Personalized examples are very resistant to interference and can greatly reduce your learning time
Creating links to one's own personal context can help one to both learn and retain new material.
Personalized examples are very resistant to interference and can greatly reduce your learning time
Creating links to one's own personal context can help one to both learn and retain new material.
One of the most effective ways of enhancing memories is to provide them with a link to your personal life.
Personalizing ideas using existing memories is a method of brining new knowledge into one's own personal context and making them easier to remember.
link this to: - the pedagogical idea of context shifting as a means of learning - cards about reframing ideas into one's own words when taking notes
There is a solid group of cards around these areas of learning.
Random thought: Personal learning networks put one into a regular milieu of people who are talking and thinking about topics of interest to the learner. Regular discussions with these people helps one's associative memory by tying the ideas into this context of people with relation to the same topic. Humans are exceedingly good at knowing and responding to social relationships and within a personal learning network, these ties help to create context on an interpersonal level, but also provide scaffolding for the ideas and learning that one hopes to do. These features will tend to reinforce each other over time.
On the flip side of the coin there is anecdotal evidence of friends taking courses together because of their personal relationships rather than their interest in the particular topics.
There are some additional interesting questions here, like: how do you get to the edge quickly? How do you do that across multiple fields? What do you do if the field seems misdirected, like much of psychology?
I think this is where literature mapping tools come in handy. With such a tool, you can see how the literature is connected and which papers are closer to the edge of understanding. Some tools on this point include Connected Papers, Inciteful, Scite, Litmaps, and Open Knowledge Maps.
I think this requires taking an X-disciplinary approach that teeters on multiple disciplines.
Good question. It is hard to re-orient a field unless you can find a good reason (e.g., a crisis) for a paradigm shift. I think Kuhn's writing on [The Structure of Scientific Revolutions(https://www.uky.edu/~eushe2/Pajares/Kuhn.html) may be relevant here.
But now the government of Ukraine has called on ICANN to disconnect Russia from the internet by revoking its Top Level domain names
What is striking about this request and EFF's argument against is how this goes against "common carrier" principles—although this phrase isn't specifically used. In the net neutrality wars, "common carrier" status means that the network pipes are dumb...they neither understand nor promote/demote particular kinds of traffic. Their utility is in passing bits from one location another in the service of broader connectivity. "Common carrier" is a useful phrase for net neutrality in the United States...as a phrase, it may not translate well to other languages.
Horita, Y., & Yamazaki, M. (2022). Generalized and behavioral trust: Correlation with nominating close friends in a social network. PsyArXiv. https://doi.org/10.31234/osf.io/xu8k3
To learn—A rather obvious one, but I wanted to challenge myself again.
I love that Johannes Klingbiel highlights having his own place on the Internet as a means to learn. While I suspect that part of the idea here is to learn about the web and programming, it's also important to have a place you can more easily look over and review as well as build out on as one learns. This dovetails in part with his third reason to have his own website: "to build". It's much harder to build out a learning space on platforms like Medium and Twitter. It's not as easy to revisit those articles and notes as those platforms aren't custom built for those sorts of learning affordances.
Building your own website for learning makes it by definition a learning management system. The difference between my idea of a learning management system here and the more corporate LMSes (Canvas, Blackboard, Moodle, etc.) is that you can change and modify the playground as you go. While your own personal LMS may also be a container for holding knowledge, it is a container for building and expanding knowledge. Corporate LMSes aren't good at these last two things, but are built toward making it easier for a course facilitator to grade material.
We definitely need more small personal learning management systems. (pLMS, anyone? I like the idea of the small "p" to highlight the value of these being small.) Even better if they have social components like some of the IndieWeb building blocks that make it easier for one to build a personal learning network and interact with others' LMSes on the web. I see some of this happening in the Digital Gardens space and with people learning and sharing in public.
[[Flancian]]'s Anagora.org is a good example of this type of public learning space that is taking the individual efforts of public learners and active thinkers and knitting their efforts together to facilitate a whole that is bigger than the sum of it's pieces.
Vega-Oliveros, D. A., Grande, H. L. C., Iannelli, F., & Vazquez, F. (2021). Bi-layer voter model: Modeling intolerant/tolerant positions and bots in opinion dynamics. The European Physical Journal Special Topics, 230(14–15), 2875–2886. https://doi.org/10.1140/epjs/s11734-021-00151-8
In my gaze it felt that despite the almost omnipresent governmental presence, human networks took a measure of their importance and along the course of confinement we saw the buildup of the lines of many solidarity networks, not only because we benevolently provided necessary goods for each-other, but also because we shared opinions, information, and a lot of imaginations along the modalities of our existing independent infrastructures, trusting each other, across borders.
Edge computing is an emerging new trend in cloud data storage that improves how we access and process data online. Businesses dealing with high-frequency transactions like banks, social media companies, and online gaming operators may benefit from edge computing.
Edge Computing: What It Is and Why It Matters0
https://en.itpedia.nl/2021/12/29/edge-computing-what-it-is-and-why-it-matters/
Edge computing is an emerging new trend in cloud data storage that improves how we access and process data online. Businesses dealing with high-frequency transactions like banks, social media companies, and online gaming operators may benefit from edge computing.

Kan, U., Feng, M., & Porter, M. A. (2021). An Adaptive Bounded-Confidence Model of Opinion Dynamics on Networks. ArXiv:2112.05856 [Physics]. http://arxiv.org/abs/2112.05856
Kumar, A., Chowdhary, S., Capraro, V., & Perc, M. (2021). Evolution of honesty in higher-order social networks. Physical Review E, 104(5), 054308. https://doi.org/10.1103/PhysRevE.104.054308
Kwiek, M. (2021). The Globalization of Science: The Increasing Power of Individual Scientists. MetaArXiv. https://doi.org/10.31222/osf.io/gj4aq
Mazumdar, S., & Thakker, D. (2020). Citizen Science on Twitter: Using Data Analytics to Understand Conversations and Networks. Future Internet, 12(12), 210. https://doi.org/10.3390/fi12120210
Mattei, M., Caldarelli, G., Squartini, T., & Saracco, F. (2021). Italian Twitter semantic network during the Covid-19 epidemic. EPJ Data Science, 10(1), 1–27. https://doi.org/10.1140/epjds/s13688-021-00301-x
Manshour, P., & Montakhab, A. (2021). Dynamics of social balance on networks: The emergence of multipolar societies. Physical Review E, 104(3), 034303. https://doi.org/10.1103/PhysRevE.104.034303
how to make sense across their boundaries in order to explore and expand their common ground? How can they do so to scale up their collaboration for collective impact?
