- Mar 2021
-
science.sciencemag.org science.sciencemag.org
-
Monod, Mélodie, Alexandra Blenkinsop, Xiaoyue Xi, Daniel Hebert, Sivan Bershan, Simon Tietze, Marc Baguelin, et al. ‘Age Groups That Sustain Resurging COVID-19 Epidemics in the United States’. Science 371, no. 6536 (26 March 2021). https://doi.org/10.1126/science.abe8372.
-
-
www.medrxiv.org www.medrxiv.org
-
Ioannidis, John P. A. (2020) ‘The Infection Fatality Rate of COVID-19 Inferred from Seroprevalence Data’. MedRxiv. https://doi.org/10.1101/2020.05.13.20101253.
-
-
www.nature.com www.nature.com
-
Nsoesie, E. O., Oladeji, O., Abah, A. S. A., & Ndeffo-Mbah, M. L. (2021). Forecasting influenza-like illness trends in Cameroon using Google Search Data. Scientific Reports, 11(1), 6713. https://doi.org/10.1038/s41598-021-85987-9
-
-
www.pnas.org www.pnas.org
-
Hong, B., Bonczak, B. J., Gupta, A., Thorpe, L. E., & Kontokosta, C. E. (2021). Exposure density and neighborhood disparities in COVID-19 infection risk. Proceedings of the National Academy of Sciences, 118(13). https://doi.org/10.1073/pnas.2021258118
-
-
www.thelancet.com www.thelancet.com
-
Varsavsky, Thomas, Mark S. Graham, Liane S. Canas, Sajaysurya Ganesh, Joan Capdevila Pujol, Carole H. Sudre, Benjamin Murray, et al. ‘Detecting COVID-19 Infection Hotspots in England Using Large-Scale Self-Reported Data from a Mobile Application: A Prospective, Observational Study’. The Lancet Public Health 6, no. 1 (1 January 2021): e21–29. https://doi.org/10.1016/S2468-2667(20)30269-3.
-
-
twitter.com twitter.com
-
ReconfigBehSci on Twitter: ‘RT @d_spiegel: Excellent new Covid RED dashboard from UCL https://t.co/wHMG8LzTUb Would be good to also know (a) how many contacts isolate…’ / Twitter. (n.d.). Retrieved 6 March 2021, from https://twitter.com/SciBeh/status/1323316018484305920
-
-
www.theguardian.com www.theguardian.com
-
Geddes, L. (2020, November 15). Damage to multiple organs recorded in ‘long Covid’ cases. The Guardian. https://www.theguardian.com/world/2020/nov/15/damage-to-multiple-organs-recorded-in-long-covid-cases
-
- Feb 2021
-
www.nature.com www.nature.com
-
Chande, A., Lee, S., Harris, M., Nguyen, Q., Beckett, S. J., Hilley, T., Andris, C., & Weitz, J. S. (2020). Real-time, interactive website for US-county-level COVID-19 event risk assessment. Nature Human Behaviour, 4(12), 1313–1319. https://doi.org/10.1038/s41562-020-01000-9
-
-
www.timesofisrael.com www.timesofisrael.com
-
Jeffay, N. (n.d.). Israel sees 60% drop in hospitalizations for age 60-plus 3 weeks after 1st shot. Retrieved 16 February 2021, from https://www.timesofisrael.com/israel-sees-60-drop-in-hospitalizations-for-over-60s-in-weeks-after-vaccination/
-
-
-
Ashokkumar, A., & Pennebaker, J. W. (2021). The Social and Psychological Changes of the First Months of COVID-19. PsyArXiv. https://doi.org/10.31234/osf.io/a34qp
-
-
-
Edwards, D. A., Ausiello, D., Salzman, J., Devlin, T., Langer, R., Beddingfield, B. J., Fears, A. C., Doyle-Meyers, L. A., Redmann, R. K., Killeen, S. Z., Maness, N. J., & Roy, C. J. (2021). Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences, 118(8). https://doi.org/10.1073/pnas.2021830118
-
- Nov 2020
-
www.nature.com www.nature.com
-
Nogrady, B. (2020). What the data say about asymptomatic COVID infections. Nature, 587(7835), 534–535. https://doi.org/10.1038/d41586-020-03141-3
-
- Oct 2020
-
twitter.com twitter.com
-
Shauna Brail on Twitter. (n.d.). Twitter. Retrieved October 9, 2020, from https://twitter.com/shaunabrail/status/1313818873163067392
