ratio (see Patterson et al 2012). However, even with this method, criticism has been raised (e.g., Lazaridis and Reich 2017; Pfennig and Lachance, 2023). In general, detecting sex-bias admixture is a tough problem.

      In response to this comment and another comment by reviewer #1, we decided to remove sex bias from the title. In the revised version of our study, we have now switched this analysis from f4 statistics to comparing f4 ratios between the X chromosome and autosomes (Figure 3). Furthermore, we have added more information on the caveats of this analysis citing the articles mentioned by the reviewer. At the same time, we highlight that our patterns are consistent with what has been suggested based on ancient mitochondrial data (Verdugo et al 2019). Unfortunately, the low coverage data does not allow to call Y chromosomal haplotypes which would also allow an analysis of the paternal lineage. But our results are consistent with additional examples from the literature: For Neolithic Anatolia, it has been suggested that the insemination of domestic cows by auroch bulls has been intentional or even ritual (Peters et al 2012) and there is a lower differentiation of modern breeds on the X chromosome (da Fonseca et al 2019). A recent parallel archaeogenomic study also concluded sex-biased introgression from autosomal, X-chromosomal and Y-chromosomal data (Rossi et al 2024). Similar to the broader hybridization signal, our interpretation does not depend on the estimates for single individuals as we describe the broader pattern. As our results are consistent with previous results based on other types of data, we still consider the general pattern of our results valid even if the exact extent of sex bias is difficult to assess.

      In general, the stable isotope analysis seems to be very underpowered, due to the issues of variation in classification criteria and skeletal sampling location discussed by the authors in supplementary material. The authors claimed a significant difference in stable nitrogen isotope between (inconsistently defined) domestic cattle and wild aurochs, but no figures or statistics are presented to support this claim. Please describe the statistical method used and the corresponding p-values. The authors can consider including a figure to better show the stable isotope results.

      In combination with updated tables, we have added a supplementary figure showing the stable isotope results (S9). In light of the reanalysis of the genetic data, we have reassessed the genetic models used to assign species in the stable isotope analysis. We have provided more details of the statistical methods used and the p-values are given in the supplementary materials. There is a significant difference in the nitrogen isotope values when comparing B. taurus and B. primigenius (identified on morphology) but no other comparisons are significant at the p = 0.05 threshold. The reviewer highlights what we have mentioned in the supplementary material regarding the varied skeletal elements used for stable isotope analysis and the difficulty of assigning a species identity (as this depends on what criteria are used; morphological or some kind of genetic threshold of ancestry). Indeed, how to identify the species is at the heart of the paper. Given that identity could be defined in many ways, we have used 3 different genetic models to reflect this and the morphological categories, to help explore different possible scenarios. The reviewer is correct to point out that some of this analysis is not helped by the variety of skeletal elements used, but we have been careful not to over-interpret the results. The only samples that have nitrogen values higher than one standard deviation from the mean are domestic cattle, so it is not unreasonable to suggest that only domestic cattle have high nitrogen isotope values.

      Reviewer #3 (Public Review):

      Summary:

      Günther and colleagues leverage ancient DNA data to track the genomic history of one of the most important farm animals (cattle) in Iberia, a region showing peculiarities both in terms of cultural practices as well as a climatic refugium during the LGM, the latter of which could have allowed the survival of endemic lineages. They document interesting trends of hybridisation with wild aurochs over the last 8-9 millennia, including a stabilisation of auroch ancestry ~4000 years ago, at ~20%, a time coincidental with the arrival of domestic horses from the Pontic steppe. Modern breeds such as the iconic Lidia used in bullfighting or bull running retain a comparable level of auroch ancestry.

      Strengths:

      The generation of ancient DNA data has been proven crucial to unravel the domestication history of traditional livestock, and this is challenging due to the environmental conditions of the Iberian peninsula, less favourable to DNA preservation. The authors leverage samples unearthed from key archaeological sites in Spain, including the karstic system of Atapuerca. Their results provide fresher insights into past management practices, and permit characterisation of significant shifts in hybridization with wild aurochs.

      We thank the reviewer for their positive assessment of our work and for highlighting the strength and potential of the study.

      Weaknesses:

      - Treatment of post-mortem damage: the base quality of nucleotide transitions was recalibrated down to a quality score of 2, but for 5bp from the read termini only. In some specimens (e.g. moo022), the damage seems to extend further. Why not use dedicated tools (e.g. mapDamage), or check the robustness by conditioning on nucleotide transversions?

      We agree that using such a non-standard data preparation approach requires some testing. Since our main analyses are all based on f statistics, we compared f4 statistics and f4 ratios of our rescaled base quality data with data only using transversion sites. While estimates are highly correlated, the data set reduced to transversions produces larger confidence intervals in f4 ratios due to the lower number of sites. Consequently, we decided to use the rescaled data for all analyses displayed in main figures. We also prefer not to perform reference based rescaling as implemented in mapDamage as it might be sensitive to mapping bias (Günther & Nettelblad 2019).

      - Their more solid analyses are based on qpAdm, but rely on two single-sample donor populations. As the authors openly discuss, it is unclear whether CPC98 is a good proxy for Iberian aurochs despite possibly forming a monophyletic clade (the number of analysed sites is simply too low to assess this monophyly; Supplementary Table S2). Additionally, it is also unclear whether Sub1 was a fully unadmixed domestic specimen, depleted of auroch ancestry. The authors seem to suggest themselves that sex-biased introgression may have already taken place in Anatolia ("suggesting that sex-biased processes already took place prior to the arrival of cattle to Iberia").

      We expanded the discussion on this topic but removed the analysis of whether European aurochs form a clade due to the low number of sites. We do highlight that a recent parallel study on aurochs genomes confirmed that Western European aurochs form a clade, probably even originating from an Iberian glacial refugium (Rossi et al 2024). Even if minor structure in the gene pool of European aurochs might affect our quantitative results, it should not drive the qualitative pattern. The same should be the case for Sub1 as our tests would detect additional European aurochs ancestry that was not present in Sub1. The corresponding paragraph now reads:

      “A limitation of this analysis is the availability of genomes that can be used as representatives of the source populations as we used German and British aurochs to represent western European aurochs ancestry and a single Anatolian Neolithic to represent the original domestic cattle that was introduced into Europe. Our Mesolithic Iberian aurochs contained too little endogenous DNA to be used as a proxy aurochs reference and all Neolithic and Chalcolithic samples estimated with predominantly aurochs ancestry (including the 2.7x genome of moo014) already carry low (but significant) levels of domestic ancestry. However, the fact that all of these aurochs samples carried P mitochondria strongly suggests that western European aurochs can be considered monophyletic. Furthermore, a recent parallel study also concluded that Western European aurochs all form a clade (27). The Anatolian Sub1 might also not be depleted of any European aurochs ancestry and could not fully represent the original European Neolithic gene pool as also indicated by qpAdm and Struct-f4 identifying small proportions of other Asian ancestries in some Iberian individuals.

      While these caveats should affect our quantitative estimates of European aurochs ancestry, they should not drive the qualitative pattern as our tests would still detect any excess European aurochs ancestry that was not present in Neolithic Anatolia.”

      Alternatively, I recommend using Struct-f4 as it can model the ancestry of all individuals together based on their f4 permutations, including outgroups and modern data, and without the need to define pure "right" and "left" populations such as CPC98 and Sub1. It should work with low-coverage data, and allows us to do f4-based MDS plots as well as to estimate ancestry proportions (including from ghost populations).

      We thank the reviewer for this suggestion. We added Struct-f4 as an analysis but observed that it would not converge in an individual-based analysis due to the low coverage of most of our samples. We added Struct-f4 results for samples with >0.1X to the new Table 1, the results are similar to the results obtained using f4 ratios and (to a lower degree) the qpAdm results.

      - In the admixture graph analyses (supplementary results), the authors use population groups based on a single sample. If these samples are pseudohaploidised (or if coverage is insufficient to estimate heterozygosity - and it is at least for moo004 and moo014), f3 values are biased, implying that the fitted graph may be wrong. The graph shown in Fig S7 is in fact hard to interpret. For example, the auroch Gyu2 from Anatolia but not the auroch CPC98 also from Anatolia received 62% of ancestry from North Africa? The Neolithic samples moo004 and moo014 also show the same shocking disparity. I would consider re-doing this analysis with more than a sample per population group

      There seems to be some confusion relating to the sample identity in these figures. CPC98 is British and not Anatolian while Gyu2 is from the Caucasus and not Anatolia which would explain why they are different. Furthermore, moo004 is mostly of domestic ancestry while, moo014 is mostly of European aurochs ancestry according to our other analyses, which should explain why they also behave differently in this analysis. To avoid confusion and since this is a supplementary analysis from which we are not drawing any major conclusions, we decided to remove the graphs and the analysis from the study.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Fig 3A: The red regression line is misleading. It seems to show that the average aurochs ancestry fraction has been steadily decreasing since ~8000 years ago, but the "averaging" is not meaningful as not all samples necessarily represent domestic cattle remains and the sample size is rather small. In other words, the samples are just a small, random collection of domestic and wild animals, and the average ancestry is subject to large sampling noise. I would suggest removing the regression line (along with the associated confidence interval) in this figure. It would also be helpful to label the samples with their IDs and morphology in the plot for cross-reference with other figures. Also, it is said in the legend that "Modern Iberian breeds... are added around date 0 with some vertical jitter". Do the authors mean "horizontal jitter" instead?

      Thank you for noticing this! We have removed the regression line and corrected the figure legend.

      Fig 2 vs Fig 3A: are the error bars the same in these two plots? They seem to be highly similar, if not identical, but the legends read very differently ("95% confidence interval by block-jackknife vs. on standard error"). Please explain.

      The figure legends have been corrected.

      Fig 3B: What do the error bars in Fig 3B mean? 95% confidence interval or one standard error? Please clarify in the legend.

      We have removed this figure and replaced it with a different way of displaying the results (now Figure 3). We ensured that the error bars are displayed consistently across figures.

      According to the f4 statistics shown in Fig 1C and Fig 3B, moo012b carries a relatively high amount of domestic ancestry. How is this compatible with the observation in Fig 2 that this individual can be modeled with 100% aurochs (i.e., aurochs as the single source)? Does this simply reflect the low genome coverage?

      moo012b is indeed one of the lowest coverage samples in our has at <0.02x sequencing depth. Even in our revised analysis using more sites, there is a discrepancy between the results of f4 statistics and qpAdm (suggesting mostly domestic ancestry) and f4 ratio suggesting mostly aurochs ancestry (Figure 1C and Table 1). We believe that this highlights the sensitivity of different methods to assumptions about the relationships of sources and potential “outgroups” which might not be well resolvable with low coverage data and in the presence of potentially complex admixture. Our general results, however, do not depend on the estimates for single individuals as our interpretations are based on the general pattern.

      I don't fully understand the rationale behind the statement "However, at some point, the herding practices must have changed since modern Iberian breeds show approximately 20-25% aurochs ancestry". Can the stable ancestry fraction from 4000 years to the present (relative to the highly variable ancestry before) reflect of discontinuation of hunting rather than changes in herding practices?

      We agree that this statement was not justified here, we rephrased the sentence to “In fact, from the Bronze Age onwards, most estimates overlap with the approximately 25% aurochs ancestry in modern Iberian cattle” and generally tried to make the text more nuanced on the issue of herding and hunting practices.

      Reviewer #3 (Recommendations For The Authors):

      Thanks for this interesting piece of work. The results are clearly presented, and I have no additional concerns other than those reflected in the public report, except perhaps:

      (i) trying to use more informative sample names (eg. including the date and location). It may facilitate reading without going back and forth to the table "Sample List".

      We have now added a main table listing our post-Mesolithic samples together with their age, site and estimated aurochs ancestry proportions. We hope that his table makes it easier for readers to follow our sample IDs.

      (ii) Briefly describe in the main the age of aurochs and Sub1 not generated in this study.

      Fixed.

    1. Reviewer #1 (Public review):

      Summary:

      MHC (Major Histocompatibility Complex) genes have long been mentioned as cases of trans-species polymorphism (TSP), where alleles might have their most recent common ancestor with alleles in a different species, rather than other alleles in the same species (e.g., a human MHC allele might coalesce with a chimp MHC allele, more recently than the two coalesce with other alleles in either species). This paper provides a more complete estimate of the extent and ages of TSP in primate MHC loci. The data clearly support deep TSP linking alleles in humans to (in some cases) old world monkeys, but the amount of TSP varies between loci.

      Strengths:

      The authors use publicly available datasets to build phylogenetic trees of MHC alleles and loci. From these trees they are able to estimate whether there is compelling support for Trans-species polymorphisms (TSPs) using Bayes Factor tests comparing different alternative hypotheses for tree shape. The phylogenetic methods are state-of-the-art and appropriate to the task.

      The authors supplement their analyses of TSP with estimates of selection (e.g., dN/dS ratios) on motifs within the MHC protein. They confirm what one would suspect: classical MHC genes exhibit stronger selection at amino acid residues that are part of the peptide binding region, and non-classical MHC exhibit less evidence of selection. The selected sites are associated with various diseases in GWAS studies.

      Weaknesses:

      An implication drawn from this paper (and previous literature) is that MHC has atypically high rates of TSP. However, rates of TSP are not estimated for other genes or gene families, so readers have no basis of comparison. No framework to know whether the depth and frequency of TSP is unusual for MHC family genes, relative to other random genes in the genome, or immune genes in particular. I expect (from previous work on the topic), that MHC is indeed exceptional in this regard, but some direct comparison would provide greater confidence in this conclusion.

      Given the companion paper's evidence of genic gain/loss, it seems like there is a real risk that the present study under-estimates TSP, if cases of TSP have been obscured by the loss of the TSP-carrying gene paralog from some lineages needed to detect the TSP. Are the present analyses simply calculating rates of TSP of observed alleles, or are you able to infer TSP rates conditional on rates of gene gain/loss?

      Figure 5 (and 6) provide regression model fits (red lines in panel C) relating evolutionary rates (y axis not labeled) to site distance from the peptide binding groove, on the protein product. This is a nice result. I wonder, however, whether a linear model (as opposed to non-linear) is the most biologically reasonable choice, and whether non-linear functions have been evaluated. The authors might consider generalized additive models (GAMs) as an alternative that relaxes linearity assumptions.

      The connection between rapidly evolving sites, and disease associations (lines 382-3) is very interesting. However, this is not being presented as a statistical test of association. The authors note that fast-evolving amino acids all have at least one association: but is this really more disease-association than a random amino acid in the MHC? Or, a randomly chosen polymorphic amino acid in MHC? A statistical test confirming an excess of disease associations would strengthen this claim.