When opening up the definition of community in terms of community networks, with their broader, overlapping contexts, what is that mutual benefit? Of course, the communities making up the network focus on their own purposes, interests, and needs first. Still, through their intersecting socio-technical contexts, those purposes, interests, and needs partially connect the communities. This means that larger, overarching, common good constructs may become focal points of interest around which inter-communal joint purposes, interests, and needs can emerge, be more explicitly defined, linked more closely, and strengthened.
Marley, J., Blanche, M., Bulut, A., Bamber, L., McVay, S., Adeyanju, A., & Worsfold, S. (2021). The Digital Resilience Network [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/m8dbc
Taylor, L. (2021). The Venezuelan health-care workers secretly collecting COVID stats. Nature, 597(7874), 20–21. https://doi.org/10.1038/d41586-021-02276-1
Liu, Q., & Chai, L. (2021). Opinion Dynamics Models with Memory in Coopetitive Social Networks: Analysis, Application and Simulation. ArXiv:2108.03234 [Physics]. http://arxiv.org/abs/2108.03234
Montag, C., Sindermann, C., Rozgonjuk, D., Yang, S., Elhai, J. D., & Yang, H. (2021). Investigating Links Between Fear of COVID-19, Neuroticism, Social Networks Use Disorder, and Smartphone Use Disorder Tendencies. Frontiers in Psychology, 0. https://doi.org/10.3389/fpsyg.2021.682837
They convince people – indeed, entire organizations – to make long-term commitments to their products. Schools offer classes so people can call themselves “Photoshop experts” or “Illustrator experts”.
We’ve analyzed thousands of COVID-19 misinformation narratives. Here are six regional takeaways—Bulletin of the Atomic Scientists. (n.d.). Retrieved August 1, 2021, from https://thebulletin.org/2021/06/weve-analyzed-thousands-of-covid-19-misinformation-narratives-here-are-six-regional-takeaways/
Wang, B., Gou, M., Guo, Y., Tanaka, G., & Han, Y. (2020). Network structure-based interventions on spatial spread of epidemics in metapopulation networks. Physical Review E, 102(6), 062306. https://doi.org/10.1103/PhysRevE.102.062306
Sheetal, A., Feng, Z., & Savani, K. (2020). Using Machine Learning to Generate Novel Hypotheses: Increasing Optimism About COVID-19 Makes People Less Willing to Justify Unethical Behaviors. Psychological Science, 31(10), 1222–1235. https://doi.org/10.1177/0956797620959594
Ingale, M., & Shekatkar, S. M. (2020). Resource dependency and survivability in complex networks. Physical Review E, 102(6), 062304. https://doi.org/10.1103/PhysRevE.102.062304
Leah Keating on Twitter: “This work with @DavidJPOS and @gleesonj is now on arXiv (https://t.co/hxjZnCmKcM): ‘A multi-type branching process method for modelling complex contagion on clustered networks’ Here is a quick overview of our paper: (1/6) https://t.co/3jQ2flhk71” / Twitter. (n.d.). Retrieved July 23, 2021, from https://twitter.com/leahakeating/status/1418150117106978816
Gozzi, N., Scudeler, M., Paolotti, D., Baronchelli, A., & Perra, N. (2021). Self-initiated behavioral change and disease resurgence on activity-driven networks. Physical Review E, 104(1), 014307. https://doi.org/10.1103/PhysRevE.104.014307
Ortiz, E., & Serrano, M. Á. (2021). Multiscale opinion dynamics on real networks. ArXiv:2107.06656 [Physics]. http://arxiv.org/abs/2107.06656
visualization of the authors referenced together
Not usually one for this type of visual web, but I love this one for how it can be used, in addition to simply being interesting to see. Could be a great way to discover confirmation bias at play, if for instance people with opposing views are never referenced together. It could also simply serve as a way to find "other authors you might like," who write on similar topics to those you already have a founded interest in.
Herrera-Diestra, J. L., Tildesley, M., Shea, K., & Ferrari, M. (2021). Network structure and disease risk for an endemic infectious disease. ArXiv:2107.06186 [Physics, q-Bio]. http://arxiv.org/abs/2107.06186
In general, it is best to assume that the network is filled with malevolent entities that will send in packets designed to have the worst possible effect.
Persoon, P. G. J. (2021). Cumulative structure and path length in networks of knowledge. ArXiv:2106.10480 [Physics]. http://arxiv.org/abs/2106.10480
Reis, E. F. dos, & Masuda, N. (2021). Metapopulation models imply non-Poissonian statistics of interevent times. ArXiv:2106.10348 [Physics]. http://arxiv.org/abs/2106.10348
Qian, Z.-Y., Yuan, C., Zhou, J., Chen, S.-M., & Nie, S. (2021). Optimal control of complex networks with conformity behavior. ArXiv:2106.10607 [Physics]. http://arxiv.org/abs/2106.10607
I would suggest Shinobi as a NVR
Li, X., Ostropolets, A., Makadia, R., Shoaibi, A., Rao, G., Sena, A. G., Martinez-Hernandez, E., Delmestri, A., Verhamme, K., Rijnbeek, P. R., Duarte-Salles, T., Suchard, M. A., Ryan, P. B., Hripcsak, G., & Prieto-Alhambra, D. (2021). Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: Multinational network cohort study. BMJ, 373, n1435. https://doi.org/10.1136/bmj.n1435
Agarwal, A. (2021). Ripple Effect of a Pandemic: Analysis of the Psychological Stress Landscape during COVID19. PsyArXiv. https://doi.org/10.31234/osf.io/dm5x2
Agarwal, A. (2021). The Accidental Checkmate: Understanding the Intent behind sharing Misinformation on Social Media. PsyArXiv. https://doi.org/10.31234/osf.io/kwu58
Tybur, J. M., Lieberman, D., Fan, L., Kupfer, T. R., & de Vries, R. E. (2020). Behavioral Immune Trade-Offs: Interpersonal Value Relaxes Social Pathogen Avoidance. Psychological Science, 31(10), 1211–1221. https://doi.org/10.1177/0956797620960011
Network science is now a mature research field, whose growth was catalysed by the introduction of the ‘small world’ network model in 1998. Networks give mathematical descriptions of systems containing containing many interacting components, including power grids, neuronal networks and ecosystems. This collection brings together selected research, comments and review articles on how networks are structured (Layers & structure); how networks can describe healthy and disordered systems (Brain & disorders); how dynamics unfold on networks (Dynamics & spread); and community structures and resilience in networks (Community & resilience).