-
- Aug 2020
-
www.thelancet.com www.thelancet.com
-
Marijon, E., Karam, N., Jost, D., Perrot, D., Frattini, B., Derkenne, C., Sharifzadehgan, A., Waldmann, V., Beganton, F., Narayanan, K., Lafont, A., Bougouin, W., & Jouven, X. (2020). Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: A population-based, observational study. The Lancet Public Health, 5(8), e437–e443. https://doi.org/10.1016/S2468-2667(20)30117-1
-
-
www.thelancet.com www.thelancet.com
-
Du, Z., Javan, E., Nugent, C., Cowling, B. J., & Meyers, L. A. (2020). Using the COVID-19 to influenza ratio to estimate early pandemic spread in Wuhan, China and Seattle, US. EClinicalMedicine, 0(0). https://doi.org/10.1016/j.eclinm.2020.100479
-
-
-
AP NEWS. ‘Health Officials Are Quitting or Getting Fired amid Outbreak’, 10 August 2020. https://apnews.com/8ea3b3669bccf8a637b81f8261f1cd78.
-
-
-
Manski, C. F., & Molinari, F. (2020). Estimating the COVID-19 Infection Rate: Anatomy of an Inference Problem (Working Paper No. 27023; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27023
-
- Jul 2020
-
psyarxiv.com psyarxiv.com
-
Litman. L,. Hartman. R., Jaffe. S., Robinson. J. (2020) County-level recruitment in online samples: Applications to COVID-19 and beyond. PsyArXiv Preprints. Retrieved from: https://psyarxiv.com/g3xw7/
-
-
docs.google.com docs.google.com
-
COVID-19 Social Science Tracker - Google Sheets
Tags
- preprint
- infection
- COVID-19
- uncertainty
- sheets
- misinformation
- conspiracy theory
- social science
- isolation
- government
- research
- social distancing
- tracker
- mental health
- community
- behavior
- spreadsheet
- publication
- international
- lang:en
- social media
- policy
- analysis
- data collection
- medicine
- is:other
- social norm
- unofficial
- healthcare
Annotators
URL
-
-
-
Jul 2, N. H. / P. (2020, July 2). Urban density not linked to higher coronavirus infection rates. The Hub. https://hub.jhu.edu/2020/07/02/urban-density-not-linked-to-higher-covid-19-infection-rates/
-
-
osf.io osf.io
-
Kulu, H., & Dorey, P. (2020). Infection Rates from Covid-19 in Great Britain by Geographical Units: A Model-based Estimation from Mortality Data [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/84f3e
-
-
psyarxiv.com psyarxiv.com
-
Sakakibara, R., & Ozono, H. (2020). Psychological Research on the COVID-19 Crisis in Japan: Focusing on Infection Preventive Behaviors, Future Prospects, and Information Dissemination Behaviors. https://doi.org/10.31234/osf.io/97zye
-
-
www.nature.com www.nature.com
-
Lavezzo, E., Franchin, E., Ciavarella, C., Cuomo-Dannenburg, G., Barzon, L., Del Vecchio, C., Rossi, L., Manganelli, R., Loregian, A., Navarin, N., Abate, D., Sciro, M., Merigliano, S., De Canale, E., Vanuzzo, M. C., Besutti, V., Saluzzo, F., Onelia, F., Pacenti, M., … Crisanti, A. (2020). Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature, 1–1. https://doi.org/10.1038/s41586-020-2488-1
-
- Jun 2020
-
psyarxiv.com psyarxiv.com
-
Im, H., & Chen, C. (2020). Social Distancing Around the Globe: Cultural Correlates of Reduced Mobility [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/b2s37
-
-
www.newscientist.com www.newscientist.comR number1
-
Vaughan, A. (n.d.). R number. New Scientist. Retrieved June 29, 2020, from https://www.newscientist.com/term/r-number/
-
-
psyarxiv.com psyarxiv.com
-