    1. a conspirationchez les érotomanes du son.Cee ee Gene Corti desanova (siouplait), le Mephis élésdu logidel. Un docteur Patediabolique errance; lui c’est le flat soupleet rond de la guitare basse.Je me compromets en nombreusecompagnie; il y a la le tenancierdutripot "Da Podavini". MisterVittorio-pomy -croco, entouré d‘unefleur 4 que aux étranges pétales.Une rutilante batterie a fleuri durant lanuit sous le lit de Corti.Des choses qui arrivent...“Innocent Concert" l’a oubliée aprés lecontact et comme elle craint la poussiére,on linvita avec tact a se fairepieusement oublier a l’abri d’un pucier.Claire trompette de Jean an Clerc.Ul est arrivé furtivement par le couloir,de loup et nez au vent, escamotante bel instrument qu'il coltine.Certains musclés, qui se plaignent de nepouvoir dormir sous la doudke, capablessepodhrecréer ee au mitard, luient de ne saisir le distinguoentre Harlem et Bello. 7

      I rovinati par Philippe Kummer

    1. Que los pagos en moneda extranjera por obligaciones del sector privado financiero (bancos) y no financiero (empresas) son renovados en su totalidad. En este sentido, el importante incremento de los depósitos en dólares producto del blanqueo ha producido ya una emisión de deuda en el mercado local por cerca de u$s7.500 millones en los últimos tres meses y algunas empresas de gran tamaño han incluso logrado volver a colocar deuda en el mercado internacional a tasas de interés de un dígito que se ubican entre 5 a 7 p.p. debajo del rendimiento de los bonos del Gobierno nacional.

      Important, slightly ominouis

    1. Compte rendu de la session plénière du CESE: Renforcer le financement des associations

      Thème principal: La session plénière du CESE s'est concentrée sur l'urgence démocratique de renforcer le financement des associations et de garantir leur capacité d'agir.

      Idées et faits importants:

      • Dégradation de la capacité d'agir des associations: De nombreux témoignages ont mis en avant une dégradation constante de la capacité d'agir des associations, notamment due à une complexification des demandes de subventions et à une diminution des financements publics directs. (cf. témoignage à 19:40)
      • Confusion entre engagement d'intérêt général et opérateur d'utilité sociale: Le rapport souligne la nécessité de redéfinir des trajectoires durables et inclusives pour les associations, en évitant de les confondre avec de simples opérateurs d'utilité sociale. (cf. intervention à 26:58)
      • Importance de l'alliance et de la territorialisation: Le rapport plaide pour la création d'alliances entre associations, fondations, entreprises et pouvoirs publics, et pour une territorialisation des actions, afin de capitaliser sur les pratiques émergentes et les lieux d'expérimentation. (cf. intervention à 27:13)
      • Impact de la philosophie européenne de la concurrence: La législation européenne sur la concurrence a un impact négatif sur le modèle économique associatif, notamment en favorisant la mise en concurrence et en limitant les aides d'État. (cf. intervention à 1:04:41)
      • Nécessité d'adapter le droit européen: Plusieurs intervenants ont proposé des pistes d'adaptation du droit européen, comme l'introduction d'une nouvelle dérogation à l'article 107 du Traité sur le Fonctionnement de l'Union Européenne (TFUE) concernant les activités d'intérêt général, ou une inversion de la logique de l'article 106 du TFUE pour faire primer l'intérêt général sur la concurrence. (cf. intervention à 1:10:20)
      • Création d'un nouveau type d'association transfrontalière: La proposition de directive européenne sur la création d'un nouveau type d'association transfrontalière (ATE) a été présentée. Elle vise à faciliter l'accès à la liberté d'association et à favoriser les activités transfrontalières des associations. (cf. intervention à 53:55)
      • Poids économique et contribution du secteur associatif: Le poids économique du secteur associatif (113 milliards d'euros) et sa contribution sociale et démocratique ont été mis en avant, soulignant la nécessité de lui accorder davantage de moyens et de reconnaissance. (cf. intervention à 1:56:46)
      • Urgence de repenser le financement des associations: Le rapport appelle à repenser le financement des associations, en explorant des pistes d'hybridation des ressources, en favorisant le mécénat et en encourageant les partenariats avec les entreprises. (cf. intervention à 2:00:38)

      Citations clés:

      • "Mon expérience depuis 10 ans à la direction d'association de protection de l'environnement c'est une dégradation constante de notre capacité d'agir" (19:53)
      • "Durant deux décennies nous avons confondu engagement d'intérêt général et opérateur d'utilité sociale" (26:58)
      • "Ne réinventons pas la roue en permanence soyons concrets et réalistes" (27:13)
      • "Il est temps de faire le constat que la doctrine européenne sur la concurrence […] montre ses limites depuis de nombreuses années" (1:09:41)
      • "C'est la politique de concurrence c'est l'instrument du marché intérieur aujourd'hui de la de la leur réindustrialisation et je pense qu'on voit une une véritable évolution en ce sens" (1:26:18)
      • "Il y a bien urgence démocratique" (1:56:46)
      • "L'une de mes premières propositions fortes […] c'est de dire attention à ne pas mélanger la question de l'intérêt général à nos statuts" (2:03:17)
      • "Si vous voulez garder votre autonomie vous voulez maintenir vos projets associatifs vous ne pouvez pas compter que sur les collectivités" (2:07:22)
      • "La mise en concurrence avec l'économie traditionnelle nous affaiblit" (2:30:29)

      Conclusion:

      • La session plénière du CESE a permis de mettre en lumière les défis auxquels sont confrontées les associations et de formuler des propositions concrètes pour renforcer leur financement et leur capacité d'agir.

      L'accent a été mis sur la nécessité de créer des alliances entre différents acteurs, de repenser le rôle de l'État et de l'Europe, et de trouver de nouvelles sources de financement.

      Prochaines étapes:

      Le CESE devrait poursuivre ses travaux sur ce sujet en collaboration avec les différents acteurs concernés, afin de concrétiser les propositions formulées et de garantir un avenir durable au secteur associatif.

      Introduction et contexte (0:00 - 12:44)

      • 0:00 - 1:52: Présentation du Conseil économique social et environnemental (CESE) et de son rôle dans la société civile.
      • 5:43 - 9:40 : Introduction de la séance plénière par Thierry Beaudet, président du CESE, qui souligne l'importance des associations et la préoccupation concernant leur financement.
      • 9:41 - 12:44 : Introduction par Jacques Cressel, président de la commission de l’économie et des finances, qui rappelle le contexte de l'avis "Renforcer le financement des associations : une urgence démocratique" et l'importance de passer à la mise en œuvre concrète.

      Interventions des associations (12:45 - 37:55)

      • 12:45 - 17:16 : Introduction par les co-rapporteurs Dominique Joseph et Martin Bobel, qui rappellent l'importance de la mobilisation et donnent la parole aux associations.
      • 17:17 - 19:09 : Intervention d'Arnaud Jean, président de l'UFOLEP, qui souligne le rôle de l'éducation populaire et l'urgence de financer la vie associative.
      • 19:10 - 21:55 : Intervention de Marion Fortune, directrice de France Nature Environnement Limousin, qui témoigne de la dégradation de la capacité d'agir des associations environnementales.
      • 21:56 - 24:57 : Intervention d'Olivier Lenoir, directeur général de l'association Rempart, qui met en avant l'importance du bénévolat et la nécessité de le valoriser.
      • 24:58 - 26:33 : Intervention de Jeanne Villeneuve, Secrétaire générale de la Fédération nationale des centres de santé, qui souligne les difficultés de financement des centres de santé associatifs.
      • 26:34 - 28:12 : Intervention de Charles-Benoît Heidsieck, président-fondateur Le Rameau, qui appelle à l'innovation et à la territorialisation des financements.
      • 28:13 - 29:29 : Intervention d'Henriette Steinberg, secrétaire générale du Secours populaire, qui met en avant le rôle du financement public dans le champ social.
      • 29:30 - 31:57 : Intervention d'Arnaud de Broca, président du Collectif Handicaps, qui souligne les difficultés rencontrées par les associations du secteur du handicap.
      • 31:58 - 34:05 : Intervention de Carole Sprang, vice-présidente de la Fédération nationale des MJC, qui met en avant l'importance des réseaux et de la pluriannualité des subventions.
      • 34:06 - 36:47 : Intervention de Jérôme Gourod, administrateur de l'Association des parents et futurs parents gays et lesbiennes (APGL), qui appelle à explorer des contrats de gestion pluriannuels et à valoriser le bénévolat.
      • 36:48 - 37:55 : Introduction du témoignage vidéo de Quentin Mortier, co-directeur de l'association SAW-B en Belgique, qui aborde la question des libertés associatives.

      Table ronde sur le cadre européen (37:56 - 1:37:03)

      • 37:56 - 42:52 : Témoignage vidéo de Quentin Mortier sur les restrictions des libertés associatives en Belgique et en Europe.
      • 42:53 - 46:44 : Introduction de la table ronde par Camille Dorival, journaliste, et présentation des intervenants: Marie Boscher (Commission européenne), Thierry Guillois (avocat), et Marion Ogier (avocate).
      • 46:45 - 53:11 : Intervention de Marion Ogier sur les entraves aux libertés associatives en Europe et en France, et le lien avec la marchandisation.
      • 53:12 - 1:02:42 : Intervention de Marie Boscher sur la proposition de directive concernant la création d'un nouveau type d'association, l'association transfrontalière européenne (ATE).
      • 1:02:43 - 1:12:07 : Intervention de Thierry Guillois sur l'impact des articles 106 et 107 du Traité de Rome sur le financement des associations et la nécessité de faire évoluer la doctrine européenne sur la concurrence.
      • 1:12:08 - 1:28:28 : Echanges avec la salle et débat entre les intervenants sur la compatibilité des propositions, la question des services d'intérêt économique général, et les limites de la logique de concurrence.
      • 1:28:29 - 1:37:03 : Contribution en vidéo de Giuseppe Guerini, porte-parole de la catégorie Économie sociale au sein du Comité économique et social européen, qui souligne l'urgence démocratique et appelle à une réévaluation de l'économie sociale et solidaire.

      Table ronde sur les alliances (1:37:04 - 2:23:08)

      • 1:37:04 - 1:37:47 : Introduction de la table ronde par Camille Dorival sur la question des alliances pour faire évoluer les modes de financement des associations d'intérêt général.
      • 1:37:48 - 1:43:53 : Intervention de Mohamed Gnamali, directeur du Centre français des fonds et fondations (CFF), sur la nécessité d'une collaboration renforcée entre associations et fondations, et l'importance de l'engagement de l'Etat.
      • 1:43:54 - 1:52:29 : Intervention de Lionel Berger, président de France Active en Île-de-France, au nom du Medef, sur l'importance du financement des associations et la nécessité de créer des alliances entre le monde de l'entreprise et le monde associatif.
      • 1:52:30 - 2:00:37 : Intervention de Benoît Dahan, président d'ESS France, sur l'urgence démocratique et la nécessité de rappeler aux acteurs publics leur rôle dans la subvention des associations.
      • 2:00:38 - 2:07:58 : Intervention de Mohamed Gnabaly, maire de L'Île-Saint-Denis, sur l'importance de la liberté d'agir des collectivités et des associations, et la nécessité de les accompagner dans la sécurisation de leurs actions d'intérêt général.
      • 2:08:06 - 2:23:08 : Echanges avec la salle et débat entre les intervenants sur la complémentarité des alliances, la recherche de nouvelles sources de financement, les risques de l'hybridation, et la marchandisation du tissu associatif.

      Conclusion (2:23:09 - 2:40:12)

      • 2:23:09 - 2:25:15 : Contribution en vidéo de Dominique Vienne, président des CESER de France, qui souligne le rôle essentiel des associations et appelle à les réinvestir pour renforcer la démocratie.
      • 2:25:16 - 2:33:45 : Intervention de Claire Thoury, présidente du Mouvement associatif, qui remercie le CESE pour son travail, met en lumière la situation des associations, et appelle à revendiquer une pleine et entière autonomie.
      • 2:33:46 - 2:40:12 : Conclusion par les co-rapporteurs Dominique Joseph et Martin Bobel, qui remercient les participants, synthétisent les points clés de la séance, et appellent à la mobilisation pour la suite.
    1. Poner en el centro la hospitalidad –como dispositivo capaz de interrogar y problematizar el nosotros– tendrá entre sus objetivos el facilitar la conexión y la vinculación de experiencias de creación de ciudad entre distintos territorios y abrir, por consiguiente, los espacios de toma de decisiones. Se tratará, entre otras cosas, de potenciar las vecindades y los modos de vida en común existentes, prácticas que pongan la condición hospitalaria y el aprendizaje en la base de nuestra gobernanza política.

      Parte de #retos/sociopoliticos/pec3 > [[Hospitalidad]] como apertura de los espacios de decisión para una #gobernanza política diferente.

    1. Brefing Doc - Community Canvas: Guide pour construire des communautés significatives

      Ce document synthétise les idées principales et les faits clés du "Guide du Community Canvas".

      Introduction

      Le Community Canvas est un outil conçu pour aider les individus et les organisations à construire des communautés plus significatives.

      Il est basé sur l'observation que, malgré leur unicité, de nombreuses communautés partagent une structure sous-jacente similaire.

      Le Canvas s'adresse à tous ceux qui souhaitent réunir des personnes et créer des relations durables et significatives.

      Le Canevas Communautaire

      Le Canvas se divise en trois sections:

      • Identité: Le cœur de la communauté. Qui sommes-nous et en quoi croyons-nous ?
      • Expérience: Le vécu des membres. Que se passe-t-il au sein de la communauté ?
      • Structure: Les aspects opérationnels. Comment la communauté fonctionne-t-elle ?

      Section 1: Identité

      Objectif: Définir la raison d'être de la communauté et son impact sur le monde.

      "Idéalement, tous les éléments d'une communauté [...] renvoient à la même et la renforcent : l'objectif de l'organisation."

      Distinction entre objectif interne (ex: entraide, échange de connaissances) et externe (ex: défendre une cause).

      Identité des membres: Déterminer les traits communs et les points communs des membres.

      "Les communautés sont toujours 'pour' quelqu'un - un groupe de personnes auparavant déconnectées qui partagent un ou plusieurs points communs : une identité commune." Importance de la diversité et des "super utilisateurs".

      Valeurs: Définir les principes importants pour la communauté et ses interactions.

      "Une communauté est une occasion unique pour un groupe d'êtres humains de se traiter les uns les autres d'une manière particulière."

      Rendre les valeurs tangibles à travers des rituels, des manifestes, des principes.

      Définition du succès: Déterminer les critères de réussite de la communauté.

      "Il est essentiel que les communautés définissent clairement l'expérience idéale membres, la valeur qu'elles souhaitent créer pour leurs membres et qu'elles transforment ces éléments en une définition mesurable de la réussite."

      Mesurer la confiance, l'activité et la rétention des membres.

      Marque: Définir l'expression de la communauté à travers le langage, l'esthétique et les objets.

      "Une marque soigneusement choisie est plus qu'un simple emballage, elle représente la manière dont la communauté exprime son objectif, ses valeurs et son identité globale."

      Importance du langage, du design et de la narration.

      Section 2: Expérience

      Sélection des membres: Définir le processus d'adhésion (ouvert ou fermé) et l'intégration des nouveaux membres.

      "Un processus d'intégration solide comprend [...] : Faire en sorte que la nouvelle personne se sente accueillie et en sécurité, les familiariser activement avec les convictions fondamentales, clarifier l'engagement que l'on attend d'eux, les orienter vers des premières étapes claires."

      Transition des membres: Définir la fin de l'expérience d'adhésion et la gestion des anciens membres et des membres inactifs.

      "Limiter l'expérience de l'adhésion peut sembler un inconvénient, mais nous avons vu de nombreuses communautés l'utiliser à leur avantage [...] cela fournit un récit plus clair pour l'expérience avec un point de départ et un point d'arrivée."

      Expériences partagées: Déterminer les expériences que les membres partagent et leur organisation (top-down ou bottom-up).

      "Du point de vue d'un membre, les expériences partagées constituent le cœur de la communauté. Ces expériences conduisent à davantage d'interactions, ce qui renforce la confiance entre les membres."