This is a great looking collection of articles on network science.
Gallacher, J., & Bright, J. (2021). Hate Contagion: Measuring the spread and trajectory of hate on social media. PsyArXiv. https://doi.org/10.31234/osf.io/b9qhd
Piotrowska, M. J., Sakowski, K., Karch, A., Tahir, H., Horn, J., Kretzschmar, M. E., & Mikolajczyk, R. T. (2020). Modelling pathogen spread in a healthcare network: Indirect patient movements. PLOS Computational Biology, 16(11), e1008442. https://doi.org/10.1371/journal.pcbi.1008442
Lutkenhaus, R. O., Jansz, J., & Bouman, M. P. A. (2019). Mapping the Dutch vaccination debate on Twitter: Identifying communities, narratives, and interactions. Vaccine: X, 1. https://doi.org/10.1016/j.jvacx.2019.100019
Grant, L., Hausman, B. L., Cashion, M., Lucchesi, N., Patel, K., & Roberts, J. (2015). Vaccination Persuasion Online: A Qualitative Study of Two Provaccine and Two Vaccine-Skeptical Websites. Journal of Medical Internet Research, 17(5), e4153. https://doi.org/10.2196/jmir.4153
Smith, N., & Graham, T. (2019). Mapping the anti-vaccination movement on Facebook. Information, Communication & Society, 22(9), 1310–1327. https://doi.org/10.1080/1369118X.2017.1418406
We, at Cubiko Games, would love for Foundation to reach as many people as possible because it’s such a great game. We hope that the ‘stretch goals’, ’2 x reward‘ tiers and ’voucher codes’ will encourage people to back and share the campaign so that it reaches its full potential. Then, hopefully, with more backers comes more exposure which, in turn, leads to the ultimate goal..... Foundation gets signed by a leading game manufacturer.
Only the Starter Kit is available in this reboot. The Starter Kit is FREE, in order to distribute it as widely as possible. This goal of this Kickstarter campaign is to introduce Clash of Deck to the whole word and to bring a community together around the game. If the Kickstarter campaign succeeds, we will then have the necessary dynamic to publish additional paid content on a regular basis, to enrich the game with: stand-alone expansions, additional modules, alternative game modes..
Karimi, Fariba, and Petter Holme. ‘A Temporal Network Version of Watts’s Cascade Model’. ArXiv:2103.13604 [Physics], 25 March 2021. http://arxiv.org/abs/2103.13604.
Holme, Petter, and Jari Saramäki. ‘Temporal Networks as a Modeling Framework’. ArXiv:2103.13586 [Physics], 24 March 2021. http://arxiv.org/abs/2103.13586.
A semantic similarity network (SSN) is a special form of semantic network.[1] designed to represent concepts and their semantic similarity. Its main contribution is reducing the complexity of calculating semantic distances.
Devriendt, K., Martin-Gutierrez, S., & Lambiotte, R. (2020). Variance and covariance of distributions on graphs. ArXiv:2008.09155 [Physics, Stat]. http://arxiv.org/abs/2008.09155
Di Lauro, F., Berthouze, L., Dorey, M. D., Miller, J. C., & Kiss, I. Z. (2020). The impact of network properties and mixing on control measures and disease-induced herd immunity in epidemic models: A mean-field model perspective. ArXiv:2007.06975 [Physics, q-Bio]. http://arxiv.org/abs/2007.06975
Brunson, E. K. (2013). The Impact of Social Networks on Parents’ Vaccination Decisions. Pediatrics, 131(5), e1397–e1404. https://doi.org/10.1542/peds.2012-2452
Wang, Xiangrong, Alejandro Tejedor, Yi Wang, and Yamir Moreno. ‘Unique Superdiffusion Induced by Directionality in Multiplex Networks’. ArXiv:2011.00991 [Physics], 2 November 2020. http://arxiv.org/abs/2011.00991.
Gupta, Prateek, Tegan Maharaj, Martin Weiss, Nasim Rahaman, Hannah Alsdurf, Abhinav Sharma, Nanor Minoyan, et al. ‘COVI-AgentSim: An Agent-Based Model for Evaluating Methods of Digital Contact Tracing’. ArXiv:2010.16004 [Cs], 29 October 2020. http://arxiv.org/abs/2010.16004.
McCabe, Stefan, Leo Torres, Timothy LaRock, Syed Arefinul Haque, Chia-Hung Yang, Harrison Hartle, and Brennan Klein. ‘Netrd: A Library for Network Reconstruction and Graph Distances’. ArXiv:2010.16019 [Physics], 29 October 2020. http://arxiv.org/abs/2010.16019.
Hota, Ashish R., Tanya Sneh, and Kavish Gupta. ‘Impacts of Game-Theoretic Activation on Epidemic Spread over Dynamical Networks’. ArXiv:2011.00445 [Physics], 1 November 2020. http://arxiv.org/abs/2011.00445.
Heeren, A., HANSEEUW, B., Cougnon, L., & Lits, G. (2021, March 11). Excessive Worrying as the Driving Force of Anxiety During the First COVID-19 Lockdown-Phase in Belgium. https://doi.org/10.31234/osf.io/b34aj
Barrat, A., de Arruda, G. F., Iacopini, I., & Moreno, Y. (2021). Social contagion on higher-order structures. ArXiv:2103.03709 [Physics]. http://arxiv.org/abs/2103.03709
Fowler, J. H., & Christakis, N. A. (2008). Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study. BMJ, 337, a2338. https://doi.org/10.1136/bmj.a2338
Integrity is distributed among nodes, not vested in a single member.
