16 Matching Annotations
  1. Feb 2020
    1. TABLE 1. Practices to maximize student learning from educational videos

      Table 1. resource for planning/making effective videos

    2. Finally, the utility of video lessons can be maximized by matching modality to content. By using both the audio/verbal channel and the visual/pictorial channel to convey new infor-mation, and by fitting the particular type of information to the most appropriate channel, instructors can enhance the germane cognitive load of a learning experience.

      matching modality to content. So if you want to talk about history, or a book, or just some reflection, it makes less sense to do it over video, but if you want to talk about art history maybe you want to have a video component or be primarily video

    3. Weeding, or the elimination of interesting but extraneous information that does not contribute to the learning goal, can provide further benefits. For example, music, complex back-grounds, or extra features within an animation require the learner to judge whether he or she should be paying attention to them, which increases extraneous load and can reduce learn-ing.

      Weeding + definition, removing flash and bells and whistles that might cause the student to be distracted

    4. The benefits of signaling are complemented by segmenting, or the chunking of information in a video lesson. Segmenting allows learners to engage with small pieces of new information and gives them control over the flow of new information.

      Segmenting or chunking

    5. Signaling, which is also known as cueing (deKoning et al., 2009), is the use of on-screen text or symbols to highlight important information. For example, signaling may be provided by the appearance of two or three key words (Mayer and John-son, 2008; Ibrahim et al., 2012), a change in color or contrast (deKoning et al., 2009), or a symbol that draws attention to a region of a screen (e.g., an arrow; deKoning et al., 2009).

      Signaling definition + examples

    6. The third component of a learning experience is extraneous load, which is cognitive effort that does not help the learner toward the desired learning outcome.

      extraneous load, the fiddling with technology, the finding new content to read, the poorly connected information, etc.

    7. The first of these is intrinsic load, which is inherent to the subject under study and is determined in part by the degrees of connec-tivity within the subject

      how difficult is a concept to understand, word pairing is less difficult than grammar rules.

    8. he second component of any learning experience is germane load, which is the level of cognitive activity necessary to reach the desired learning outcome—for example, to make the comparisons, do the analysis, and elucidate the steps necessary to master the lesson.

      the level of cognitive activity needed to learn the learning outcome (memorize a few words), define terms, recall a history event, draw something.

    9. This processing is a prerequisite for encoding into long-term memory, which has virtually unlimited capacity. Because working memory is very limited, the learner must be selective about what information from sensory mem-ory to pay attention to during the learning process, an observa-tion that has important implications for creating educational materials
    10. Cognitive load theory, initially articulated by Sweller (1988, 1989, 1994), suggests that memory has several components. Sensory memory is tran-sient, collecting information from the environment. Information from sensory memory may be selected for temporary storage and processing in working memory,

      Cognitive load theory

  2. Nov 2019
    1. E-Learning Theory (Mayer, Sweller, Moreno)

      This website outlines key principles of the E-Learning Theory developed by Mayer, Sweller, and Moreno. E-Learning Theory describes how the implementation of educational technology can be combined with key principles of how we learn for better outcomes. This site describes those principles as a guide of more effective instructional design. Users can also find other learning theories under the "Categories" link at the top of the page. Examples include Constructivist theories, Media & Technology theories, and Social Learning theories. Rating: 8/10

  3. Mar 2019
    1. This link is to a three-page PDF that describes Gagne's nine events of instruction, largely in in the form of a graphic. Text is minimized and descriptive text is color coded so it is easy to find underneath the graphic at the top. The layout is simple and easy to follow. A general description of Gagne's work is not part of this page. While this particular presentation does not have personal appeal to me, it is included here due to the quality of the page and because the presentation is more user friendly than most. Rating 4/5

    1. Joe understands this and explains that he will do his best to give you the valid conceptual feel that you want—trying to tread the narrow line between being too detailed and losing your over-all view and being too general and not providing you with a solid feel for what goes on.
  4. Jan 2019
    1. Constructivism and Social Constructivism

      a resource that provides an overview of key ideas to include similarities, differences, even extensions of both cognitive theories. Key theorists in these theories.

      Important points to consider when thinking about technology as a cognitive tool.

  5. Dec 2015
    1. Agreementis the good stuff in science; it’s the high fives.But it is easy to think we’re in agreement, when really we’re not. Modeling ourthoughts on heuristics and pictures may be convenient for quick travel down the road,but we’re liable to miss our turnoff at the first mile. The danger is in mistaking ourconvenient conceptualizations for what’s actually there. It is imperative that we havethe ability at any time to ground out in reality.