      Importance de la cohérence, de la simplicité et de la prise en compte de la diversité des membres.

      Rituels et traditions: Identifier les rituels qui renforcent l'identité et les valeurs de la communauté.

      "Les rituels et les traditions sont des actions récurrentes destinées à renforcer le sentiment d'appartenance et, en fait, la communauté."

      Rituels pour renforcer les liens, incarner les valeurs et marquer les étapes de l'adhésion.

      Contenu: Déterminer le contenu qui crée de la valeur pour la communauté et comment les membres y contribuent.

      "De nombreuses communautés utilisent le contenu comme un outil important pour façonner l'expérience de leurs membres et les rapprocher les uns des autres."

      Contenu pour l'exposition, l'inspiration, l'apprentissage, la collaboration, etc.

      Règles d'adhésion: Définir les règles, les attentes et les conséquences en cas de non-respect.

      "Les communautés sont des mini-sociétés et un ensemble de règles claires facilite les interactions et rend l'organisation globale plus stable."

      Définition de l'engagement, de l'étiquette et de la responsabilité des membres.

      Rôles des membres: Identifier les différents rôles que les membres peuvent jouer et les attentes associées.

      "Au fur et à mesure que les membres se familiarisent avec l'expérience communautaire, leur rôle change souvent."

      Définir les attentes et les responsabilités de chaque rôle.

      Section 3: Structure

      Organisation: Déterminer la structure de leadership, la gestion du personnel et les fonctions essentielles.

      "Parce que les communautés se concentrent souvent sur les membres et sur la création d'une expérience extraordinaire pour eux, les questions structurelles et managériales restent souvent sans réponse."

      Importance du transfert de connaissances, des incitations au leadership et de la définition des activités critiques minimales.

      Gouvernance: Définir le processus de prise de décision et la gestion des conflits.

      "Au fur et à mesure que les communautés mûrissent, leur prise de décision devient plus structurée."

      Concentration vs. répartition du pouvoir de décision, résolution des conflits.

      Financement: Déterminer le plan de viabilité financière, les sources de revenus et le statut lucratif ou non lucratif.

      "Pour les communautés qui fonctionnent avec un budget, il n'est pas simple de trouver un modèle économique durable."

      Flux de revenus internes (cotisations) vs. externes (partenariats, subventions). Canaux et plateformes: Identifier les canaux de communication et les plateformes de rassemblement.

      "Il faut d'abord comprendre les besoins de la communauté et les comportements existants, puis, dans un deuxième temps, trouver les plateformes et les canaux adéquats."

      Importance de la cohérence et de la convergence online/offline.

      Gestion des données: Définir la gestion des données des membres, la recherche et la capture des connaissances.

      "Le type de données qu'une communauté décide de collecter déterminera la forme future de la communauté."

      Importance de la recherche de membres et de la capitalisation des connaissances collectives.

      Conclusion

      Le Community Canvas est un outil complet pour analyser et construire des communautés durables et significatives.

      En abordant les différents aspects de l'identité, de l'expérience et de la structure, il permet de créer un environnement propice à l'épanouissement et à l'engagement des membres.

    1. Primero

      Lo primero sería establecer el conjunto de dependencias que hacen esta narrativa de datos reproducible, similar a como lo hacemos en la narrativa de cartofonías.

      Por lo pronto se recomienda copiar los prerrequisitos faltantes en este documento de la otra narrativa y adaptarlos a esta. La reflexión a continuación aborda cómo podría hacerse desde las transclusiones.

      La información podría ser transcluida en distintos documentos una vez le demos soporte a HastyScribe como exportador por omisión para los documentos de Grafoscopio/MiniDocs. Lo ideal sería que un documento inicial de prerrequisitos tenga copias en los repositorios de otros documentos, para facilitar la transclusión, pero que distintas copias apunten a ese documento original, de modo que se puedan coordinar entre sí, o mirar las bifurcaciones que ellos han tenido en la medida en que los documentos avanzan.

      Una posibilidad sería combinar los alias de los documentos con el Hjson front matter, propuesto en la primera carta a Fabio, definiéndolas allí para que nifty sepa cómo descargarlas:

      yaml tranclusions: { prerrequisites: https://external-repo.tld/prerrequisites--id.md }

      Y luego se puedan insertar como snippets en una celda preambulo, pre-creada por MiniDocs (similar a la celda inicial de configuración de LiveBook):

      {{ prerrequisitos -> prerrequisites--id.md}}

      Para ser usada dentro del documento como:

      {@ {{prerrequisitos}} @}

      Nótese que acá estamos suponiendo que los prerrequisitos no necesitan offset y que HastyScribe soporta anidado de intrucciones, llamando un snippet dentro de una transclusión

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this series of studies, Locantore et al. investigated the role of SST-expressing neurons in the entopeduncular nucleus (EPNSst+) in probabilistic switching tasks, a paradigm that requires continued learning to guide future actions. In prior work, this group had demonstrated EPNSst+ neurons co-release both glutamate and GABA and project to the lateral habenula (LHb), and LHb activity is also necessary for outcome evaluation necessary for performance in probabilistic decision-making tasks. Previous slice physiology works have shown that the balance of glutamate/GABA co-release is plastic, altering the net effect of EPN on downstream brain areas and neural circuit function. The authors used a combination of in vivo calcium monitoring with fiber photometry and computational modeling to demonstrate that EPNSst+ neural activity represents movement, choice direction, and reward outcomes in their behavioral task. However, viral-genetic manipulations to synaptically silence these neurons or selectively eliminate glutamate release had no effect on behavioral performance in well-trained animals. The authors conclude that despite their representation of task variables, EPN Sst+ neuron synaptic output is dispensable for task performance.

      Strengths and Weaknesses:

      Overall, the manuscript is exceptionally scholarly, with a clear articulation of the scientific question and a discussion of the findings and their limitations. The analyses and interpretations are careful and rigorous. This review appreciates the thorough explanation of the behavioral modeling and GLM for deconvolving the photometry signal around behavioral events, and the transparency and thoroughness of the analyses in the supplemental figures. This extra care has the result of increasing the accessibility for non-experts, and bolsters confidence in the results.

      (1) To bolster a reader's understanding of results, we suggest it would be interesting to see the same mouse represented across panels (i.e. Figures 1 F-J, Supplementary Figures 1 F, K, etc i.e via the inclusion of faint hash lines connecting individual data points across variables.

      Thank you for the suggestion. The same mouse is now represented in Fig 1 and Fig 1—Figure Supplement 1 as a darkened circle so it can be followed across different panels. Photometry from this mouse was used as sample date in Figure 2b and Figure 2—figure supplement 1a-b.

      (2) Additionally, Figure 3E demonstrates that eliminating the 'reward' and 'choice and reward' terms from the GLM significantly worsens model performance; to demonstrate the magnitude of this effect, it would be interesting to include a reconstruction of the photometry signal after holding out of both or one of these terms, alongside the 'original' and 'reconstructed' photometry traces in panel D. This would help give context for how the model performance degrades by exclusion of those key terms.

      We have now added analyses and reconstructed photometry signals from GLMs excluding important predictors in Figure 3—figure supplement 1 and 2. We use the model where both “Direction and reward” were omitted as predictors for the GLM and showed photometry reconstructions aligned to behavioral events used for the full model (Figure 3—figure supplement 1) and partial model (Figure 3—figure supplement 2) to compare model performance.  

      (3) Finally, the authors claimed calcium activity increased following ipsilateral movements. However, Figure 3C clearly shows that both SXcontra and SXipsi increase beta coefficients. Instead, the choice direction may be represented in these neurons, given that beta coefficients increase following CXipsi and before SEipsi, presumably when animals make executive decisions. Could the authors clarify their interpretation on this point?

      We observe that calcium activity increases during ipsilateral choices as the animal moves toward the ipsilateral side port (e.g. CX<sub>ipsi</sub> to SE<sub>ipsi</sub>; Fig 2C and Fig 3C). The animal also makes other ipsiversive movements not during the “choice” phase of a trial such as when it is returning to the center port following a contralateral choice (e.g. SX<sub>Contra</sub> to CE; Fig 2—figure supplement 1F and Fig 3C). We also observe an increase in calcium activity during these ipsiversive movements (e.g. SX<sub>Contra</sub> to CE), but they are not as large as those observed during the choice phase (Fig 2—figure supplement 1G). Therefore, during the choice phase of a trial, activity contains signals related to ipsilateral movement and additional factors (e.g. executive decision making).    

      (4) Also, it is not clear if there is a photometry response related to motor parameters (i.e. head direction or locomotion, licking), which could change the interpretation of the reward outcome if it is related to a motor response; could the authors show photometry signal from representative 'high licking' or 'low licking' reward trials, or from spontaneous periods of high vs. low locomotor speeds (if the sessions are recorded) to otherwise clarify this point?

      Unfortunately, neither licks nor locomotion were recorded during the behavioral sessions when photometry was recorded. In Figure 2—figure supplement 1a we now show individual trials sorted by trial duration (time elapsed between CE and SE) to illustrate the dynamics of the photometry signal on fast vs slow trials within a session.  

      (5) There are a few limitations with the design and timing of the synaptic manipulations that would improve the manuscript if discussed or clarified. The authors take care to validate the intersectional genetic strategies: Tetanus Toxin virus (which eliminates synaptic vesicle fusion) or CRISPR editing of Slc17a6, which prevents glutamate loading into synaptic vesicles. The magnitude of effect in the slice physiology results is striking. However, this relies on the co-infection of a second AAV to express channelrhodopsin for the purposes of validation, and it is surely the case that there will not be 100% overlap between the proportion of cells infected.

      For the Tet-tox experiments in Figure 4 we estimate approximately 70±15% of EP<sup>Sst+</sup> neurons expressed Tet-tox based on our histological counts and published stereological counts in EP (Miyamoto and Fukuda, 2015). It is true that channelrhodopsin expression will not overlap 100% with cells infected by the other virus, indeed our in vitro synaptic physiology shows small residual postsynaptic currents following optogenetic stimulation either from incomplete blockade of synaptic release or neurons that expressed channelrhodopsin but not Tettx (Figure 4—figure supplement 1J-K). The same is shown for CRISPR mediated deletion of Slc17a6 (Fig 5 – Fig supplement 1J-K).  

      (6) Alternative means of glutamate packaging (other VGluT isoforms, other transporters, etc) could also compensate for the partial absence of VGluT2, which should be discussed.

      While single cell sequencing (Wallace et al, 2017) has shown EP<sup>Sst+</sup> neurons do not express Slc17a7/8 (vGlut1 or vGlut3) it is possible that these genes could be upregulated following CRISPR mediated deletion of Slc17a6, however we do not see evidence of this with our in vitro synaptic physiology (EPSCs are significant suppressed, Figure 5 – Fig supplement 1J-K) and therefore can conclude it is highly unlikely to occur to a significant degree in our experiments. This is now included in the Discussion.

      (7) The authors do not perform a complimentary experiment to delete GABA release (i.e. via VGAT editing), which is understandable, given the absence of an effect with the pan-synaptic manipulation. A more significant concern is the timing of these manipulations as the authors acknowledge. The manipulations are all done in well-trained animals, who continue to perform during the length of viral expression. Moreover, after carefully showing that mice use different strategies on the 70/30 version vs the 90/10 version of the task, only performance on the 90/10 version is assessed after the manipulation. Together, the observation that EPNsst activity does not alter performance on a well-learned, 90/10 switching task decreases the impact of the findings, as this population may play a larger role during task acquisition or under more dynamic task conditions. Additional experiments could be done to strengthen the current evidence, although the limitation is transparently discussed by the authors.

      As mentioned above, it is possible that a requirement for EP<sup>Sst+</sup> neurons could be revealed if the experiment was conducted with different parameters (either different reward probabilities, fluctuating reward probabilities within a session, or withholding additional training during viral expression). It is difficult to predict which version of the task, if any, would be most likely to reveal a requirement for EP<sup>Sst+</sup> neurons based on our results. We favor testing for EP<sup>Sst+</sup> function using a new behavioral paradigm that allows us to carefully examine task learning following EP manipulations in an independent study.

      (8) Finally, intersectional strategies target LHb-projecting neurons, although in the original characterization, it is not entirely clear that the LHb is the only projection target of EPNsst neurons. A projection map would help clarify this point.

      In a previous study we confirmed that EP<sup>Sst+</sup> neurons project exclusively to the LHb using cell-type specific rabies infection and examining all reported downstream regions for axon collaterals (Wallace et al 2017, Suppl. Fig 6F-G). When EP<sup>Sst+</sup> neurons were labeled we did not observe axon collaterals in known targets of EP such as ventro-antero lateral thalamus, red nucleus, parafasicular nucleus of the thalamus, or the pedunculopontine tegmental nucleus, only in the LHb. Additionally, using single cell tracing techniques, others have shown EP neurons that exclusively project to the LHb (Parent et al, 2001).

      Overall, the authors used a pertinent experimental paradigm and common cell-specific approaches to address a major gap in the field, which is the functional role of glutamate/GABA co-release from the major basal ganglia output nucleus in action selection and evaluation. The study is carefully conducted, their analyses are thorough, and the data are often convincing and thought-provoking. However, the limitations of their synaptic manipulations with respect to the behavioral assays reduce generalizability and to some extent the impact of their findings.

      Reviewer #2 (Public Review):

      Summary:

      This paper aimed to determine the role EP sst+ neurons play in a probabilistic switching task.

      Strengths:

      The in vivo recording of the EP sst+ neuron activity in the task is one of the strongest parts of this paper. Previous work had recorded from the EP-LHb population in rodents and primates in head-fixed configurations, the recordings of this population in a freely moving context is a valuable addition to these studies and has highlighted more clearly that these neurons respond both at the time of choice and outcome.

      The use of a refined intersectional technique to record specifically the EP sst+ neurons is also an important strength of the paper. This is because previous work has shown that there are two genetically different types of glutamatergic EP neurons that project to the LHb. Previous work had not distinguished between these types in their recordings so the current results showing that the bidirectional value signaling is present in the EP sst+ population is valuable.

      Weaknesses:

      (1) One of the main weaknesses of the paper is to do with how the effect of the EP sst+ neurons on the behavior was assessed.

      (a) All the manipulations (blocking synaptic release and blocking glutamatergic transmission) are chronic and more importantly the mice are given weeks of training after the manipulation before the behavioral effect is assessed. This means that as the authors point out in their discussion the mice will have time to adjust to the behavioral manipulation and compensate for the manipulations. The results do show that mice can adapt to these chronic manipulations and that the EP sst+ are not required to perform the task. What is unclear is whether the mice have compensated for the loss of EP sst+ neurons and whether they play a role in the task under normal conditions. Acute manipulations or chronic manipulations without additional training would be needed to assess this.

      Unfortunately, when mice are given a three week break from behavioral training (the time required to allow for adequate viral expression) behavioral performance on the task (p(highport), p(switch), trial number, trial time, etc.) is significantly degraded. Animals do eventually recover to previous performance levels, but this takes place during a 4-5 day “relearning” period. Here we sought to examine if EP<sup>Sst+</sup> neurons are required for continued task performance and chose to continue to train the animals following viral injection to avoid the “relearning” period that occurs following an extended break from behavioral training which may have made it difficult to interpret changes in behavioral performance due to the viral manipulation vs relearning.  