Network integrity
Gordon, D. E., Hiatt, J., Bouhaddou, M., Rezelj, V. V., Ulferts, S., Braberg, H., Jureka, A. S., Obernier, K., Guo, J. Z., Batra, J., Kaake, R. M., Weckstein, A. R., Owens, T. W., Gupta, M., Pourmal, S., Titus, E. W., Cakir, M., Soucheray, M., McGregor, M., … Krogan, N. J. (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 370(6521). https://doi.org/10.1126/science.abe9403
Wang, X., Sirianni, A. D., Tang, S., Zheng, Z., & Fu, F. (2020). Public Discourse and Social Network Echo Chambers Driven by Socio-Cognitive Biases. Physical Review X, 10(4), 041042. https://doi.org/10.1103/PhysRevX.10.041042
The alternative was to have multiple scripts or stylesheet links on one page, which would trigger multiple HTTP requests. Multiple requests mean multiple connection handshakes for each link “hey, I want some data”, “okay, I have the data”, “alright I heard that you have the data, give it to me” (SYN, ACK, SYNACK). Even once the connection is created there is a feature of TCP called TCP slow start that will throttle the speed of the data being sent at the beginning of a request to a slower speed than the end of the request. All of this means transferring one large request is faster than transferring the same data split up into several smaller requests.
Times info@bylinetimes.com (https://bylinetimes.com/), Byline. „Cambridge Analytica Psychologist Advising Global COVID-19 Disinformation Network Linked to Nigel Farage and Conservative Party“. Byline Times, 2. Februar 2021. https://bylinetimes.com/2021/02/02/cambridge-analytica-psychologist-advising-global-covid-19-disinformation-network-linked-to-nigel-farage-and-conservative-party/.
Hickok, A., Kureh, Y., Brooks, H. Z., Feng, M., & Porter, M. A. (2021). A Bounded-Confidence Model of Opinion Dynamics on Hypergraphs. ArXiv:2102.06825 [Nlin, Physics:Physics]. http://arxiv.org/abs/2102.06825
A popular strategy for bootstrapping networks is what I like to call “come for the tool, stay for the network.” The idea is to initially attract users with a single-player tool and then, over time, get them to participate in a network. The tool helps get to initial critical mass. The network creates the long term value for users, and defensibility for the company.
This is an interesting and useful strategy. I've heard the idea several times before.
I'm curious if this is the oldest version of it? I have to imagine that there are earlier versions of it dating back to 2011 or 2012 if not earlier.
Ogbunu, B. C. (2020, October 27). The Science That Spans #MeToo, Memes, and Covid-19. Wired. https://www.wired.com/story/the-science-that-spans-metoo-memes-and-covid-19/
ost-humanist perspective that foregrounds the apparatuses within which possibilities for action and judgement take shape, and confront visitors with the complex ways in which they are part of these systems and networks. How to be a responsible node in an Actor-Network?
why a company like Facebook invests so much research and engineering into the network performance of things as seemingly trivial as notifications.
Nande A, Adlam B, Sheen J, Levy MZ, Hill AL (2021) Dynamics of COVID-19 under social distancing measures are driven by transmission network structure. PLoS Comput Biol 17(2): e1008684. https://doi.org/10.1371/journal.pcbi.1008684
MasterCard
I’d notice the network requests going out!Where would you notice them? My code won’t send anything when the DevTools are open (yes even if un-docked).I call this the Heisenberg Manoeuvre: by trying to observe the behaviour of my code, you change the behaviour of my code.
Economists call this a "network effect": the more people there are on Twitter, the more reason there is to be on Twitter and the harder it is to leave. But technologists have another name for this: "lock in." The more you pour into Twitter, the more it costs you to leave. Economists have a name for that cost: the "switching cost."
In light of that reality, the Times should consider junking its language about journalists being “perceived as biased.” Thanks to the work of unprincipled folks in American politics, the mere expression of an opinion, or an emotion, is now viewed as evidence of ingrained bias. Opinion and bias are not the same.
Bericht über die Kündigung Lauren Wolfes durch die New York Times. Ist doppelt interessant—wegen der Problematik des Social Media Engagements von Journalistinnen und wegen der Aussagen zum Meinungsklima in den USA.
I've spent the last 3.5 years building a platform for "information applications". The key observation which prompted this was that hierarchical file systems didn't work well for organising information within an organisation.However, hierarchy itself is still incredibly valuable. People think in terms of hierarchies - it's just that they think in terms of multiple hierarchies and an item will almost always belong in more than one place in those hierarchies.If you allow users to describe items in the way which makes sense to them, and then search and browse by any of the terms they've used, then you've eliminated almost all the frustrations of a file system. In my experience of working with people building complex information applications, you need: * deep hierarchy for classifying things * shallow hierarchy for noting relationships (eg "parent company") * multi-values for every single field * controlled values (in our case by linking to other items wherever possible) Unfortunately, none of this stuff is done well by existing database systems. Which was annoying, because I had to write an object store.
Impressed by this comment. It foreshadows what Roam would become:
What you need to build a complex information system is:
The creation of these types of fake images only became possible in recent years thanks to a new type of artificial intelligence called a generative adversarial network. In essence, you feed a computer program a bunch of photos of real people. It studies them and tries to come up with its own photos of people, while another part of the system tries to detect which of those photos are fake.
Maia, H. P., Ferreira, S. C., & Martins, M. L. (2020). Adaptive network approach for emergence of societal bubbles. ArXiv:2010.08635 [Nlin, Physics:Physics]. http://arxiv.org/abs/2010.08635
Centola, D. (n.d.). Why Social Media Makes Us More Polarized and How to Fix It. Scientific American. Retrieved October 25, 2020, from https://www.scientificamerican.com/article/why-social-media-makes-us-more-polarized-and-how-to-fix-it/
COVID-19 and the Labor Market. (n.d.). IZA – Institute of Labor Economics. Retrieved October 10, 2020, from https://covid-19.iza.org/publications/dp13574/
I first briefly lay out alternative media theory as it existed prior to the dominance of Facebook, Google, and Twitter.
I've been thinking about it for a while but even if all social sites were interoperable, I suspect that a small handful of 2 or 3 would have the largest market share. This is as the result of some of the network theory and research found in Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life by Alberto-Llaszlo Barabasi
So that’s already a huge advantage over other platforms due the basic design. And in my opinion it’s got advantages over the other extreme, too, a pure peer-to-peer design, where everyone would have to fend for themselves, without the pooled resources.