Yamagata, M., Teraguchi, T., & Miura, A. (2020, April 10). The Relationship between Infection-Avoidance Tendency and Exclusionary Attitudes towards Foreigners: A Case Study of the COVID-19 Outbreak in Japan. https://doi.org/10.31234/osf.io/vhrqn
-
-
royalsociety.org royalsociety.org
-
DELVE group publishes evidence paper on the use of face masks in tackling Coronavirus (COVID-19) pandemic | Royal Society. (2020 May 04). https://royalsociety.org/news/2020/05/delve-group-publishes-evidence-paper-on-use-of-face-masks/
Tags
- infection
- physical distancing
- COVID-19
- Data Evaluation and Learning for Viral Epidemics
- asymptomatic
- transmission reduction
- social distancing
- face mask
- public health
- publication
- evidence
- lang:en
- SAGE
- policy
- Royal Society
- DELVE
- behavioral change
- droplet
- is:webpage
- learning
- management
Annotators
URL
-
-
doi.org doi.org
-
Willem, L., Hoang, T. V., Funk, S., Coletti, P., Beutels, P., & Hens, N. (2020). SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19 [Preprint]. Epidemiology. https://doi.org/10.1101/2020.03.03.20030627
-
-
fivethirtyeight.com fivethirtyeight.com
-
Koerth, M. (2020, March 31). Why It’s So Freaking Hard To Make A Good COVID-19 Model. FiveThirtyEight. https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/
-
-
www.icuregswe.org www.icuregswe.org
-
Andersson, L. (2020, June 08) COVID-19 i svensk intensivvård. Retrieved June 8, 2020, from https://www.icuregswe.org/data--resultat/covid-19-i-svensk-intensivvard/
-
-
www.ages.at www.ages.at
-
Epidemiologische Abklärung am Beispiel COVID-19. (n.d.). AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit. https://www.ages.at/service/service-presse/pressemeldungen/epidemiologische-abklaerung-am-beispiel-covid-19/
-
- May 2020
-
www.thelancet.com www.thelancet.com
-
Verity, R., Okell, L., Dorigatti, I., Winskill, P., Whittaker, C., Walker, P., Donnelly, C., Ferguson, N., & Ghani, A. (2020). COVID-19 and the difficulty of inferring epidemiological parameters from clinical data – Authors’ reply. The Lancet Infectious Diseases, 0(0). https://doi.org/10.1016/S1473-3099(20)30443-6
-
-
www.thelancet.com www.thelancet.com
-
Rybniker, J., & Fätkenheuer, G. (2020). Importance of precise data on SARS-CoV-2 transmission dynamics control. The Lancet Infectious Diseases, S1473309920303595. https://doi.org/10.1016/S1473-3099(20)30359-5
-
-
twitter.com twitter.com
-
Carl T. Bergstrom on Twitter
-
-
covid19.gleamproject.org covid19.gleamproject.org
-
COVID-19 Modeling: Italy
-
-
science.sciencemag.org science.sciencemag.org
-
Salje, H., Tran Kiem, C., Lefrancq, N., Courtejoie, N., Bosetti, P., Paireau, J., Andronico, A., Hozé, N., Richet, J., Dubost, C.-L., Le Strat, Y., Lessler, J., Levy-Bruhl, D., Fontanet, A., Opatowski, L., Boelle, P.-Y., & Cauchemez, S. (2020). Estimating the burden of SARS-CoV-2 in France. Science, eabc3517. https://doi.org/10.1126/science.abc3517
-
-
www.nature.com www.nature.com
-
Vespignani, A., Tian, H., Dye, C. et al. Modelling COVID-19. Nat Rev Phys (2020). https://doi.org/10.1038/s42254-020-0178-4
Tags
- infection
- intervention
- mathematics
- transmission dynamics
- COVID-19
- complex network
- isolation
- war time
- contact tracing
- China
- prediction
- quarentine
- open data
- is:article
- public health
- pharmaceutical
- epidemiology
- superspreading
- lang:en
- modeling
- policy
- emergency
- challenge
- antibody testing
- containment measures
- computational modeling
- forecast
Annotators
URL