      Acute manipulations were not used because we planned to compare complete synaptic ablation (Tettx) and single neurotransmitter ablation (CRISPR Slc17a6) over similar time courses and we know of no acute manipulation that could achieve single neurotransmitter ablation. 

      (b) Another weakness is that the effect of the manipulations was assessed in the 90/10 contingency version of the task. Under these contingencies, mice integrate past outcomes over fewer trials to determine their choice and animals act closer to a simple win-stay-lose switch strategy. Due to this, it is unclear if the EP sst+ neurons would play a role in the task when they must integrate over a larger number of conditions in the less deterministic 70/30 version of the task.

      It is possible that a requirement for EP<sup>Sst+</sup> neurons could be revealed if the experiment was conducted with different parameters (either different reward probabilities, fluctuating reward probabilities within a session, or withholding additional training during viral expression). It is difficult to predict which version of the task, if any, would be most likely to reveal a requirement for EP<sup>Sst+</sup> neurons based on our results. We favor testing for EP<sup>Sst+</sup> function using a new behavioral paradigm that allows us to carefully examine task learning following EP manipulations in an independent study.

      The authors show an intriguing result that the EP sst+ neurons are excited when mice make an ipsilateral movement in the task either toward or away from the center port. This is referred to as a choice response, but it could be a movement response or related to the predicted value of a specific action. Recordings while mice perform movement outside the task or well-controlled value manipulations within the session would be needed to really refine what these responses are related to.

      If activity of EP<sup>Sst+</sup> neurons included a predicted value component, we would expect to see a change in activity during ipsilateral movements when the previous trial was rewarded vs unrewarded. This is examined in Fig 2—figure suppl. 2C, where we compare EP<sup>Sst+</sup> responses during ipsilateral trials when the previous trials were either rewarded (blue) or unrewarded (gray). We show that EP<sup>Sst+</sup> activity prior to side port entry (SE) is identical in these two trial types indicating that EP<sup>Sst+</sup> neurons do not show evidence of predicted value of an action in this context. Therefore, we conclude that increased EP<sup>Sst+</sup> activity during ipsilateral trials is primarily related to ipsilateral movement following CX (we call this the “choice” phase of the trial). We also show that other ipsiversive movements outside of the “choice” phase of a trial (such as the return to center port following a contralateral trial) show a smaller but significant increase in activity (Figure 2—figure supplement 1F-G). Therefore, whereas the activity observed during ipsilateral choice contains signals related to ipsilateral movement and additional factors, our data suggest that predicted value is not one of those factors. We will clarify this point and our definition of “choice” in the narrative.  

      (2) The authors conclude that they do not see any evidence for bidirectional prediction errors. It is not possible to conclude this. First, they see a large response in the EP sst+ neurons to the omission of an expected reward. This is what would be expected of a negative reward prediction error. There are much more specific well-controlled tests for this that are commonplace in head-fixed and freely moving paradigms that could be tested to probe this. The authors do look at the effect of previous trials on the response and do not see strong consistent results, but this is not a strong formal test of what would be expected of a prediction error, either a positive or negative. The other way they assess this is by looking at the size of the responses in different recording sessions with different reward contingencies. They claim that the size of the reward expectation and prediction error should scale with the different reward probabilities. If all the reward probabilities were present in the same session this should be true as lots of others have shown for RPE. Because however this data was taken from different sessions it is not expected that the responses should scale, this is because reward prediction errors have been shown to adaptively scale to cover the range of values on offer (Tobler et al., Science 2005). A better test of positive prediction error would be to give a larger-than-expected reward on a subset of trials. Either way, there is already evidence that responses reflect a negative prediction error in their data and more specific tests would be needed to formally rule in or out prediction error coding especially as previous recordings have shown it is present in previous primate and rodent recordings.

      We do not conclude that we see no evidence for RPE and the reviewer is correct in stating that a large increase in EP<sup>Sst+</sup> activity following omission of an expected reward would be expected of a negative reward prediction error. However, this observation alone is not strong enough evidence that EP<sup>Sst+</sup> neurons signal RPE. When we looked for additional evidence of RPE within our experiments we did not find consistent demonstrations of its existence in our data. When performing photometry measurements of dopamine release in the striatum, RPE signals are readily observed with a task identical to ours using trial history to as a modifier of reward prediction (Chantranupong, et al 2023). Of course, there could be a weaker more heterogeneous RPE signal in EP<sup>Sst+</sup> neurons that we cannot detect with our methods. As we state in the discussion, RPE signals may be present in a subset of individual neurons (as observed in Stephenson-Jones et al, 2016 and Hong and Hikosaka, 2008) which are below our detection threshold using fiber photometry. Additionally, Hong and Hikosaka, 2008 show that LHb-projecting GPi neurons show both positive and negative reward modulations which may obscure observation of RPE signals with photometry recordings that arise from population activity of genetically defined neurons.   

      (3) There are a lot of variables in the GLM that occur extremely close in time such as the entry and exit of a port. If two variables occur closely in time and are always correlated it will be difficult if not impossible for a regression model to assign weights accurately to each event. This is not a large issue, but it is misleading to have regression kernels for port entry and exits unless the authors can show these are separable due to behavioral jitter or a lack of correlation under specific conditions, which does not seem to be the case.

      It is true that two variables that are always correlated are redundant in a GLM. For example, center entry (CE) and center exit (CX) occur in quick succession in most trials and are highly correlated (Figure 1C). For this reason, when only one is removed as a predictor from the model but not the other there is a very small change in the MSE of the fit (Figure 3E, -CE or -CX). However, when both are removed model performance decreases further indicating that center-port nose-pokes do contribute to model performance (Figure 3E, -CE/CX). Due to the presence/absence of reward following side port entry there is substantial behavioral jitter (due to water consumption in rewarded trials) that the SE and SX are not always correlated, therefore the model performs worse when either are omitted alone, but even worse still when both SE/SX are omitted together (Figure 3E, -SE/SX). We will update Figure 3 and the narrative to make this more explicit.

      Reviewer #3 (Public Review):

      Summary:

      The authors find that Sst-EPN neurons, which project to the lateral habenula, encode information about response directionality (left vs right) and outcome (rewarded vs unrewarded). Surprisingly, impairment of vesicular signaling in these neurons onto their LHb targets did not impair probabilistic choice behavior.

      Strengths:

      Strengths of the current work include extremely detailed and thorough analysis of data at all levels, not only of the physiological data but also an uncommonly thorough analysis of behavioral response patterns.

      Weaknesses:

      Overall, I saw very few weaknesses, with only two issues, both of which should be possible to address without new experiments:

      (1) The authors note that the neural response difference between rewarded and unrewarded trials is not an RPE, as it is not affected by reward probability. However, the authors also show the neural difference is partly driven by the rapid motoric withdrawal from the port. Since there is also a response component that remains different apart from this motoric difference (Figure 2, Supplementary Figure 1E), it seems this is what needs to be analyzed with respect to reward probability, to truly determine whether there is no RPE component. Was this done?

      We thank the reviewer for this comment, we believe this is particularly important for unrewarded trials as SE and SX occur in rapid succession. In Figure 2—figure supplement 2A-B we now show the photometry signal from Rewarded and Unrewarded ipsilateral trials aligned to SX for different reward probabilities. We quantify the signals for different reward probabilities during a 500ms window immediately prior to SX but find no differences between groups.  

      (2) The current study reaches very different conclusions than a 2016 study by Stephenson-Jones and colleagues despite using a similar behavioral task to study the same Sst-EPN-LHb circuit. This is potentially very interesting, and the new findings likely shed important light on how this circuit really works. Hence, I would have liked to hear more of the authors' thoughts about possible explanations of the differences. I acknowledge that a full answer might not be possible, but in-depth elaboration would help the reader put the current findings in the context of the earlier work, and give a better sense of what work still needs to be done in the future to fully understand this circuit.

      For example, the authors suggest that the Sst-EPN-LHb circuit might be involved in initial learning, but play less of a role in well-trained animals, thereby explaining the lack of observed behavioral effect. However, it is my understanding that the probabilistic switching task forces animals to continually update learned contingencies, rendering this explanation somewhat less persuasive, at least not without further elaboration (e.g. maybe the authors think it plays a role before the animals learn to switch?).

      Also, as I understand it, the 2016 study used manipulations that likely impaired phasic activity patterns, e.g. precisely timed optogenetic activation/inhibition, and/or deletion of GABA/glutamate receptors. In contrast, the current study's manipulations - blockade of vesicle release using tetanus toxin or deletion of VGlut2, would likely have blocked both phasic and tonic activity patterns. Do the authors think this factor, or any others they are aware of, could be relevant?

      We have added further discussion of the Stephenson-Jones, et al 2016 study as well as the Lazaridis, et al 2019 study which shows no effect of phasic stimulation of EP when specifically manipulating EP<sup>Sst+</sup> (vGat+/vGlut2+) neurons rather than vGlut2+ neurons as in the Stephenson-Jones study.  

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In some places, there seems to be a mismatch between referenced figures and texts. For example:

      (1) The authors described that 'This increase in activity was seen for all three reward probabilities tested (90/10, 80/20, and 70/30) and occurred while the animal was engaged in ipsiversive movements as similar increases were observed following side exit (SX) on contralateral trials as the animal was moving from the contralateral side port back to the center port (Figure 2-Figure Supplement 1c)', but supplement 1c is not about calcium dynamics around the SX event. I presume they mean Figure 2-Figure Supplement 1d.

      Yes, this will be corrected in the revised manuscript.

      (2) The authors explained that increased EPSst+ neuronal activity following an unrewarded outcome was partially due to the rapid withdrawal of the animal's snout following an unrewarded outcome however, differences in rewarded and unrewarded trials were still distinguishable when signals were aligned to side port exit indicating that these increases in EPSst+ neuronal activity on unrewarded trials were a combination of outcome evaluation (unrewarded) and side port withdrawal occurring in quick succession (SX, Figure 2 - Figure Supplement 1d). I presume that they mean Figure 2 - Figure Supplement 1e.

      Yes, this will be corrected in the revised manuscript.

      Minor suggestions related to specific figure presentation are below:

      Figure 2 and supplement figures:

      (1) Figure 2B: the authors may consider presenting outcome-related signals recorded from all trials, including both ipsilateral and contralateral events, and align signals to SE when reward consumption presumably begins, rather than aligning to CE.

      We have added sample recordings from ipsilateral and contralateral trials and sorted them by trial duration to allow for clearer presentation of activity following CE and SE (Figure 2—figure supplement 1a-b).

      (2) The authors described that 'This increase in activity was seen for all three reward probabilities tested (90/10, 80/20, and 70/30) and occurred while the animal was engaged in ipsiversive movements as similar increases were observed following side exit (SX) on contralateral trials as the animal was moving from the contralateral side port back to the center port (Figure 2-Figure Supplement 1c)', but supplement 1c is not about calcium dynamics around the SX event. I presume they mean Figure 2-Figure Supplement 1d.

      Yes, this will be corrected in the revised manuscript.

      (3) The authors explained that increased EPSst+ neuronal activity following an unrewarded outcome was partially due to the rapid withdrawal of the animal's snout following an unrewarded outcome however, differences in rewarded and unrewarded trials were still distinguishable when signals were aligned to side port exit indicating that these increases in EPSst+ neuronal activity on unrewarded trials were a combination of outcome evaluation (unrewarded) and side port withdrawal occurring in quick succession (SX, Figure 2 -Figure Supplement 1d). I presume that they mean Figure 2 -Figure Supplement 1e.

      Yes, this will be corrected in the revised manuscript.

      Figure 3 and supplement figures:

      (1) Figure 3C-F: it is hard to compare the amplitude of calcium signals between different behaviour events without a uniform y-axis.

      The scale for the y-axis on Figure 3C-D is uniform for all panels. Figure 3E is also uniform for all boxplots. The reviewer may be referring to Figure 2C-F, but the y-axis for all of the photometry data is uniform for all panels and the horizontal line represents zero. The y-axis for the quantification on the right of each panel is scaled to the max/min for each comparison.

      (2) Figure 3E is difficult to follow. The authors explained that the 'SE' variable is generated by collapsing the ipsilateral and contralateral port entries, and hence the variable has no choice of direction information. I assumed that the 'SX', 'CE', and 'CX' variables are generated similarly. It is not clear if this is the case for the 'side', 'centre' and 'choice' variables. The authors explained that 'omitting center port entry/exit together or individually also resulted in decreased GLM performance but to a smaller degree than the omission of choice direction (Figure 3e, "-Center")'. My understanding is that they created the Centre variable by collapsing ipsilateral and contralateral centre port entry/exit together. The Centre variable should have no choice of direction information. How is the Center variable generated differently from omitting centre port entry/exit together? I would ask the authors to explain the model and different variables a bit more thoroughly in the text.

      We apologize for the confusion. All ten variables used to train the full GLM are listed in Fig. 3C. In Figure 3E variable(s) were omitted to test how they contributed to GLM performance (data labeled “None” is the full model with all variables). Omitted variables are now defined as follows: -Rew = Rew+Unrew removed, -Direction = Ipsi/Contra designation removed and collapsed into CE, CX, SE, SX, -Direction & Rew = Ipsi/Contra info removed from all variables + Rew/Unrew removed, -CE/CX = Ipsi/Contra CE and CX removed, -CE = Ipsi/contra CE removed, -CX = Ipsi/contra CX removed, -SE/SX = Ipsi/Contra SE and SX removed, -SE = Ipsi/contra SE removed, -SX = Ipsi/contra SX removed. This clarification has also been added to the Generalized Linear Model section of Materials and Methods.

      Figure 5 and supplement figures:

      There are no representative and summary figures show the specificity and efficiency of oChief-tdTomato or Tetx-GFP expression. Body weight changes following virus injection are not well described.

      A representative image of Tettx GFP expression are shown in Fig. 4A and percent of infected EP<sup>Sst+</sup> neurons is described in the text (70±15.1% (mean±SD), 1070±230 neurons/animal, n=6 mice). Most oChief-tdTom animals were used for post-hoc electrophysiology experiments and careful quantification of viral expression was not possible. However, Slc17a6 deletion was confirmed in these animals (Fig. 5 – Fig supplement 1J-K) to confirm the manipulation was effective in the experimental group. A representative image of oChief-tdTom expression is shown in Fig. 5A.

      We now mention the body weight changes observed following Tettx injection in the narrative.

      Reviewer #2 (Recommendations For The Authors):

      (1) In the RFLR section you state that "this variable decays...", a variable can't decay only the value of a variable can change. Also, it is not mentioned what variable is being discussed. There are lots of variables in the model so this should be made clear.

      We now state, “This variable (β) changes over trials and is updated with new evidence from each new trial’s choice and outcome with an additional bias towards or away from its most recent choice (Figure 1-figure supplement 2A-C).”

      (2) I couldn't find in the results section, or the methods section the details for the Tet tx experiments, were mice trained and tested on 90/10 only? Were they trained while the virus was expressing etc? This should be added.

      In the methods section we state, ”For experiments where we manipulated synaptic release in EP<sup>Sst+</sup> neurons (Figures 4-5) we trained mice (reward probabilities 90/10, no transparent barrier present) to the following criteria for the 5 days prior to virus injection: 1) p(highport) per session was greater than or equal to 0.80 with a variance less than 0.003, 2) p(switch) per session was less than or equal to 0.15 with a variance less than 0.001, 3) the p(left port) was between 0.45-0.55 with a variance less than 0.005, and 4) the animal performed at least 200 trials in a session. The mean and variance for these measurements was calculated across the five session immediately preceding surgery. The criterion were determined by comparing performance profiles in separate animals and chosen based on when animals first showed stable and plateaued behavioral performance. Following surgery, mice were allowed to recover for 3 days and then continued to train for 3 weeks during viral expression. Data collected during the 5 day pre-surgery period was then compared to data collected for 10 sessions following the 3 weeks allotted for viral expression (i.e. days 22-31 post-surgery).”