Definitely something the IndieWeb may have to solve for.
Mastodon deliberately does not support arbitrary search. If someone wants their message to be discovered, they can use a hashtag, which can be browsed. What does arbitrary search accomplish? People and brands search for their own name to self-insert into conversations they were not invited to. What you can do, however, is search messages you posted, received or favourited. That way you can find that one message on the tip of your tongue.
First, I will focus in these larger groups because reviews that transcend the boundary between the social and natural sciences are rare, but I believe them to be valuable. One such review is Borgatti et al. (2009), which compares the network science of natural and social sciences arriving at a similar conclusion to the one I arrived.
For instance, in the study of mobile phone networks, the frequency and length of interactions has often been used as measures of link weight (Onnela et al. 2007), (Hidalgo and Rodriguez-Sickert 1008), (Miritello et al. 2011).
And they probably shouldn't because typically different levels of people are making these decisions. Studio brass and producers typically have more to say about the lead roles and don't care as much about the smaller ones which are overseen by casting directors or sometimes the producers. The only person who has oversight of all of them is the director, and even then they may quit caring at some point.
heterogeneous networks have been found to be effective promoters of the evolution of cooperation, since there are advantages to being a cooperator when you are a hub, and hubs tend to stabilize networks in equilibriums where levels of cooperation are high (Ohtsuki et al. 2006), (Pacheco et al. 2006), (Lieberman et al. 2005), (Santos and Pacheco 2005).
His weak-tie networks had been politically activated
This makes me wonder if she's cited Mark Granovetter or any of similar sociologists yet?
Apparently she did in footnote 32 in chapter 1. Ha!
Only a segment of the population needs to be connected digitally to affect the entire environment. In Egypt in 2011, only 25 percent of the population of the country was on-line, with a smaller portion of those on Facebook, but these people still managed to change the wholesale public discussion, including conversa-tions among people who had never been on the site.
There's some definite connection to this to network theory of those like Stuart Kaufmann. You don't need every node to be directly connected to create a robust network, particularly when there are other layers--here interpersonal connections, cellular, etc.
Anyone who's dealt with networks knows that the network knows more than the individual."
A stunning thing that we forget, but the link here is not part of the author’s intent, but of the reader’s analysis. The majority of links in the memex are made by readers, not writers. On the world wide web of course, only an author gets to determine links.
After all, the best messaging app in most countries or continents is the one most other people are already using there.
“INFORMATION RULES”—published in 1999 but still one of the best books on digital economics—Carl Shapiro and Hal Varian, two economists, popularised the term “network effects”,
I want to get a copy of this book.
Ghavasieh, A., Nicolini, C., & De Domenico, M. (2020). Statistical physics of complex information dynamics. ArXiv:2010.04014 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2010.04014
Houghton, J. P. (2020). Interdependent Diffusion: The social contagion of interacting beliefs. ArXiv:2010.02188 [Physics]. http://arxiv.org/abs/2010.02188
Gaisbauer, F., Olbrich, E., & Banisch, S. (2020). Dynamics of opinion expression. Physical Review E, 102(4), 042303. https://doi.org/10.1103/PhysRevE.102.042303
Burda, Z., Kotwica, M., & Malarz, K. (2020). Ageing of complex networks. Physical Review E, 102(4), 042302. https://doi.org/10.1103/PhysRevE.102.042302
Merlino, L. P., Pin, P., & Tabasso, N. (2020). Debunking Rumors in Networks. ArXiv:2010.01018 [Physics]. http://arxiv.org/abs/2010.01018
Ausführliche Sendung über Desinformationstechniken vor allem im Umkreis der Trump-Kampagne, viele Hinweise auf weitere Ressourcen
2020 Conference on Computational Sociology | IRiSS. (n.d.). Retrieved 30 September 2020, from https://iriss.stanford.edu/css/conferences/2020-conference-computational-sociology
Chen, Q., & Porter, M. A. (2020). Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks. ArXiv:2009.12932 [Physics]. http://arxiv.org/abs/2009.12932
Humphries, R., Mulchrone, K., Tratalos, J., More, S., & Hövel, P. (2020). A Systematic Framework of Modelling Epidemics on Temporal Networks. ArXiv:2009.11965 [Nlin, Physics:Physics]. http://arxiv.org/abs/2009.11965
Pausal Živference on Twitter. (n.d.). Twitter. Retrieved September 26, 2020, from https://twitter.com/PausalZ/status/1309208611265093632
Romanini, Daniele, Sune Lehmann, and Mikko Kivelä. ‘Privacy and Uniqueness of Neighborhoods in Social Networks’. ArXiv:2009.09973 [Physics], 21 September 2020. http://arxiv.org/abs/2009.09973.
Kojaku, S., Livan, G., & Masuda, N. (2020). Detecting citation cartels in journal networks. ArXiv:2009.09097 [Physics]. http://arxiv.org/abs/2009.09097
Peel, L., & Schaub, M. T. (2020). Detectability of hierarchical communities in networks. ArXiv:2009.07525 [Physics, Stat]. http://arxiv.org/abs/2009.07525
Ehlert, A., Kindschi, M., Algesheimer, R., & Rauhut, H. (2020). Human social preferences cluster and spread in the field. Proceedings of the National Academy of Sciences, 117(37), 22787–22792. https://doi.org/10.1073/pnas.2000824117
Network nodes are the points of connection of the transmission medium to transmitters and receivers of the electrical
.
Lee, Hyeon-seung, Derek Dean, Tatiana Baxter, Taylor Griffith, and Sohee Park. ‘Deterioration of Mental Health despite Successful Control of the COVID-19 Pandemic in South Korea’. Preprint. PsyArXiv, 30 August 2020. https://doi.org/10.31234/osf.io/s7qj8.