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Wang, C., Li, W., Drabek, D. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251 (2020). https://doi.org/10.1038/s41467-020-16256-y
-
-
www.economist.com www.economist.com
-
Countries are using apps and data networks to keep tabs on the pandemic. (2020 March 26). The Economist. https://www.economist.com/briefing/2020/03/26/countries-are-using-apps-and-data-networks-to-keep-tabs-on-the-pandemic?fsrc=newsletter&utm_campaign=the-economist-today&utm_medium=newsletter&utm_source=salesforce-marketing-cloud&utm_term=2020-05-07&utm_content=article-link-1
-
-
doi.org doi.org
-
Randazzo, W., Truchado, P., Ferrando, E. C., Simon, P., Allende, A., & Sanchez, G. (2020). SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. MedRxiv, 2020.04.22.20075200. https://doi.org/10.1101/2020.04.22.20075200
-
-
www.tandfonline.com www.tandfonline.com
-
Fenton, N. E., Neil, M., Osman, M., & McLachlan, S. (2020). COVID-19 infection and death rates: The need to incorporate causal explanations for the data and avoid bias in testing. Journal of Risk Research, 0(0), 1–4. https://doi.org/10.1080/13669877.2020.1756381
-
-
twitter.com twitter.com
-
David Garcia on Twitter
-
-
psyarxiv.com psyarxiv.com
-
Fenton, N., Hitman, G. A., Neil, M., Osman, M., & McLachlan, S. (2020). Causal explanations, error rates, and human judgment biases missing from the COVID-19 narrative and statistics [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/p39a4
-
- Apr 2020
-
www.thelancet.com www.thelancet.com
-
Mullard, A. (2020). Flooded by the torrent: The COVID-19 drug pipeline. The Lancet, 395(10232), 1245–1246. https://doi.org/10.1016/S0140-6736(20)30894-1
-
-
psyarxiv.com psyarxiv.com
-
Olapegba, P. O., Ayandele, O., Kolawole, S. O., Oguntayo, R., Gandi, J. C., Dangiwa, A. L., … Iorfa, S. K. (2020, April 12). COVID-19 Knowledge and Perceptions in Nigeria. https://doi.org/10.31234/osf.io/j356x
Tags
- is:preprint
- infection
- media
- COVID-19
- general public
- transmission
- misinformation
- misconception
- knowledge
- precaution
- Nigeria
- perception
- China
- news
- lockdown
- questionnaire
- behavior
- public health
- health information
- information
- lang:en
- data collection
- prevention
- symptom
- descriptive statistics
Annotators
URL
-
-
www.medrxiv.org www.medrxiv.org
-
Klepac, P., Kucharski, A. J., Conlan, A. J., Kissler, S., Tang, M., Fry, H., & Gog, J. R. (2020). Contacts in context: Large-scale setting-specific social mixing matrices from the BBC Pandemic project [Preprint]. Epidemiology. https://doi.org/10.1101/2020.02.16.20023754
-
-
arxiv.org arxiv.org
-
Nanni, M., Andrienko, G., Boldrini, C., Bonchi, F., Cattuto, C., Chiaromonte, F., Comandé, G., Conti, M., Coté, M., Dignum, F., Dignum, V., Domingo-Ferrer, J., Giannotti, F., Guidotti, R., Helbing, D., Kertesz, J., Lehmann, S., Lepri, B., Lukowicz, P., … Vespignani, A. (2020). Give more data, awareness and control to individual citizens, and they will help COVID-19 containment. ArXiv:2004.05222 [Cs]. http://arxiv.org/abs/2004.05222
-
-
www.thelancet.com www.thelancet.com
-
Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G., Thompson, H., Walker, P. G. T., Fu, H., Dighe, A., Griffin, J. T., Baguelin, M., Bhatia, S., Boonyasiri, A., Cori, A., Cucunubá, Z., FitzJohn, R., Gaythorpe, K., … Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: A model-based analysis. The Lancet Infectious Diseases, S1473309920302437. https://doi.org/10.1016/S1473-3099(20)30243-7
-