      Reviewer #3 (Recommendations For The Authors):

      (1) The kernel in Figure 3C shows an activation prior to CE on "contra" trials that is not apparent in Figure 2C which shows no activation prior to CE on either contra or ipsi trials. Given that movement directionality prior to CE is dictated by the choice on the PREVIOUS trial, is the "contra" condition in 3C actually based on the previous trial? If so, this should be clarified.

      On most “contra” trials the animal is making an ipsiversive movement just prior to CE as it returns to the center from the contralateral side-port (as most trials are no “switch” trials). Therefore, an increase in activity is expected and shown most clearly following SX for contralateral trials in Fig 2 –Fig suppl 1F. A significant increase in activity prior to CE on contra trials compared to ipsi trials can also be seen in Fig 2C, its just not as large a change as the increase observed following CE for ipsi. trials. The comparison between activity observed during the two types of ipsiversive movements is now shown directly in Figure 2—figure supplement 1G.

      (2) Paragraph 7 of the discussion uses a phrase "by-in-large", which probably should be "by and large".

      Thank you for the correction.

      Editor's note:

      Should you choose to revise your manuscript, if you have not already done so, please include full statistical reporting including exact p-values wherever possible alongside the summary statistics (test statistic and df) and 95% confidence intervals. These should be reported for all key questions and not only when the p-value is less than 0.05 in the main manuscript.

      Readers would also benefit from coding individual data points by sex and noting N/sex.

      Sex breakdown has been added to figure legends for each experiment, full statistical reporting is now also include in the figure legends.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Bell et. al. describes an analysis of the effects of removing one of two mutually exclusive splice exons at two distinct sites in the Drosophila CaV2 calcium channel Cacophony (Cac). The authors perform imaging and electrophysiology, along with some behavioral analysis of larval locomotion, to determine whether these alternatively spliced variants have the potential to diversify Cac function in presynaptic output at larval neuromuscular junctions. The author provided valuable insights into how alternative splicing at two sites in the calcium channel alters its function.

      Strengths:

      The authors find that both of the second alternatively spliced exons (I-IIA and I-IIB) that are found in the intracellular loop between the 1st and second set of transmembrane domains can support Cac function. However, loss of the I-IIB isoform (predicted to alter potential beta subunit interactions) results in 50% fewer channels at active zones and a decrease in neurotransmitter release and the ability to support presynaptic homeostatic potentiation. Overall, the study provides new insights into Cac diversity at two alternatively spliced sites within the protein, adding to our understanding of how regulation of presynaptic calcium channel function can be regulated by splicing.

      Weaknesses:

      The authors find that one splice isoform (IS4B) in the first S4 voltage sensor is essential for the protein's function in promoting neurotransmitter release, while the other isoform (IS4A) is dispensable. The authors conclude that IS4B is required to localize Cac channels to active zones. However, I find it more likely that IS4B is required for channel stability and leads to the protein being degraded, rather than any effect on active zone localization. More analysis would be required to establish that as the mechanism for the unique requirement for IS4B.

      (1) We thank the reviewer for this important point. In fact, all three reviewers raised the same question, and the reviewing editor pointed out that caution or additional experiments were required to distinguish between IS4 splicing being important for cac channel localization versus channel stability/degradation. We provide multiple sets of experiments as well as text and figure revisions to strengthen our claim that the IS4B exon is required for cacophony channels to enter motoneuron presynaptic boutons and localize to active zones.

      a. If IS4B was indeed required for cac channel stability (and not for localization to active zones) IS4A channels should be instable wherever they are. This is not the case because we have recorded somatodendritic cacophony currents from IS4A expressing adult motoneurons that were devoid of cac channels with the IS4B exon. Therefore, IS4A cac channels are not instable but underlie somatodendritic voltage dependent calcium currents in these motoneurons. These new data are now shown in the revised figure 3C and referred to in the text on page 7, line 42 to page 8 line 9.

      b. Similarly, if IS4B was required for channel stability, it should not be present anywhere in the nervous system. We tested this by immunohistochemistry for GFP tagged IS4A channels in the larval CNS. Although IS4A channels are sparsely expressed, which is consistent with low expression levels seen in the Western blots (Fig. 1E), there are always defined and reproducible patterns of IS4A label in the larval brain lobes as well as in the anterior part of the VNC. This again shows that the absence of IS4A from presynaptic active zones is not caused by channel instability, because the channel is expressed in other parts of the nervous system. These data are shown in the new supplementary figure 1 and referred to in the text on page 15, lines 3 to 8.

      c. As suggested in a similar context by reviewers 1 and 2, we now show enlargements of the presence of IS4B channels in presynaptic active zones as well as enlargements of the absence of IS4A channels in presynaptic active zones in the revised figures 2A-C and 3A. In these images, no IS4A label is detectable in active zones or anywhere else throughout the axon terminals, thus indicating that IS4B is required for expressing cac channels in the axon terminal boutons and localizing it to active zones. Text and figure legends have been adjusted accordingly.

      d. Related to this, reviewer 1 also recommended to quantify the IS4A and ISB4 channel intensity and co-localization with the active zone marker brp (recommendation for authors). After following the reviewers’ suggestion to adjust the background values in IS4A and IS4B immunolabels to identical (revised Figs. 2A-C), it becomes obvious that IS4A channel are not detectable above background in presynaptic terminals or active zones, thus intensity is close to zero. We still calculated the Pearsons co-localization coefficient for both IS4 variants with the active zone marker brp. For IS4B channels the Pearson’s correlation coefficient is control like, just above 0.6, whereas for IS4A channels we do not find colocalization with brp (Pearson’s below 0.25). These new analyses are now shown in the revised figure 2D and referred to on page 6, lines 33 to 38.

      e. Consistent with our finding that IS4B is required for cac channel localization to presynaptic active zones, upon removal of IS4B we find no evoked synaptic transmission (Fig. 2 in initial submission, now Fig. 3B).

      Together these data are in line with a unique requirement of IS4B at presynaptic active zones (not excluding additional functions of IS4B), whereas IS4A containing cac isoforms are not found in presynaptic active zones and mediate different functions.

      Reviewer #2 (Public Review):

      This study by Bell et al. focuses on understanding the roles of two alternatively spliced exons in the single Drosophila Cav2 gene cac. The authors generate a series of cac alleles in which one or the other mutually exclusive exons are deleted to determine the functional consequences at the neuromuscular junction. They find alternative splicing at one exon encoding part of the voltage sensor impacts the activation voltage as well as localization to the active zone. In contrast, splicing at the second exon pair does not impact Cav2 channel localization, but it appears to determine the abundance of the channel at active zones.

      Together, the authors propose that alternative splicing at the Cac locus enables diversity in Cav2 function generated through isoform diversity generated at the single Cav2 alpha subunit gene encoded in Drosophila.

      Overall this is an excellent, rigorously validated study that defines unanticipated functions for alternative splicing in Cav2 channels. The authors have generated an important toolkit of mutually exclusive Cac splice isoforms that will be of broad utility for the field, and show convincing evidence for distinct consequences of alternative splicing of this single Cav2 channel at synapses. Importantly, the authors use electrophysiology and quantitative live sptPALM imaging to determine the impacts of Cac alternative splicing on synaptic function. There are some outstanding questions regarding the mechanisms underlying the changes in Cac localization and function, and some additional suggestions are listed below for the authors to consider in strengthening this study. Nonetheless, this is a compelling investigation of alternative splicing in Cav2 channels that should be of interest to many researchers.

      (2) We believe that the additional data on cac IS4A isoform localization and function as detailed above (response to public review 1) has strengthened the manuscript and answered some of the remaining questions the reviewer refers to. We are also grateful for the specific additional reviewer suggestions which we have addressed point-by-point and refer to below (section recommendations for authors).

      Reviewer #3 (Public Review):

      Summary:

      Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.

      Strengths:

      The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.

      Weaknesses:

      (1) Based on the data shown in Figures 2A-C, and 2H, it is difficult to judge the localization of the cac isoforms. Could they analyze cac localization with regard to Brp localization (similar to Figure 3; the term "co-localization" should be avoided for confocal data), as well as cac and Brp fluorescence intensity in the different genotypes for the experiments shown in Figure 2 and 3 (Brp intensity appears lower in the dI-IIA example shown in Figure 3G)? Furthermore, heterozygous dIS4B imaging data (Figure 2C) should be quantified and compared to heterozygous cacsfGFP/+.

      According to the reviewer’s suggestion, we have quantified cac localization relative to brp localization by computing the Pearson’s correlation coefficient for controls and IS4A as well as IS4B animals. These new data are shown in the revised Fig. 2D and referred to on page 6, lines 33-38. Furthermore, we now confirm control-like Pearson’s correlation coefficients for all exon out variants except ΔIS4B and show Pearson’s correlation coefficients for all genotypes side-by-side in the revised Fig. 4D (legend has been adjusted accordingly). In addition, in response to the recommendations to authors, we now provide selective enlargements for the co-labeling of Brp and each exon out variant in the revised figures 2-4. We have also adjusted the background in Fig. 2C (ΔIS4B) to match that in Figs. 2A and B (control and ΔIS4A). This allows a fair comparison of cac intensities following excision of IS4B versus excision of IS4A and control (see also Fig 3). Together, this demonstrates the absence of IS4A label in presynaptic active zones much clearer. As suggested, we have also quantified brp puncta intensity on m6/7 across homozygous exon excision mutants and found no differences (this is now stated for IS4A/IS4B in the results text on page 6, lines 37/38 and for I-IIA/I-IIB on page 8, lines 42-44.). We did not quantify the intensity of cacophony puncta upon excision of IS4B because the label revealed no significant difference from background (which can be seen much better in the images now), but the brp intensities remained control-like even upon excision of IS4B.

      (2) They conclude that I-II splicing is not required for cac localization (p. 13). However, cac channel number is reduced in dI-IIB. Could the channels be mis-localized (e.g., in the soma/axon)? What is their definition of localization? Could cac be also mis-localized in dIS4B? Furthermore, the Western Blots indicate a prominent decrease in cac levels in dIS4B/+ and dI-IIB (Figure 1D). How do the decreased protein levels seen in both genotypes fit to a "localization" defect? Could decreased cac expression levels explain the phenotypes alone?

      We have now precisely defined what we mean by cac localization, namely the selective label of cac channels in presynaptic active zones that are defined as brp puncta, but no cac label elsewhere in the presynaptic bouton (page 6, lines 18 to 20). On the level of CLSM microscopy this corresponds to overlapping cac puncta and brp puncta, but no cac label elsewhere in the bouton. Based on the additional analysis and data sets outlined in our response 1 (see above) we conclude that excision of IS4B does not cause channel mislocalization because we find reproducible expression patterns elsewhere in the nervous system as well as somatodendritic cac current in ΔIS4B (for detail see above). Therefore, the isoforms containing the mutually exclusive IS4A exon are expressed and mediate other functions, but cannot substitute IS4B containing isoforms at the presynaptic AZ. In fact, our Western blots are in line with reduced cac expression if all isoforms that mediate evoked release are missing, again indicating that the presynapse specific cac isoforms cannot be replaced by other cac isoforms. This is also in line with the sparse expression of IS4A throughout the CNS as seen in the new supplementary figure 1 (for detail see above).

      (3) Cac-IS4B is required for Cav2 expression, active zone localization, and synaptic transmission. Similarly, loss of cac-I-IIB reduces calcium channel expression and number. Hence, the major phenotype of the tested splice isoforms is the loss of/a reduction in Cav2 channel number. What is the physiological role of these isoforms? Is the idea that channel numbers can be regulated by splicing? Is there any data from other systems relating channel number regulation to splicing (vs. transcription or post-transcriptional regulation)?

      Our data are not consistent with the idea that splicing regulates channel numbers. Rather, splicing can be used to generate channels with specific properties that match the demand at the site of expression. For the IS4 exon pair we find differences in activation voltage between IS4A and IS4B channels (revised Fig. 3C), with IS4B being required for sustained HVA current. IS4A does not localize to presynaptic active zones at the NMJ and is only sparsely expressed elsewhere in the NS (new supplementary Fig. 1). By contrast, IS4B is abundantly expressed in many neuropils. Therefore, taking out IS4B takes out the more abundant IS4 isoform. This is consistent with different expression levels for IS4 isoforms that have different functions, but we do not find evidence for splicing regulating expression levels per se.

      Similarly, the I-II mutually exclusive exon pair differs markedly in the presence or absence of G-protein βγ binding sites that play a role in acute channel regulation as well the conservation of the sequence for β-subunit binding (see page 5, lines 9-17). Channel number reduction in active zones occurs specifically if expression of the cac channels with the G<sub>βγ</sub>-binding site as well as the more conserved β-subunit binding is prohibited by excision of the I-IIB exon (see Fig. 5F). Vice versa, excision of I-IIA does not result in reduced channel numbers. This scenario is consistent with the hypothesis that conserved β-subunit binding affects channel number in the active zone (see page 17, lines 3 to 6 and lines 33-36), but we have no evidence that I-II splicing per se affects channel number.

      (4) Although not supported by statistics, and as appreciated by the authors (p. 14), there is a slight increase in PSC amplitude in dIS4A mutants (Figure 2). Similarly, PSC amplitudes appear slightly larger (Figure 3J), and cac fluorescence intensity is slightly higher (Figure 3H) in dI-IIA mutants. Furthermore, cac intensity and PSC amplitude distributions appear larger in dI-IIA mutants (Figures 3H, J), suggesting a correlation between cac levels and release. Can they exclude that IS4A and/or I-IIA negatively regulate release? I suggest increasing the sample size for Canton S to assess whether dIS4A mutant PSCs differ from controls (Figure 2E). Experiments at lower extracellular calcium may help reveal potential increases in PSC amplitude in the two genotypes (but are not required). A potential increase in PSC amplitude in either isoform would be very interesting because it would suggest that cac splicing could negatively regulate release.

      There are several possibilities to explain this, but as none of the effects is statistically significant, we prefer to not investigate this in further depth. However, given that we cannot find IS4A in presynaptic active zones (revised figures 2C and 3A plus the new enlargements 2Ci and 3Ai, revised text page 6, lines 22 to 24 and 29 to 31, and page 7, second paragraph, same as public response 1D) IS4A channels cannot have a direct negative effect on release probability. Nonetheless, given that IS4A containing cac isoforms mediate functions in other neuronal compartments (see revised Fig. 3C) it may regulate release indirectly by affecting e.g. action potential shape. Moreover, in response to the more detailed suggestions to authors we provide new data that give additional insight.

      (5) They provide compelling evidence that IS4A is required for the amplitude of somatic sustained HVA calcium currents. However, the evidence for effects on biophysical properties and activation voltage (p. 13) is less convincing. Is the phenotype confined to the sustained phase, or are other aspects of the current also affected (Figure 2J)? Could they also show the quantification of further parameters, such as CaV2 peak current density, charge density, as well as inactivation kinetics for the two genotypes? I also suggest plotting peaknormalized HVA current density and conductance (G/Gmax) as a function of Vm. Could a decrease in current density due to decreased channel expression be the only phenotype? How would changes in the sustained phase translate into altered synaptic transmission in response to AP stimulation?