Kiss, I. Z., Miller, J., & Simon, P. L. (2017). Mathematics of Epidemics on Networks: From Exact to Approximate Models. Springer International Publishing. https://doi.org/10.1007/978-3-319-50806-1
Miller, J. C., & TIng, T. (2019). EoN (Epidemics on Networks): A fast, flexible Python package for simulation, analytic approximation, and analysis of epidemics on networks. Journal of Open Source Software, 4(44), 1731. https://doi.org/10.21105/joss.01731
Stix, G. (n.d.). Zoom Psychiatrists Prep for COVID-19’s Endless Ride. Scientific American. Retrieved June 9, 2020, from https://www.scientificamerican.com/article/zoom-psychiatrists-prep-for-covid-19s-endless-ride1/
How network science models can predict the next stages of the COVID-19 pandemic. (n.d.). Retrieved June 10, 2020, from https://news.northeastern.edu/2020/05/14/how-network-science-models-can-predict-the-next-stages-of-the-covid-19-pandemic/
katherine_chen. (2020, June 17). PMO | National Broadcast by PM Lee Hsien Loong on 7 June 2020 [Text]. Prime Minister’s Office Singapore; katherine_chen. http://www.pmo.gov.sg/Newsroom/National-Broadcast-PM-Lee-Hsien-Loong-COVID-19
r/BehSciAsk—Integrating Behavioural Science into Epidimiology. (n.d.). Reddit. Retrieved June 27, 2020, from https://www.reddit.com/r/BehSciAsk/comments/hg501h/integrating_behavioural_science_into_epidimiology/
Ali, A. (2020, August 28). Visualizing the Social Media Universe in 2020. Visual Capitalist. https://www.visualcapitalist.com/visualizing-the-social-media-universe-in-2020/
By bringing both designers and non-designers alike into Figma, they create a cross-side network effect. In a direct network effect, a homogenous group gets more value from a product as more of them join. In contrast, a cross-side network effect involves two (or more) distinct groups that grow in size and value as the other group does, too. Figma’s cross-side network effect between designers and non-designers is one of the primary and under-appreciated sources of their compounding success over the last few years. As more designers use Figma, they pull in the non-designers they work with. Similarly, as these non-designers use Figma, they encourage the other designers they work with to use Figma. It’s a virtuous circle and a powerful compounding loop.
By bringing non-designers into the design process, Figma created cross-side network effects for itself.
Where typically the designers would get their designer peers to use the tools they're excited about, now non-designers would experience the value and recommend Figma to designers and non-designers alike.
Carmona, H. A., de Noronha, A. W. T., Moreira, A. A., Araujo, N. A. M., & Andrade Jr, J. S. (2020). Cracking urban mobility. ArXiv:2008.13644 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2008.13644
Thurner, S., Klimek, P., & Hanel, R. (2020). A network-based explanation of why most COVID-19 infection curves are linear. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2010398117
Perez, I. A., Di Muro, M. A., La Rocca, C. E., & Braunstein, L. A. (2020). Disease spreading with social distancing: A prevention strategy in disordered multiplex networks. Physical Review E, 102(2), 022310. https://doi.org/10.1103/PhysRevE.102.022310
Moya, C., Cruz y Celis Peniche, P. D., Kline, M. A., & Smaldino, P. (2020). Dynamics of Behavior Change in the COVID World [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/kxajh
Holtz, D., Zhao, M., Benzell, S. G., Cao, C. Y., Rahimian, M. A., Yang, J., Allen, J., Collis, A., Moehring, A., Sowrirajan, T., Ghosh, D., Zhang, Y., Dhillon, P. S., Nicolaides, C., Eckles, D., & Aral, S. (2020). Interdependence and the cost of uncoordinated responses to COVID-19. Proceedings of the National Academy of Sciences, 117(33), 19837–19843. https://doi.org/10.1073/pnas.2009522117
Scientific Reference to Reliable Information on Climate Change. (2015, February 9). Climate Feedback. https://climatefeedback.org/
Shan, B., Broza, Y. Y., Li, W., Wang, Y., Wu, S., Liu, Z., Wang, J., Gui, S., Wang, L., Zhang, Z., Liu, W., Zhou, S., Jin, W., Zhang, Q., Hu, D., Lin, L., Zhang, Q., Li, W., Wang, J., … Haick, H. (2020). Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano. https://doi.org/10.1021/acsnano.0c05657
Velásquez-Rojas, F., Ventura, P. C., Connaughton, C., Moreno, Y., Rodrigues, F. A., & Vazquez, F. (2020). Disease and information spreading at different speeds in multiplex networks. Physical Review E, 102(2), 022312. https://doi.org/10.1103/PhysRevE.102.022312
Khanam, K. Z., Srivastava, G., & Mago, V. (2020). The Homophily Principle in Social Network Analysis. ArXiv:2008.10383 [Physics]. http://arxiv.org/abs/2008.10383
Shahal, S., Wurzberg, A., Sibony, I., Duadi, H., Shniderman, E., Weymouth, D., Davidson, N., & Fridman, M. (2020). Synchronization of complex human networks. Nature Communications, 11(1), 3854. https://doi.org/10.1038/s41467-020-17540-7
Young, J.-G., Cantwell, G. T., & Newman, M. E. J. (2020). Robust Bayesian inference of network structure from unreliable data. ArXiv:2008.03334 [Physics, Stat]. http://arxiv.org/abs/2008.03334
Kuchler, T., Russel, D., & Stroebel, J. (2020). The Geographic Spread of COVID-19 Correlates with Structure of Social Networks as Measured by Facebook (Working Paper No. 26990; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w26990
Alfaro, L., Faia, E., Lamersdorf, N., & Saidi, F. (2020). Social Interactions in Pandemics: Fear, Altruism, and Reciprocity (Working Paper No. 27134; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27134
Acemoglu, Daron, Ali Makhdoumi, Azarakhsh Malekian, and Asuman Ozdaglar. ‘Testing, Voluntary Social Distancing and the Spread of an Infection’. Working Paper. Working Paper Series. National Bureau of Economic Research, July 2020. https://doi.org/10.3386/w27483.
Esther Choo, MD MPH on Twitter: “Question for Twitter. Why didn’t academia take the lead on Covid information? Why didn’t schools of med & public health across the US band together, put forth their experienced scientists in epidemiology, virology, emergency & critical care, pandemic and disaster response...” / Twitter. (n.d.). Twitter. Retrieved August 10, 2020, from https://twitter.com/choo_ek/status/1291789978716868608
Zhou, Dong, and Amir Bashan. ‘Dependency-Based Targeted Attacks in Interdependent Networks’. Physical Review E 102, no. 2 (3 August 2020): 022301. https://doi.org/10.1103/PhysRevE.102.022301.