      Most importantly, sustained HVA current is abolished upon excision of IS4B (not IS4A, we think the reviewer accidentally mixed up the genotype) and presynaptic active zones at the NMJ contain only cac isoforms with the IS4B exon. This indicates that the cac isoforms that mediate evoked release encode HVA channels. The somatodendritic currents shown in the revised figure 3C (previously 2J) that remain upon excision of IS4B are mediated by IS4A containing cac isoforms. Please note that these never localize to the presynaptic active zone, and thus do not contribute to evoked release. Therefore, the interpretation is that specifically sustained HVA current encoded by IS4B cac isoforms is required for synaptic transmission. Reduced cac current density due to decreased channel expression is not the cause for impaired evoked release upon IS4B excision, but instead, the cause is the absence of any cac channels in active zones. IS4B-containing cac isoforms encode sustained HVA current, and we speculate that this might be a well suited current to minimize cacophony channel inactivation in the presynaptic active zone. Given that HVA current shows fast voltage dependent activation and fast inactivation upon repolarization, it is useful at large intraburst firing frequencies as observed during crawling (Kadas et al., 2017) without excessive cac inactivation (see page 15, Kadas, lines 16 to 20).

      However, we agree with the reviewer that a deeper electrophysiological analysis of splice isoform specific cac currents will be instructive. We have now added traces of control and ΔIS4B from a holding potential of -90 mv (revised Fig. 3C, bottom traces and revised text on page 7, line 43 to page 8, lines 1 to 10), and these are also consistent with IS4B mediating sustained HVA cac current. However, further analysis of activation and inactivation voltages and kinetics suffers form space clamp issues in recordings from the somata of such complex neurons (DLM motoneurons of the adult fly contain roughly 6000 µm of dendrites with over 4000 branches, Ryglewski et al., 2017, Neuron 93(3):632-645). Therefore, we will analyze the currents in a heterologous expression system and present these data to the scientific community as a separate study at a later time point.

      (6) Why was the STED data analysis confined to the same optical section, and not to max. intensity z-projections? How many and which optical sections were considered for each active zone? What were the criteria for choosing the optical sections? Was synapse orientation considered for the nearest neighbor Cac - Brp cluster distance analysis? How do the nearest-neighbor distances compare between "planar" and "side-view" Brp puncta?

      Maximum intensity z-projections would be imprecise because they can artificially suggest close proximity of label that is close by in x and y but far away in z. Therefore, the analysis was executed in xy-direction of various planes of entire 3D image stacks. We considered active zones of different orientations (Figs. 5C, D) to account for all planes. In fact, we searched the entire z-stacks until we found active zones of all orientations within the same boutons, as shown in figures 5C1-C6. The same active zone orientations were analyzed for all exon-out mutants with cac localization in active zones. The distance between cac and brp did not change if viewed from the side or any other orientation. We now explain this in more clarity in the results text on page 9, lines 23/24.

      (7) Cac clusters localize to the Brp center (e.g., Liu et al., 2011). They conclude that Cav2 localization within Brp is not affected in the cac variants (p. 8). However, their analysis is not informative regarding a potential offset between the central cac cluster and the Brp "ring". Did they/could they analyze cac localization with regard to Brp ring center localization of planar synapses, as well as Brp-ring dimensions?

      In the top views (planar) we did not find any clear offset in cac orientation to brp between genotypes. In such planar synapses (top views, Fig. 5D, left row) we did not find any difference in Brp ring dimensions. We did not quantify brp ring dimensions rigorously, because this study focusses on cac splice isoform-specific localization and function. Possible effects of different cac isoforms on brp-ring dimensions or other aspects of scaffold structure are not central to our study, in particular given that brp puncta are clearly present even if cac is absent from the synapse (Fig. 3A), indicating that cac is not instructive for the formation of the brp scaffold.

      (8) Given the accelerated PSC decay/ decreased half width in dI-IIA (Fig. 5Q), I recommend reporting PSC charge in Figure 3, and PPR charge in Figures 5A-D. The charge-based PPRs of dI-IIA mutants likely resemble WT more closely than the amplitude-based PPR. In addition, miniature PSC decay kinetics should be reported, as they may contribute to altered decay kinetics. How could faster cac inactivation kinetics in response to single AP stimulation result in a decreased PSC half-width? Is there any evidence for an effect of calcium current inactivation on PSC kinetics? On a similar note, is there any evidence that AP waveform changes accelerate PSC kinetics? PSC decay kinetics are mainly determined by GluR decay kinetics/desensitization. The arguments supporting the role of cac splice isoforms in PSC kinetics outlined in the discussion section are not convincing and should be revised.

      We agree that reporting charge in figure 3 is informative and do so in the revised text. Since the result (no significant difference in the PSCs between between CS, cac<sup>GFP</sup>, <sup>ΔI-IIA</sup>, and transheterozygous I-IIA/I-IIB, but significantly smaller values in ΔI-IIB) remained unchanged no matter whether charge or amplitude were analyzed, we decided to leave the figure as is and report the additional analysis in the text (page 8, lines 40 to 42). This way, both types of analysis are reported. Please note that EPSC amplitude is slightly but not significantly increased upon excision of I-IIA (Fig. 4J), whereas EPSC half amplitude width is significantly smaller (Fig. 5Q, now revised Fig 6R). Together, a tendency of increased EPSC amplitudes and smaller half amplitude width result in statistically insignificant changes in EPSC in ∆I-IIA (now discussed on page 15, lines 37 to 40). We also understand the reviewer’s concern attributing altered EPSC kinetics to presynaptic cac channel properties. We have toned down our interpretation in the discussion and list possible alterations in presynaptic AP shape or cac channel kinetics as alternative explanations (not conclusions; see revised discussion on page 15, line 40 to page 16, line 2). Moreover, we have quantified postsynaptic GluRIIA abundance to test whether altered PSC kinetics are caused by altered GluRIIA expression. In our opinion, the latter is more instructive than mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells. Although we find no difference in GluRIIA expression levels we now clearly state that we cannot exclude other changes in GluR receptor fields, which of course, could also explain altered PSC kinetics. We have updated the discussion on page 16, lines 2/3 accordingly.

      (9) Paired-pulse ratios (PPRs): On how many sweeps are the PPRs based? In which sequence were the intervals applied? Are PPR values based on the average of the second over the first PSC amplitudes of all sweeps, or on the PPRs of each sweep and then averaged? The latter calculation may result in spurious facilitation, and thus to the large PPRs seen in dI-IIB mutants (Kim & Alger, 2001; doi: 10.1523/JNEUROSCI.21-2409608.2001).

      We agree that the PP protocol and analyses had to be described more precisely in the methods and have done so on page 23, lines 31 to 37 in the methods. Mean PPR values are based on the PPRs of each sweep and then averaged. We are aware of the study of Kim and Alger 2001 and have re-analyzed the PP data in both ways outlined by the reviewer. We get identical results with either analyses method. Spurious facilitation is thus not an issue in our data. We now explain this in the methods section along with the PPR protocol. The large spread seen in dI-IIB is indeed caused by reduced calcium influx into active zones with fewer channels, as anticipated by the reviewer (see next point).

      (10) Could the dI-IIB phenotype be simply explained by a decrease in channel number/ release probability? To test this, I propose investigating PPRs and short-term dynamics during train stimulation at lower extracellular Ca2+ concentration in WT. The Ca2+ concentration could be titrated such that the first PSC amplitude is similar between WT and dI-IIB mutants. This experiment would test if the increased PPR/depression variability is a secondary consequence of a decrease in Ca2+ influx, or specific to the splice isoform.

      In fact, the interpretation that decreased PSC amplitude upon I-IIB excision is caused mainly by reduced channel number is precisely our interpretation (see discussion page 14, last paragraph to page 15, first paragraph in the original submission, now page 16, second paragraph paragraph). In addition, we are grateful for the reviewer’s suggestion to triturate the external calcium such that the first PSC amplitude in matches in ∆I-IIB and control. This experiment tests whether altered short term plasticity is solely a function of altered channel number or whether additional causes, such as altered channel properties, also play into this. We triturated the first pulse amplitude in ∆I-IIB to match control and find that paired pulse ratio and the variance thereof are not different anymore. Therefore, the differences observed in identical external calcium can be fully explained by altered channel numbers. This additional dataset is shown in the revised figures 6D and E and referred to in the results section on page 10, lines 14 to 25 and the discussion on page16, lines 36 to 38.

      (11) How were the depression kinetics analyzed? How many trains were used for each cell, and how do the tau values depend on the first PSC amplitude? Time constants in the range of a few (5-10) milliseconds are not informative for train stimulations with a frequency of 1 or 10 Hz (the unit is missing in Figure 5H). Also, the data shown in Figures 5E-K suggest slower time constants than 5-10 ms. Together, are the data indeed consistent with the idea that dIIIB does not only affect cac channel number, but also PPR/depression variability (p. 9)?

      For each animal the amplitudes of all subsequent PSCs in each train were plotted over time and fitted with a single exponential. For depression at 1 and 10 Hz, we used one train per animal, and 5-6 animals per genotype (as reflected in the data points in Figs. 6I, M). This is now explained in more detail in the revised methods section (page 23, lines 39 to 41). The tau values are not affected by the amplitude of the first PSC. First, we carefully re-fitted new and previously presented depression data and find that the taus for depression at low stimulation frequencies (1 and 10Hz) are not affected by exon excisions at the I-II site. We thank the reviewer for detecting our error in units and tau values in the previous figure panels 5H and L (this has now been corrected in the revised figure panels 6I and M). Given that PSC amplitude upon I-IIB excision is significantly smaller than in controls and following I-IIA excision, we suspected that the time course of depression at low stimulation frequency is not significantly affected by the amount of calcium influx during the first PSC. To further test this, we followed the reviewer ’s suggestion and re-measured depression at 1 and 10 Hz for cac-GFP controls and for delta I-IIB in a higher external calcium concentration (1.8 mM), so that the first PSC was increased in amplitude in both genotypes (1.8 mM external calcium triturates the PSC amplitude in delta I-IIB to match that of controls measured in 0.5 mM external calcium, see revised Figs. 6H, L). Neither in control, nor in delta I-IIB did this affect the time course of synaptic depression (see revised Figs. 6I, M). This indicates that at low stimulation frequencies (1 and 10Hz) the time course of depression is not affected by mean quantal content. This is consistent with the paired pulse ratio at 100 ms interpulse interval shown in figures 6A-D. However, for synaptic depression at 1 Hz stimulation the variability of the data is higher for delta I-IIB (independent of external calcium concentration, see rev. Fig. 6I), which might also be due to reduced channel number in this genotype. Taken together, the data are in line with the idea that altered cac channel numbers in active zones are sufficient to explain all effects that we observe upon I-IIB excision on PPRs and synaptic depression at low stimulation frequencies. This is now clarified in the revised text on page 12, lines 3 to 7.

      (12) The GFP-tagged I-IIA and mEOS4b-tagged I-IIB cac puncta shown in Figure 6N appear larger than the Brp puncta. Endogenously tagged cac puncta are typically smaller than Brp puncta (Gratz et al., 2019). Also, the I-IIA and I-IIB fluorescence sometimes appear to be partially non-overlapping. First, I suggest adding panels that show all three channels merged. Second, could they analyze the area and area overlap of I-IIA and I-IIB with regard to each other and to Brp, and compare it to cac-GFP? Any speculation as to how the different tags could affect localization? Finally, I recommend moving the dI-IIA and dI-IIB localization data shown in Figure 6N to an earlier figure (Figure 1 or Figure 3).

      We now show panels with the two I-II cac isoforms merged in the revised figure 7H (previously 6N). We also tested merging all three labels as suggested, but found this not instructive for the reader. We thank the reviewer for pointing out that the Brp puncta appeared smaller than the cac puncta in some panels. We carefully went through the data and found that the Brp puncta are not systematically smaller than the cac puncta. Please note that punctum size can appear quite differently, depending on different staining qualities as well as different laser intensities and different point spread in different imaging channels. The purpose of this figure was not to analyze punctum size and labeling intensity, but instead, to demonstrate that I-IIA and I-IIB are both present in most active zones, but some active zones show only I-IIB labeling, as quantified in figure 7I. We did not follow the suggestion to conduct additional co-localization analyses and compare it with cac-GFP controls, because Pearson co-localization coefficients for cac-GFP and all exon-out variants analyzed, including delta I-IIA and delta I-IIB are presented in the revised figure 4D. Moreover, delta I-IIA and delta I-IIB show similar Manders 1 and 2 co-localization coefficients with Brp (see Figs. 4E, F). We do not want to speculate whether the different tags have any effect on localization precision. Artificial differences in localization precision can also be suggested by different antibodies, but we know from our STED analyses with identical tags and antibodies for all isoforms that I-IIA and I-IIB co-localize identically with Brp (see Figs. 5A-E). Finally, we prefer to not move the figure because we believe it is informative to show our finding that active zones usually contain both splice I-II variants together with the finding that only I-IIB is required for PHP.

      Recommendations for the authors:

      Reviewing Editor Comments:

      We thank you for your submission. All three reviewers urge caution in interpreting the S4 splice variant playing a role specifically in Cac localization, as opposed to just leading to instability and degradation. There are other issues with the electrophysiological experiments, a need for improved imaging and analyses, and some areas of interpretation detailed in the reviews.

      We agree that additional data was required to conclude that IS4 splicing plays a specific role in cac channel localization and is not just leading to channel instability and degradation. As outlined in detail in our response to reviewer 1, comment 1, we conducted several sets of experiments to support our interpretation. First, electrophysiological experiments show that upon removal of IS4B, which eliminates synaptic transmission at the larval NMJ and cac positive label in presynaptic active zones, somatodendritic cac current is reliably recorded (new data in revised figure 3C). This is not in line with a channel instability or degradation effect, but instead with IS4B containing isoforms being required and sufficient for evoked release from NMJ motor terminals, whereas IS4A isoforms are not sufficient for evoked release from axon terminals, but IS4A isoforms alone can mediate a distinct component of somatodendritic calcium current. Second, immunohostochemical analyses reveal that IS4A, which is not present in NMJ presynaptic active zones, is expressed sparsely, but in reproducible patterns in the larval brain lobes and in specific regions of the anterior VNC parts (new supplementary figure 1). Again, the absence of a IS4A-containing cac isoform from presynaptic active zones but their simultaneous presence in other parts of the nervous system is in accord with isoform specific localization, but not with general channel isoform instability. Third, enlargements of NMJ boutons with brp positive presynaptic active zones confirm the absence of IS4A and the presence of IS4B in active zones (these enlargements are now shown in the revised figures 2A-C, 3A, and 4A-C). Fourth, as suggested we have quantified the Pearson co-localization of IS4 isoforms with Brp in presynaptic active zones (revised Fig. 2D). This confirms quantitatively similar co-localization of IS4B and control with Brp, but no co-localization of IS4A with Brp. In fact, the labeling intensity of IS4A in presynaptic active zones is quantitatively not significantly different from background, no IS4A label is detected anywhere in the axon terminals at the NMJ, but we find IS4 label in the CNS. Together, these data strongly support our interpretation that the IS4 splice site plays a distinct role in cac channel localization. Figure legends as well as results and discussion section have been modified accordingly (the respective page and line numbers are listed in our-point-by-point responses).

      In addition, we have carefully addressed all other public comments as well as all other recommendations for authors by providing multiple new data sets, new image analyses, and revising text. Addressing the insightful comments of all three reviewers and the reviewing editor has greatly helped to make the manuscript better.

      Reviewer #1 (Recommendations For The Authors):

      The conclusion that the IS4B exon controls Cac localization to active zones versus simply being required for channel abundance is not well supported. The authors need to either mention both possibilities or provide stronger support for the active zone localization model if they want to emphasize this point.

      We agree and have included several additional data sets as outlined in our response to point 1 of reviewer 1 and to the reviewing editor (see above). These new data strongly support our interpretation that the IS4B exon controls Cac localization to active zones and is not simply required for channel abundance. The additions to the figures and accompanying text (including the respective figure panel, page, and line numbers) are listed in the point-bypoint responses to the reviewers’ public suggestions.

      Figure 2C staining for Cac localization in the delta 4B line is difficult to compare to the others, as the background staining is so high (muscles are green for example). As such, it is hard to determine whether the arrows in C are just background.

      We had over-emphasized the green label to show that there really is no cacophony label in active zones. However, we agree that this hampered image interpretation. Thus, we have adjusted brightness such that it matches the other genotypes (see new figure panel 2C, and figure 3A, bottom). Revising the figure as suggested by the reviewer shows much more clearly that IS4B puncta are detected exclusively in presynaptic active zones, whereas IS4A channels are not detectable in active zones or anywhere else in the axon terminal boutons. Quantification of IS4A label in brp positive active zones confirms that labeling intensity is not significantly above background (page 6, lines 29 to 31 and page 7, lines 19 to 21). Therefore, IS4A is not detectable in active zones at the NMJ.

      It seems more likely that the removal of the 4B exon simply destabilizes the protein and causes it to be degraded (as suggested by the Western), rather than mislocalizing it away from active zones. It's hard to imagine how some residue changes in the S4 voltage sensor would control active zone localization to begin with. The authors should note that the alternative explanation is that the protein is just degraded when the 4B exon is removed.

      Based on additional data and analyses, we disagree with the interpretation that removal of IS4B disrupts protein integrity and present multiple lines of evidence that support sparse expression of IS4A channels (ΔIS4B). As outlined in our response to reviewer 1 and to the reviewing editor, we show (1) in new immunohistochemical stainings (new supplementary figure 1) that upon removal of IS4B, sparse label is detectable in the VNC and the brain lobes (for detail see above). (2) In our new figure 3C, we show cacophony-mediated somatodendritic calcium currents recorded from adult flight motoneurons in a control situation and upon removal of IS4B that leaves only IS4A channels. This clearly demonstrates that IS4A underlies a substantial component of the HVA somatodendritic calcium current, although it is absence from axon terminals. This is in line with isoform specific functions at different locations, but not with IS4A instability/degradation. (3) We do not agree with the reviewer’s interpretation of the Western Blot data in figure 1E (formerly figure 1D). Together with our immunohistochemical data that show sparse cacophony IS4A expression, we think that the faint band upon removal of IS4B in a heterozygous background (that reduces labeled channels even further) reflects the sparseness of IS4A expression. This sparseness is not due to channel instability, but to IS4A functions that are less abundant than the ubiquitously expressed cac<sup>IS4B</sup> channels at presynaptic active zones of fast chemical synapses (see page 15, lines 24 to 29).

      If they really want to claim the 4B exon governs active zone localization, much higher quality imaging is required (with enlarged views of individual boutons and their AZs, rather than the low-quality full NMJ imaging provided). Similarly, higher resolution imaging of Cac localization at Muscle 12 (Figure 2H) boutons would be very useful, as the current images are blurry and hard to interpret. Figure 6N shows beautiful high-resolution Cac and Brp imaging in single boutons for the I-II exon manipulations - the authors should do the same for the 4B line. For all immuno in Figure 2, it is important to quantify Cac intensity as well. There is no quantification provided, just a sample image. The authors should provide quantification as they do for the delta I-II exons in Figure 3.

      We did as suggested and added figure panels to figure 2A-C and to new figures 3A (formerly part of figure 2 and 4A-C (formerly figure 3) showing magnified label at the NMJ AZs to better judge on cacophony expression after exon excision. These data are now referred to in the results section on page 6, lines 22 to 24, page 7, lines 18 to 21 and page 8, lines 17/18.

      As suggested, we now also provide quantification of co-localization with brp puncta as Pearson’s correlation coefficient for control, IS4B, and IS4A in the new figure panel 2D (text on page 6, lines 34 to 38). This further underscores control-like active zone localization of IS4B but no significant active zone localization of IS4A. As suggested, we quantified now also the intensity of IS4B label in active zones, and it was not different from control (see revised figure 4H and text on page 8, lines 38/39). We did not quantify the intensity of IS4A label, because it was not over background (text, page 6, lines 30/31).

      Reviewer #2 (Recommendations For The Authors):

      (1a) Questions about the engineered Cac splice isoform alleles:

      The authors using CRISPR gene editing to selectively remove the entire alternatively spliced exons of interest. Do the authors know what happens to the cac transcript with the deleted exon? Is the deleted exon just skipped and spliced to the next exon? Or does the transcript instead undergo nonsense-mediated decay?

      We do not believe that there is nonsense mediated mRNA decay, because for all exon excisions the respective mRNA and protein are made. Protein has been detected on the level of Western blotting and immunocytochemistry. Therefore, we are certain that the mRNA is viable for each exon excision (and we have confirmed this for low abundance cac protein isoforms by rt-PCR), but only subsets of cac isoforms can be made from mRNAs that are lacking specific exons. However, we can not make any statements as to whether the lack of specific protein isoforms exerts feedback on mRNA stability, the rate of transcription and translation, or other unknown effects.

      (1b) While it is clear that the IS4 exons encode part of the voltage sensor in the first repeat, are there studies in Drosophila to support the putative Ca-beta and G-protein beta-gamma binding sites in the I-II loop? Or are these inferred from Mammalian studies?

      To the best of our knowledge, there are no studies in Drosophila that unambiguously show Caβ and Gβγ binding sites in the I-II loop of cacophony. However, sequence analysis strongly suggests that I-IIB contains both, a Caβ as well as a Gβγ binding site (AID: α-interacting domain) because the binding motif QXXER is present. In mouse Cav2.1 and Ca<sub>v</sub>2.2 channels the sequence is QQIER, while in Drosophila cacophony I-IIB it is QQLER. In the alternative IIIA, this motif is not present, strongly suggesting that G<sub>βγ</sub> subunits cannot interact at the AID. However, as already suggested by Smith et al. (1998), based on sequence analysis, Ca<sub>β</sub> should still be able to bind, although possibly with a lower affinity. We agree that this information should be given to the reader and have revised the text accordingly on page 5, lines 9 to 17.

      (1c) The authors assert that splicing of Cav2/cac in flies is a means to encode diversity, as mammals obviously have 4 Cav2 genes vs 1 in flies. However, as the authors likely know, mammalian Cav2 channels also have various splice isoforms encoded in each of the 4 Cav2 genes. The authors should discuss in more detail what is known about the splicing of individual mammalian Cav2 channels and whether there are any homologous properties in mammalian channels controlled by alternative splicing.

      We agree and now provide a more comprehensive discussion of vertebrate Ca<sub>v</sub>2 splicing and its impact on channel function. In line to what we report in Drosophila, properties like G<sub>βγ</sub> binding and activation voltage can also be affected by alternative splicing in vertebrate Ca<sub>v</sub>2 channel, through the exon patterns are quite different from Drosophila. We integrated this part on page 14, first paragraph) in the revised discussion. The respective text is below for the reviewer’s convenience:

      “However, alternative splicing increases functional diversity also in mammalian Ca<sub>v</sub>2 channels. Although the mutually exclusive splice site in the S4 segment of the first homologous repeat (IS4) is not present in vertebrate Cav channels, alternative splicing in the extracellular linker region between S3 and S4 is at a position to potentially change voltage sensor properties (Bezanilla 2002). Alternative splice sites in rat Ca<sub>v</sub>2.1 exon 24 (homologous repeat III) and in exon 31 (homologous repeat IV) within the S3-S4 loop modulate channel pharmacology, such as differences in the sensitivity of Ca<sub>v</sub>2.1 to Agatoxin. Alternative splicing is thus a potential cause for the different pharmacological profiles of P- and Q-channels (both Ca<sub>v</sub>2.1; Bourinet et al. 1999). Moreover, the intracellular loop connecting homologous repeats I and II is encoded by 3-5 exons and provides strong interaction with G<sub>βγ</sub>-subunits (Herlitze et al. 1996). In Ca<sub>v</sub>2.1 channels, binding to G<sub>βγ</sub> subunits is potentially modulated by alternative splicing of exon 10 (Bourinet et al. 1999). Moreover, whole cell currents of splice forms α1A-a (no Valine at position 421) and α1A-b (with Valine) represent alternative variants for the I-II intracellular loop in rat Ca<sub>v</sub>2.1 and Ca<sub>v</sub>2.2 channels. While α1A-a exhibits fast inactivation and more negative activation, α1A-b has delayed inactivation and a positive shift in the IV-curve (Bourinet et al. 1999). This is phenotypically similar to what we find for the mutually exclusive exons at the IS4 site, in which IS4B mediates high voltage activated cacophony currents while IS4A channels activate at more negative potentials and show transient current (Fig. 3; see also Ryglewski et al. 2012). Furthermore, altered Ca<sub>β</sub> interaction have been shown for splice isoforms in loop III (Bourinet et al. 1999), similar to what we suspect for the I-II site in cacophony. Finally, in mammalian VGCCs, the C-terminus presents a large splicing hub affecting channel function as well as coupling distance to other proteins. Taken together, Ca<sub>v</sub>2  channel diversity is greatly enhanced by alternative splicing also in vertebrates, but the specific two mutually exclusive exon pairs investigated here are not present in vertebrate Ca<sub>v</sub>2 genes.”

      (1d) In Figure 1, it would be helpful to see the entire cac genomic locus with all introns/exons and the 4 specific exons targeted for deletion.

      We agree and have changed figure 1 accordingly.

      (2a) Cav2.IS4B deletion alleles:

      More work is necessary to explain the localization of Cac controlled by the IS4B exon. First, can the authors determine whether actual Cac channels are present at NMJ boutons? The authors seem to indicate that in the IS4B deletion mutants, some Cac (GFP) signal remains in a diffuse pattern across NMJ boutons. However, from the imaging of wild-type Cac-GFP (and previous studies), there is no Cac signal outside of active zones defined by the BRP signal. It would benefit the study to a) take additional, higher resolution images of the remaining Cac signal at NMJs in IS4B deletion mutants, and b) comment on whether the apparent remaining signal in these mutants is only observed in the absence of IS4Bcontaining Cac channels, or if the IS4A-positive channels are normally observed (but perhaps mis-localized?).

      We have conducted additional analyses to show convincingly that IS4A channels (that remain upon IS4B deletion) are absent from presynaptic active zone. Please see also responses to reviewers 1 and 3. By adjusting the background values in of CLSM images to identical values in control, delta IS4A, and delta IS4B, as well as by providing selective enlargements as suggested, the figure panels 2C, Ci and 3A now show much clearer, that upon deletion of IS4B no cac label remains in active zones or anywhere else in the axon terminal boutons (see text on page 6, lines 22 to 24). This is further confirmed by quantification showing the in IS4B mutants cac labeling intensity in active zones is not above background (see text on page 6, lines 27 to 31). We never intended to indicate that there was cac signal outside of active zones defined by the brp signal, and we now carefully went through the text to not indicate this possibility unintentionally anywhere in the manuscript.

      (2b) Do the authors know whether any presynaptic Ca2+ influx is contributed by IS4Apositive Cac channels at boutons, given the potential diffuse localization? There are various approaches for doing presynaptic Ca2+ imaging that could provide insight into this question.

      We agree that this is an interesting question. However, based on the revisions made, we now show with more clarity that IS4A channels are absent from the presynaptic terminal at the NMJ. IS4A labeling intensities within active zones and anywhere else in the axon terminals are not different from background (see text on page 6, lines 27 to 31 and revised Figs. 2C, Ci, and 3A with new selective enlargements in response to comments of both other reviewers). This is in line with our finding that evoked synaptic transmission from NMJ axon terminals to muscle cells is mostly absent upon excision of IS4B (see Fig. 3B). The very small amplitude EPSC (below 5 % of the normal amplitude of evoked EPSCs) that can still be recorded in the absence of IS4B is similar to what is observed in cac null mutant junctions and is mediated by calcium influx through another voltage gated calcium channels, a Ca<sub>v</sub>1 homolog named Dmca1D, as we have previously published (Krick et al., 2021, PNAS 118(28):e2106621118. Gathering additional support for the absence of IS4A from presynaptic terminals by calcium imaging experiments would suffer significantly from the presence of additional types of VGCCs in presynaptic terminals (for sure Dmca1D (Krick et al., 2021) and potentially also the Ca<sub>v</sub>3 homolog DmαG or Dm-α1T). Such experiments would require mosaic null mutants for cac and DmαG channels in a mosaic IS4B excision mutant, which, if feasible at all, would be very hard and time consuming to generate. In the light of the additional clarification that IS4A is not located in NMJ axon terminal boutons, as shown by additional labeling intensity analysis, revised figures with selective enlargement, and revised text, we feel confident to state that IS4A is not sufficient for evoked SV release.

      (2c) Mechanistically, how are amino acid changes in one of the voltage sensing domains in Cac related to trafficking/stabilization/localization of Cac to AZs?

      This is an exciting question that has occupied our discussions a lot. Some sorting mechanism must exist that recognizes the correct protein isoforms, just as sorting and transport mechanisms exist that transport other synaptic proteins to the synapse. We do not think that the few amino acid changes in the voltage sensor are directly involved in protein targeting. We rather believe that the cacophony variants that happen to contain this specific voltage sensor are selected for transport out to the synapse. There are possibilities to achieve this cell biological, but we have not further addressed potential mechanisms because we do not want enter the realms of speculation.

      (3) How are auxiliary subunits impacted in the Cac isoform mutants?

      Recent work by Kate O'Connor-Giles has shown that both Stj and Ca-Beta subunits localize to active zones along with Cac at the Drosophila NMJ. Endogenously tagged Stj and CaBeta alleles are now available, so it would be of interest to determine if Stj and particular Cabeta levels or localization change in the various Cac isoform alleles. This would be particularly interesting given the putative binding site for Ca-beta encoded in the I-II linker.

      We agree that the synthesis of the work of Kate O'Connor-Giles group and our study open up new avenues to explore exciting hypotheses about differential coupling of specific cacophony splice isoforms with distinct accessory proteins such as Caβ and α<sub>2</sub>δ subunits. However, this requires numerous full sets of additional experiments and is beyond the scope of this study.

      (4a) Interpretation of short-term plasticity in the I-IIB exon deletion:

      The changes in short-term plasticity presented in Figure 5 are interpreted as an additional phenotype due to the loss of the I-IIB exon, but it seems this might be entirely explained simply due to the reduced Cac levels. Reduced Cac levels at active zones will obviously reduce Ca2+ influx and neurotransmitter release. This may be really the only phenotype/function of the I-IIB exon. Hence, to determine whether loss of the I-IIB exon encodes any functions in short-term plasticity, separate from reduced Cac levels, the authors should compare short-term plasticity in I-IIB loss alleles compared to wild type with starting EPSC amplitudes are equal (for example by reducing extracellular Ca2+ levels in wild type to achieve the same levels at in Cac I-IIB exon deleted alleles). Reduced release probability, simply by reduced Ca2+ influx (either by reduced Cac abundance or extracellular Ca2+) should result in more variability in transmission, so I am not sure there is any particular function of the I-IIB exon in maintaining transmission variability beyond controlling Cac abundance at active zones.