Simchon, A., Brady, W. J., & Bavel, J. J. V. (2020). Troll and Divide: The Language of Online Polarization. https://doi.org/10.31234/osf.io/xjd64
Aleta, A., Arruda, G. F. de, & Moreno, Y. (2020). Data-driven contact structures: From homogeneous mixing to multilayer networks. PLOS Computational Biology, 16(7), e1008035. https://doi.org/10.1371/journal.pcbi.1008035
Akbarpour, M., Cook, C., Marzuoli, A., Mongey, S., Nagaraj, A., Saccarola, M., Tebaldi, P., Vasserman, S., & Yang, H. (2020). Socioeconomic Network Heterogeneity and Pandemic Policy Response (Working Paper No. 27374; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27374
Baqaee, D., & Farhi, E. (2020). Nonlinear Production Networks with an Application to the Covid-19 Crisis (Working Paper No. 27281; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27281
West, D. K. & G. (2020, July 8). The Damage We’re Not Attending To. Nautilus. http://nautil.us/issue/87/risk/the-damage-were-not-attending-to
Fajgelbaum, P., Khandelwal, A., Kim, W., Mantovani, C., & Schaal, E. (2020). Optimal Lockdown in a Commuting Network (Working Paper No. 27441; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27441
Vachuska, K. F. (2020). Considering Elite Network Patterns in Application to Infectious Disease Spread [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/2r9mu
Bernard, P., St-Amour, S., Lachance, Kingsbury, C., & Lapointe. (2020). Dynamic patterns of depressive symptoms and sleep during the first month of strict lockdown in two women with major depressive disorder [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/5enrq
Starominski-Uehara, M. (2020). Powering Social Media Footage: Simple Guide for the Most Vulnerable to Make Emergency Visible [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/gefhv
Laliotis, I., & Minos, D. (2020). Spreading the disease: The role of culture [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/z4ndc
Virtual MLSS 2020 (Opening Remarks). (2020, June 29). https://www.youtube.com/watch?v=8staJlMbAig
Thomas W. Malone—COVID-19 and Collective Intelligence (ACM CI’20). (n.d.). Retrieved June 25, 2020, from https://www.youtube.com/watch?v=W5RfAZMMTPM
Jeff Howe - Crowdsourcing and the Crisis: Collective Intelligence in the Age of Covid-19 (ACM CI’20). (n.d.). Retrieved June 25, 2020, from https://www.youtube.com/watch?v=POPMMHyIoS0
Supporting Open Science Data Curation, Preservation, and Access by Libraries. (2020, June 25). https://www.youtube.com/watch?v=SbmGWHpzAHs&feature=youtu.be
Net-COVID Session3A: Human mobility and control measures in the COVID-19 epidemic by Sam Scarpino. (n.d.). Retrieved June 14, 2020, from https://www.youtube.com/watch?v=BrrGxJT6-iA
Starominski-Uehara, M. (2020). Powering Social Media Footage: Simple Guide for the Most Vulnerable to Make Emergency Visible [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/ek6tz
Weeden, K. A., & Cornwell, B. (2020). The Small World Network of College Classes: Implications for Epidemic Spread on a University Campus [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/n5gw4
Net-COVID Session2A: Network Epidemiology Tutorial by YY Ahn. (2020, April 16). https://www.youtube.com/watch?v=8XHBYdHBhDI&list=PLVWaQYnj_BZVQal-KQ0rf8CcZJPIhpuO3&index=2
Net-COVID Session4A: Math Models of Epidemic Spreading in the Time of COVID-19 by Ginestra Bianconi. (2020, May 1). https://www.youtube.com/watch?v=vZ2Ezsffkqs&list=PLVWaQYnj_BZVQal-KQ0rf8CcZJPIhpuO3&index=4
Allard, A., Moore, C., Scarpino, S. V., Althouse, B. M., & Hébert-Dufresne, L. (2020). The role of directionality, heterogeneity and correlations in epidemic risk and spread. ArXiv:2005.11283 [Physics, q-Bio]. http://arxiv.org/abs/2005.11283
Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature Human Behaviour, 4(6), 588–596. https://doi.org/10.1038/s41562-020-0898-6
Mann, P., Smith, V. A., Mitchell, J. B. O., & Dobson, S. (2020). Two-pathogen model with competition on clustered networks. ArXiv:2007.03287 [Physics, q-Bio]. http://arxiv.org/abs/2007.03287
McQuillan, L., McAweeney, E., Bargar, A., & Ruch, A. (2020). Cultural Convergence: Insights into the behavior of misinformation networks on Twitter. ArXiv:2007.03443 [Physics]. http://arxiv.org/abs/2007.03443
Fontana, M., Iori, M., Montobbio, F., & Sinatra, R. (2020). New and atypical combinations: An assessment of novelty and interdisciplinarity. Research Policy, 49(7), 104063. https://doi.org/10.1016/j.respol.2020.104063
Di Lauro, F., Croix, J.-C., Berthouze, L., & Kiss, I. (2020). PDE-limits of stochastic SIS epidemics on networks. ArXiv:2007.01043 [Physics, q-Bio]. http://arxiv.org/abs/2007.01043
Gupta, H., & Porter, M. A. (2020). Mixed Logit Models and Network Formation. ArXiv:2006.16516 [Physics, Stat]. http://arxiv.org/abs/2006.16516
Lovato, J., Allard, A., Harp, R., & Hébert-Dufresne, L. (2020). Distributed consent and its impact on privacy and observability in social networks. ArXiv:2006.16140 [Physics]. http://arxiv.org/abs/2006.16140
Chambon, M., Dalege, J., Elberse, J., & van Harreveld, F. (2020). A psychological network approach to factors related to preventive behaviors during pandemics: A European COVID-19 study [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/es45v
Shah, C., Dehmamy, N., Perra, N., Chinazzi, M., Barabási, A.-L., Vespignani, A., & Yu, R. (2020). Finding Patient Zero: Learning Contagion Source with Graph Neural Networks. ArXiv:2006.11913 [Cs]. http://arxiv.org/abs/2006.11913