      For two reasons we are particularly grateful for this comment. First, it shows us that we needed to explain much clearer that our interpretation is that changes in paired pulse ratios (PPRs) and in depression at low stimulation frequencies are a causal consequence of lower channel numbers upon I-IIB exon deletion, precisely as pointed out by the reviewer. We have carefully revised the text accordingly on page 10, lines 14-25, page 11, lines 3-7 and 22-28; page 16, lines 36-38. Second, the experiment suggested by the reviewer is superb to provide additional evidence that the cause of altered PPRs is in fact reduced channel number, but not altered channel properties. Accordingly, we have conducted additional TEVC recordings in elevated external calcium (1.8 mM) so that the single PSC amplitudes in I-IIB excision animals match those of controls in 0.5 mM extracellular calcium. This makes the amplitudes and the variance of PPR for all interpulse intervals tested control-like (see revised Figs. 6D, E). This strongly indicates that differences observed in PPRs as well as the variance thereof were caused by the amount of calcium influx during the first EPSC, and thus by different channel numbers in active zones.

      (4b) Another point about the data in Figure 5: If "behaviorally relevant" motor neuron stimulation and recordings are the goal, the authors should also record under physiological Ca2+ conditions (1.8 mM), rather than the highly reduced Ca2+ levels (0.5 mM) they are using in their protocols.

      Although we doubt that the effective extracellular calcium concentration that determines the electromotoric force for calcium to enter the ensheathed motoneuron terminals in vivo during crawling is known, we followed the reviewer’s suggestion partly and have repeated the high frequency stimulation trains for ΔI-IIB in 1.8 mM calcium. As for short-term plasticity this brings the charge conducted to values as observed in control and in ΔI-IIA in 0.5 mM calcium. Therefore, all difference observed in previous figure 5 (now revised figure 6) can be accounted to different channel numbers in presynaptic active zones. This is now explained on page 11, lines 19-28. For controls recordings at high frequency stimulation in higher external calcium (e.g. 2 mM) have previously been published and show significant synaptic depression (e.g. Krick et al., 2021, PNAS). Given that in the exon out variants we do not expect any differences except from those caused by different channel numbers, we did not repeat these experiments for control and ΔI-IIA.

      (5a) Mechanism of Cac's role in PHP :

      As the authors likely know, mutations in Cac were previously reported to disrupt PHP expression (see Frank et al., 2006 Neuron). Inexplicably, this finding and publication were not cited anywhere in this manuscript (this paper should also be cited when introducing PhTx, as it was the first to characterize PhTx as a means of acutely inducing PHP). In the Frank et al. paper (and in several subsequent studies), PHP was shown to be blocked in mutations in Cac, namely the CacS allele. This allele, like the I-IIB excision allele, reduces baseline transmission presumably due to reduced Ca2+ influx through Cac. The authors should at a minimum discuss these previous findings and how they relate to what they find in Figure 6 regarding the block in PHP in the Cac I-IIB excision allele.

      We thank the reviewer for pointing this out and apologize for this oversight. We agree that it is imperative to cite the 2006 paper by Frank et al. when introducing PhTx mediated PHP as well as when discussing cac the effects of cac mutants on PHP together with other published work. We have revised the text accordingly on page 12, lines 9-11 and 21-23 and on page 17, lines 29-33.

      In terms of data presentation in Fig. 6, as is typical in the field, the authors should normalize their mEPSC/QC data as a percentage of baseline (+PhTx/-PhTx). This makes it easier to see the reduction in mEPSC values (the "homeostatic pressure" on the system) and then the homeostatic enhancement in QC. Similarly, in Fig. 6M, the authors should show both mEPSC and QC as a percentage of baseline (wild type or non-GluRIIA mutant background).

      We agree and have changed figure presentation accordingly. Figure 7 (formerly figure 6) was updated as was the accompanying results text on page 12, lines 23-40.

      (6) Cac I-IIA and I-IIB excision allele colocalization at AZs:

      These are very nice and important experiments shown in Figures 6N and O, which I suggest the authors consider analyzing in further detail. Most significantly:

      (6i) The authors nicely show that most AZs have a mix of both Cac IIA and IIB isoforms. Using simple intensity analysis, can the authors say anything about whether there is a consistent stoichiometric ratio of IIA vs IIB at single AZs? It is difficult to extract actual numbers of IIA vs IIB at individual AZs without having both isoforms labeled mEOS4b, but as a rough estimate can the authors say whether the immunofluorescence intensity of IIA:IIB is similar across each AZ? Or is there broad heterogeneity, with some AZs having low vs high ratios of each isoform (as the authors suggest across proximal to distal NMJ AZs)?

      We agree and have conducted experiments and analyses to provide these data. We measured the cac puncta fluorescence intensities for heterozygous cac<sup>sfGFP</sup>/cac, cacIIIA<sup>sfGFP</sup>/cacI-IIB, and cacI-IIB<sup>sfGFP</sup>/cacI-IIA animals. We preferred this strategy, because intensity was always measured from cac puncta with the same GFP tag. Next, we normalized all values to the intensities obtained in active zones from heterozygous cac<sup>sfGFP</sup>/cac controls and then plotted the intensities of I-IIA versus I-IIB containing active zones side by side. Across junctions and animals, we find a consistent ratio 2:1 in the relative intensities of I-IIB and I-IIA, thus indicating on average roughly twice as many I-IIB as compared to I-IIA channels across active zones. This is consistent with the counts in our STED analysis (see Fig. 5F). These new data are shown in the new figure panel 7J and referred to on page 13, lines 10-16 in the revised text.

      (6ii) Intensity analysis of Cac IIA vs IIB after PHP: Previous studies have shown Cac abundance increases at NMJ AZs after PHP. Can the authors determine whether both Cac IIA vs IIB isoforms increase after PHP or whether just one isoform is targeted for this enhancement?

      We already show that PHP is not possible in the absence of I-IIB channels (see figure 7). However, we agree that it is an interesting question to test whether I-IIA channel are added in the presence of I-IIB channels during PHP, but we consider this a detail beyond the scope of this study.

      Minor points:

      (1) Including line numbers in the manuscript would help to make reviewing easier.

      We agree and now provide line numbers.

      (2) Several typos (abstract "The By contrast", etc).

      We carefully double checked for typos.

      (3) Throughout the manuscript, the authors refer to Cac alleles and channels as "Cav2", which is unconventional in the field. Unless there is a compelling reason to deviate, I suggest the authors stick to referring to "Cac" (i.e. cacdIS4B, etc) rather than Cav2. The authors make clear in the introduction that Cac is the sole fly Cav2 channel, so there shouldn't be a need to constantly reinforce that cac=Cav2.

      We agree and have changed all fly Ca<sub>v</sub>2 reference to cac.

      (4) In some figures/text the authors use "PSC" to refer to "postsynaptic current", while in others (i.e. Figure 6) they switch to the more conventional terms of mEPSC or EPSC. I suggest the authors stick to a common convention (mEPSC and EPSC).

      We have changed PSC to EPSC throughout.

      Reviewer #3 (Recommendations For The Authors):

      (1) The abstract could focus more on the results at the expense of the background.

      We agree and have deleted the second introductory background sentence and added information on PPRs and depression during low frequency stimulation.

      (2) What does "strict" active zone localization refer to? Could they please define the term strict?

      Strict active zone localization means that cac puncta are detected in active zones but no cac label above background is found anywhere else throughout the presynaptic terminal, now defined on page 6, lines 27-29.

      (3) Single boutons/zoomed versions of the confocal images shown in Figures 2A-C, 2H, and 3A-C would be very helpful.

      We have provided these panels as suggested (see above and revised figures 2-4). Figure 3 is now figure 4.

      (4) The authors cite Ghelani et al. (2023) for increased cac levels during homeostatic plasticity. I recommend citing earlier work making similar observations (Gratz et al., 2019; DOI: 10.1523/JNEUROSCI.3068-18.2019), and linking them to increased presynaptic calcium influx (Müller & Davis, 2012; DOI: 10.1016/j.cub.2012.04.018).

      We agree and have added Gratz et al. 2019 and Davis and Müller 2012 to the results section on page 12, lines 17/18 and lines 21-23, in the discussion on page 17, lines 29-33.

      (5) The data shown in Figure 3 does not directly support the conclusion of altered release probability in dI-IIB. I therefore suggest changing the legend's title.

      We have reworded to “Excisions at the I-II exon do not affect active zone cacophony localization but can alter cacsfGFP label intensity in active zones and PSC amplitude” as this is reflecting the data shown in the figure panels more directly.

      (6) It would be helpful to specify "adult flight muscle" in Figure 2J.

      We agree that it is helpful to specify in the figure (now revised figure 3C) that the voltage clamp recordings of somatodendritic calcium current were conducted in adult flight motoneurons and have revised the headline of figure panel 3C and the legend accordingly. Please note, these are not muscle cells but central neurons.

      (7) Do dIS4B/Cav2null MNs indeed show an inward or outward current at -90 to -70 mV/-40 and -50 mV, or is this an analysis artifact?

      No, this is due to baseline fluctuations as typical for voltage clamp in central neurons with more than 6000 µm dendritic length and more than 4000 dendritic branches.

      (8) Loss of several presynaptic proteins, including Brp (Kittel et al., 2006), and RBP (Liu et al., 2011), induce changes in GluR field size (without apparent changes in miniature amplitude). The statement regarding the Cav2 isoform and possible effects on GluR number (p. 8) should be revised accordingly.

      We understand and have done two things. First, we measured the intensity of GluRIIA immunolabel in ΔI-IIA, ΔI-IIB, and controls and found no differences. Second, we reworded the statement. It now reads on page 9, lines 1-6: “It seems unlikely that presynaptic cac channel isoform type affects glutamate receptor types or numbers, because the amplitude of spontaneous miniature postsynaptic currents (mEPSCs, Fig. 4K) and the labeling intensity of postsynaptic GluRIIA receptors are not significantly different between controls, I-IIA, and I-IIB junctions (see suppl. Fig. 2, p = 0.48, ordinary one-way ANOVA, mean and SD intensity values are 61.0 ± 6.9 (control), 55.8 ± 8.5 (∆I-IIA), 61.1 ± 17.3 (∆I-IIB)). However, we cannot exclude altered GluRIIB numbers and have not quantified GluR receptor field sizes.”

      (9) The statement relating miniature frequency to RRP size is unclear (p. 8). Is there any evidence for a correlation between miniature frequency to RRP size? Could the authors please clarify?

      We agree that this statement requires caution. Although there is some published evidence for a correlation of RRP size and mini frequency (Neuron, 2009 61(3):412-24. doi: 10.1016/j.neuron.2008.12.029 and Journal of Neuroscience 44 (18) e1253232024; doi: 10.1523/JNEUROSCI.1253-23.2024), which we now refer to on page 9, it is not clear whether this is true for all synapses and how linear such a relationship may be. Therefore, we have revised the text on page 9, lines 6-9. It now reads: “Similarly, the frequency of miniature postsynaptic currents (mEPSCs) remains unaltered. Since mEPSCs frequency has been related to RRP size at some synapses (Pan et al., 2009; Ralowicz et al., 2024) this indicates unaltered RRP size upon I-IIB excision, but we have not directly measured RRP size.”

      (10) Please define the "strict top view" of synapses (p. 8).

      Top view is what this reviewer referred to as “planar view” in the public review points 6 and 7. In our responses to these public review points we now also define “strict top view”, see page 9, lines 17-19.

      (11) Two papers are cited regarding a linear relationship between calcium channel number and release probability (p. 15). Many more papers could be cited to demonstrate a supralinear relationship (e.g., Dodge & Rahaminoff, 1967; Weyhersmüller et al., 2011 doi: 10.1523/JNEUROSCI.6698-10.2011). The data of the present study were collected at an extracellular calcium concentration of 0.5 mM, whereas Meideiros et al. (2023) used 1.5 mM. The relationship between calcium and release is supra-linear around 0.5 mM extracellular calcium (Weyhersmüller et al. 2011). This should be discussed/the statements be revised. Also, the reference to Meideiros et al. (2023) should be included in the reference list.

      We have now updated the Medeiros reference (updated version of that paper appeared in eLife in 2024) in the text and reference list. We agree that the relationship of the calcium concentration and P<sub>r</sub> can also be non-linear and refer to this on page 16, lines 26-32, but the point we want to make is to relate defined changes in calcium channel number (not calcium influx) as assessed by multiple methods (CLSM intensity measures and sptPALM channel counting) to release probability. We now also clearly state that we measured at 0.5 mM external calcium (page 16, lines 27/28) whereas Medeiros et al. 2024 measured at 1.5 mM calcium (page 16, lines 31/32).

      (12) Figure 6: Quantal content does not have any units - please remove "n vesicles".

      We have revised this figure in response to reviewer 2 (comment 5) and quantal content is now expressed as percent baseline, thus without units (see revised figure 7).

      (13) Figure 6C should be auto-scaled from zero.

      This has been fixed by revising that figure in response to reviewer 2 (comment 5)

      (14) The data supporting the statement on impaired motor behavior and reduced vitality of adult IS4A should be either shown, or the statement should be removed (p. 13). Any hypotheses as to why IS4A is important for behavior and or viability?

      As suggested, we have removed that statement.

      (15) They do not provide any data supporting the statement that changes in PSC decay kinetics "counteract" the increase in PSC amplitude (p. 14). The sentence should be changed accordingly.

      We agree and have down toned. It now reads on page 16, lines 7-9: “During repetitive firing, the median increase of PSC amplitude by ~10 % is potentially counteracted by the significant decrease in PSC half amplitude width by ~25 %...”.

      (16) How do they explain the net locomotion speed increase in dI    -IIA larvae? Although the overall charge transfer is not affected during the stimulus protocols used, could the accelerated PSC decay affect PSP summation (I would actually expect a decrease in summation/slower speed)? Independent of the voltage-clamp data, is muscle input resistance changed in dI-IIA mutants?

      Muscle input resistance is not altered in I-II mutants. We refer to potential causes of the locomotion effects of I-IIA excision in the discussion. On page 16, lines 12 to 21 it reads: “there is no difference in charge transfer from the motoneuron axon terminal to the postsynaptic muscle cell between ∆I-IIA and control. Surprisingly, crawling is significantly affected by the removal of I-IIA, in that the animals show a significantly increased mean crawling speed but no significant change in the number of stops. Given that the presynaptic function at the NMJ is not strongly altered upon I-IIA excision, and that I-IIA likely mediates also Ca<sub>v</sub>2 functions outside presynaptic AZs (see above) and in other neuron types than motoneurons, and that the muscle calcium current is mediated by Ca<sub>v</sub>1>/i> and Ca<sub>v</sub>3, the effects of I-IIA excision of increasing crawling speed is unlikely caused by altered pre- or postsynaptic function at the NMJ. We judge it more likely that excision of I-IIA has multiple effects on sensory and pre-motor processing, but identification of these functions is beyond the scope of this study.”