Yang, G., Csikász-Nagy, A., Waites, W., Xiao, G., & Cavaliere, M. (2020). Information Cascades and the Collapse of Cooperation. Scientific Reports, 10(1), 8004. https://doi.org/10.1038/s41598-020-64800-z
Candelieri, A., Giordani, I., Ponti, A., & Archetti, F. (2020). Resilience in urban networked infrastructure: The case of Water Distribution Systems. ArXiv:2006.14622 [Physics]. http://arxiv.org/abs/2006.14622
Welcome! You are invited to join a webinar: Supporting Open Science Data Curation, Preservation, and Access by Libraries. After registering, you will receive a confirmation email about joining the webinar. (n.d.). Zoom Video. Retrieved June 28, 2020, from https://zoom.us/webinar/register/2615905946283/WN_W6dYUXQFTqGQjGAZPRB74w
Zhang, L., & Peixoto, T. P. (2020). Statistical inference of assortative community structures. ArXiv:2006.14493 [Cond-Mat, Physics:Physics, Stat]. http://arxiv.org/abs/2006.14493
Mohseni-Kabir, A., Pant, M., Towsley, D., Guha, S., & Swami, A. (2020). Percolation Thresholds for Robust Network Connectivity. ArXiv:2006.14496 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2006.14496
Yucel, M., Sjobeck, G., Glass, R., & Rottman, J. (2020). Gossip, Sabotage, and Friendship Network Dataset [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/m6tsx
Ekstrom, P. D., & Lai, C. K. (2020, June 18). The Selective Communication of Political Information. https://doi.org/10.31234/osf.io/pnr9u
Plata, C. A., Pigani, E., Azaele, S., Callejas, V., Palazzi, M. J., Solé-Ribalta, A., Meloni, S., & Suweis, J. B.-H. S. (2020). Neutral Theory for competing attention in social networks. ArXiv:2006.07586 [Physics]. http://arxiv.org/abs/2006.07586
Borsboom, D., Blanken, T., Dablander, F., Tanis, C., van Harreveld, F., & van Mieghem, P. (2020). BECON methodology [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/53ey9
Camacho, D., Panizo-LLedot, Á., Bello-Orgaz, G., Gonzalez-Pardo, A., & Cambria, E. (2020). The Four Dimensions of Social Network Analysis: An Overview of Research Methods, Applications, and Software Tools. Information Fusion. https://doi.org/10.1016/j.inffus.2020.05.009
Maltby, J., Hunt, S. A., Ohinata, A., Palmer, E., & Conroy, S. (2020). Frailty and Social Isolation: Comparing the Relationship between Frailty and Unidimensional and Multifactorial Models of Social Isolation: Journal of Aging and Health. https://doi.org/10.1177/0898264320923245
UKRN position on covid 19 research. (2020 May 01). School of Psychological Science | University of Bristol. http://www.bristol.ac.uk/psychology/research/ukrn/news/2020/ukrn-position-on-covid-19-research.html
McAvoy, A., Allen, B., & Nowak, M. A. (2020). Social goods dilemmas in heterogeneous societies. Nature Human Behaviour, 1–13. https://doi.org/10.1038/s41562-020-0881-2
Murphy, C., Laurence, E., & Allard, A. (2020). Deep learning of stochastic contagion dynamics on complex networks. ArXiv:2006.05410 [Cond-Mat, Physics:Physics, Stat]. http://arxiv.org/abs/2006.05410
Net-COVID. (n.d.). Retrieved June 10, 2020, from https://sites.google.com/umd.edu/net-covid/home
Liu, Andrew, and Mason A. Porter. ‘Spatial Strength Centrality and the Effect of Spatial Embeddings on Network Architecture’. Physical Review E 101, no. 6 (9 June 2020): 062305. https://doi.org/10.1103/PhysRevE.101.062305.
MQTT
Message Queuing Telemetry Transport MQTT protocol -> publish-subscribe network protocol that transports messages between devices, usually through TCP/IP
Protocol defines 2 network entities:
Papini, S., Dainer-Best, J., Rubin, M., Zaizar, E. D., Telch, M. J., & Smits, J. A. J. (2020). Psychological Networks can Identify Potential Pathways to Specific Intervention Targets for Anxiety in Response to Coronavirus Disease 2019 (COVID-19) [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/4zr25
Tann, W. J.-W., Chang, E.-C., & Hooi, B. (2020). SHADOWCAST: Controlling Network Properties to Explain Graph Generation. ArXiv:2006.03774 [Cs, Stat]. http://arxiv.org/abs/2006.03774
Bravo-Hermsdorff, G., Felso, V., Ray, E., Gunderson, L. M., Helander, M. E., Maria, J., & Niv, Y. (2019). Gender and collaboration patterns in a temporal scientific authorship network. Applied Network Science, 4(1), 112. https://doi.org/10.1007/s41109-019-0214-4
Jazayeri, A., & Yang, C. C. (2020). Motif Discovery Algorithms in Static and Temporal Networks: A Survey. ArXiv:2005.09721 [Physics]. http://arxiv.org/abs/2005.09721
Parisi, F., Squartini, T., & Garlaschelli, D. (2020). A faster horse on a safer trail: Generalized inference for the efficient reconstruction of weighted networks. New Journal of Physics, 22(5), 053053. https://doi.org/10.1088/1367-2630/ab74a7
Della Rossa, F., & DeLellis, P. (2020). Stochastic master stability function for noisy complex networks. Physical Review E, 101(5), 052211. https://doi.org/10.1103/PhysRevE.101.052211
Mclachlan, S., Lucas, P., Kudakwashe Dube, Hitman, G. A., Osman, M., Kyrimi, E., Neil, M., & Fenton, N. E. (2020). The fundamental limitations of COVID-19 contact tracing methods and how to resolve them with a Bayesian network approach. https://doi.org/10.13140/RG.2.2.27042.66243
Cai, L., Chen, Z., Luo, C., Gui, J., Ni, J., Li, D., & Chen, H. (2020). Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs. ArXiv:2005.07427 [Cs, Stat]. http://arxiv.org/abs/2005.07427
Zhou, B., Lu, X., & Holme, P. (2020). Universal evolution patterns of degree assortativity in social networks. Social Networks, 63, 47–55. https://doi.org/10.1016/j.socnet.2020.04.004